
Ivan Markovsky

Low-Rank Approximation

Algorithms, Implementation, Applications

September 2, 2014

Springer

Preface

Mathematical models are obtained from first principles (natural laws, interconnec-
tion, etc.) and experimental data. Modeling from first principles is common in nat-
ural sciences, while modeling from data is common in engineering. In engineer-
ing, often experimental data is available and a simple approximate model is pre-
ferred to a complicated detailed one. Indeed, although optimal prediction and con-
trol of a complex (high-order, nonlinear, time-varying) system is currently difficult
to achieve, robust analysis and design methods, based on a simple (low-order, lin-
ear, time-invariant) approximate model, may achieve sufficiently high performance.
This book addresses the problem of data approximation by low-complexity models.

A unifying theme of the book is low-rank approximation: a prototypical data
modeling problem. The rank of a matrix constructed from the data corresponds to
the complexity of a linear model that fits the data exactly. The data matrix being full
rank implies that there is no exact low complexity linear model for that data. In this
case, the aim is to find an approximate model. One approach for approximate mod-
eling, considered in the book, is to find small (in some specified sense) modification
of the data that renders the modified data exact. The exact model for the modified
data is an optimal (in the specified sense) approximate model for the original data.
The corresponding computational problem is low-rank approximation. It allows the
user to trade off accuracy vs complexity by varying the rank of the approximation.

The distance measure for the data modification is a user choice that specifies the
desired approximation criterion or reflects prior knowledge about the accuracy of the
data. In addition, the user may have prior knowledge about the system that generates
the data. Such knowledge can be incorporated in the modeling problem by imposing
constraints on the model. For example, if the model is known (or postulated) to be
a linear time-invariant dynamical system, the data matrix has Hankel structure and
the approximating matrix should have the same structure. This leads to a Hankel
structured low-rank approximation problem.

A tenet of the book is: the estimation accuracy of the basic low-rank approx-
imation method can be improved by exploiting prior knowledge, i.e., by adding
constraints that are known to hold for the data generating system. This path of de-
velopment leads to weighted, structured, and other constrained low-rank approxi-

v

vi Preface

mation problems. The theory and algorithms of these new classes of problems are
interesting in their own right and being application driven are practically relevant.

Stochastic estimation and deterministic approximation are two complementary
aspects of data modeling. The former aims to find from noisy data, generated by a
low-complexity system, an estimate of that data generating system. The latter aims
to find from exact data, generated by a high complexity system, a low-complexity
approximation of the data generating system. In applications both the stochastic
estimation and deterministic approximation aspects are likely to be present. The
data is likely to be imprecise due to measurement errors and is likely to be gener-
ated by a complicated phenomenon that is not exactly representable by a model in
the considered model class. The development of data modeling methods in system
identification and signal processing, however, has been dominated by the stochas-
tic estimation point of view. If considered, the approximation error is represented
in the mainstream data modeling literature as a random process. This is not natural
because the approximation error is by definition deterministic and even if consid-
ered as a random process, it is not likely to satisfy standard stochastic regularity
conditions such as zero mean, stationarity, ergodicity, and Gaussianity.

An exception to the stochastic paradigm in data modeling is the behavioral ap-
proach, initiated by J. C. Willems in the mid 80’s. Although the behavioral approach
is motivated by the deterministic approximation aspect of data modeling, it does
not exclude the stochastic estimation approach. In this book, we use the behav-
ioral approach as a language for defining different modeling problems and present-
ing their solutions. We emphasize the importance of deterministic approximation in
data modeling, however, we formulate and solve stochastic estimation problems as
low-rank approximation problems.

Many well known concepts and problems from systems and control, signal pro-
cessing, and machine learning reduce to low-rank approximation. Generic exam-
ples in system theory are model reduction and system identification. The principal
component analysis method in machine learning is equivalent to low-rank approxi-
mation, which suggests that related dimensionality reduction, classification, and in-
formation retrieval problems can be phrased as low-rank approximation problems.
Sylvester structured low-rank approximation has applications in computations with
polynomials and is related to methods from computer algebra.

The developed ideas lead to algorithms, which are implemented in software.
The algorithms clarify the ideas and the software implementation clarifies the al-
gorithms. Indeed, the software is the ultimate unambiguous description of how the
ideas are put to work. In addition, the provided software allows the reader to re-
produce the examples in the book and to modify them. The exposition reflects the
sequence

theory 7→ algorithms 7→ implementation.

Correspondingly, the text is interwoven with code that generates the numerical ex-
amples being discussed.

Preface vii

Prerequisites and practice problems

A common feature of the current research activity in all areas of science and engi-
neering is the narrow specialization. In this book, we pick applications in the broad
area of data modeling, posing and solving them as low-rank approximation prob-
lems. This unifies seemingly unrelated applications and solution techniques by em-
phasising their common aspects (e.g., complexity–accuracy trade-off) and abstract-
ing from the application specific details, terminology, and implementation details.
Despite of the fact that applications in systems and control, signal processing, ma-
chine learning, and computer vision are used as examples, the only real prerequisites
for following the presentation is knowledge of linear algebra.

The book is intended to be used for self study by researchers in the area of data
modeling and by advanced undergraduate / graduate level students as a complemen-
tary text for a course on system identification or machine learning. In either case,
the expected knowledge is undergraduate level linear algebra. In addition, MATLAB

code is used, so that familiarity with MATLAB programming language is required.
Passive reading of the book gives a broad perspective on the subject. Deeper un-

derstanding, however, requires active involvement, such as supplying missing justi-
fication of statements and specific examples of the general concepts, application and
modification of presented ideas, and solution of the provided exercises and practice
problems. There are two types of practice problems: analytical, asking for a proof
of a statement clarifying or expanding the material in the book, and computational,
asking for experiments with real or simulated data of specific applications. Most of
the problems are easy to medium difficulty. A few problems (marked with stars) can
be used as small research projects.

The code in the book, available from

http://extra.springer.com/

has been tested with MATLAB 7.9, running under Linux, and uses the Optimization
Toolbox 4.3, Control System Toolbox 8.4, and Symbolic Math Toolbox 5.3. A ver-
sion of the code that is compatible with Octave (a free alternative to MATLAB) is
also available from the book’s web page.

Software tools used for typesetting the book

The book is typeset using LATEX and a number of extension packages. Diagrams are
created using the PSTricks and xy packages and the standalone xfig program. All
editing is done in the GNU Emacs editor, using org-mode and latex-mode. MATLAB

code, presented in a literate programming style is an integral part of the text. This is
achieved by the Norman Ramsey’s noweb system.

The process of compiling the book involves a number of steps automated by a
GNU Make file. First the LATEX source code and the MATLAB functions and scripts
are extracted from noweb’s source files. The obtained scripts are then executed

viii Preface

in MATLAB in order to generate the figures and numerical results. Finally, LATEX,
bibTEX, dvips, and ps2pdf are run on the files created in the previous steps to
generate the final pdf file of the book. The described process guarantees that the
code in the text is the actual code that has generated the results shown in the book.

A laptop and a desktop computers were used for working on the book. Keeping
the files synchronized between the two computers was done using the Unison file
synchronizer.

Acknowledgements

A number of individuals and the European Research Council contributed and sup-
ported me during the preparation of the book. Oliver Jackson—Springer’s edi-
tor (engineering)—encouraged me to embark on the project. My colleagues in
ESAT/SISTA, K.U.Leuven and ECS/ISIS, Southampton, U.K. created the right en-
vironment for developing the ideas in the book. In particular, I am in debt to Jan C.
Willems (SISTA) for his personal guidance and example of critical thinking. The
behavioral approach that Jan initiated in the early 1980’s is present in this book.

Maarten De Vos, Diana Sima, Konstantin Usevich, and Jan Willems proofread
chapters of the book and suggested improvements. I gratefully acknowledge funding
from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC Grant agreement number 258581 “Struc-
tured low-rank approximation: Theory, algorithms, and applications”.

Southampton, Ivan Markovsky

September 2, 2014

Contents

1 Introduction . 1
1.1 Classical and behavioral paradigms for data modeling 1
1.2 Motivating example for low-rank approximation 3
1.3 Overview of applications . 7
1.4 Overview of algorithms . 21
1.5 Literate programming . 24
1.6 Notes and references . 27

Part I Linear modeling problems

2 From data to models . 37
2.1 Linear static model representations . 37
2.2 Linear time-invariant model representations . 47
2.3 Exact and approximate data modeling . 54
2.4 Unstructured low-rank approximation . 62
2.5 Structured low-rank approximation . 68
2.6 Notes and references . 72

3 Algorithms . 75
3.1 Subspace methods . 75
3.2 Algorithms based on local optimization . 83
3.3 Data modeling using the nuclear norm heuristic 98
3.4 Notes and references . 106

4 Applications in system, control, and signal processing 109
4.1 Introduction . 109
4.2 Model reduction . 110
4.3 System identification . 117
4.4 Analysis and synthesis . 124
4.5 Simulation examples . 127
4.6 Notes and references . 130

ix

x Contents

Part II Miscellaneous generalizations

5 Missing data, centering, and constraints . 137
5.1 Weighted low-rank approximation with missing data 138
5.2 Affine data modeling . 150
5.3 Complex least squares problem with constrained phase 159
5.4 Approximate low rank factorization with structured factors 165
5.5 Notes and references . 177

6 Nonlinear static data modeling . 181
6.1 A framework for nonlinear static data modeling 181
6.2 Nonlinear low-rank approximation . 186
6.3 Algorithms . 189
6.4 Examples . 193
6.5 Notes and references . 198

7 Fast measurements of slow processes . 201
7.1 Introduction . 201
7.2 Estimation with known measurement process dynamics 204
7.3 Estimation with unknown measurement process dynamics 206
7.4 Examples and real-life testing . 214
7.5 Notes and references . 225
References . 227

A Approximate solution of an overdetermined system of equations 229

B Proofs . 237

P Problems . 241

S Solutions . 247

Notation . 263

List of code chunks . 265

Functions and scripts index . 269

Index . 271

Chapter 1

Introduction

The very art of mathematics is to say the same thing

another way.

Unknown

1.1 Classical and behavioral paradigms for data modeling

Fitting linear models to data can be achieved, both conceptually and algorithmically,
by solving approximately a system of linear equations

AX ≈ B, (LSE)

where the matrices A and B are constructed from the given data and the matrix X

parametrizes the model. In this classical paradigm, the main tools are the ordinary
linear least squares method and its variations—regularized least squares, total least
squares, robust least squares, etc. The least squares method and its variations are
mainly motivated by their applications for data fitting, but they invariably consider
solving approximately an overdetermined system of equations.

The underlying premise in the classical paradigm is that existence of an exact lin-
ear model for the data is equivalent to existence of solution X to a system AX = B.
Such a model is a linear map: the variables corresponding to the A matrix are inputs
(or causes) and the variables corresponding to the B matrix are outputs (or conse-
quences) in the sense that they are determined by the inputs and the model. Note
that in the classical paradigm the input/output partition of the variables is postulated
a priori. Unless the model is required to have the a priori specified input/output
partition, imposing such structure in advance is ad hoc and leads to undesirable
theoretical and numerical features of the modeling methods derived.

An alternative to the classical paradigm that does not impose an a priori fixed
input/output partition is the behavioral paradigm. In the behavioral paradigm, fitting
linear models to data is equivalent to the problem of approximating a matrix D,
constructed from the data, by a matrix D̂ of lower rank. Indeed, existence of an
exact linear model for D is equivalent to D being rank deficient. Moreover, the rank
of D is related to the complexity of the model. This fact is the tenet of the book and
is revisited in the following chapters in the context of applications from systems
and control, signal processing, computer algebra, and machine learning. Also its
implication to the development of numerical algorithms for data fitting is explored.

1

2 1 Introduction

To see that existence of a low complexity exact linear model is equivalent to rank
deficiency of the data matrix, let the columns d1, . . . ,dN of D be the observations and
the elements d1 j, . . . ,dq j of d j be the observed variables. We assume that there are at
least as many observations as observed variables, i.e., q ≤ N. A linear model for D

declares that there are linear relations among the variables, i.e., there are vectors rk,
such that

r⊤k d j = 0, for j = 1, . . . ,N.

If there are p independent linear relations, then D has rank less than or equal to
m := q−p and the observations belong to at most m-dimensional subspace B of Rq.
We identify the model for D, defined by the linear relations r1, . . . ,rp ∈R

q, with the
set B ⊂ R

q. Once a model B is obtained from the data, all possible input/output
partitions can be enumerated, which is an analysis problem for the identified model.
Therefore, the choice of an input/output partition in the behavioral paradigm to data
modeling can be incorporated, if desired, in the modeling problem and thus need
not be hypothesized as necessarily done in the classical paradigm.

The classical and behavioral paradigms for data modeling are related but not
equivalent. Although existence of solution of the system AX =B implies that the ma-
trix

[
A B
]

is low rank, it is not true that
[
A B
]

having a sufficiently low rank implies
that the system AX = B is solvable. This lack of equivalence causes ill-posed (or
numerically ill-conditioned) data fitting problems in the classical paradigm, which
have no solution (or are numerically difficult to solve). In terms of the data fit-
ting problem, ill-conditioning of the problem (LSE) means that the a priori fixed
input/output partition of the variables is not corroborated by the data. In the be-
havioral setting without the a priori fixed input/output partition of the variables,
ill-conditioning of the data matrix D implies that the data approximately satisfies
linear relations, so that nearly rank deficiency is a good feature of the data.

The classical paradigm is included in the behavioral paradigm as a special case
because approximate solution of an overdetermined system of equations (LSE) is
a possible approach to achieve low-rank approximation. Alternatively, low-rank
approximation can be achieved by approximating the data matrix with a matrix
that has at least p-dimensional null space, or at most m-dimensional column space.
Parametrizing the null space and the column space by sets of basis vectors, the al-
ternative approaches are:

1. kernel representation there is a full row rank matrix R ∈ Rp×q, such that

RD = 0,

2. image representation there are matrices P ∈ Rq×m and L ∈ Rm×N , such that

D = PL.

The approaches using kernel and image representations are equivalent to the orig-
inal low-rank approximation problem. Next, the use of AX = B, kernel, and image
representations is illustrated on the most simple data fitting problem—line fitting.

1.2 Motivating example for low-rank approximation 3

1.2 Motivating example for low-rank approximation

Given a (multi)set of points {d1, . . . ,dN } ⊂ R2 in the plane, the aim of the line
fitting problem is to find a line passing through the origin that “best” matches the
given points. The classical approach for line fitting is to define

col(a j,b j) :=
[

a j

b j

]
:= d j

(“:=” stands for “by definition”, see page 263 for a list of notation) and solve ap-
proximately the overdetermined system

col(a1, . . . ,aN)x = col(b1, . . . ,bN) (lse)

by the least squares method. Let xls be the least squares solution to (lse). Then the
least squares fitting line is

Bls := {d = col(a,b) ∈ R
2 | axls = b}.

Geometrically, Bls minimizes the sum of the squared vertical distances from the
data points to the fitting line.

The left plot in Figure 1.1 shows a particular example with N = 10 data points.
The data points d1, . . . ,d10 are the circles in the figure, the fit Bls is the solid line,
and the fitting errors e := axls −b are the dashed lines. Visually one expects the best
fit to be the vertical axis, so minimizing vertical distances does not seem appropriate
in this example.

Note that by solving (lse), a (the first components of the d) is treated differently
from b (the second components): b is assumed to be a function of a. This is an
arbitrary choice; the data can be fitted also by solving approximately the system

col(a1, . . . ,aN) = col(b1, . . . ,bN)x, (lse′)

in which case a is assumed to be a function of b. Let x′ls be the least squares solution
to (lse′). It gives the fitting line

B′
ls := {d = col(a,b) ∈ R

2 | a = bx′ls },

which minimizes the sum of the squared horizontal distances (see the right plot in
Figure 1.1). The line B′

ls happens to achieve the desired fit in the example.

In the classical approach for data fitting, i.e., solving approximately a system
of linear equations in the least squares sense, the choice of the model repre-
sentation affects the fitting criterion.

4 1 Introduction

This feature of the classical approach is undesirable: it is more natural to specify a
desired fitting criterion independently of how the model happens to be parametrized.
In many data modeling methods, however, a model representation is a priori fixed
and implicitly corresponds to a particular fitting criterion.

−2 0 2

−6

−4

−2

0

2

4

6

a

b

axls = b fit

−2 0 2

−6

−4

−2

0

2

4

6

a

b

a = bx′ls fit

Fig. 1.1 Least squares fits (solid lines) minimizing vertical (left plot) and horizontal (right plot)
distances.

The total least squares method is an alternative to least squares method for solv-
ing approximately an overdetermined system of linear equations. In terms of data
fitting, the total least squares method minimizes the sum of the squared orthogonal

distances from the data points to the fitting line. Using the system of equations (lse),
line fitting by the total least squares method leads to the problem

minimize over x ∈ R,

â1
...

âN

 ∈ R

N , and

b̂1
...

b̂N

 ∈ R

N
N

∑
j=1

∥∥∥∥d j −
[

â j

b̂ j

]∥∥∥∥
2

2

subject to â jx = b̂ j, for j = 1, . . . ,N.

(tls)

However, for the data in Figure 1.1 the total least squares problem has no solution.
Informally, the approximate solution is xtls = ∞, which corresponds to a fit by a
vertical line. Formally,

the total least squares problem (tls) may have no solution and therefore fail to
give a model.

The use of (lse) in the definition of the total least squares line fitting problem
restricts the fitting line to be a graph of a function ax = b for some x ∈ R. Thus,
the vertical line is a priori excluded as a possible solution. In the example, the line

1.2 Motivating example for low-rank approximation 5

minimizing the sum of the squared orthogonal distances happens to be the vertical
line. For this reason, xtls does not exist.

Any line B passing through the origin can be represented as an image and a
kernel, i.e., there exist matrices P ∈ R

2×1 and R ∈ R
1×2, such that

B = image(P) := {d = Pℓ ∈ R
2 | ℓ ∈ R}

and
B = ker(R) := {d ∈ R

2 | Rd = 0}.
Using the image representation of the model, the line fitting problem of minimizing
the sum of the squared orthogonal distances is

minimize over P ∈ R
2×1 and

[
ℓ1 · · · ℓN

]
∈ R

1×N
N

∑
j=1

‖d j − d̂ j‖2
2

subject to d̂ j = Pℓ j, for j = 1, . . . ,N.

(lra′P)

With
D :=

[
d1 · · · dN

]
, D̂ :=

[
d̂1 · · · d̂N

]
,

and ‖ · ‖F the Frobenius norm,

‖E‖F :=
∥∥vec(E)

∥∥
2 =

∥∥∥
[
e11 · · · eq1 · · · e1N · · · eqN

]⊤∥∥∥
2
, for all E ∈ R

q×N

(lra′P) is more compactly written as

minimize over P ∈ R
2×1 and L ∈ R

1×N ‖D− D̂‖2
F

subject to D̂ = PL.
(lraP)

Similarly, using a kernel representation, the line fitting problem, minimizing the sum
of squares of the orthogonal distances is

minimize over R ∈ R
1×2, R 6= 0, and D̂ ∈ R

2×N ‖D− D̂‖2
F

subject to RD̂ = 0.
(lraR)

Contrary to the total least squares problem (tls), problems (lraP) and (lraR) always
have (nonunique) solutions. In the example, solutions are, e.g., P∗ = col(0,1) and
R∗ =

[
1 0
]
, which describe the vertical line

B∗ := image(P∗) = ker(R∗).

The constraints

D̂ = PL, with P ∈ R
2×1, L ∈ R

1×N and RD̂ = 0, with R ∈ R
1×2, R 6= 0

are equivalent to the constraint rank(D̂)≤ 1, which shows that the points { d̂1, . . . , d̂N }
being fitted exactly by a line passing through the origin is equivalent to

6 1 Introduction

rank
(
[d̂1 · · · d̂N]

)
≤ 1.

Thus, (lraP) and (lraR) are instances of one and the same

abstract problem: approximate the data matrix D by a low rank matrix D̂.

In Chapter 2, the observations made in the line fitting example are generalized to
modeling of q-dimensional data. The underlying goal is:

Given a set of points in Rq (the data), find a subspace of Rq of bounded di-
mension (a model) that has the least (2-norm) distance to the data points.

Such a subspace is a (2-norm) optimal fitting model. General representations of a
subspace in Rq are the kernel or the image of a matrix. The classical least squares
and total least squares formulations of the data modeling problem exclude some
subspaces. The equations AX = B and A = BX ′, used in the least squares and total
least squares problem formulations to represent the subspace, might fail to represent
the optimal solution, while the kernel and image representations do not have such
deficiency. This suggests that the kernel and image representations are better suited
for data modeling.

The equations AX =B and A= BX ′ were introduced from an algorithmic point of
view—by using them, the data fitting problem is turned into the standard problem of
solving approximately an overdetermined system of linear equations. An interpreta-
tion of these equations in the data modeling context is that in the model represented
by the equation AX = B, the variable A is an input and the variable B is an output.
Similarly, in the model represented by the equation A = BX ′, A is an output and B is
an input. The input/output interpretation has an intuitive appeal because it implies a
causal dependence of the variables: the input is causing the output.

Representing the model by an equation AX = B and A = BX ′, as done in the
classical approach, one a priori assumes that the optimal fitting model has a certain
input/output structure. The consequences are:

• existence of exceptional (nongeneric) cases, which complicate the theory,
• ill-conditioning caused by “nearly” exceptional cases, which leads to lack of nu-

merical robustness of the algorithms, and
• need of regularization, which leads to a change of the specified fitting criterion.

These aspects of the classical approach are generally considered as inherent to the
data modeling problem. By choosing the alternative image and kernel model rep-
resentations, the problem of solving approximately an overdetermined system of
equations becomes a low-rank approximation problem, where the nongeneric cases
(and the related issues of ill-conditioning and need of regularization) are avoided.

1.3 Overview of applications 7

1.3 Overview of applications

In this section, examples of low-rank approximation drawn from different applica-
tion areas are listed. The fact that a matrix constructed from exact data is low rank
and the approximate modeling problem is low-rank approximation is sometimes
well known (e.g., in realization theory, model reduction, and approximate greatest
common divisor). In other cases (e.g., natural language processing and conic section
fitting), the link to low-rank approximation is less well known and is not exploited.

Common pattern in data modeling

The motto of the book is:

Behind every data modeling problem there is a (hidden) low-rank approxima-
tion problem: the model imposes relations on the data which render a matrix
constructed from exact data rank deficient.

Although an exact data matrix is low rank, a matrix constructed from observed
data is generically full rank due to measurement noise, unaccounted effects, and as-
sumptions about the data generating system that are not satisfied in practice. There-
fore, generically, the observed data does not have an exact low complexity model.
This leads to the problem of approximate modeling, which can be formulated as a
low-rank approximation problem as follows. Modify the data as little as possible,
so that the matrix constructed from the modified data has a specified low rank. The
modified data matrix being low rank implies that there is an exact model for the
modified data. This model is by definition an approximate model for the given data.
The transition from exact to approximate modeling is an important step in building
a coherent theory for data modeling and is emphasized in this book.

In all applications, the exact modeling problem is discussed before the practically
more important approximate modeling problem. This is done because 1) exact mod-
eling is simpler than approximate modeling, so that it is the right starting place, and
2) exact modeling is a part of optimal approximate modeling and suggests ways of
solving such problems suboptimally. Indeed, small modifications of exact modeling
algorithms lead to effective approximate modeling algorithms. Well known exam-
ples of the transition from exact to approximate modeling in systems theory are
the progressions from realization theory to model reduction and from deterministic
subspace identification to approximate and stochastic subspace identification.

The estimator consistency question in stochastic estimation problems corre-
sponds to exact data modeling because asymptotically the true data generating sys-
tem is recovered from observed data. Estimation with finite sample size, however,
necessarily involves approximation. Thus in stochastic estimation theory there is
also a step of transition from exact to approximate, see Figure 1.2.

8 1 Introduction

exact deterministic → approximate deterministic
↓ ↓

exact stochastic → approximate stochastic

Fig. 1.2 Transitions among exact deterministic, approximate deterministic, exact stochastic, and
approximate stochastic modeling problems. The arrows show progression from simple to complex.

The applications can be read in any order or skipped without loss of continuity.

Applications in systems and control

Deterministic system realization and model reduction

Realization theory addresses the problem of finding a state representation of a linear
time-invariant dynamical system defined by a transfer function or impulse response
representation. The key result in realization theory is that a sequence

H =
(
H(0),H(1), . . . ,H(t), . . .

)

is an impulse response of a discrete-time linear time-invariant system of order n if
and only if the two sided infinite Hankel matrix

H (H) :=

H(1) H(2) H(3) · · ·
H(2) H(3) . .

.

H(3) . .
.

...

,

constructed from H has rank n, i.e.,

rank
(
H (H)

)
= order of a minimal realization of H.

Therefore, existence of a finite dimensional realization of H (exact low complexity
linear time-invariant model for H) is equivalent to rank deficiency of a Hankel ma-
trix constructed from the data. A minimal state representation can be obtained from
a rank revealing factorization of H (H).

When there is no exact finite dimensional realization of the data or the exact
realization is of high order, one may want to find an approximate realization of a
specified low order n. These, respectively, approximate realization and model re-
duction problems naturally lead to Hankel structured low-rank approximation.

The deterministic system realization and model reduction problems are further
considered in Sections 2.2, 3.1, and 4.2.

1.3 Overview of applications 9

Stochastic system realization

Let y be the output of an nth order linear time-invariant system, driven by white
noise (a stochastic system) and let E be the expectation operator. The sequence

R =
(
R(0),R(1), . . . ,R(t), . . .

)

defined by
R(τ) := E

(
y(t)y⊤(t − τ)

)

is called the autocorrelation sequence of y. Stochastic realization theory is con-
cerned with the problem of finding a state representation of a stochastic system
that could have generated the observed output y, i.e., a linear time-invariant system
driven by white noise, whose output correlation sequence is equal to R.

An important result in stochastic realization theory is that R is the output cor-
relation sequence of an nth order stochastic system if and only if the Hankel ma-
trix H (R) constructed from R has rank n, i.e.,

rank
(
H (R)

)
= order of a minimal stochastic realization of R.

Therefore, stochastic realization of a random process y is equivalent to deterministic
realization of its autocorrelation sequence R. When it exists, the finite dimensional
stochastic realizations can be obtained from a rank revealing factorization of the
matrix H (R).

In practice, only a finite number of finite length realizations of the output y are
available, so that the autocorrelation sequence is estimated from y. With an esti-
mate R̂ of the autocorrelation R, the Hankel matrix H (R̂) is almost certainly full
rank, which implies that a finite dimensional stochastic realization can not be found.
Therefore, the problem of finding an approximate stochastic realization occurs. This
problem is again Hankel structured low-rank approximation.

System identification

Realization theory considers a system representation problem: pass from one repre-
sentation of a system to another. Alternatively, it can be viewed as a special exact
identification problem: find from impulse response data (a special trajectory of the
system) a state space representation of the data generating system. The exact identi-
fication problem (also called deterministic identification problem) is to find from a
general response of a system, a representation of that system. Let

w = col(u,y), where u =
(
u(1), . . . ,u(T)

)
and y =

(
y(1), . . . ,y(T)

)

be an input/output trajectory of a discrete-time linear time-invariant system of or-
der n with m inputs and p outputs and let nmax be a given upper bound on n. Then
the Hankel matrix

10 1 Introduction

Hnmax+1(w) :=

w(1) w(2) · · · w(T −nmax)
w(2) w(3) · · · w(T −nmax +1)
...

...
...

w(nmax +1) w(nmax +1) · · · w(T)

 (Hi)

with nmax +1 block rows, constructed from the trajectory w, is rank deficient:

rank
(
Hnmax+1(w)

)
≤ rank

(
Hnmax+1(u)

)
+order of the system. (SYSID)

Conversely, if the Hankel matrix Hnmax+1(w) has rank (nmax +1)m+n and the ma-
trix H2nmax+1(u) is full row rank (persistency of excitation of u), then w is a tra-
jectory of a controllable linear time-invariant system of order n. Under the above
assumptions, the data generating system can be identified from a rank revealing
factorization of the matrix Hnmax+1(w).

When there are measurement errors or the data generating system is not a low
complexity linear time-invariant system, the data matrix Hnmax+1(w) is generi-
cally full rank. In such cases, an approximate low-complexity linear time-invariant
model for w can be derived by finding a Hankel structured low-rank approximation
of Hnmax+1(w). Therefore, the Hankel structured low-rank approximation problem
can be applied also for approximate system identification. Linear time-invariant sys-
tem identification is a main topic of the book and appears frequently in the following
chapters.

Similarly, to the analogy between deterministic and stochastic system realization,
there is an analogy between deterministic and stochastic system identification. The
latter analogy suggests an application of Hankel structured low-rank approximation
to stochastic system identification.

Applications in computer algebra

Greatest common divisor of two polynomials

The greatest common divisor of the polynomials

p(z) = p0 + p1z+ · · ·+ pnzn and q(z) = q0 +q1z+ · · ·+qmzm

is a polynomial c of maximal degree that divides both p and q, i.e., a maximal degree
polynomial c, for which there are polynomials r and s, such that

p = rc and q = sc.

Define the Sylvester matrix of the polynomials p and q

1.3 Overview of applications 11

R(p,q) :=

p0 q0

p1 p0 q1 q0
... p1

. . .
... q1

. . .

pn

...
. . . p0 qm

...
. . . q0

pn p1 qm q1
. . .

...
. . .

...
pn qm

∈ R
(n+m)×(n+m). (R)

(By convention, in this book, all missing entries in a matrix are assumed to be zeros.)
A well known fact in algebra is that the degree of the greatest common divisor of p

and q is equal to the rank deficiency (co-rank) of R(p,q), i.e.,

degree(c) = n+m− rank
(
R(p,q)

)
. (GCD)

Suppose that p and q have a greatest common divisor of degree d > 0, but the
coefficients of the polynomials p and q are imprecise, resulting in perturbed polyno-
mials pd and qd. Generically, the matrix R(pd,qd), constructed from the perturbed
polynomials, is full rank, implying that the greatest common divisor of pd and qd has
degree zero. The problem of finding an approximate common divisor of pd and qd
with degree d, can be formulated as follows. Modify the coefficients of pd and qd,
as little as possible, so that the resulting polynomials, say, p̂ and q̂ have a greatest
common divisor of degree d. This problem is a Sylvester structured low-rank ap-
proximation problem. Therefore, Sylvester structured low-rank approximation can
be applied for computing an approximate common divisor with a specified degree.
The approximate greatest common divisor ĉ for the perturbed polynomials pd and qd
is the exact greatest common divisor of p̂ and q̂.

The approximate greatest common divisor problem is considered in Section 3.2.

Applications in signal processing

Array signal processing

An array of antennas or sensors is used for direction of arrival estimation and adap-
tive beamforming. Consider q antennas in a fixed configuration and a wave propa-
gating from distant sources, see Figure 1.3.

Consider, first, the case of a single source. The source intensity ℓ1 (the signal) is
a function of time. Let w(t) ∈R

q be the response of the array at time t (wi being the
response of the ith antenna). Assuming that the source is far from the array (relative
to the array’s length), the array’s response is proportional to the source intensity

w(t) = p1ℓ1(t − τ1),

12 1 Introduction
ℓ1•

· · ·
ℓm•

w1
· · ·

wq

Fig. 1.3 Antenna array processing setup.

where τ1 is the time needed for the wave to travel from the source to the array
and p1 ∈ Rq is the array’s response to the source emitting at a unit intensity. The
vector p1 depends only on the array geometry and the source location and is there-
fore constant in time. Measurements of the antenna at time instants t = 1, . . . ,T give
a data matrix

D :=
[
w(1) · · · w(T)

]
= p1

[
ℓ1(1− τ) · · · ℓ1(T − τ)

]
︸ ︷︷ ︸

ℓ1

= p1ℓ1,

which has rank equal to one.
Consider now m < q distant sources emitting with intensities ℓ1, . . . , ℓm. Let pk

be the response of the array to the kth source emitting alone with unit intensity.
Assuming that the array responds linearly to a mixture of sources, we have

D =
[
w(1) · · · w(T)

]
=

m

∑
k=1

pk

[
ℓk(1− τk) · · · ℓk(T − τk)

]
︸ ︷︷ ︸

ℓk

= PL,

where P :=
[
p1 · · · pm

]
, L := col(ℓ1, . . . , ℓm), and τk is the delay of the wave coming

from the kth source. This shows that the rank of D is less than or equal to the number
of sources m. If the number of sources m is less than the number of antennas q

and m is less than the number of samples T , the sources intensities ℓ1, . . . , ℓm are
linearly independent, and the unit intensity array patterns p1, . . . , pm are linearly
independent, then we have that

rank(D) = the number of sources transmitting to the array.

Moreover, the factors P and L in a rank revealing factorization PL of D carry infor-
mation about the source locations.

With noisy observations, the matrix D is generically a full rank matrix. Then,
assuming that the array’s geometry is known, low-rank approximation can be used
to estimate the number of sources and their locations.

1.3 Overview of applications 13

Applications in chemometrics

Multivariate calibration

A basic problem in chemometrics, called multivariate calibration, is identification
of the number and type of chemical components from spectral measurements of
mixtures of these components. Let pk ∈ Rq be the spectrum of the kth component
at q predefined frequencies. Under a linearity assumption, the spectrum of a mixture
of m components with concentrations ℓ1, . . . , ℓm is d = Pℓ, where P :=

[
p1 · · · pm

]

and ℓ = col(ℓ1, . . . , ℓm). Given N mixtures of the components with vectors of con-
centrations ℓ(1), . . . , ℓ(N), the matrix of the corresponding spectra d1, . . . ,dN is

D :=
[
d1 · · · dN

]
=

m

∑
k=1

pk

[
ℓ
(1)
k

· · · ℓ(N)
k

]

︸ ︷︷ ︸
ℓk

= PL. (RRF)

Therefore, the rank of D is less than or equal to the number of components m. As-
suming that q > m, N > m, the spectral responses p1, . . . , pm of the components are
linearly independent, and the concentration vectors ℓ1, . . . , ℓm are linearly indepen-
dent, we have

rank(D) = the number of chemical components in the mixtures.

The factors P and L in a rank revealing factorization PL of D carry information about
the components’ spectra and the concentrations of the components in the mixtures.
Noisy spectral observations lead to a full rank matrix D, so that low-rank approxi-
mation can be used to estimate the number of chemical components, their concen-
trations, and spectra.

Applications in psychometrics

Factor analysis

The psychometric data is test scores and biometrics of a group of people. The test
scores can be organized in a data matrix D, whose rows correspond to the scores and
the columns correspond to the group members. Factor analysis is a popular method
that explains the data as a linear combination of a small number of abilities of the
group members. These abilities are called factors and the weights by which they
are combined in order to reproduce the data are called loadings. Factor analysis
is based on the assumption that the exact data matrix is low rank with rank being
equal to the number of factors. Indeed, the factor model can be written as D = PL,
where the columns of P correspond to the factors and the rows of L correspond to
the loadings. In practice, the data matrix is full rank because the factor model is an

14 1 Introduction

idealization of the way test data is generated. Despite the fact that the factor model is
a simplification of the reality, it can be used as an approximation of the way humans
perform on tests. low-rank approximation then is a method for deriving optimal in a
specified sense approximate psychometric factor models.

The factor model, explained above, is used to assess candidates at the US uni-
versities. An important element of the acceptance decision in US universities for
undergraduate study is the Scholastic Aptitude Test, and for postgraduate study, the
Graduate Record Examination. These tests report three independent scores: writ-
ing, mathematics, and critical reading for the Scholastic Aptitude Test; and verbal,
quantitative, and analytical for the Graduate Record Examination. The three scores
assess what are believed to be the three major factors for, respectively, undergradu-
ate and postgraduate academic performance. In other words, the premise on which
the tests are based is that the ability of a prospective student to do undergraduate
and postgraduate study is predicted well by a combination of the three factors. Of
course, in different areas of study, the weights by which the factors are taken into
consideration are different. Even in pure subjects, such as mathematics, however,
the verbal as well as quantitative and analytical ability play a role.

Many graduate-school advisors have noted that an applicant for a mathematics fellowship
with a high score on the verbal part of the Graduate Record Examination is a better bet as a
Ph.D. candidate than one who did well on the quantitative part but badly on the verbal.

Halmos (1985, page 5)

Applications in machine learning

Natural language processing

Latent semantic analysis is a method in natural language processing for document
classification, search by keywords, synonymy and polysemy detection, etc. Latent
semantic analysis is based on low-rank approximation and fits into the pattern of the
other methods reviewed here:

1. An exact data matrix is rank deficient with rank related to the complexity of the
data generating model.

2. A noisy data matrix is full rank and, for the purpose of approximate modeling, it
is approximated by a low rank matrix.

Consider N documents, involving q terms and m concepts. If a document belongs
to the kth concept only, it contains the ith term with frequency pik, resulting in the
vector of term frequencies pk := col(p1k, . . . , pqk), related to the kth concept. The
latent semantic analysis model assumes that if a document involves a mixture of the
concepts with weights ℓ1, . . . , ℓm (ℓk indicates the relevance of the kth concept to the
document), then the vector of term frequencies for that document is

d = Pℓ, where P :=
[
p1 · · · pm

]
and ℓ= col(ℓ1, . . . , ℓm).

1.3 Overview of applications 15

Let d j be the vector of term frequencies, related to the jth document and let ℓ(j)
k

be the relevance of the kth concept to the jth document. Then, according to the la-
tent semantic analysis model, the term–document frequencies for the N documents
form a data matrix, satisfying (RRF). Therefore, the rank of the data matrix is less
than or equal to the number of concepts m. Assuming that m is smaller than the
number of terms q, m is smaller than the number of documents N, the term frequen-
cies p1, . . . , pm are linearly independent, and the relevance of concepts ℓ1, . . . , ℓm are
linearly independent, we have that

rank(D) = the number of concepts related to the documents.

The factors P and L in a rank revealing factorization PL of D carry information about
the relevance of the concepts to the documents and the term frequencies related to
the concepts.

The latent semantic analysis model is not satisfied exactly in practice because
the notion of (small number of) concepts related to (many) documents is an ideal-
ization. Also the linearity assumption is not likely to hold in practice. In reality the
term–document frequencies matrix D is full rank indicating that the number of con-
cepts is equal to either the number of terms or the number of documents. low-rank
approximation, however, can be used to find a small number of concepts that explain
approximately the term–documents frequencies via the model (RRF). Subsequently,
similarity of documents can be evaluated in the concepts space, which is a low di-
mensional vector space. For example, the j1th and j2th documents are related if they
have close relevance ℓ

(j1)
k and ℓ

(j2)
k to all concepts k = 1, . . . ,m. This gives a way to

classify the documents. Similarly, terms can be clustered in the concepts space by
looking at the rows of the P matrix. Nearby rows of P correspond to terms that are
related to the same concepts. (Such terms are likely to be synonymous.) Finally, a
search for documents by keywords can be done by first translating the keywords to
a vector in the concepts space and then finding a nearby cluster of documents to this
vector. For example, if there is a single keyword, which is the ith term, then the ith
row of the P matrix shows the relevant combination of concepts for this search.

Recommender system

The main issue underlying the abstract low-rank approximation problem and the
applications reviewed up to now is data approximation. In the recommender system
problem, the main issue is the one of missing data: given ratings of some items by
some users, infer the missing ratings. Unique recovery of the missing data is impos-
sible without additional assumptions. The underlying assumption in many recom-
mender system problems is that the complete matrix of the ratings is of low rank.

Consider q items and N users and let di j be the rating of the ith item by the jth
user. As in the psychometrics example, it is assumed that there is a “small” num-
ber m of “typical” (or characteristic, or factor) users, such that all user ratings can be
obtained as linear combinations of the ratings of the typical users. This implies that

16 1 Introduction

the complete matrix D =
[
di j

]
of the ratings has rank m, i.e.,

rank(D) = number of “typical” users.

Then exploiting the prior knowledge that the number of “typical” users is small,
the missing data recovery problem can be posed as the following matrix completion
problem

minimize over D̂ rank(D̂)

subject to D̂i j = Di j for all (i, j), where Di j is given.
(MC)

This gives a procedure for solving the exact modelling problem (the given elements
of D are assumed to be exact). The corresponding solution method can be viewed as
the equivalent of the rank revealing factorization problem in exact modeling prob-
lems, for the case of complete data.

Of course, the rank minimization problem (MC) is much harder to solve than the
rank revealing factorization problem. Moreover, theoretical justification and addi-
tional assumptions (about the number and distribution of the given elements of D)
are needed for a solution D̂ of (MC) to be unique and to coincide with the com-
plete true matrix D. It turns out, however, that under certain specified assumptions
exact recovery is possible by solving the convex optimization problem obtained by
replacing rank(D̂) in (MC) with the nuclear norm

‖D̂‖∗ := sum of the singular values of D̂.

The importance of the result is that under the specified assumptions the hard prob-
lem (MC) can be solved efficiently and reliably by convex optimization methods.

In real-life application of recommender systems, however, the additional problem
of data approximation occurs. In this case the constraint D̂i j = Di j of (MC) has to
be relaxed, e.g., replacing it by

D̂i j = Di j +∆Di j,

where ∆Di j are corrections, accounting for the data uncertainty. The corrections are
additional optimization variables. Taking into account the prior knowledge that the
corrections are small, a term λ‖∆D‖F is added in the cost function. The resulting
matrix approximation problem is

minimize over D̂ and ∆D rank(D̂)+λ‖∆D‖F

subject to D̂i j = Di j +∆Di j for all (i, j), where Di j is given.
(AMC)

In a stochastic setting the term λ‖∆D‖F corresponds to the assumption that the true
data D is perturbed with noise that is zero mean, Gaussian, independent, and with
equal variance.

Again the problem can be relaxed to a convex optimization problem by replac-
ing rank with nuclear norm. The choice of the λ parameter reflects the trade-off

1.3 Overview of applications 17

between complexity (number of identified “typical” users) and accuracy (size of the
correction ∆D) and depends in the stochastic setting on the noise variance.

Nuclear norm and low-rank approximation methods for estimation of missing
values are developed in Sections 3.3 and 5.1.

Multidimensional scaling

Consider a set of N points in the plane

X := {x1, . . . ,xN } ⊂ R
2

and let di j be the squared distance from xi to x j, i.e.,

di j := ‖xi − x j‖2
2.

The N ×N matrix D =
[
di j

]
of the pair-wise distances, called in what follows the

distance matrix (for the set of points X), has rank at most 4. Indeed,

di j = (xi − x j)
⊤(xi − x j) = x⊤i xi −2x⊤i x j + x⊤j x j,

so that

D =

1
...
1

[
x⊤1 x1 · · · x⊤N xN

]

︸ ︷︷ ︸
rank ≤1

−2

x⊤1
...

x⊤N

[
x1 · · · xN

]

︸ ︷︷ ︸
rank ≤2

+

x⊤1 x1
...

x⊤N xN

[
1 · · · 1

]

︸ ︷︷ ︸
rank ≤1

. (∗)

The localization problem from pair-wise distances is: given the distance matrix D,
find the locations {x1, . . . ,xN } of the points up to a rigid transformation, i.e., up
to translation, rotation, and reflection of the points. Note that rigid transformations
preserve the pair-wise distances, so that the distance matrix D alone is not sufficient
to locate the points uniquely.

With exact data, the problem can be posed and solved as a rank revealing factor-
ization problem (∗). With noisy measurements, however, the matrix D is generically
full rank. In this case, the relative (up to rigid transformation) point locations can be
estimated by approximating D by a rank-4 matrix D̂. In order to be a valid distance
matrix, however, D̂ must have the structure

D̂ =

1
...
1

[
x̂⊤1 x̂1 · · · x̂⊤N x̂N

]
−2X̂⊤X̂ +

x̂⊤1 x̂1
...

x̂⊤N x̂N

[
1 · · · 1

]
, (MDS)

for some X̂ =
[
x̂1 · · · x̂N

]
, i.e., the estimation problem is a bilinearly structured low-

rank approximation problem.

18 1 Introduction

Microarray data analysis

The measurements of a microarray experiment are collected in a q×N real ma-
trix D—rows correspond to genes and columns correspond to time instances. The
element di j is the expression level of the ith gene at the jth moment of time. The rank
of D is equal to the number of transcription factors that regulate the gene expression
levels

rank(D) = number of transcription factors.

In a rank revealing factorization D=PL, the jth column of L is a vector of intensities
of the transcription factors at time j, and the ith row of P is a vector of sensitivities
of the ith gene to the transcription factors. For example, pi j equal to zero means that
the jth transcription factor does not regulate the ith gene.

An important problem in bioinformatics is to discover what transcription fac-
tors regulate a particular gene and what their time evaluations are. This problem
amounts to computing an (approximate) factorization PL of the matrix D. The need
of approximation comes from:

1. inability to account for all relevant transcription factors (therefore accounting
only for a few dominant ones), and

2. measurement errors occurring in the collection of the data.

Often it is known a priori that certain transcription factors do not regulate certain
genes. This implies that certain elements of the sensitivity matrix P are known to be
zeros. In addition, the transcription factor activities are modeled to be nonnegative,
smooth, and periodic functions of time. Where transcription factors down regulate
a gene, the elements of P have to be negative to account for this. In Section 5.4, this
prior knowledge is formalized as constraints in a low rank matrix approximation
problem and optimization methods for solving the problem are developed.

Applications in computer vision

Conic section fitting

In the applications reviewed so far, the low-rank approximation problem was applied
to linear data modeling. Nonlinear data modeling, however, can also be formulated
as a low-rank approximation problem. The key step—“linearizing” the problem—
involves preprocessing the data by a nonlinear function defining the model struc-
ture. In the machine learning literature, where nonlinear data modeling is a common
practice, the nonlinear function is called the feature map and the resulting modeling
methods are referred to as kernel methods.

As a specific example, consider the problem of fitting data by a conic section,
i.e., given a set of points in the plane

{d1, . . . ,dN } ⊂ R
2, where d j = col(x j,y j),

1.3 Overview of applications 19

find a conic section

B(A,b,c) := {d ∈ R
2 | d⊤Ad +b⊤d+ c = 0}. (B(A,b,c))

that fits them. Here A is a 2× 2 symmetric matrix, b is a 2× 1 vector, and c is a
scalar. A, b, and c are parameters defining the conic section. In order to avoid a
trivial case B = R

2, it is assumed that at least one of the parameters A, b, or c is
nonzero. The representation (B(A,b,c)) is called implicit representation, because it
imposes a relation (implicit function) on the elements x and y of d.

Defining the parameter vector

θ :=
[
a11 2a12 b1 a22 b2 c

]
,

and the extended data vector

dext := col(x2,xy,x,y2,y,1), (dext)

we have
d ∈ B(θ) = B(A,b,c) ⇐⇒ θdext = 0.

(In the machine learning terminology, the map d 7→ dext, defined by (dext), is the
feature map for the conic section model.) Consequently, all data points d1, . . . ,dN

are fitted by the model if

θ
[
dext,1 · · · dext,N

]
︸ ︷︷ ︸

Dext

= 0 ⇐⇒ rank(Dext)≤ 5. (CSF)

Therefore, for N > 5 data points, exact fitting is equivalent to rank deficiency of
the extended data matrix Dext. For N < 5 data points, there is nonunique exact fit
independently of the data. For N = 5 different points, the exact fitting conic section
is unique, see Figure 1.4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 1.4 Conic section fitting. Left: N = 4 points (circles) have nonunique fit (two fits are shown in
the figure with solid and dashed lines). Right: N = 5 different points have a unique fit (solid line).

20 1 Introduction

With N > 5 noisy data points, the extended data matrix Dext is generically full
rank, so that an exact fit does not exists. A problem called geometric fitting is to
minimize the sum of squared distances from the data points to the conic section.
The problem is equivalent to quadratically structured low-rank approximation.

Generalization of the conic section fitting problem to algebraic curve fitting and
solution methods for the latter are presented in Chapter 6.

Exercise 1.1. Find and plot another conic section that fits the points

d1 =

[
0.2
0.2

]
, d2 =

[
0.8
0.2

]
, d3 =

[
0.2
0.8

]
, and d4 =

[
0.8
0.8

]
,

in Figure 1.4, left. ⊓⊔

Exercise 1.2. Find the parameters (A,b,1) in the representation (B(A,b,c)) of the
ellipse in Figure 1.4, right. The data points are:

d1 =

[
0.2
0.2

]
, d2 =

[
0.8
0.2

]
, d3 =

[
0.2
0.8

]
, d4 =

[
0.8
0.8

]
, and d5 =

[
0.9
0.5

]
, ⊓⊔

(Answer: A =
[

3.5156 0
0 2.7344

]
, b =

[−3.5156
−2.7344

]
)

Fundamental matrix estimation

A scene is captured by two cameras at fixed locations (stereo vision) and N matching
pairs of points

{u1, . . . ,uN } ⊂ R
2 and {v1, . . . ,vN } ⊂ R

2

are located in the resulting images. Corresponding points u and v of the two images
satisfy what is called an epipolar constraint

[
v⊤ 1

]
F

[
u

1

]
= 0, for some F ∈ R

3×3, with rank(F) = 2. (EPI)

The 3× 3 matrix F 6= 0, called the fundamental matrix, characterizes the relative
position and orientation of the cameras and does not depend on the selected pairs of
points. Estimation of F from data is a necessary calibration step in many computer
vision methods.

The epipolar constraint (EPI) is linear in F . Indeed, defining

dext :=
[
uxvx uxvy ux uyvx uyvy uy vx vy 1

]⊤ ∈ R
9, (d′

ext)

where u = col(ux,uy) and v = col(vx,vy), (EPI) can be written as

vec⊤(F)dext = 0.

1.4 Overview of algorithms 21

Note that, as in the application for conic section fitting, the original data (u,v) is
mapped to an extended data vector dext via a nonlinear function (a feature map). In
this case, however, the function is bilinear.

Taking into account the epipolar constraints for all data points, we obtain the
matrix equation

vec⊤(F)Dext = 0, where Dext :=
[
dext,1 · · · dext,N

]
. (FME)

The rank constraint imposed on F implies that F is a nonzero matrix. Therefore,
by (FME), for N ≥ 8 data points, the extended data matrix Dext is rank deficient.
Moreover, the fundamental matrix F can be reconstructed up to a scaling factor
from a vector in the left kernel of Dext.

Noisy data with N ≥ 8 data points generically gives rise to a full rank extended
data matrix Dext. The estimation problem is a bilinearly structured low-rank approx-

imation problem with an additional constraint that rank(F) = 2.

Summary of applications

Table 1.1 summarized the reviewed applications: given data, data matrix constructed
from the original data, structure of the data matrix, and meaning of the rank of the
data matrix in the context of the application. More applications are mentioned in the
notes and references section in the end of the chapter.

1.4 Overview of algorithms

The rank constraint in the low-rank approximation problem corresponds to the con-
straint in the data modeling problem that the data is fitted exactly by a linear model
of bounded complexity. Therefore, the question of representing the rank constraint
in the low-rank approximation problem corresponds to the question of choosing the
model representation in the data fitting problem. Different representations lead to

• optimization problems, the relation among which may not be obvious;
• algorithms, which may have different convergence properties and efficiency; and
• numerical software, which may have different numerical robustness.

The virtues of the abstract, representation free, low-rank approximation problem
formulation, are both conceptual: it clarifies the equivalence among different pa-
rameter optimization problems, and practical: it shows various ways of formulat-
ing one and the same high level data modeling problem as parameter optimization
problems. On the conceptual level, the low-rank approximation problem formula-
tion shows what one aims to achieve without a reference to implementation details.
In particular, the model representation is such a detail, which is not needed for a

22 1 Introduction

Table 1.1 Meaning of the rank of the data matrix in the applications.

application data data matrix structure rank = ref.

approximate
realization

impulse
response H

H (H) Hankel system’s order
Sec. 2.2
Sec. 3.1
Sec. 4.2

stochastic
realization

autocorrelation
function R

H (R) Hankel system’s order —

system
identification

trajectory w

of the system
Hnmax+1(w) Hankel (SYSID)

Sec. 2.3
Sec. 4.3

approximate
GCD

polynomials
pd and qd

R(pd,qd) Sylvester (GCD) Sec. 3.2

array
processing

array response(
w(1), . . . ,w(T)

) [
w(1) · · · w(T)

]
unstructured

of signal
sources

—

multivariate
calibration

spectral responses
{d1, . . . ,dN } ⊂ Rq

[
d1 · · · dN

]
unstructured

of chemical
components

—

factor
analysis

test scores di j

[
di j

]
unstructured # of factors —

natural language
processing

term–document
frequencies di j

[
di j

]
unstructured # of concepts —

recommender
system

some
ratings di j

[
di j

] unstructured
missing data

of tastes
Sec. 3.3
Sec. 5.1

multidimensional
scaling

pair-wise
distances di j

[
di j

]
(MDS) dim(x)+2 —

microarray
data analysis

gene expression
levels di j

[di j] unstructured
of transcript.

factors
Sec. 5.4

conic section
fitting

points
{d1, . . . ,dN } ⊂ R

2 (dext), (CSF) quadratic 5 Ch. 6

fundamental
matrix

estimation
points u j,v j ∈ R2 (d′

ext), (FME) bilinear 6 —

high level formulation of data modeling problems. As discussed next, however, the
representation is unavoidable when one solves the problem analytically or numeri-
cally.

On the practical level, the low rank problem formulation allows one to translate
the abstract data modeling problem to different concrete parametrized problems by
choosing the model representation. Different representations naturally lend them-
selves to different analytical and numerical methods. For example, a controllable
linear time-invariant system can be represented by a transfer function, state space,
convolution, etc. representations. The analysis tools related to these representations
are rather different and, consequently, the obtained solutions differ despite of the
fact that they solve the same abstract problem. Moreover, the parameter optimiza-
tion problems, resulting from different model representations, lead to algorithms

1.4 Overview of algorithms 23

and numerical implementations, whose robustness properties and computational ef-
ficiency differ. Although, often in practice, there is no universally “best” algorithm
or software implementation, having a wider set of available options is an advantage.

Independent of the choice of the rank representation only a few special low-rank
approximation problems have analytic solutions. So far, the most important special
case with an analytic solution is the unstructured low-rank approximation in the
Frobenius norm. The solution in this case can be obtained from the singular value
decomposition of the data matrix (Eckart–Young–Mirsky theorem). Extensions of
this basic solution are problems known as generalized and restricted low-rank ap-
proximation, where some columns or, more generally submatrices of the approxima-
tion, are constrained to be equal to given matrices. The solutions to these problems
are given by, respectively, the generalized and restricted singular value decomposi-
tions. Another example of low-rank approximation problem with analytic solution
is the circulant structured low-rank approximation, where the solution is expressed
in terms of the discrete Fourier transform of the data.

In general, low-rank approximation problems are NP-hard. There are three fun-
damentally different solution approaches for the general low-rank approximation
problem:

• heuristic methods based on convex relaxations,
• local optimization methods, and
• global optimization methods.

From the class of heuristic methods the most popular ones are the subspace meth-
ods. The approach used in the subspace type methods is to relax the difficult low-
rank approximation problem to a problem with an analytic solution in terms of the
singular value decomposition, e.g., ignore the structure constraint of a structured
low-rank approximation problem. The subspace methods are found to be very ef-
fective in model reduction, system identification, and signal processing. The class
of the subspace system identification methods is based on the unstructured low-rank
approximation in the Frobenius norm (i.e., singular value decomposition) while the
original problems are Hankel structured low-rank approximation.

The methods based on local optimization split into two main categories:

• alternating projections and
• variable projections

type algorithms. Both alternating projections and variable projections exploit the
bilinear structure of the low-rank approximation problems.

In order to explain the ideas underlining the alternating projections and variable
projections methods, consider the optimization problem

minimize over P ∈ R
q×m and L ∈ R

m×N ‖D−PL‖2
F (LRAP)

corresponding to low-rank approximation with an image representation of the rank
constraint. The term PL is bilinear in the optimization variables P and L, so that
for a fixed P, (LRAP) becomes a linear least squares problem in L and vice verse,
for a fixed L, (LRAP) becomes a linear least squares problem in P. This suggests

24 1 Introduction

an iterative algorithm starting from an initial guess for P and L and alternatively
solves the problem with one of the variables fixed. Since each step is a projection
operation the method has the name alternating projections. It is globally convergent
to a locally optimal solution of (LRAP) with a linear convergence rate.

The bilinear nature of (LRAP) implies that for a fixed P the problem can be
solved in closed form with respect to L. This gives us an equivalent cost function
depending on P. Subsequently, the original problem can be solved by minimizing
the equivalent cost function over P. Of course, the latter problem is a nonlinear
optimization problem. Standard local optimization methods can be used for this
purpose. The elimination of the L variable from the problem has the advantage of
reducing the number of optimization variables, thus simplifying the problem. Eval-
uation of the cost function for a given P is a projection operation. In the course
of the nonlinear minimization over P, this variable changes, thus the name of the
method—variable projections.

In the statistical literature, the alternating projections algorithm is given the in-
terpretation of expectation maximization. The problem of computing the optimal
approximation D̂ = PL, given P is the expectation step and the problem of comput-
ing P, given L is the maximization step of the expectation maximization procedure.

1.5 Literate programming

At first, I thought programming was primarily analogous to musical composition—to the
creation of intricate patterns, which are meant to be performed. But lately I have come to
realize that a far better analogy is available: Programming is best regarded as the process of
creating works of literature, which are meant to be read.

Knuth (1992, page ix)

The ideas presented in the book are best expressed as algorithms for solving
data modeling problems. The algorithms, in turn, are practically useful when imple-
mented in ready-to-use software. The gap between the theoretical discussion of data
modeling methods and the practical implementation of these methods is bridged by
using a literate programming style. The software implementation (MATLAB code)
is interwoven in the text, so that the full implementation details are available in a
human readable format and they come in the appropriate context of the presentation.

A literate program is composed of interleaved code segments, called chunks,
and text. The program can be split into chunks in any way and the chunks can be
presented in any order, deemed helpful for the understanding of the program. This
allows us to focus on the logical structure of the program rather than the way a
computer executes it. The actual computer executable code is tangled from a web

of the code chunks by skipping the text and putting the chunks in the right order. In
addition, literate programming allows us to use a powerful typesetting system such
as LATEX (rather than plain text) for the documentation of the code.

1.5 Literate programming 25

The noweb system for literate programming is used. Its main advantage over
alternative systems is independence of the programming language being used.

Next, some typographic conventions are explained. The code is typeset in small

true type font and consists of a number of code chunks. The code chunks begin
with tags enclosed in angle brackets (e.g., 〈code tag〉) and are sequentially numbered
by the page number and a letter identifying them on the page. Thus the chunk’s
identification number (given to the left of the tag) is also used to locate the chunk in
the text. For example,

25a 〈Print a figure 25a〉≡
function print_fig(file_name)

xlabel(’x’), ylabel(’y’), title(’t’), set(gca, ’fontsize’, 25)

eval(sprintf(’print -depsc %s.eps’, file_name));

Defines:
print_fig, used in chunks 103a, 116b, 128, 129g, 165c, 195a, 215, and 223c.

(a function exporting the current figure to an encapsulated postscript file with a
specified name, using default labels and font size) has identification number 25a,
locating the code as being on page 25.

If a chunk is included in, is a continuation of, or is continued by other chunk(s),
its definition has references to the related chunk(s). The sintax convention for doing
this is best explained by an example.

Example: block Hankel matrix constructor

Consider the implementation of the (block) Hankel matrix constructor

Hi, j(w) :=

w(1) w(2) · · · w(j)
w(2) w(3) · · · w(j+1)
...

...
...

w(i) w(i+1) · · · w(j+ i−1)

 , (Hi, j)

where
w =

(
w(1), . . . ,w(T)

)
, with w(t) ∈ R

q×N .

The definition of the function, showing its input and output arguments, is
25b 〈Hankel matrix constructor 25b〉≡ 26b⊲

function H = blkhank(w, i, j)

Defines:
blkhank, used in chunks 78b, 81, 90c, 111b, 116a, 118b, 119b, 122b, 127b, 129b, and 213.

(The reference to the right of the identification tag shows that the definition is contin-
ued in chunk number 26b.) The third input argument of blkhank—the number of
block columns j is optional. Its default value is maximal number of block columns

j = T − i+1.

26 1 Introduction

26a 〈optional number of (block) columns 26a〉≡ (26)
if nargin < 3 | isempty(j), j = T - i + 1; end

if j <= 0, error(’Not enough data.’), end

(The reference to the right of the identification tag now shows that this chunk is
included in other chunks.)

Two cases are distinguished, depending on whether w is a vector (N = 1) or
matrix (N > 1) valued trajectory.

26b 〈Hankel matrix constructor 25b〉+≡ ⊳25b
if length(size(w)) == 3

〈matrix valued trajectory w 26c〉
else

〈vector valued trajectory w 26f〉
end

(The reference to the right of the identification tag shows that this chunk is a contin-
uation of chunk 25b and is not followed by other chunks. Its body includes chunks
26c and 26f.)

• If w is a matrix valued trajectory, the input argument w should be a 3 dimensional
tensor, constructed as follows:

w(:, :, t) = w(t) (w)

26c 〈matrix valued trajectory w 26c〉≡ (26b) 26d⊲
[q, N, T] = size(w);

〈optional number of (block) columns 26a〉
(This chunk is both included and followed by other chunks.) In this case, the con-
struction of the block Hankel matrix Hi, j(w) is done explicitly by a double loop:

26d 〈matrix valued trajectory w 26c〉+≡ (26b) ⊳26c
H = zeros(i * q, j * N);

for ii = 1:i

for jj = 1:j

H(((ii - 1) * q + 1):(ii * q), ...

((jj - 1) * N + 1):(jj * N)) = w(: ,:, ii + jj - 1);

end

end

• If w is a vector valued trajectory , the input argument w should be a matrix formed
as follows w(:, t) = w(t), however, since T must be greater than or equal to the
number of variables q := dim

(
w(t)

)
, when w has more rows than columns, the

input is treated as w(t, :) = w⊤(t).
26e 〈reshape w and define q, T 26e〉≡ (26f 82 89 118a 119a 121b 122a)

[q, T] = size(w); if T < q, w = w’; [q, T] = size(w); end

26f 〈vector valued trajectory w 26f〉≡ (26b) 27⊲
〈reshape w and define q, T 26e〉
〈optional number of (block) columns 26a〉

1.6 Notes and references 27

The reason to consider the case of a vector valued w separately is that in this case
the construction of the Hankel matrix Hi, j(w) can be done with a single loop along
the block rows.

27 〈vector valued trajectory w 26f〉+≡ (26b) ⊳26f
H = zeros(i * q, j);

for ii = 1:i

H(((ii - 1) * q + 1):(ii * q), :) = w(:, ii:(ii + j - 1));

end

Since in typical situations when blkhank is used (system identification problems),
i ≪ j and MATLAB, being an interpreted language, executes for loops slowly, the
reduction to a single for loop along the block rows of the matrix leads to significant
decrease of the execution time compared to the implementation with two nested for
loops in the general case.

Exercise 1.3. Download and install noweb from

www.cs.tufts.edu/~nr/noweb/

Exercise 1.4. Write a literate program for constructing the Sylvester matrix R(p,q),
defined in (R) on page 11. Use your program to find the degree d of the greatest
common divisor of the polynomials

p(z) = 1+3z+5z2+3z3 and q(z) = 3+5z+3z2 + z3.

(Answer: d= 1)

1.6 Notes and references

Classical and behavioral paradigms for data modeling

Methods for solving overdetermined systems of linear equations (i.e., data model-
ing methods using the classical input/output representation paradigm) are reviewed
in Appendix A. The behavioral paradigm for data modeling was put forward by
Jan C. Willems in the early 80’s. It became firmly established with the publication
of the three part paper (Willems, 1986, 1987). Other landmark publications on the
behavioral paradigm are (Willems, 1989, 1991, 2007), and the book (Polderman and
Willems, 1998).

The numerical linear algebra problem of low-rank approximation is a computa-
tional tool for data modeling, which fits the behavioral paradigm as “a hand fits a
glove”. Historically the low-rank approximation problem is closely related to the
singular value decomposition, which is a method for computing low-rank approx-
imations and is a main tool in many algorithms for data modeling. A historical
account of the development of the singular value decomposition is given in (Stew-
art, 1993). The Eckart–Young–Mirsky matrix low-rank approximation theorem is
proven in (Eckart and Young, 1936).

28 1 Introduction

Applications

For details about the realization and system identification problems, see Sections 2.2,
3.1, and 4.3. Direction of arrival and adaptive beamforming problems are discussed
in (Krim and Viberg, 1996; Kumaresan and Tufts, 1983). low-rank approxima-
tion methods (alternating least squares) for estimation of mixture concentrations
in chemometrics are proposed in (Wentzell et al, 1997). An early reference on
the approximate greatest common divisor problem is (Karmarkar and Lakshman,
1998). Efficient optimization based methods for approximate greatest common di-
visor computation are discussed in Section 3.2. Other computer algebra problems
that reduce to structured low-rank approximation are discussed in (Botting, 2004).

Many problems for information retrieval in machine learning, see, e.g., (Bishop,
2006; Fierro and Jiang, 2005; Shawe-Taylor and Cristianini, 2004), are low-rank
approximation problems and the corresponding solution techniques developed in
the machine learning community are methods for solving low-rank approximation
problems. For example, clustering problems have been related to low-rank approx-
imation problems in (Ding and He, 2004; Kiers, 2002; Vichia and Saporta, 2009).
Machine learning problems, however, are often posed in a stochastic estimation set-
ting which obscures their deterministic approximation interpretation. For example,
principal component analysis (Jackson, 2003; Jolliffe, 2002) and unstructured low-
rank approximation with Frobenius norm are equivalent optimization problems. The
principal component analysis problem, however, is motivated in a statistical setting
and for this reason may be considered as a different problem. In fact, principal com-
ponent analysis provides another (statistical) interpretation of the low-rank approx-
imation problem.

The conic section fitting problem has extensive literature, see Chapter 6 and the
tutorial paper (Zhang, 1997). The kernel principal component analysis method is
developed in the machine learning and statistics literature (Schölkopf et al, 1999).
Despite of the close relation between kernel principal component analysis and conic
section fitting, the corresponding literature are disjoint.

Closely related to the estimation of the fundamental matrix problem in two-view
computer vision is the shape from motion problem (Ma et al, 2004; Tomasi and
Kanade, 1993).

Matrix factorization techniques have been used in the analysis of microarray data
in (Alter and Golub, 2006) and (Kim and Park, 2007). Alter and Golub (2006) pro-
pose a principal component projection to visualize high dimensional gene expres-
sion data and show that some known biological aspects of the data are visible in a
two dimensional subspace defined by the first two principal components.

Distance problems

The low-rank approximation problem aims at finding the “smallest” correction of a
given matrix that makes the corrected matrix rank deficient. This is a special case of
a distance problems: find the “nearest” matrix with a specified property to a given

1.6 Notes and references 29

matrix. For an overview of distance problems, see (Higham, 1989). In (Byers, 1988),
an algorithm for computing the distance of a stable matrix (Hurwitz matrix in the
case of continuous-time and Schur matrix in the case of discrete-time linear time-
invariant dynamical system) to the set of unstable matrices is presented. Stability
radius for structured perturbations and its relation to the algebraic Riccati equation
is presented in (Hinrichsen and Pritchard, 1986).

Structured linear algebra

Related to the topic of distance problems is the grand idea that the whole linear alge-
bra (solution of systems of equations, matrix factorization, etc.) can be generalized
to uncertain data. The uncertainty is described as structured perturbation on the data
and a solution of the problem is obtained by correcting the data with a correction of
the smallest size that renders the problem solvable for the corrected data. Two of the
first references on the topic of structured linear algebra are (Chandrasekaran et al,
1998; El Ghaoui and Lebret, 1997).

Structured pseudospectra

Let λ (A) be the set of eigenvalues of A∈C
n×n and M be a set of structured matrices

M := {S (p) | p ∈ R
np },

with a given structure specification S . The ε-structured pseudospectrum (Graillat,
2006; Trefethen and Embree, 1999) of A is defined as the set

λε(A) := {z ∈ C | z ∈ λ (Â), Â ∈ M , and ‖A− Â‖2 ≤ ε }.

Using the structured pseudospectra, one can determine the structured distance of A

to singularity as the minimum of the following optimization problem:

minimize over Â ‖A− Â‖2 subject to Â is singular and Â ∈ M .

This is a special structured low-rank approximation problem for squared data matrix
and rank reduction by one. Related to structured pseudospectra is the structured
condition number problem for a system of linear equations, see (Rump, 2003).

Statistical properties

Related to low-rank approximation are the orthogonal regression (Gander et al,
1994), errors-in-variables (Gleser, 1981), and measurement errors methods in the
statistical literature (Carroll et al, 1995; Cheng and Van Ness, 1999). Classic papers
on the univariate errors-in-variables problem are (Adcock, 1877, 1878; Koopmans,

30 1 Introduction

1937; Madansky, 1959; Pearson, 1901; York, 1966). Closely related to the errors-in-
variables framework for low-rank approximation is the probabilistic principal com-
ponent analysis framework of (Tipping and Bishop, 1999).

Reproducible research

“An article about computational science in a scientific publication is not the scholarship
itself, it is merely advertising of the scholarship. The actual scholarship is the complete
software development environment and the complete set of instructions which generated
the figures.” Buckheit and Donoho (1995)

The reproducible research concept is at the core of all sciences. In applied fields
such as data modeling, however, algorithms’ implementation, availability of data,
and reproducibility of the results obtained by the algorithms on data are often ne-
glected. This leads to a situation, described in (Buckheit and Donoho, 1995) as a
scandal. See also (Kovacevic, 2007).

A quick and easy way of making computational results obtained in MATLAB

reproducible is to use the function publish. Better still, the code and the obtained
results can be presented in a literate programming style.

Literate programming

The creation of the literate programming is a byproduct of the TEX project, see
(Knuth, 1984, 1992). The original system, called web is used for documentation
of the TEX program (Knuth, 1986) and is for the Pascal language. Later a version
cweb for the C language was developed. The web and cweb systems are followed
by many other systems for literate programming that target specific languages. Un-
fortunately this leads to numerous literate programming dialects.

The noweb system for literate programming, created by N. Ramsey in the mid
90’s, is not bound to any specific programming language and text processing sys-
tem. A tutorial introduction is given in (Ramsey, 1994). The noweb syntax is also
adopted in the babel part of Emacs org-mode (Dominik, 2010)—a package for keep-
ing structured notes that includes support for organization and automatic evaluation
of computer code.

References

Adcock R (1877) Note on the method of least squares. The Analyst 4:183–184
Adcock R (1878) A problem in least squares. The Analyst 5:53–54
Alter O, Golub GH (2006) Singular value decomposition of genome-scale mRNA

lengths distribution reveals asymmetry in RNA gel electrophoresis band broad-
ening. Proc Nat Academy of Sci 103:11,828–11,833

References 31

Bishop C (2006) Pattern recognition and machine learning. Springer
Botting B (2004) Structured total least squares for approximate polynomial opera-

tions. Master’s thesis, School of Computer Science, University of Waterloo
Buckheit J, Donoho D (1995) Wavelets and statistics, Springer-Verlag, Berlin, New

York, chap "Wavelab and reproducible research"
Byers R (1988) A bisection method for measuring the distance of a stable matrix to

the unstable matrices. SIAM J Sci Stat Comput 9(5):875–881
Carroll R, Ruppert D, Stefanski L (1995) Measurement Error in Nonlinear Models.

Chapman & Hall/CRC, London
Chandrasekaran S, Golub G, Gu M, Sayed A (1998) Parameter estimation in the

presence of bounded data uncertainties. SIAM J Matrix Anal Appl 19:235–252
Cheng C, Van Ness JW (1999) Statistical regression with measurement error. Lon-

don: Arnold
Ding C, He X (2004) K-means clustering via principal component analysis. In: Proc.

Int. Conf. Machine Learning, pp 225–232
Dominik C (2010) The org mode 7 reference manual. Network theory ltd, URL
http://orgmode.org/

Eckart G, Young G (1936) The approximation of one matrix by another of lower
rank. Psychometrika 1:211–218

El Ghaoui L, Lebret H (1997) Robust solutions to least-squares problems with un-
certain data. SIAM J Matrix Anal Appl 18:1035–1064

Fierro R, Jiang E (2005) Lanczos and the Riemannian SVD in information retrieval
applications. Numer Linear Algebra Appl 12:355–372

Gander W, Golub G, Strebel R (1994) Fitting of circles and ellipses: Least squares
solution. BIT 34:558–578

Gleser L (1981) Estimation in a multivariate "errors in variables" regression model:
large sample results. The Annals of Statistics 9(1):24–44

Graillat S (2006) A note on structured pseudospectra. J Comput Appl Math 191:68–
76

Halmos P (1985) I want to be a mathematician: An automathography. Springer
Higham N (1989) Matrix nearness problems and applications. In: Gover M, Barnett

S (eds) Applications of Matrix Theory, Oxford University Press, pp 1–27
Hinrichsen D, Pritchard AJ (1986) Stability radius for structured perturbations and

the algebraic Riccati equation. Control Lett 8:105–113
Jackson J (2003) A User’s Guide to Principal Components. Wiley
Jolliffe I (2002) Principal component analysis. Springer-Verlag
Karmarkar N, Lakshman Y (1998) On approximate GCDs of univariate polynomi-

als. In: Watt S, Stetter H (eds) J. Symbolic Comput., vol 26, pp 653–666
Kiers H (2002) Setting up alternating least squares and iterative majorization algo-

rithms for solving various matrix optimization problems. Comput Stat Data Anal
41:157–170

Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics
23:1495–1502

Knuth D (1984) Literate programming. Comput J 27(2):97–111

32 1 Introduction

Knuth D (1986) Computers & Typesetting, Volume B: TeX: The Program. Addison-
Wesley

Knuth D (1992) Literate programming. Cambridge University Press
Koopmans T (1937) Linear regression analysis of economic time series. DeErven F.

Bohn
Kovacevic J (2007) How to encourage and publish reproducible research. In: Proc.

IEEE Int. Conf. Acoustics, Speech Signal Proc., pp 1273–1276
Krim H, Viberg M (1996) Two decades of array signal processing research. IEEE

Signal Proc Magazine 13:67–94
Kumaresan R, Tufts D (1983) Estimating the angles of arrival of multiple plane

waves. IEEE Trans Aerospace Electronic Systems 19(1):134–139
Ma Y, Soatto S, Kosecká J, Sastry S (2004) An Invitation to 3-D Vision, Interdisci-

plinary Applied Mathematics, vol 26. Springer
Madansky A (1959) The fitting of straight lines when both variables are subject to

error. J Amer Statist Assoc 54:173–205
Pearson K (1901) On lines and planes of closest fit to points in space. Philos Mag

2:559–572
Polderman J, Willems JC (1998) Introduction to mathematical systems theory.

Springer-Verlag
Ramsey N (1994) Literate programming simplified. IEEE Software 11:97–105
Rump S (2003) Structured perturbations part I: Normwise distances. SIAM J Matrix

Anal Appl 25:1–30
Schölkopf B, Smola A, Müller K (1999) Kernel principal component analysis., MIT

Press, Cambridge, MA, pp 327–352
Shawe-Taylor J, Cristianini N (2004) Kernel Methods for Pattern Analysis. Cam-

bridge University Press
Stewart GW (1993) On the early history of the singular value decomposition. SIAM

Review 35(4):551–566
Tipping M, Bishop C (1999) Probabilistic principal component analysis. J R Stat

Soc B 61(3):611–622
Tomasi C, Kanade T (1993) Shape and motion from image streames: A factorization

method. Proc Natl Adadem Sci USA 90:9795–9802
Trefethen LN, Embree M (1999) Spectra and pseudospectra: The behavior of non-

normal matrices and operators. Princeton University Press
Vichia M, Saporta G (2009) Clustering and disjoint principal component analysis.

Comput Stat Data Anal 53:3194–3208
Wentzell P, Andrews D, Hamilton D, Faber K, Kowalski B (1997) Maximum likeli-

hood principal component analysis. J Chemometrics 11:339–366
Willems JC (1986, 1987) From time series to linear system—Part I. Finite dimen-

sional linear time invariant systems, Part II. Exact modelling, Part III. Approxi-
mate modelling. Automatica 22, 23:561–580, 675–694, 87–115

Willems JC (1989) Models for dynamics. Dynamics reported 2:171–269
Willems JC (1991) Paradigms and puzzles in the theory of dynamical systems. IEEE

Trans Automat Control 36(3):259–294

References 33

Willems JC (2007) The behavioral approach to open and interconnected systems:
Modeling by tearing, zooming, and linking. Control Systems Magazine 27:46–
99, available online http://homes.esat.kuleuven.be/~jwillems/
Articles/JournalArticles/2007.1.pdf

York D (1966) Least squares fitting of a straight line. Can J Physics 44:1079–1086
Zhang Z (1997) Parameter estimation techniques: A tutorial with application to

conic fitting. Image Vision Comp J 15(1):59–76

Part I

Linear modeling problems

Chapter 2

From data to models

. . . whenever we have two different representations of the same

thing we can learn a great deal by comparing representations

and translating descriptions from one representation into the

other. Shifting descriptions back and forth between

representations can often lead to insights that are not inherent

in either of the representations alone.

Abelson and diSessa (1986, page 105)

Summary: In Chapter 1, the equivalence between line fitting and rank-one ma-
trix approximation was considered. This chapter extends the equivalence to gen-
eral linear static and dynamic linear time-invariant data modeling problems. First,
three linear static model representations—kernel, image, and input/output—are de-
fined and the connections among them are shown. Then, representations of linear
time-invariant dynamic models are defined. Finally, exact and approximate model-
ing problems are related to low-rank approximation problems. In the general case of
linear dynamic modeling, the problem is Hankel structured low-rank approximation.

2.1 Linear static model representations

A linear static model with q variables is a subspace of R
q. We denote the set of

linear static models with q variables by L q

0 . Three basic representations of a linear
static model B ⊆ R

q are the kernel, image, and input/output ones:

• kernel representation

B = ker(R) := {d ∈ R
q | Rd = 0}, (KER0)

with parameter R ∈ R
p×q,

• image representation

B = image(P) := {d = Pℓ ∈ R
q | ℓ ∈ R

m }, (IMAGE0)

with parameter P ∈ R
q×m, and

• input/output representation

Bi/o(X ,Π) := {d = Π col(u,y) ∈ R
q | u ∈ R

m, y = X⊤u}, (I/O0)

with parameters X ∈ Rm×p and a q×q permutation matrix Π .

37

38 2 From data to models

If the parameter Π in an input/output representation is not specified, then by default
it is assumed to be the identity matrix Π = Iq, i.e., the first m variables are assumed
inputs and the other p := q−m variables are outputs.

In the representation (IMAGE0), the columns of P are generators of the model B,
i.e., they span or generate the model. In the representation (KER0), the rows of R are
annihilators of B, i.e., they are orthogonal to the elements of B. The parameters R

and P are not unique, because

1. linearly dependent generators and annihilators can be added, respectively, to an
existing set of annihilators and generators of B keeping the model the same, and

2. a set of generators or annihilators can be changed by an invertible transformation,
without changing the model, i.e.,

ker(R) = ker(UR), for all U ∈ R
p×p, such that det(U) 6= 0;

and

image(P) = image(PV), for all V ∈ R
m×m, such that det(V) 6= 0.

The smallest possible number of generators, i.e., coldim(P), such that (IMAGE0)
holds is invariant of the representation and is equal to m := dim(B)—the dimension
of B. Integers, such as m and p := q−m that are invariant of the representation, char-
acterize properties of the model (rather than of the representation) and are called
model invariants. The integers m and p have data modeling interpretation as number
of inputs and number of outputs, respectively. Indeed, m variables are free (unas-
signed by the model) and the other p variables are determined by the model and
the inputs. The number of inputs and outputs of the model B are denoted by m(B)
and p(B), respectively.

The model class of linear static models with q variables, at most m of which
are inputs is denoted by L q

m,0. With coldim(P) = m, the columns of P form a basis
for B. The smallest possible rowdim(R), such that ker(R) = B is invariant of the
representation and is equal to the number of outputs of B. With rowdim(R) = p, the
rows of R form a basis for the orthogonal complement B⊥ of B. Therefore, without
loss of generality we can assume that P ∈ R

q×m and R ∈ R
p×q.

Exercise 2.1. Show that for B ∈ L q

0 ,

• minP, image(P)=B coldim(P) is equal to dim(B) and
• minR, ker(R)=B rowdim(R) is equal to q−dim(B). ⊓⊔

In general, many input/output partitions of the variables d are possible. Choosing
an input/output partition amounts to choosing a full rank p×p submatrix of R or a
full rank m×m submatrix of P. In some data modeling problems, there is no a priori
reason to prefer one partition of the variables over another. For such problems, the
classical setting posing the problem as an overdetermined system of linear equations
AX ≈ B is not a natural starting point.

2.1 Linear static model representations 39

Transition among input/output, kernel, and image representations

The transition from one model representation to another gives insight into the prop-
erties of the model. These analysis problems need to be solved before the more com-
plicated modeling problems are considered. The latter can be viewed as synthesis

problems since the model is created or synthesised from data and prior knowledge.
If the parameters R, P, and (X ,Π) describe the same system B, then they are

related. We show the relations that the parameters must satisfy as well as code that
does the transition from one representation to another. Before we describe the transi-
tion among the parameters, however, we need an efficient way to store and multiply
by permutation matrices and a tolerance for computing rank numerically.

Input/output partition of the variables

In the input/output model representation Bi/o(X ,Π), the partitioning of the vari-
ables d ∈ Rq into inputs u ∈ Rm and outputs y ∈ Rp is specified by a permutation
matrix Π ,

d
Π−1=Π⊤

// col(u,y)
Π

oo , d = Π

[
u

y

]
,

[
u

y

]
= Π⊤d.

In the software implementation, however, it is more convenient (as well as more
memory and computation efficient) to specify the partitioning by a vector

π := Π col(1, . . . ,q) ∈ {1, . . . ,q}q.

Clearly, the vector π contains the same information as the matrix Π and one can
reconstruct Π from π by permuting the rows of the identity matrix. (In the code io
is the variable corresponding to the vector π and Pi is the variable corresponding
to the matrix Π .)

39a 〈π 7→ Π 39a〉≡ (40a)
Pi = eye(length(io)); Pi = Pi(io,:);

Permuting the elements of a vector is done more efficiently by direct reordering of
the elements, instead of a matrix-vector multiplication. If d is a variable correspond-
ing to a vector d, then d(io) corresponds to the vector Πd.

The default value for Π is the identity matrix I, corresponding to first m variables
of d being inputs and the remaining p variables outputs, d = [u

y].
39b 〈default input/output partition 39b〉≡ (41 43b)

if ~exist(’io’) || isempty(io), io = 1:q; end

In case the inverse permutation Π−1 = Π⊤ is needed, the corresponding “permuta-
tion vector” is

π ′ = Π⊤ col(1, . . . ,q) ∈ {1, . . . ,q}q.

40 2 From data to models

In the code inv_io is the variable corresponding to the vector π ′ and the transition
from the original variables d to the partitioned variables uy = [u; y] via io
and inv_io is done by the following indexing operations:

d
io_inv //

uy
io

oo , d = uy(io), uy = d(io_inv).

40a 〈inverse permutation 40a〉≡ (44a)
〈π 7→ Π 39a〉, inv_io = (1:length(io)) * Pi;

Tolerance for rank computation

In the computation of an input/output representation from a given kernel or image
representation of a model (as well as in the computation of the models’ complexity),
we need to find the rank of a matrix. Numerically this is an ill-posed problem be-
cause arbitrary small perturbations of the matrix’s elements may (generically will)
change the rank. A solution to this problem is to replace rank with “numerical rank”
defined as follows

numrank(A,ε) := number of singular values of A greater than ε, (numrank)

where ε ∈ R+ is a user defined tolerance. Note that

numrank(A,0) = rank(A),

i.e., by taking the tolerance to be equal to zero, the numerical rank reduces to the
theoretical rank. A nonzero tolerance ε makes the numerical rank robust to pertur-
bations of size (measured in the induced 2-norm) less than ε . Therefore, ε reflects
the size of the expected errors in the matrix. The default tolerance is set to a small
value, which corresponds to numerical errors due to a double precision arithmetic.
(In the code tol is the variable corresponding to ε .)

40b 〈default tolerance tol 40b〉≡ (43 44c 78c)
if ~exist(’tol’) || isempty(tol), tol = 1e-12; end

Note 2.2. The numerical rank definition (numrank) is the solution of an unstructured
rank minimization problem: find a matrix Â of minimal rank, such that ‖A−Â‖2 < ε .

From input/output representation to kernel or image representations

Consider a linear static model B ∈ L q

m,0, defined by an input/output representation

Bi/o(X ,Π). From y = X⊤u, we have
[
X⊤ −I

]
col(u,y) = 0

or since d = Π [u
y],

2.1 Linear static model representations 41

[
X⊤ −I

]
Π⊤

︸ ︷︷ ︸
R

Π

[
u

y

]

︸ ︷︷ ︸
d

= 0.

Therefore, the matrix
R =

[
X⊤ −I

]
Π⊤ ((X ,Π) 7→ R)

is a parameter of a kernel representations of B, i.e.,

Bi/o(X ,Π) = ker
([

X⊤ −I
]

Π⊤
)
= B.

Moreover, the representation is minimal because R is full row rank.
Similarly, a minimal image representation is derived from the input/output rep-

resentation as follows. From y = X⊤u,
[

u

y

]
=

[
I

X⊤

]
u,

so that, using d = Π [u
y],

d = Π

[
u

y

]
= Π

[
I

X⊤

]
u =: Pu.

Therefore, the matrix

P = Π

[
I

X⊤

]
((X ,Π) 7→ P)

is a parameter of an image representations of B, i.e.,

Bi/o(X ,Π) = image
(

Π

[
I

X⊤

])
= B.

The representation is minimal because P is full column rank.
Formulae ((X ,Π) 7→ R) and ((X ,Π) 7→ P) give us a straight forward way of

transforming a given input/output representation to minimal kernel and minimal
image representations.

41a 〈(X ,Π) 7→ R 41a〉≡
function r = xio2r(x, io)

r = [x’, -eye(size(x, 2))]; q = size(r, 2);

〈default input/output partition 39b〉, r = r(:, io);

Defines:
xio2r, used in chunk 46b.

41b 〈(X ,Π) 7→ P 41b〉≡
function p = xio2p(x, io)

p = [eye(size(x, 1)); x’]; q = size(p, 1);

〈default input/output partition 39b〉, p = p(io, :);

Defines:
xio2p, used in chunk 46b.

42 2 From data to models

From image to minimal kernel and from kernel to minimal image

representation

The relation

ker(R) = image(P) = B ∈ L q

m,0 =⇒ RP = 0 (R ↔ P)

gives a link between the parameters P and R. In particular, a minimal image rep-
resentation image(P) = B can be obtained from a given kernel representation
ker(R) = B by computing a basis for the null space of R. Conversely, a minimal
kernel representation ker(R) = B can be obtained from a given image representa-
tion image(P) = B by computing a basis for the left null space of P.

42a 〈R 7→ P 42a〉≡
function p = r2p(r), p = null(r);

Defines:
r2p, used in chunk 46.

42b 〈P 7→ R 42b〉≡
function r = p2r(p), r = null(p’)’;

Defines:
p2r, used in chunk 46b.

Converting an image or kernel representation to a minimal one

The kernel and image representations obtained from xio2r, xio2p, p2r, and r2p
are minimal. In general, however, a given kernel or image representations can be
non-minimal, i.e., R may have redundant rows and P may have redundant columns.
The kernel representation, defined by R, is minimal if and only if R is full row rank.
Similarly, the image representation, defined by P, is minimal if and only if P is full
column rank.

The problems of converting kernel and image representations to minimal ones
are equivalent to the problem of finding a full rank matrix that has the same kernel
or image as a given matrix. A numerically reliable way to solve this problem is to
use the singular value decomposition.

Consider a model B ∈ L q

m,0 with parameters R ∈ R
g×q and P ∈ R

q×g of respec-
tively kernel and image representations. Let

R =UΣV⊤

be the singular value decomposition of R and let p be the rank of R. With the parti-
tioning,

V =:
[
V1 V2

]
, where V1 ∈ R

q×p,

we have that
image(R⊤) = image(V1).

2.1 Linear static model representations 43

Therefore,
ker(R) = ker(V⊤

1) and V1 is full rank,

so that V⊤
1 is a parameter of a minimal kernel representation of B.

Similarly, let
P =UΣV⊤

be the singular value decomposition of P. With the partitioning,

U =:
[
U1 U2

]
, where U1 ∈ R

q×m,

we have that
image(P) = image(U1).

Since U1 is full rank, it is a parameter of a minimal image representation of B.
In the numerical implementation, the rank is replaced by the numerical rank with

respect to a user defined tolerance tol.
43a 〈R 7→ minimal R 43a〉≡

function r = minr(r, tol)

[p, q] = size(r); 〈default tolerance tol 40b〉
[u, s, v] = svd(r, ’econ’); pmin = sum(diag(s) > tol);

if pmin < p, r = v(:, 1:pmin)’; end

Defines:
minr, used in chunks 44a and 45b.

Exercise 2.3. Write a function minp that implements the transition P 7→minimal P.
⊓⊔

From kernel or image to input/output representation

The transformations from kernel to input/output and from image to input/output
representations are closely related. They involve as a sub-problem the problem of
finding input/output partitions of the variables in the model. Because of this, they
are more complicated than the inverse transformations, considered above.

Assume first that the input/output partition is given. This amounts to knowing the
permutation matrix Π ∈ R

q×q in (I/O0).
43b 〈(R,Π) 7→ X 43b〉≡ 44a⊲

function x = rio2x(r, io, tol)

q = size(r, 2); 〈default input/output partition 39b〉, 〈default tolerance tol 40b〉
Defines:
rio2x, used in chunks 45, 46, and 122a.

Consider given parameters R ∈ R
p×q of minimal kernel representation of a linear

static system B ∈ L q

m,0 and define the partitioning

RΠ =:
[
Ru Ry

]
, where Ry ∈ R

p×p.

44 2 From data to models

44a 〈(R,Π) 7→ X 43b〉+≡ ⊳43b 44b⊲
r = minr(r, tol); p = size(r, 1); m = q - p;

〈inverse permutation 40a〉, rpi = r(:, inv_io);

ru = rpi(:, 1:m); ry = rpi(:, (m + 1):end);

Uses minr 43a.

Similarly, for a parameter P∈R
q×m of minimal image representation of B, define

Π⊤P =:
[

Pu

Py

]
, where Pu ∈ R

m×m.

If Ry and Pu are non-singular, it follows from ((X ,Π) 7→ R) and ((X ,Π) 7→ P) that

X =−(R−1
y Ru)

⊤ ((R,Π) 7→ X)

and
X = (PyP−1

u)⊤ ((P,Π) 7→ X)

is the parameter of the input/output representation Bi/o(X ,Π) of B, i.e.,

ker
(m p[

Ru Ry

]
Π⊤

︸ ︷︷ ︸
R

)
= Bi/o

(
− (R−1

y Ru)
⊤,Π

)

and

image

(
Π

[
Pu

Py

]

︸ ︷︷ ︸
P

m

p

)
= Bi/o

(
(PyP−1

u)⊤,Π
)
.

44b 〈(R,Π) 7→ X 43b〉+≡ ⊳44a
[u, s, v] = svd(ry); s = diag(s);

if s(end) < tol

warning(’Computation of X is ill conditioned.’); x = NaN;

else

x = -(v * diag(1 ./ s) * u’ * ru)’;

end

Singularity of the blocks Ry and Pu implies that the input/output representation with
a permutation matrix Π is not possible. In such cases, the function rio2x issues a
warning message and returns NaN value for X .

The function r2io uses rio2x in order to find all possible input/output parti-
tions for a model specified by a kernel representation.

44c 〈R 7→ Π 44c〉≡ 45a⊲
function IO = r2io(r, tol)

q = size(r, 2); 〈default tolerance tol 40b〉
Defines:
r2io, used in chunk 45c.

The search is exhaustive over all input/output partitionings of the variables (i.e., all
choices of m elements of the set of variable indexes {1, . . . ,q}), so that the compu-
tation is feasible only for a small number of variables (say less than 6).

2.1 Linear static model representations 45

45a 〈R 7→ Π 44c〉+≡ ⊳44c 45b⊲
IO = perms(1:q); nio = size(IO, 1);

The parameter X for each candidate partition is computed. If the computation of X

is ill-conditioned, the corresponding partition is not consistent with the model and
is discarded.

45b 〈R 7→ Π 44c〉+≡ ⊳45a
not_possible = []; warning_state = warning(’off’);

r = minr(r, tol);

for i = 1:nio

x = rio2x(r, IO(i, :), tol);

if isnan(x), not_possible = [not_possible, i]; end

end

warning(warning_state); IO(not_possible, :) = [];

Uses minr 43a and rio2x 43b.

Example 2.4. Consider the linear static model with three variables and one input

B = image

1
0
0

= ker

([
0 1 0
0 0 1

])
.

Clearly, this model has only two input/output partitions:

u = w1, y =

[
w2
w3

]
and u = w1, y =

[
w3
w2

]
.

Indeed, the function r2io
45c 〈Test r2io 45c〉≡

r2io([0 0 1; 0 1 0])

Uses r2io 44c.

correctly computes the input output partitionings from the parameter R in a kernel
representation of the model

ans =

1 2 3

1 3 2

⊓⊔

Exercise 2.5. Write functions pio2x and p2io that implement the transitions

(P,Π) 7→ X and P 7→ Π . ⊓⊔

Exercise 2.6. Explain how to check that two models, specified by kernel or image
representation, are equivalent. ⊓⊔

46 2 From data to models

Summary of transitions among representations

Figure 2.1 summarizes the links among the parameters R, P, and (X ,Π) of a linear
static model B and the functions that implement the transitions.

B = ker(R) oo RP=0 //

X=−(R−1
o Ri)

⊤

##❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋

B = image(P)

X=(PoP−1
i)⊤

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

B = Bi/o(X ,Π)

R=[X⊤ −I]Π⊤

cc❋❋❋❋❋❋❋❋❋❋❋❋❋❋
P⊤=[I X]Π⊤

;;✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇

B = ker(R)
r2p //

r2io,rio2x

##❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋

B = image(P)
p2r

oo

p2io,pio2x

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

B = Bi/o(X ,Π)

xio2r

cc❋❋❋❋❋❋❋❋❋❋❋❋❋❋
xio2p

;;✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇

Fig. 2.1 Relations and functions for the transitions among linear static model parameters.

Numerical example

In order to test the functions for transition among the kernel, image, and input/output
model representations, we choose, a random linear static model, specified by a ker-
nel representation,

46a 〈Test model transitions 46a〉≡ 46b⊲
m = 2; p = 3; R = rand(p, m + p); P = r2p(R);

Uses r2p 42a.

and traverse the diagram in Figure 2.1 clock-wise and anti clock-wise
46b 〈Test model transitions 46a〉+≡ ⊳46a 46c⊲

R_ = xio2r(pio2x(r2p(R))); P_ = xio2p(rio2x(p2r(P)));

Uses p2r 42b, r2p 42a, rio2x 43b, xio2p 41b, and xio2r 41a.

As a verification of the software, we check that after traversing the loop, equivalent
models are obtained.

46c 〈Test model transitions 46a〉+≡ ⊳46b
norm(rio2x(R) - rio2x(R_)), norm(pio2x(P) - pio2x(P_))

Uses rio2x 43b.

The answers are around the machine precision, which confirms that the models are
the same.

2.2 Linear time-invariant model representations 47

Linear static model complexity

A linear static model is a finite dimensional subspace. The dimension m of the sub-
space is equal to the number of inputs and is invariant of the model representation.
The integer constant m quantifies the model complexity: the model is more complex
when it has more inputs. The rationale for this definition of model complexity is
that inputs are “unexplained” variables by the model, so the more inputs the model
has, the less it “explains” the modeled phenomenon. In data modeling the aim is to
obtain low-complexity models, a principle generally refered to as Occam’s razor.

Note 2.7 (Computing the model complexity is a rank estimation problem). Comput-
ing the model complexity, implicitly specified by (exact) data, or by a nonminimal
kernel or image representation is a rank computation problem; see Section 2.3 and
the function minr.

2.2 Linear time-invariant model representations

An observation d j of a static model is a vector of variables. In the dynamic case,
the observations depend on time, so that apart from the multivariable aspect, there is
also a time evaluation aspect. In the dynamic case, an observation is refered to as a
trajectory, i.e., it is a vector valued function of a scalar argument. The time variable
takes its values in the set of integers Z (discrete-time model) or in the set of real
numbers R (continuous-time model). We denote the time axis by T .

A dynamic model B with q variables is a subset of the trajectory space (Rq)T

— the set of all functions from the time axis T to the variable space Rq.

In this book, we consider the special class of finite dimensional linear time-
invariant dynamical models. By definition, a model B is linear if it is a subspace of
the data space (Rq)T . In order to define the time-invariance property, we introduce
the shift operator σ τ . Acting on a signal w, σ τ produces a signal σ τw, which is the
backwards shifted version of w by τ time units, i.e.,

(σ τw)(t) := w(t + τ), for all t ∈ T .

Acting on a set of trajectories, σ τ shifts all trajectories in the set, i.e.,

σ τB := {σ τ w | w ∈ B }.

A model B is shift-invariant if it is invariant under any shift in time, i.e.,

σ τB = B, for all τ ∈ T .

48 2 From data to models

The model B is finite dimensional if it is a closed subset (in the topology of point-
wise convergence). Finite dimensionality is equivalent to the property that at any
time t the future behavior of the model is deterministically independent of the past
behavior, given a finite dimensional vector, called a state of the model. Intuitively,
the state is the information (or memory) of the past that is needed in order to predict
the future. The smallest state dimension is an invariant of the system, called the
order. We denote the set of finite dimensional linear time-invariant models with q

variables and order at most n by L q,n and the order of B by n(B).
A finite dimensional linear time-invariant model B ∈ L q,n admits a representa-

tion by a difference or differential equation

R0w+R1λ w+ · · ·+Rlλ lw = (R0 +R1λ + · · ·+Rlλ l

︸ ︷︷ ︸
R(λ)

)w

= R(λ)w = 0,

(DE)

where λ is the unit shift operator σ in the discrete-time case and the differential
operator d

dt
in the continuous-time case. Therefore, the model B is the kernel

B := ker
(
R(λ)

)
= {w | (DE) holds}, (KER)

of the difference or differential operator R(λ). The smallest degree l of a polynomial
matrix

R(z) := R0 +R1z+ · · ·+Rlzl ∈ R
g×q[z],

in a kernel representation (KER) of B, is invariant of the representation and is called
the lag l(B) of B.

The order of the system is the total degree of the polynomial matrix R in a kernel
representation of the system. Therefore, we have the following link between the
order and the lag of a linear time-invariant model:

n(B)≤ p(B)l(B).

As in the static case, the smallest possible number of rows g of the polyno-
mial matrix R in a kernel representation (KER) of a finite dimensional linear time-
invariant system B is the invariant p(B) — number of outputs of B. Finding an
input/output partitioning for a model specified by a kernel representation amounts
to selection of a nonsingular p×p submatrix of R. The resulting input/output repre-
sentation is:

B = Bi/o(P,Q,Π) := ker
(
Π
[
Q(λ) P(λ)

])
, (I/O)

with parameters the polynomial matrices

Q ∈ R
p×m[z] and P ∈ R

p×p[z], such that det(P) 6= 0,

and the permutation matrix Π .
In general, the representation (I/O) involves higher order shifts or derivatives.

A first order representation

2.2 Linear time-invariant model representations 49

B = Bi/s/o(A,B,C,D,Π) := {w = Π col(u,y) | there is x, such that

λ x = Ax+Bu and y =Cx+Du}, (I/S/O)

with an auxiliary variable x, however, is always possible. The representation (I/S/O)
displays not only the input/output structure of the model but also its state structure
and is refered to as an input/state/output representation of the model. The parameters
of an input/state/output representation are the matrices

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m,

and a permutation matrix Π . The parameters are non unique due to

• nonuniqueness in the choice of the input/output partition,
• existence of redundant states (nonminimality of the representation), and
• change of state space basis

Bi/s/o(A,B,C,D) = Bi/s/o(T
−1AT,T−1B,CT,D),

for any nonsingular matrix T ∈ R
n×n. (CB)

An input/state/output representation Bi/s/o(A,B,C,D) is called minimal when the
state dimension n is as small as possible. The minimal state dimension is an invariant
of the system and is equal to the order n(B) of the system.

A system B is autonomous if for any trajectory w ∈ B the “past”

w− :=
(
. . . ,w(−2),w(−1)

)

of w completely determines its “future”

w+ :=
(
w(0),w(1), . . .

)
.

It can be shown that a system B is autonomous if and only if it has no inputs. An
autonomous finite dimensional linear time-invariant system is parametrized by the
pair of matrices A and C via the state space representation

Bi/s/o(A,C) := {w = y | there is x, such that σx = Ax and y =Cx}.

The dimension dim(B) of an autonomous linear model B is equal to the or-
der n(B).

In a way the opposite of an autonomous model is a controllable system. The
model B is controllable if for any trajectories wp and wf of B, there is τ > 0 and a
third trajectory w ∈B, which coincides with wp in the past, i.e., w(t) =wp(t), for all
t < 0, and coincides with wf in the future, i.e., w(t) = wf(t), for all t ≥ τ . The subset
of controllable systems of the set of linear time-invariant systems L q is denoted
by L q

ctrb. A summary of properties of a dynamical system is given in Table 2.1.
Apart from the kernel, input/output, and input/state/output representation, a con-

trollable finite dimensional linear time-invariant model admits the following repre-
sentations:

50 2 From data to models

Table 2.1 Summary of model B ⊂ (Rq)T properties.

property definition
linearity — w,v ∈ B =⇒ αw+βv ∈ B, for all α,β ∈R

time-invariance — σ τB = B, for all τ ∈ T
finite dimensionality — B is a closed set; equivalently n(B)< ∞
autonomy — the past of any trajectory completely determines its future;

equivalently m(B) = 0
controllability — the past of any trajectory can be concatenated to the future of any

other trajectory by a third trajectory if a transition period is allowed

• image representation

B = image
(
P(λ)

)
:= {w | w = P(λ)ℓ, for some ℓ}, (IMAGE)

with parameter the polynomial matrix P(z) ∈ R
q×g[z],

• convolution representation

B = Bi/o
(
H,Π

)
:= {w = Π col(u,y) | y = H ⋆u}, (CONV)

where ⋆ is the convolution operator

y(t) = (H ⋆u)(t) :=
∞

∑
τ=0

H(τ)u(t − τ), in discrete-time, or

y(t) = (H ⋆u)(t) :=
∫ ∞

0
H(τ)u(t − τ)dτ, in continuous-time,

with parameters the signal H : T → Rp×m and a permutation matrix Π ; and
• transfer function,

B = Bi/o
(
H,Π

)
:= {w = Π col(u,y) | F (y) = H(z)F (u)}, (TF)

where F is the Z-transform in discrete-time and the Laplace transform in
continuous-time, with parameters the rational matrix H ∈ R

p×m(s) (the transfer
function) and a permutation matrix Π .

Transitions among the parameters H, H(z), and (A,B,C,D) are classical prob-
lems, see Figure 2.2. Next, we review the transition from impulse response H to
parameters (A,B,C,D) of an input/state/output representation, which plays an im-
portant role in deriving methods for Hankel structured low-rank approximation.

System realization

The problem of passing from a convolution representation to an input/state/output
representation is called (impulse response) realization.

2.2 Linear time-invariant model representations 51

data identification //
model

Bi/s/o(A,B,C,D)

11

tt
7

��

1

��
w = (u,y) ∈ B

12

44

10 --

6

&&

Bi/o
(
H(z)

)
9

mm

4

��

2

KK

Bi/o(H)

8

dd

5

ff

3

KK

re
al

iz
at

io
n

OO
?> =<89 :;

GF ED@A BC

?> =<89 :;

?> =<89 :;

1. H(z) =C(Iz−A)−1B+D

2. realization of a transfer function
3. Z or Laplace transform of H(t)

4. inverse transform of H(z)

5. convolution yd = H ⋆ud

6. exact identification

7. H(0) = D, H(t) =CAt−1B (discrete-time),
H(t) =CeAt B (continuous-time), for t > 0

8. realization of an impulse response
9. simulation with input ud and x(0) = 0

10. exact identification
11. simulation with input ud and x(0) = xini
12. exact identification

Fig. 2.2 Data, input/output model representations, and links among them.

Definition 2.8 (Realization). A linear time-invariant system B with m inputs and p

outputs and an input/output partition, specified by a permutation matrix Π , is a re-

alization of (or realizes) an impulse response H : T →Rp×m if B has a convolution
representation B = Bi/o(H,Π). A realization B of H is minimal if its order n(B)
is the smallest over all realization of H. ⊓⊔
In what follows, we fix the input/output partition Π to the default one

w = col(u,y)

and use the notation

H :=
[
h1 · · · hm

]
and Im :=

[
e1 · · · em

]
.

An equivalent definition of impulse response relization that makes explicit the
link of the realization problem to data modeling is the following one.

Definition 2.9 (Realization, as a data modeling problem). The system B real-
izes H if the set of input/output trajectories (ei,hi), for i = 1, . . . ,m are impulse
responses of B, i.e.,

(eiδ ,0∧hi) ∈ B, for i = 1, . . . ,m,

52 2 From data to models

where δ is the delta function and ∧ is the concatenation map (at time 0)

w = wp ∧wf, w(t) :=

{
wp(t), if t < 0

wf(t), if t ≥ 0
⊓⊔

Note 2.10 (Discrete-time vs continuous-time system realization). There are some
differences between the discrete and continuous-time realization theory. Next, we
consider the discrete-time case. It turns out, however, that the discrete-time algo-
rithms can be used for realization of continuous-time systems by applying them on
the sequence of the Markov parameter

(
H(0), d

dt
H(0), . . .

)
of the system.

The sequence

H =
(
H(0),H(1),H(2), . . . ,H(t), . . .

)
, where H(t) ∈ R

p×m

is a one sided infinite matrix-values time series. Acting on H, the shift operator σ ,
removes the first sample, i.e.,

σH =
(
H(1),H(2), . . . ,H(t), . . .

)
.

A sequence H might not be realizable by a finite dimensional linear time-
invariant system, but if it is realizable, a minimal realization is unique.

Theorem 2.11 (Test for realizability). The sequence H : Z+ → R
p×m is realizable

by a finite dimensional linear time-invariant system with m inputs if and only if the

two-sided infinite Hankel matrix H (σH) has a finite rank n. Moreover, the order

of a minimal realization is equal to n, and there is a unique system B in L q,n
m that

realizes H.

Proof. (=⇒) Let H be realizable by a system B ∈ L q,n
m with a minimal in-

put/state/output representation B = Bi/s/o(A,B,C,D). Then

H(0) = D and H(t) =CAt−1B, for t > 0.

The (i, j) block element of the Hankel matrix H (σH) is

H(i+ j−1) =CAi+ j−2B =CAi−1A j−1B.

Let
Ot(A,C) := col(C,CA, . . . ,CAt−1) (O)

be the extended observability matrix of the pair (A,C) and

Ct(A,B) :=
[
B AB · · · At−1B

]
(C)

be the extended controllability matrix of the pair (A,B). With O(A,C) and C (A,B)
being the infinite observability and controllability matrices, we have

H (σH) = O(A,C)C (A,B) (OC)

2.2 Linear time-invariant model representations 53

Since the representation Bi/s/o(A,B,C,D) is assumed to be minimal, C (A,B) is full
row rank and O(A,C) is full column rank. Therefore, (OC) is a rank revealing
factorization of H (σH) and

rank
(
H (σH)

)
= n(B).

(⇐=) In this direction, the proof is constructive and results in an algorithm for
computation of the minimal realization of H in L q,n

m , where n = rank
(
H (σH)

)
.

A realization algorithm is presented in Section 3.1. ⊓⊔

Theorem 2.11 shows that

rank
(
Hi, j(σH)

)
= n(B), for pi ≥ n(B) and m j ≥ n(B).

This suggests a method to find the order n(B) of the minimal realization of H:
compute the rank of the finite Hankel matrix Hi, j(σH), where nmax := min(pi,m j)
is an upper bound of the order. Algorithms for computing the order and parameters
of the minimal realization are presented in Chapter 3.1.

Linear time-invariant model complexity

Associate with a linear time-invariant dynamical system B, we have defined the
following system invariants:

m(B) — number of inputs,
p(B) — number of outputs,

n(B) — order, and
l(B) — lag.

The complexity of a linear static model B is the number of inputs m(B) of B
or, equivalently, the dimension dim(B) of B. Except for the class of autonomous
systems, however, the dimension of a dynamical model is infinite. We define the
restriction B|[1,T] of B to the interval [1,T],

B|[1,T] := {w ∈ R
T | there exist wp and wf, such that (wp,w,wf) ∈ B }. (B|[1,T])

For a linear time-invariant model B and for T > n(B),

dim(B|[1,T]) = m(B)T +n(B)≤ m(B)T +l(B)p(B), (dim B)

which shows that the pairs of natural numbers
(
m(B),n(B)

)
and

(
m(B),l(B)

)

characterize the model’s complexity. The elements of the model class L q
m,l are linear

time-invariant systems of complexity bounded by the pair (m,l) and, similarly, the
elements of the model class L q,n

m are linear time-invariant systems of complexity

54 2 From data to models

bounded by the pair (m,n). A static model is a special case of a dynamic model
when the lag (or the order) is zero. This is reflected in the notation L q,n

m,l : the linear
static model class Lm,0 corresponds to the linear time-invariant model class Lm,l

with l= 0.
Note that in the autonomous case, i.e., with m(B) = 0, dim(B) = n. The dimen-

sion of the system corresponds to the number of degrees of freedom in selecting
a trajectory. In the case of an autonomous system, the trajectory depends only on
the initial condition (an n(B) dimensional vector). In the presence of inputs, the
number of degrees of freedom due to the initial condition is increased on each time
step by the number of inputs, due to the free variables. Asymptotically as T → ∞,
the term mT in (dim B) dominates the term n. Therefore, in comparing linear time-
invariant system’s complexities, by convention, a system with more inputs is more
complex than a system with less inputs, irrespective of their state dimensions.

2.3 Exact and approximate data modeling

General setting for data modeling

In order to treat static, dynamic, linear, and nonlinear modeling problems with uni-
fied terminology and notation, we need an abstract setting that is general enough to
accommodate all envisaged applications. Such a setting is described in this section.

The data D and a model B for the data are subsets of a universal set U of pos-
sible observations. In static modeling problems, U is a real q-dimensional vector
space R

q, i.e., the observations are real valued vectors. In dynamic modeling prob-
lems, U is a function space (Rq)T , with T being Z in the discrete-time case and R

in the continuous-time case.

Note 2.12 (Categorical data and finite automata). In modeling problems with cate-
gorical data and finite automata, the universal set U is discrete and may be finite.

We consider data sets D consisting of a finite number of observations

D = {wd,1, . . . ,wd,N } ⊂ U .

In discrete-time dynamic modeling problems, the wd, j’s are trajectories, i.e.,

wd, j =
(
wd, j(1), . . . ,wd, j(Tj)

)
, with wd, j(t) ∈ R

q for all t.

In dynamic problems, the data D often consists of a single trajectory wd,1, in which
case the subscript index 1 is skipped and D is identified with wd. In static modeling
problems, an observation wd, j is a vector and the alternative notation d j = wd, j is
used in order to emphasise the fact that the observations do not depend on time.

2.3 Exact and approximate data modeling 55

Note 2.13 (Given data vs general trajectory). In order to distinguish a general tra-
jectory w of the system from the given data wd (a specific trajectory) we use the
subscript “d” in the notation of the given data.

A model class M is a set of sets of U , i.e., M is an element of the power set 2U

of U . We consider the generic model classes of

• linear static models L0,
• linear time-invariant models L , and
• polynomial static models P (see Chapter 6).

In some cases, however, subclasses of the generic classes above are of interest. For
examples, the controllable and finite impulse response model subclasses of the class
of linear time invariant models, and the ellipsoids subclass of the class of second
order polynomial models (conic sections).

The complexity c of a model B is a vector of positive integers

c(B) :=

m(B) = dim(B), if B ∈ L0,(
m(B),l(B)

)
or
(
m(B),n(B)

)
, if B ∈ L ,(

m(B),deg(R)
)
, where B = ker(R), if B ∈ P.

(c(B))

Complexities are compared in this book by the lexicographic ordering, i.e., two com-
plexities are compared by comparing their corresponding elements in the increasing
order of the indexes. The first time an index is larger, the corresponding complexity
is declared larger. For linear time-invariant dynamic models, this convention and
the ordering of the elements in c(B) imply that a model with more inputs is always
more complex than a model with less inputs irrespective of their orders.

The complexity c of a model class M is the largest complexity of a model in
the model class. Of interest is the restriction of the generic model classes M to
subclasses Mcmax of models with bounded complexity, e.g., L q

m,lmax
, with m< q.

Exact data modeling

A model B is an exact model for the data D if D ⊂ B. Otherwise, it is an approx-

imate model. An exact model for the data may not exist in a model class Mcmax of
bounded complexity. This is generically the case when the data is noisy and the data
set D is large enough (relative to the model complexity). A practical data modeling
problem must involve approximation. Our starting point, however, is the simpler
problem of exact data modeling.

Problem 2.14 (Exact data modeling). Given data D ⊂ U and a model class
Mcmax ∈ 2U , find a model B̂ in Mcmax that contains the data and has minimal (in the
lexicographic ordering) complexity or assert that such a model does not exist, i.e.,

minimize over B ∈ Mcmax c(B) subject to D ⊂ B (EM)

56 2 From data to models

The question occurs:

(Existence of exact model) Under what conditions on the data D and the
model class Mcmax does a solution to problem (EM) exist?

If a solution exists, it is unique. This unique solution is called the most power-

ful unfalsified model for the data D in the model class Mcmax and is denoted
by Bmpum(D). (The model class Mcmax is not a part of the notation Bmpum(D)
and is understood from the context.)

Suppose that the data D is generated by a model B0 in the model class Mcmax , i.e.,

D ⊂ B0 ∈ Mcmax .

Then, the exact modeling problem has a solution in the model class Mcmax , however,
the solution Bmpum(D) may not be the data generating model B0. The question
occurs:

(Identifiability) Under what conditions on the data D , the data generat-
ing model B0, and the model class Mcmax , the most powerful unfalsified
model Bmpum(D) in Mcmax coincides with the data generating model B0?

Example 2.15 (Exact data fitting by a linear static model). Existence of a linear
static model B̂ of bounded complexity m for the data D is equivalent to rank defi-
ciency of the matrix

Φ(D) :=
[
d1 · · · dN

]
∈ R

q×N ,

composed of the data. (Show this.) Moreover, the rank of the matrix Φ(D) is equal
to the minimal dimension of an exact model for D

existence of B̂ ∈ L q

m,0, such that D ⊂ B̂ ⇐⇒ rank
(
Φ(D)

)
≤ m. (∗)

The exact model
B̂ = image

(
Φ(D)

)
(∗∗)

of minimal dimension
c(B) = rank

(
Φ(D)

)

always exists and is unique.
The equivalence (∗) between data modeling and the concept of rank is the basis

for application of linear algebra and matrix computations to linear data modeling.
Indeed, (∗∗) provides an algorithm for exact linear static data modeling. As shown
next, exact data modeling has also direct relevance to approximate data modeling.

2.3 Exact and approximate data modeling 57

Approximate data modeling

When an exact model does not exist in the considered model class, an approximate
model that is in some sense “close” to the data is aimed at instead. Closeness is
measured by a suitably defined criterion. This leads to the following approximate
data modeling problem.

Problem 2.16 (Approximate data modeling). Given data D ⊂ U , a model class
Mcmax ∈ 2U , and a measure f (D ,B) for the lack of fit of the data D by a model B,
find a model B̂ in the model class Mcmax that minimizes the lack of fit, i.e.,

minimize over B ∈ Mcmax f (D ,B). (AM)

⊓⊔
Since an observation w is a point in and the model B is a subset of the data

space U , it is natural to measure the lack of fit between w and B by the geometric

distance

dist(w,B) := min
ŵ∈B

∥∥w− ŵ
∥∥

2. (dist(w,B))

The auxiliary variable ŵ is the best approximation of w in B. Geometrically, it is
the orthogonal projection of w on B.

For the set of observations D , we define the distance from D to B as

dist(D ,B) := min
ŵ1,...,ŵN∈B

√√√√
N

∑
j=1

∥∥wd, j − ŵ j

∥∥2
2. (dist)

The set of points
D̂ = { ŵ1, . . . , ŵN }

in the definition of (dist) is an approximation of the data D in the model B.
Note that problem (dist) is separable, i.e., it decouples into N independent prob-
lems (dist(w,B)).

Algorithms for computing the geometric distance are discussed in Section 3.2, in
the case of linear models, and in Chapter 6, in the case of polynomial models.

Note 2.17 (Invariance of (dist) to rigid transformation). The geometric distance
dist(D ,B) is invariant to a rigid transformation, i.e., translation, rotation, and re-
flection of the data points and the model.

An alternative distance measure, called algebraic distance, is based on a kernel
representation B = ker(R) of the model B. Since R is a mapping from U to R

g,
such that

w ∈ B ⇐⇒ R(w) = 0,

we have that
‖R(w)‖F > 0 ⇐⇒ w 6∈ B.

58 2 From data to models

The algebraic “distance” measures the lack of fit between w and B by the “size”
‖R(w)‖F of the residual R(w). For a data set D , we define

dist′(D ,B) :=

√√√√
N

∑
j=1

∥∥R
(
wd, j

)∥∥2
F, (dist′)

The algebraic distance depends on the choice of the parameter R in a kernel rep-
resentation of the model, while the geometric distance is representation invariant. In
addition, the algebraic distance is not invariant to a rigid transformation. However,
a modification of the algebraic distance that is invariant to a rigid transformation is
presented in Section 6.3.

Example 2.18 (Geometric distance for linear and quadratic models). The two plots
in Figure 2.3 illustrate the geometric distance (dist) from a set of eight data points

D = {di = (xi,yi) | i = 1, . . . ,8}

in the plane to, respectively, linear B1 and quadratic B2 models. As its name sug-
gests, dist(D ,B) has geometric interpretation—in order to compute the geometric
distance, we project the data points on the models. This is a simple task (linear least
squares problem) for linear models but a nontrivial task (nonconvex optimization
problem) for nonlinear models. In contrast, the algebraic “distance” (not visualised
in the figure) has no simple geometrical interpretation but is easy to compute for
linear and nonlinear models alike.

−4 −2 0 2 4 6 8 10
−2

0

2

4

6

8

x

y

(0,0)
d j

B1
d̂ j

d j − d̂ j

−4 −2 0 2 4 6 8 10

0

2

4

6

8

x

y

d j

B2 d̂ j

Fig. 2.3 Geometric distance from eight data points to a linear (left) and quadratic (right) models

Note 2.19 (Approximate modeling in the case of exact data). If an exact model B
exists in the model class Mcmax , then B is a global optimum point of the approxi-
mate modeling problem (AM) (irrespective of the approximation criterion f being
used). Indeed,

D ⊂ B ⇐⇒ dist(D ,B) = dist′(D ,B) = 0.

2.3 Exact and approximate data modeling 59

An optimal approximate model, i.e., a solution of (AM), however, need not be
unique. In contrast, the most powerful unfalsified model is unique. This is due to
the fact that (AM) imposes an upper bound but does not minimize the model com-
plexity, while (EM) minimizes the model complexity. As a result, when

c
(
Bmpum(D)

)
< cmax,

(AM) has a nonunique solution. In the next section, we present a more general
approximate data modeling problem formulation that minimizes simultaneously the
complexity as well as the fitting error.

The terminology “geometric” and “algebraic” distance comes from the computer
vision application of the methods for fitting curves and surfaces to data. In the sys-
tem identification community, the geometric fitting method is related to the misfit

approach and the algebraic fitting criterion is related to the latency approach. Misfit
and latency computation are data smoothing operations. For linear time-invariant
systems, the misfit and latency can be computed efficiently by Riccati type recur-
sions. In the statistics literature, the geometric fitting is related to errors-in-variable
estimation and the algebraic fitting is related to classical regression estimation, see
Table 2.2.

Table 2.2 Correspondence among terms for data fitting criteria in different fields.

computer vision system identification statistics mathematics
geometric fitting misfit errors-in-variables implicit function
algebraic fitting latency regression function

Example 2.20 (Algebraic fit and errors-in-variables modeling). From a statistical
point of view, the approximate data modeling problem (AM) with the geometric
fitting criterion (dist) yields a maximum likelihood estimator for the true model B0

in the errors-in-variables setup

wd, j = w0, j + w̃ j, (EIV)

where
D0 := {w0,1, . . . ,w0,N } ⊂ B0

is the true data and
D̃ := { w̃1, . . . , w̃N }

is the measurement noise, which is assumed to be a set of independent, zero mean,
Gaussian random vectors, with covariance matrix σ 2I. ⊓⊔

Example 2.21 (Algebraic fit by a linear model and regression). A linear model
class, defined by the input/output representation Bi/o(Θ) and algebraic fitting crite-
rion (dist′), where

60 2 From data to models

w := col(u,y) and R(w) :=Θ⊤u− y

lead to the ordinary linear least squares problem

minimize over Θ ∈ R
m×p ∥∥Θ⊤Φ(ud)−Φ(yd)

∥∥
F. (LS)

The statistical setting for the least squares approximation problem (LS) is the clas-
sical regression model

R(wd, j) = e j, (REG)

where e1, . . . ,eN are zero mean independent and identically distributed random vari-
ables. Gauss-Markov’s theorem states that the least squares approximate solution is
the best linear unbiased estimator for the regression model (REG).

Complexity–accuracy trade-off

Data modeling is a mapping from a given data set D , to a model B in a given model
class M :

data set D ⊂ U
data modeling problem−−−−−−−−−−−−−→ model B ∈ M ∈ 2U .

A data modeling problem is defined by specifying the model class M and one or
more modeling criteria. Basic criteria in any data modeling problem are:

• “simple” model, measured by the model complexity c(B), and
• “good” fit of the data by the model, measured by (vector) cost function F(D ,B).

Small complexity c(B) and small fitting error F(D ,B), however, are contradicting
objectives, so that a core issue throughout data modeling is the complexity–accuracy
trade-off. A generic data modeling problem is:

Given a data set D ∈ U and a measure F for the fitting error, solve the multi-
objective optimization problem:

minimize over B ∈ M

[
c(B)

F(D ,B)

]
. (DM)

Next we consider the special cases of linear static models and linear time-
invariant dynamic models with F(D ,B) being dist(D ,B) or dist′(D ,B). The
model class assumption implies that dim(B) is a complexity measure in both static
and dynamic cases.

2.3 Exact and approximate data modeling 61

Two possible scalarizations: low-rank approximation and rank minimization

The data set D , can be parametrized by a real vector p ∈Rnp . (Think of the vector p

as a representation of the data in the computer memory.) For a linear model B and
exact data D , there is a relation between the model complexity and the rank of a
data matrix S (p):

c
(
Bmpum(D)

)
= rank

(
S (p)

)
. (∗)

The mapping
S : Rnp → R

m×n

from the data parameter vector p to the data matrix S (p) depends on the applica-
tion. For example, S (p) = Φ(D) is unstructured in the case of linear static mod-
eling (see Example 2.15) and S (p) = H (wd) is Hankel structured in the case of
autonomous linear time-invariant dynamic model identification,

Let p be the parameter vector for the data D and p̂ be the parameter vector for
the data approximation D̂ . The geometric distance dist(D ,B) can be expressed in
terms of the parameter vectors p and p̂ as

minimize over p̂ ‖p− p̂‖2 subject to D̂ ⊂ B.

Moreover, the norm in the parameter space Rnp can be chosen as weighted 1-, 2-,
and ∞-(semi)norms:

‖p̃‖w,1 := ‖w⊙ p̃‖1 := ∑
np

i=1 |wi p̃i|,

‖p̃‖w,2 := ‖w⊙ p̃‖2 :=
√

∑
np

i=1(wi p̃)
2,

‖p̃‖w,∞ := ‖w⊙ p̃‖∞ := max
i=1,...,np

|wi p̃i|,
(‖ · ‖w)

where w is a vector with nonnegative elements, specifying the weights, and ⊙ is the
element-wise (Hadamard) product.

Using the data parametrization (∗) and one of the distance measures (‖ · ‖w),
the data modeling problem (DM) becomes the biobjective matrix approximation
problem:

minimize over p̂

[
rank

(
S (p̂)

)

‖p− p̂‖

]
. (DM’)

Two possible ways to scalarize the biobjective problem (DM’) are:

1. misfit minimization subject to a bound r on the model complexity

minimize over p̂ ‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r. (SLRA)

2. model complexity minimization subject to a bound ε on the fitting error

minimize over p̂ rank
(
S (p̂)

)
subject to ‖p− p̂‖ ≤ ε. (RM)

62 2 From data to models

Problem (SLRA) is a structured low-rank approximation problem and (RM) is a
rank minimization problem.

By varying the parameters r and ε from zero to infinity, both problems sweep
the trade-off curve (set of Pareto optimal solutions) of (DM’). Note, however, that r

ranges over the natural numbers and only small values are of practical interest. In
addition, in applications often a “suitable” value for r can be chosen a priori or is
even a part of the problem specification. In contrast, ε is a positive real number
and is data dependent, so that a “suitable” value is not readily available. These con-
siderations, suggest that the structured low-rank approximation problem is a more
convenient scalarization of (DM’) for solving practical data modeling problems.

Convex relaxation algorithms for solving (DM’) are presented in Section 3.3.

2.4 Unstructured low-rank approximation

Linear static data modeling leads to unstructured low-rank approximation. Vice
verse, unstructured low-rank approximation problems can be given the interpre-
tation (or motivation) of linear static data modeling problems. As argued in Sec-
tion 1.1, these are equivalent problems. The data modeling view of the problem
makes link to applications. The low-rank approximation view of the problem makes
link to computational algorithms for solving the problem.

Problem 2.22 (Unstructured low-rank approximation). Given a matrix D∈R
q×N ,

with q≤ N, a matrix norm ‖ · ‖, and an integer m, 0 < m< q, find a matrix

D̂∗ := argmin
D̂

‖D− D̂‖ subject to rank(D̂)≤ m. (LRA)

⊓⊔
The matrix D̂∗ is an optimal rank-m (or less) approximation of D with respect to the
given norm ‖ · ‖.

The special case of (LRA) with ‖ · ‖ being the weighted 2-norm

‖∆D‖W :=
√

vec⊤(∆D)W vec(∆D), for all ∆D (‖ · ‖W)

where W ∈ R
qN×qN is a positive definite matrix, is called weighted low-rank ap-

proximation problem. In turn, special cases of the weighted low-rank approximation
problem are obtained when the weight matrix W has diagonal, block diagonal, or
some other structure.

• Element-wise weighting:

W = diag(w1, . . . ,wqN), where wi > 0, for i = 1, . . . ,qN.

• Column-wise weighting:

2.4 Unstructured low-rank approximation 63

W = diag(W1, . . . ,WN), where Wj ∈ R
q×q, Wj > 0, for j = 1, . . . ,N.

• Column-wise weighting with equal weight matrix for all columns:

W = diag(Wl, . . . ,Wl), where Wl ∈ R
q×q, Wl > 0.

• Row-wise weighting:

W̄ = diag(W1, . . . ,Wq), where Wi ∈ R
N×N , Wi > 0, for i = 1, . . . ,q,

and W̄ is a matrix, such that

‖∆D‖W = ‖∆D⊤‖W̄ , for all ∆D.

• Row-wise weighting with equal weight matrix for all rows:

W̄ = diag(Wr, . . . ,Wr︸ ︷︷ ︸
q

), where Wr ∈ R
N×N , Wr > 0.

Figure 2.4 shows the hierarchy of weighted low-rank approximation problems,
according to the structure of the weight matrix W . Exploiting the structure of
the weight matrix allows more efficient solution of the corresponding weighted
low-rank approximation problems compared to the general problem with unstruc-
tured W .

As shown in the next section left/right weighting with equal matrix for all
rows/columns corresponds to approximation criteria ‖√Wl∆D‖F and ‖∆D

√
Wr‖F.

The approximation problem with criterion ‖√Wl∆D
√

Wr‖F is called two-sided

weighted and is also known as the generalized low-rank approximation problem.
This latter problem allows analytic solution in terms of the singular value decompo-
sition of the data matrix.

Special cases with known analytic solutions

An extreme special case of the weighted low-rank approximation problem is the
“unweighted” case, i.e., weight matrix a multiple of the identity W = v−1I, for some
v > 0. Then, ‖ · ‖W is proportional to the Frobenius norm ‖ · ‖F and the low-rank
approximation problem has an analytic solution in terms of the singular value de-
composition of D. The results is known as the Eckart–Young–Mirsky theorem or
the matrix approximation lemma. In view of its importance, we refer to this case as
the basic low-rank approximation problem.

Theorem 2.23 (Eckart–Young–Mirsky). Let

D =UΣV⊤

64 2 From data to models

WLRA

W ≥ 0

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥

 ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆

Row-wise WLRA

W̄ = diag(W1, . . . ,Wq)

��
��❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

Column-wise WLRA

W = diag(W1, . . . ,WN)

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

��
Row-wise GLRA

W̄ = diag(Wr, . . . ,Wr︸ ︷︷ ︸
q

)

��

EWLRA

W = diag(w)

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂

Column-wise GLRA

W = diag(Wl, . . . ,Wl︸ ︷︷ ︸
N

)

��
Row-wise scaled LRA

W̄ = diag
(

col(wr, . . . ,wr)︸ ︷︷ ︸
q

)

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

Column-wise scaled LRA

W = diag
(

col(wl, . . . ,wl︸ ︷︷ ︸
N

)
)

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

LRA

W = v−1I

WV UTPQ RS

WV UTPQ RS WV UTPQ RS

WV UT
PQ RS WV UTPQ RS WV UT

PQ RS

WV UT
PQ RS

WV UT
PQ RS

WV UTPQ RS
LRA — low-rank approximation GLRA — generalized low-rank approximation
WLRA — weighted low-rank approximation EWLRA — element-wise weighted LRA

Fig. 2.4 Hierarchy of weighted low-rank approximation problems according to the structure of the
weight matrix W . On the left side are weighted low-rank approximation problems with row-wise
weighting and on the right side are weighted low-rank approximation problems with column-wise
weighting. The generality of the problem reduces from top to bottom.

2.4 Unstructured low-rank approximation 65

be the singular value decomposition of D and partition U, Σ =: diag(σ1, . . . ,σq),
and V as follows:

U =:
m q−m[
U1 U2

]
q , Σ =:

m q−m[
Σ1 0
0 Σ2

]
m

q−m
and V =:

m q−m[
V1 V2

]
N ,

Then the rank-m matrix, obtained from the truncated singular value decomposition

D̂∗ =U1Σ1V⊤
1 ,

is such that

‖D− D̂∗‖F = min
rank(D̂)≤m

‖D− D̂‖F =
√

σ 2
m+1 + · · ·+σ 2

q .

The minimizer D̂∗ is unique if and only if σm+1 6= σm.

The proof is given in Appendix B.

Note 2.24 (Unitarily invariant norms). Theorem 2.23 holds for any norm ‖ · ‖ that
is invariant under orthogonal transformations, i.e., satisfying the relation

‖U∆DV‖= ‖∆D‖, for any ∆D and for any orthogonal matrices U and V .

Note 2.25 (Approximation in the spectral norm). For a matrix ∆D, let ‖∆D‖2 be the
spectral (2-norm induced) matrix norm

‖∆D‖2 = σmax(∆D).

Then
min

rank(D̂)=m
‖D− D̂‖2 = σm+1,

i.e., the optimal rank-m spectral norm approximation error is equal to the first ne-
glected singular value. The truncated singular value decomposition yields an opti-
mal approximation with respect to the spectral norm, however, in this case a mini-
mizer is not unique even when the singular values σm and σm+1 are different.

As defined, the low-rank approximation problem aims at a matrix D̂ that is a
solution to the optimization problem (LRA). In data modeling problems, however,
of primary interest is the optimal model, i.e., the most powerful unfalsified model
for D̂∗. Theorem 2.23 gives the optimal approximating matrix D̂∗ in terms of the
singular value decomposition of the data matrix D. Minimal parameters of kernel
and image representations of the corresponding optimal model are directly available
from the factors of the singular value decomposition of D.

Corollary 2.26. An optimal in the Frobenius norm approximate model for the

data D in the model class Lm,0, i.e., B̂∗ := Bmpum(D̂
∗) is unique if and only if

the singular values σm and σm+1 of D are different, in which case

66 2 From data to models

B̂∗ = ker(U⊤
2) = image(U1).

The proof is left as an exercise.

66 〈low-rank approximation 66〉≡
function [R, P, dh] = lra(d, r)

[u, s, v] = svd(d); R = u(:, (r + 1):end)’; P = u(:, 1:r);

if nargout > 2, dh = u(:, 1:r) * s(1:r, 1:r) * v(:, 1:r)’; end

Defines:
lra, used in chunks 87d, 90c, 102f, 103a, 193b, 194e, and 231a.

Corollary 2.27 (Nested approximations). The optimal in the Frobenius norm ap-

proximate models B̂∗
m for the data D in the model classes Lm,0, where m = 1, . . . ,q

are nested, i.e.,
B̂q ⊆ B̂q−1 ⊆ ·· · ⊂ B̂1.

The proof is left as an exercise.

Note 2.28 (Efficient computation using QR factorization when N ≫ q). An optimal
model B̂∗ for D depends only on the left singular vectors of D. Since post multipli-
cation of D by an orthogonal matrix Q does not change the left singular vectors B̂∗

is an optimal model for the data matrix DQ.
For N ≫ q, computing the QR factorization

D⊤ =

[
R1

0

]
Q⊤, where R1 is upper triangular, (QR)

and the singular value decomposition of R1 is a more efficient alternative for find-
ing B̂ than computing the singular value decomposition of D.

An analytic solution in terms of the singular value decomposition, similar to the
one in Theorem 2.23 is not known for the general weighted low-rank approximation
problem. Presently the largest class of weighted low-rank approximation problems
with analytic solution are those with a weight matrix of the form

W =Wr ⊗Wl, where Wl ∈ R
q×q and Wr ∈ R

N×N (Wr ⊗Wl)

are positive definite matrices and ⊗ is the Kronecker product.
Using the identities

vec(AXB) = (B⊤⊗A)vec(X)

and
(A1 ⊗B1)(A2 ⊗B2) = (A1A2)⊗ (B1B2),

we have

2.4 Unstructured low-rank approximation 67

‖D− D̂‖Wr⊗Wl =
√

vec⊤(∆D)
(
Wr ⊗Wl

)
vec(∆D)

=
∥∥(
√

Wr ⊗
√

Wl)vec(∆D)
∥∥

2

=
∥∥vec(

√
Wl∆D

√
Wr)
∥∥

2

= ‖
√

Wl∆D
√

Wr‖F.

Therefore, the low-rank approximation problem (LRA) with norm (‖ · ‖W) and
weight matrix (Wr ⊗Wl) is equivalent to the two-sided weighted (or generalized)
low-rank approximation problem

minimize over D̂ ‖
√

Wl(D− D̂)
√

Wr‖F

subject to rank(D̂)≤ m,
(WLRA2)

which has an analytic solution.

Theorem 2.29 (Two-sided weighted low-rank approximation). Define the mod-

ified data matrix

Dm :=
√

WlD
√

Wr,

and let D̂∗
m be the optimal (unweighted) low-rank approximation of Dm. Then

D̂∗ :=
(√

Wl
)−1

D̂∗
m

(√
Wr
)−1

,

is a solution of the following two-sided weighted low-rank approximation prob-

lem (WLRA2). A solution always exists. It is unique if and only if D̂∗
m is unique.

The proof is left as an exercise (Problem P.14).

Exercise 2.30. Using the result in Theorem 2.29, write a function that solves the
two-sided weighted low-rank approximation problem (WLRA2).

Data modeling via (LRA)

The following problem is the approximate modeling problem (AM) for the model
class of linear static models, i.e., Mcmax = Lm,0, with the orthogonal distance ap-
proximation criterion, i.e., f (D ,B) = dist(D ,B). The norm ‖ · ‖ in the definition
of dist, however, in the present context is a general vector norm, rather than the
2-norm.

Problem 2.31 (Static data modeling). Given N, q-variable observations

{d1, . . . ,dN } ⊂ R
q,

a matrix norm ‖ · ‖, and model complexity m, 0 < m< q,

68 2 From data to models

minimize over B̂ and D̂ ‖D− D̂‖
subject to image(D̂)⊆ B̂ and dim(B̂)≤ m,

(AM Lm,0)

where D ∈ R
q×N is the data matrix D :=

[
d1 · · · dN

]
. ⊓⊔

A solution B̂∗ to (AM Lm,0) is an optimal approximate model for the data D with
complexity bounded by m. Of course, B̂∗ depends on the approximation criterion,
specified by the given norm ‖ · ‖. A justification for the choice of the norm ‖ · ‖ is
provided in the errors-in-variables setting (see Example 2.20), i.e., the data matrix D

is assumed to be a noisy measurement of a true matrix D0

D = D0 + D̃, image(D0) = B0, dim(B0)≤ m,

and vec(D̃)∼ N(0,σ 2W−1), where W ≻ 0 (EIV0)

and D̃ is the measurement error that is assumed to be a random matrix with zero
mean and normal distribution. The true matrix D0 is “generated” by a model B0,
with a known complexity bound m. The model B0 is the object to be estimated in
the errors-in-variables setting.

Proposition 2.32 (Maximum likelihood property of optimal static model B̂∗).

Assume that the data is generated in the errors-in-variables setting (EIV0), where

the matrix W ≻ 0 is known and the scalar σ 2 is unknown. Then a solution B̂∗ to

Problem 2.31 with weighted 2-norm (‖ · ‖W) is a maximum likelihood estimator for

the true model B0.

The proof is given in Appendix B.
The main assumption of Proposition 2.32 is

cov(vec(D̃)) = σ 2W−1, with W given.

Note, however, that σ 2 is not given, so that the probability density function of D̃

is not completely specified. Proposition 2.32 shows that the problem of computing
the maximum likelihood estimator in the errors-in-variables setting is equivalent to
Problem 2.22 with the weighted norm ‖ · ‖W . Maximum likelihood estimation for
density functions other than normal leads to low-rank approximation with norms
other than the weighted 2-norm.

2.5 Structured low-rank approximation

Structured low-rank approximation is a low-rank approximation, in which the ap-
proximating matrix D̂ is constrained to have some a priori specified structure; typ-
ically, the same structure as the one of the data matrix D. Common structures en-
countered in applications are Hankel, Toeplitz, Sylvester, and circulant as well as

2.5 Structured low-rank approximation 69

their block versions. In order to state the problem in its full generality, we first de-
fine a structured matrix. Consider a mapping S from a parameter space Rnp to a set
of matrices Rm×n. A matrix D̂ ∈ Rm×n is called S -structured if it is in the image
of S , i.e., if there exists a parameter p̂ ∈ R

np , such that D̂ = S (p̂).

Problem SLRA (Structured low-rank approximation). Given a structure speci-
fication

S : Rnp → R
m×n, with m ≤ n,

a parameter vector p ∈R
np , a vector norm ‖ ·‖, and an integer r, 0 < r < min(m,n),

minimize over p̂ ‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r. (SLRA)

The matrix D̂∗ :=S (p̂∗) is an optimal rank-r (or less) approximation of the ma-
trix D := S (p), within the class of matrices with the same structure as D. Problem
SLRA is a generalization of Problem 2.22. Indeed, choosing S to be vec−1 (an
operation reconstructing a matrix M from the vector vec(M)) and norm ‖∆ p‖ to be
such that

‖∆ p‖= ‖S (∆ p)‖, for all ∆ p,

Problem SLRA is equivalent to Problem 2.22.

Special cases with known analytic solutions

We showed that some weighted unstructured low-rank approximation problems
have global analytic solution in terms of the singular value decomposition. Similar
result exists for circulant structured low-rank approximation. If the approximation
criterion is a unitarily invariant matrix norm, the unstructured low-rank approxi-
mation (obtained for example from the truncated singular value decomposition) is
unique. In the case of a circulant structure, it turns out that this unique minimizer
also has circulant structure, so the structure constraint is satisfied without explicitly
enforcing it in the approximation problem.

An efficient computational way of obtaining the circulant structured low-rank
approximation is the fast Fourier transform. Consider the scalar case and let

Pk :=
np

∑
j=1

p je
−i 2π

np
k j

be the discrete Fourier transform of p. Denote with K the subset of {1, . . . ,np }
consisting of the indexes of the m largest elements of {|P1|, . . . , |Pnp |}. Assuming
that K is uniquely defined by the above condition, i.e., assuming that

k ∈ K and k′ 6∈ K =⇒ |Pk|> |Pk′ |,

70 2 From data to models

the solution p̂∗ of the structured low-rank approximation problem with S a circu-
lant matrix is unique and is given by

p̂∗ =
1
np

∑
k∈K

Pke
i 2π

np
k j
.

Data modeling via (SLRA)

The reason to consider the more general structured low-rank approximation is that
D = S (p) being low rank and Hankel structured is equivalent to p being generated
by a linear time-invariant dynamic model. To show this, consider first the special
case of a scalar Hankel structure

Hl+1(p) :=

p1 p2 . . . pnp−l
p2 p3 . . . pnp−l+1
...

...
...

pl+1 pl+2 · · · pnp

 .

The approximation matrix
D̂ = Hl+1(p̂)

being rank deficient implies that there is a nonzero vector R =
[
R0 R1 · · · Rl

]
, such

that
RHl+1(p̂) = 0.

Due to the Hankel structure, this system of equations can be written as

R0 p̂t +R1 p̂t+1 + · · ·+Rl p̂t+l = 0, for t = 1, . . . ,np −l,

i.e., a homogeneous constant coefficients difference equation. Therefore, p̂ is a tra-
jectory of an autonomous linear time-invariant system, defined by (KER). Recall
that for an autonomous system B,

dim(B|[1,T]) = n(B), for T ≥ n(B).

The scalar Hankel low-rank approximation problem is then equivalent to the fol-
lowing dynamic modeling problem. Given T samples of a scalar signal wd ∈ R

T , a
signal norm ‖ · ‖, and a model complexity n,

minimize over B̂ and ŵ ‖wd − ŵ‖
subject to ŵ ∈ B̂|[1,T] and dim(B̂)≤ n.

(AM L0,l)

A solution B̂∗ is an optimal approximate model for the signal wd with bounded
complexity: order at most n.

2.5 Structured low-rank approximation 71

In the general case when the data is a vector valued signal with q variables,
the model B can be represented by a kernel representation, where the parame-
ters Ri are p× q matrices. The block-Hankel structured low-rank approximation
problem is equivalent to the approximate linear time-invariant dynamic modeling
problem (AM) with model class Mcmax = Lm,l and orthogonal distance fitting cri-
terion.

Problem 2.33 (Linear time-invariant dynamic modeling). Given T samples, q
variables, vector signal wd ∈ (Rq)T , a signal norm ‖ · ‖, and a model complex-
ity (m,l),

minimize over B̂ and ŵ ‖wd − ŵ‖
subject to ŵ ∈ B̂|[1,T] and B̂ ∈ L q

m,l.
(AM Lm,l)

⊓⊔

The solution B̂∗ is an optimal approximate model for the signal wd with complexity
bounded by (m,l). Note that problem (AM Lm,l) reduces to

• (AM L0,l) when m= 0, i.e., when the model is autonomous, and
• (AM Lm,0) when l= 0, i.e., when the model is static.

Therefore, (AM Lm,l) is a proper generalization of linear static and dynamic au-
tonomous data modeling problems.

Computing the optimal approximate model B̂∗ from the solution p̂∗ to Prob-
lem SLRA is an exact identification problem. As in the static approximation prob-
lem, however, the parameter of a model representation is an optimization variable
of the optimization problem, used for Problem SLRA, so that a representation of the
model is actually obtained directly from the optimization solver.

Similarly to the static modeling problem, the dynamic modeling problem has a
maximum likelihood interpretation in the errors-in-variables setting.

Proposition 2.34 (Maximum likelihood property of an optimal dynamic model).

Assume that the data wd is generated in the errors-in-variables setting

wd = w0 + w̃, where w0 ∈ B0|[1,T]∈ L q
m,l and w̃ ∼ N(0,vI). (EIV)

Then an optimal approximate model B̂∗, solving (AM Lm,l) with ‖ · ‖ = ‖ · ‖2 is a

maximum likelihood estimator for the true model B0.

The proof is analogous to the proof of Proposition 2.32 and is skipped.
In Chapter 3, we describe local optimization methods for general affinely struc-

tured low-rank approximation problems and show how in the case of Hankel,
Toeplitz, and Sylvester structured problem, the matrix structure can be exploited
for efficient cost function evaluation.

72 2 From data to models

2.6 Notes and references

The concept of the most powerful unfalsified model is introduced in (Willems, 1986,
Definition 4). See also (Antoulas and Willems, 1993; Kuijper, 1997; Kuijper and
Willems, 1997; Willems, 1997). Kung’s method for approximate system realization
is presented in (Kung, 1978).

Modeling by the orthogonal distance fitting criterion (misfit approach) is initiated
in (Willems, 1987) and further on developed in (Markovsky et al, 2005b; Roorda,
1995a,b; Roorda and Heij, 1995), where algorithms for solving the problems are
developed. A proposal for combination of misfit and latency for linear time-invariant
system identification is made in (Lemmerling and De Moor, 2001).

Weighted low-rank approximation methods are developed in (De Moor, 1993;
Gabriel and Zamir, 1979; Manton et al, 2003; Markovsky and Van Huffel, 2007;
Markovsky et al, 2005a; Srebro, 2004; Wentzell et al, 1997). The analytic solution
of circulant structured low-rank approximation problem is derived independently
in the optimization community (Beck and Ben-Tal, 2006) and in the systems and
control community (Vanluyten et al, 2005).

Equivalence of low-rank approximation and principal component analysis

The principal component analysis method for dimensionality reduction is usually
introduced in a stochastic setting as maximisation of the variance of the projected
data on a subspace. Computationally, however, the problem of finding the principal
components and the corresponding principal vectors is an eigenvalue/eigenvector
decomposition problem for the sample covariance matrix

Ψ(D) := Φ(D)Φ⊤(D), where Φ(D) :=
[
d1 · · · dN

]

From this algorithmic point of view, the equivalence of principal component anal-
ysis and low-rank approximation problem is a basic linear algebra fact: the space
spanned by the first m principal vectors of D coincides with the model B̂ =

image
(
Φ(D̂)

)
, where D is a solution of the low-rank approximation problem (LRA).

References

Abelson H, diSessa A (1986) Turtle Geometry. MIT Press
Antoulas A, Willems JC (1993) A behavioral approach to linear exact modeling.

IEEE Trans Automat Control 38(12):1776–1802
Beck A, Ben-Tal A (2006) A global solution for the structured total least squares

problem with block circulant matrices. SIAM J Matrix Anal Appl 27(1):238–255
De Moor B (1993) Structured total least squares and L2 approximation problems.

Linear Algebra Appl 188–189:163–207

References 73

Gabriel K, Zamir S (1979) Lower rank approximation of matrices by least squares
with any choice of weights. Technometrics 21:489–498

Kuijper M (1997) An algorithm for constructing a minimal partial realization in the
multivariable case. Control Lett 31(4):225–233

Kuijper M, Willems JC (1997) On constructing a shortest linear recurrence relation.
IEEE Trans Automat Control 42(11):1554–1558

Kung S (1978) A new identification method and model reduction algorithm via
singular value decomposition. In: Proc. 12th Asilomar Conf. Circuits, Systems,
Computers, Pacific Grove, pp 705–714

Lemmerling P, De Moor B (2001) Misfit versus latency. Automatica 37:2057–2067
Manton J, Mahony R, Hua Y (2003) The geometry of weighted low-rank approxi-

mations. IEEE Trans Signal Proc 51(2):500–514
Markovsky I, Van Huffel S (2007) Left vs right representations for solving weighted

low rank approximation problems. Linear Algebra Appl 422:540–552, DOI 10.
1016/j.laa.2006.11.012

Markovsky I, Rastello ML, Premoli A, Kukush A, Van Huffel S (2005a) The
element-wise weighted total least squares problem. Comput Statist Data Anal
50(1):181–209, DOI 10.1016/j.csda.2004.07.014

Markovsky I, Willems JC, Van Huffel S, Moor BD, Pintelon R (2005b) Application
of structured total least squares for system identification and model reduction.
IEEE Trans Automat Control 50(10):1490–1500

Roorda B (1995a) Algorithms for global total least squares modelling of finite mul-
tivariable time series. Automatica 31(3):391–404

Roorda B (1995b) Global total least squares—a method for the construction of open
approximate models from vector time series. PhD thesis, Tinbergen Institute

Roorda B, Heij C (1995) Global total least squares modeling of multivariate time
series. IEEE Trans Automat Control 40(1):50–63

Srebro N (2004) Learning with matrix factorizations. PhD thesis, MIT
Vanluyten B, Willems JC, De Moor B (2005) Model reduction of systems with

symmetries. In: Proc. 44th IEEE Conf. Dec. Control, Seville, Spain, pp 826–831
Wentzell P, Andrews D, Hamilton D, Faber K, Kowalski B (1997) Maximum likeli-

hood principal component analysis. J Chemometrics 11:339–366
Willems JC (1986) From time series to linear system—Part II. Exact modelling.

Automatica 22(6):675–694
Willems JC (1987) From time series to linear system—Part III. Approximate mod-

elling. Automatica 23(1):87–115
Willems JC (1997) On interconnections, control, and feedback. IEEE Trans Au-

tomat Control 42:326–339

Chapter 3

Algorithms

Writing a book is a little more difficult than writing a technical

paper, but writing software is a lot more difficult than writing a

book.

D. Knuth

Summary: A few special structured low-rank approximation problems have ana-
lytic solutions. However, in general, the structured low-rank approximation prob-
lem is NP-hard. There are three conceptually different approaches for solving it:
convex relaxations, local optimization, and global optimization. System realization
methods and methods based on local optimization and convex relaxation, using the
nuclear norm heuristic, are presented. The local optimization and convex relaxation
method can deal with general affine structure and approximation norm, and allow
regularization and inequality constraints on the approximation.

The latest version of the code presented is available from the book’s web page.

3.1 Subspace methods

The singular value decomposition is at the core of many algorithms for approxi-
mate modeling, most notably the methods based on balanced model reduction, the
subspace identification methods, and the MUSIC and ESPRIT methods in signal
processing. The reason for this is that the singular value decomposition is a robust
and efficient way of computing unstructured low-rank approximation of a matrix in
the Frobenius norm. In system identification, signal processing, and computer alge-
bra, however, the low-rank approximation is restricted to the class of matrices with
specific (Hankel, Toeplitz, Sylvester) structure. Ignoring the structure constraint ren-
ders the singular value decomposition-based methods suboptimal with respect to a
desired optimality criterion.

Except for the few special cases, described in Section 2.5, there are no global so-
lution methods for general structured and weighted low-rank approximation prob-
lems. The singular value decomposition based methods can be seen as relaxations
of the original NP-hard structured weighted low-rank approximation problem, ob-

75

76 3 Algorithms

tained by removing the structure constraint and using the Frobenius norm in the
approximation criterion. Another approach is taken in Section 3.3, where convex
relaxations of the related rank minimization problem are proposed. Convex relax-
ation methods give polynomial time suboptimal solutions and are shown to provide
globally optimal solutions in certain cases.

Presently, there is no uniformly best method for computing suboptimal structured
low-rank approximation. In the context of system identification (i.e., block-Hankel
structured low-rank approximation), subspace and local optimization based methods
have been compared on practical data sets. In general, the heuristic methods are
faster but less accurate than the methods based on local optimization. It is a common
practice to use a suboptimal solution obtained by a heuristic method as an initial
approximation for an optimization based method. Therefore, the two approaches
complement each other.

Realization algorithms

The aim of the realization algorithms is to compute a state space representation
Bi/s/o(A,B,C,D) of the minimal realization Bmpum(H) of H, see Section 2.2. Find-
ing the model parameters A,B,C,D can be done by computing a rank revealing
factorization of a Hankel matrix constructed from the data. Let

Hn+1,n+1(σH) = Γ ∆ , where Γ ∈ R
p(n+1)×n and ∆ ∈ R

n×m(n+1)

be a rank revealing factorization of the finite Hankel matrix Hn+1,n+1(σH). The
Hankel structure implies that the factors Γ and ∆ are observability and controlla-
bility matrices, i.e., there are matrices A ∈ R

n×n, C ∈ R
p×n, and B ∈ R

n×m, such
that

Γ = On+1(A,C) and ∆ = Cn+1(A,B).

Then, Bi/s/o(A,B,C,D) is the minimal realization of H.
A rank revealing factorization is not unique. For any n×n nonsingular matrix T ,

a new factorization

Hn+1,n+1(σH) = Γ ∆ = Γ T︸︷︷︸
Γ ′

T−1∆︸ ︷︷ ︸
∆ ′

is obtained with the same inner dimension. The nonuniqueness of the factoriza-
tion corresponds to the nonuniqueness of the input/state/output representation of
the minimal realization due to a change of the state space bases:

Bi/s/o(A,B,C,D) = Bi/s/o(T
−1AT,T−1B,CT,D).

The structure of the observability and controllability matrices is referred to as
the shift structure. The parameters B and C of an input/state/output representation

3.1 Subspace methods 77

of the realization are directly available from the first block elements of Γ and ∆ ,
respectively.

77a 〈Γ ,∆) 7→ (A,B,C) 77a〉≡ (79a) 77b⊲
b = C(:, 1:m); c = O(1:p, :);

The parameter A is computed from the overdetermined system of linear equations

σ−1Γ A = σΓ , (SE1)

where, acting on a block matrix, σ and σ−1 remove, respectively, the first and the
last block elements.

77b 〈Γ ,∆) 7→ (A,B,C) 77a〉+≡ (79a) ⊳77a
a = O(1:end - p, :) \ O((p + 1):end, :);

Note 3.1 (Solution of the shift equation). When a unique solution exists, the code in
chunk 77a computes the exact solution. When a solution A of (SE1) does not exist,
the same code computes a least squares approximate solution. ⊓⊔

Equivalently (in the case of exact data), A can be computed from the ∆ factor

Aσ−1∆ = σ∆ . (SE2)

In the case of noisy data (approximate realization problem) or data from a high
order system (model reduction problem), (SE1) and (SE2) generically have no exact
solutions and their least squares approximate solutions are different.

Implementation

As square as possible Hankel matrix Hi, j(σH) is formed, using all data points, i.e.,

i =
⌈ Tm

m+p

⌉
and j = T − i. (i, j)

77c 〈dimension of the Hankel matrix 77c〉≡ (79a 83)
if ~exist(’i’, ’var’) | ~isreal(i) | isempty(i)

i = ceil(T * m / (m + p));

end

if ~exist(’j’, ’var’) | ~isreal(j) | isempty(j)

j = T - i;

elseif j > T - i

error(’Not enough data.’)

end

The choice (i, j) for the dimension of the Hankel matrix maximazes the order of the
realization that can be computed. Indeed, a realization of order n can be computed
from the matrix Hi, j(σH) provided

n≤ nmax := min(pi−1,m j).

78 3 Algorithms

78a 〈check n< min
(
pi−1,m j

)
78a〉≡ (79a)

if n > min(i * p - 1, j * m), error(’Not enough data’), end

The minimal number of samples T of the impulse response that allows identification
of a system of order n is

Tmin :=
⌈
n

p

⌉
+
⌈
n

m

⌉
+1. (Tmin)

The key computational step of the realization algorithm is the factorization of the
Hankel matrix. In particular, this step involves rank determination. In finite preci-
sion arithmetic, however, rank determination is a nontrivial problem. A numerically
reliable way of computing rank is the singular value decomposition

Hi, j(σH) =UΣV⊤.

78b 〈singular value decomposition of Hi, j(σH) 78b〉≡ (79a)
[U, S, V] = svd(blkhank(h(:, :, 2:end), i, j), 0); s = diag(S);

Uses blkhank 25b.

The order n of the realization is theoretically equal to the rank of the Hankel matrix,
which is equal to the number of nonzero singular values σ1, . . . ,σmin(i, j). In practice,
the system’s order is estimated as the numerical rank of the Hankel matrix, i.e., the
number of singular values greater than a user specified tolerance.

78c 〈order selection 78c〉≡ (79a)
〈default tolerance tol 40b〉, n = sum(s > tol);

Defining the partitioning

U =:
n[

U1 U2
]
, Σ =:

n[
Σ1 0
0 Σ2

]
n
, and V =:

n[
V1 V2

]
,

the factors Γ and ∆ of the rank revealing factorization are chosen as follows

Γ :=U1

√
Σ1 and ∆ :=

√
Σ1V⊤

1 . (Γ ,∆)

78d 〈define ∆ and Γ 78d〉≡ (79a)
sqrt_s = sqrt(s(1:n))’;

O = sqrt_s(ones(size(U, 1), 1), :) .* U(:, 1:n);

C = (sqrt_s(ones(size(V, 1), 1), :) .* V(:, 1:n))’;

This choice leads to a finite-time balanced realization of Bi/s/o(A,B,C,D), i.e., the
finite time controllability and observability Gramians

O⊤
i (A,C)Oi(A,C) = Γ ⊤Γ and C j(A,B)C

⊤
j (A,B) = ∆∆⊤

are equal,
Γ ⊤Γ = ∆∆⊤ = Σ .

Note 3.2 (Kung’s algorithm). The combination of the described realization algo-
rithm with the singular value decomposition based rank revealing factorization (Γ ,∆),
i.e., unstructured low-rank approximation, is referred to as Kung’s algorithm. ⊓⊔

3.1 Subspace methods 79

79a 〈H 7→ Bi/s/o(A,B,C,D) 79a〉≡
function [sys, hh] = h2ss(h, n, tol, i ,j)

〈reshape H and define m, p, T 79b〉
〈dimension of the Hankel matrix 77c〉
〈singular value decomposition of Hi, j(σH) 78b〉
if ~exist(’n’, ’var’) | isempty(n)

〈order selection 78c〉
else

〈check n< min
(
pi−1,m j

)
78a〉

end

〈define ∆ and Γ 78d〉
〈Γ ,∆) 7→ (A,B,C) 77a〉, sys = ss(a, b, c, h(:, :, 1), -1);

if nargout > 1, hh = shiftdim(impulse(sys, T), 1); end

Defines:
h2ss, used in chunks 83, 102e, 103a, 112, 115, and 127c.

Similarly, to the convention (w) on page 26 for representing vector and matrix
valued trajectories in MATLAB, the impulse response H is stored as an p× m× T

tensor
h(:, :, t) = H(t),

or, in the case of a single input system, as a p×T matrix.
79b 〈reshape H and define m, p, T 79b〉≡ (79a 111a)

if length(size(h)) == 2

[p, T] = size(h); if p > T, h = h’; [p, T] = size(h); end

h = reshape(h, p, 1, T);

end

[p, m, T] = size(h);

Note 3.3 (Approximate realization by Kung’s algorithm). When H is not realizable
by a linear time-invariant system of order less than or equal to nmax, i.e., when
Hi, j(σH) is full rank, h2ss computes an approximate realization Bi/s/o(A,B,C,D)
of order n ≤ nmax. The link between the realization problem and Hankel structured
low-rank approximation implies that

Kung’s algorithm, implemented in the function h2ss, is a method for Hankel
structured low-rank approximation. The structured low-rank approximation of
Hi, j(σH) is Hi, j(σ Ĥ), where Ĥ is the impulse response of the approximate
realization Bi/s/o(A,B,C,D). ⊓⊔

Note 3.4 (Suboptimality of Kung’s algorithm). Used as a method for Hankel struc-
tured low-rank approximation, Kung’s algorithm is suboptimal. The reason for this
is that the factorization

Hi, j(σH)≈ Γ ∆ ,

performed by the singular value decomposition is unstructured low-rank approxi-
mation and unless the data is exact, Γ and ∆ are not extended observability and
controllability matrices, respectively. As a result, the shift equations (SE1) and (SE2)

80 3 Algorithms

do not have solutions and Kung’s algorithm computes an approximate solution in
the least squares sense. ⊓⊔

Note 3.5 (Unstructured vs structure enforcing methods). The two levels of approxi-
mation:

1. approximation of the Hankel matrix, constructed from the data, by unstructured
low rank matrix, and

2. computation of an approximate solution of a system of linear equations for the
parameter estimate by the ordinary least squares method

are common to the subspace methods. In contrast, methods based on Hankel struc-
tured low-rank approximation do not involve approximation on the second stage
(model parameter computation). By construction, the approximation computed on
the first step is guaranteed to have an exact solution on the second step. ⊓⊔

Note 3.6 (Interpretation of Kung’s algorithm as a finite-time balanced model reduc-

tion). Kung’s algorithm computes a realization in a finite time min(i, j) balanced
bases. In the case of noisy data or data obtained from a high order model, the com-
puted realization is obtain by truncation of the realization, using the user specified
state dimension n or tolerance tol. This justifies Kung’s algorithm as a data-driven
method for finite-time balanced model reduction. (The term data-driven refers to
the fact that a model of the full order system is not used.) The link between Kung’s
algorithm and model reduction further justifies the choice (i, j) on page 77 for the
shape of the Hankel matrix — the choice (i, j) maximizes the horizon for the finite-
time balanced realization. ⊓⊔

Computation of the impulse response from general trajectory

In the realization problem the given data is a special trajectory—the impulse re-
sponse of the model. Therefore, the realization problem is a special exact identifica-
tion problem. In this section, the general exact identification problem:

wd

exact
identification

−−−−−−−−−→ Bmpum(wd)

is solved by reducing it to the realization problem:

wd

impulse response
computation (w2h)

−−−−−−−−−−−−→ Hmpum
realization (h2ss)

−−−−−−−−−−−−→ Bmpum(wd). (wd 7→ H 7→ B̂)

First, the impulse response Hmpum of the most powerful unfalsified model Bmpum(wd)
is computed from the given general trajectory wd. Then, an input/state/output rep-
resentation of Bmpum(wd) is computed from Hmpum by a realization algorithm, e.g.,
Kung’s algorithm.

3.1 Subspace methods 81

The key observation in finding an algorithm for the computation of the impulse
response is that the image of the Hankel matrix Hi, j(wd), with j > qi, constructed
from the data wd is the restriction Bmpum(wd)|[1,i] of the most powerful unfalsified
model on the interval [1, i], i.e.,

Bmpum(wd)|[1,i] = span
(
Hi(wd)

)
. (DD)

Therefore, any i-samples long trajectory w of Bmpum(wd) can be constructed as a
linear combination of the columns of the Hankel matrix

w = Hi(wd)g

for some vector g.
As in the realization problem, in what follows, the default input/output partition-

ing w = col(u,y) is assumed. Let ek be the kth column of the m×m identity matrix
and δ be the unit pulse function. The impulse response is a matrix valued trajectory,
the columns of which are the m trajectories corresponding to zero initial conditions
and inputs e1δ , . . . , emδ . Therefore, the problem of computing the impulse response
is reduced to the problem of finding a vector gk, such that Hi(wd)gk is of the form
(ekδ ,hk), where hk(τ) = 0, for all τ < 0. The identically zero input/output trajectory
for negative time (in the past) implies that the response from time zero on (in the
future) is the impulse response.

Let l be the lag of the most powerful unfalsified model Bmpum(wd). In order to
describe the construction of a vector gk that achieves the impulse response hk, define
the “past” Hankel matrix

Hp := Hl, j(wd), where j := T − (l+ i)

and the “future” input and output Hankel matrices

Hf,u := Hi, j(σ
lud) and Hf,y := Hi, j(σ

lyd).

81 〈define Hp, Hf,u, and Hf,y 81〉≡ (82b)
j = T - (l + i);

Hp = blkhank(w, l, j);

Hfu = blkhank(u(:, (l + 1):end), i, j);

Hfy = blkhank(y(:, (l + 1):end), i, j);

Uses blkhank 25b.

With these definitions, a vector gk that achieves the impulse response hk must satisfy
the system of linear equations

[
Hp

Hf,u

]
gk =

[
0ql×1[

ek
0(t−1)m×1

]
]
. (∗)

By construction, any solution gk of (∗) is such that

Hf,ygk = hk.

82 3 Algorithms

Choosing the least norm solution as a particular solution and using matrix notation,
the first i samples of the impulse response are given by

H = Hf,y

[
Hp

Hf,u

]+[0ql×m[
Im

0(i−1)m×m

]
]
,

where A+ is the pseudo-inverse of A.
82a 〈data driven computation of the impulse response 82a〉≡ (82b)

wini_uf = [zeros(l * q, m); eye(m); zeros((i - 1) * m, m)];

h_ = Hfy * pinv([Hp; Hfu]) * wini_uf;

We have the following function for computation of the impulse response of the
most powerful unfalsified model from data:

82b 〈w 7→ H 82b〉≡
function h = w2h(w, m, n, i)

〈reshape w and define q, T 26e〉, p = q - m; l = ceil(n / p);

u = w(1:m, :); y = w((m + 1):q, :);

〈define Hp, Hf,u, and Hf,y 81〉
〈data driven computation of the impulse response 82a〉
for ii = 1:i

h(:, :, ii) = h_(((ii - 1) * p + 1):(ii * p), :);

end

Defines:
w2h, used in chunk 83.

As in the case of the realization problem, when the data is noisy or generated by a
high order model (higher than the specified order n), w2h computes a (suboptimal)
approximation.

Using the functions w2h and h2ss, we obtain a method for exact identifica-
tion (wd 7→ H 7→ B̂)

82c 〈Most powerful unfalsified model in L
q,n
m 82c〉≡ 82d⊲

function sys = w2h2ss(w, m, n, Th, i, j)

〈reshape w and define q, T 26e〉, p = q - m;

Defines:
w2h2ss, used in chunks 118 and 120.

The optional parameter Th specifies the number of samples of the impulse response,
to be computed on the first step wd 7→ H. The default value is the minimum num-
ber (Tmin), defined on page 78.

82d 〈Most powerful unfalsified model in L q,n
m 82c〉+≡ ⊳82c 83⊲

if ~exist(’Th’) | isempty(Th)

Th = ceil(n / p) + ceil(n / m) + 1;

end

The dimensions i and j of the Hankel matrix Hi, j(σH), to be used at the realiza-
tion step wd 7→ H, are also optional input parameters. With exact data, their values
are irrelevant as long as the Hankel matrix has the minimum number n of rows and
columns. However, with noisy data, the values of Th, i, and j affect the approxima-
tion. Empirical results suggest that the default choice (i, j) gives best approximation.

3.2 Algorithms based on local optimization 83

83 〈Most powerful unfalsified model in L q,n
m 82c〉+≡ ⊳82d

T = Th; 〈dimension of the Hankel matrix 77c〉
sys = h2ss(w2h(w, m, n, Th), n, [], i, j);

Uses h2ss 79a and w2h 82b.

3.2 Algorithms based on local optimization

Consider the structured low-rank approximation problem

minimize over p̂ ‖p− p̂‖W subject to rank
(
S (p̂)

)
≤ r. (SLRA)

As discussed in Section 1.4, different methods for solving the problem are obtained
by choosing different combinations of

• rank parametrization, and
• optimization method.

In this section, we choose the kernel representation for the rank constraint

rank
(
S (p̂)

)
≤ r ⇐⇒ there is R ∈ R

(m−r)×m, such that

RS (p̂) = 0 and RR⊤ = Im−r, (rankR)

and the variable projections approach (in combination with standard methods for
nonlinear least squares optimization) for solving the resulting parameter optimiza-
tion problem.

The developed method is applicable for the general affinely structured and
weighted low-rank approximation problem (SLRA). The price paid for the
generality, however, is lack of efficiency compared to specialized methods
exploiting the structure of the data matrix S (p) and the weight matrix W .

In two special cases—single input single output linear time-invariant system
identification and computation of approximate greatest common divisor—efficient
methods are described later in the chapter. The notes and references section links
the presented material to state-of-the-art methods for structured low-rank approx-
imation. Efficient methods for weighted low-rank approximation problems are de-
veloped in Chapter 5.

Representing the constraint of (SLRA) in the kernel form (rankR), leads to the
double minimization problem

minimize over R f (R) subject to RR⊤ = Im−r, (SLRAR)

where f (R) := min
p̂

‖p− p̂‖ subject to RS (p̂) = 0.

84 3 Algorithms

The inner minimization (computation of f (R)) is over the correction p̂ and the outer
minimization is over the model parameter R ∈ R

(m−r)×m. The inner minimization
problem can be given the interpretation of projecting the columns of S (p) onto the
model B := ker(R), for a given matrix R. However, the projection depends on the
parameter R, which is the variable in the outer minimization problem.

For affine structures S , the constraint RS (p̂) = 0 is bilinear in the optimization
variables R and p̂. Then, the evaluation of the cost function f for the outer mini-
mization problem is a linear least norm problem. Direct solution has computational
complexity O(n3

p), where np is the number of structure parameters. Exploiting the
structure of the problem (inherited from S), results in computational methods with
cost O(n2

p) or O(np), depending on the type of structure. For a class of structures,
which includes block Hankel, block Toeplitz, and block Sylvester ones, efficient
O(np) cost function evaluation can be done by Cholesky factorization of a block-
Toeplitz banded matrix.

A method for affinely structured problems

Structure specification

The general affine structure

S (p̂) = S0 +
np

∑
k=1

Sk p̂k (S (p̂))

is specified by the matrices S0,S1, . . . ,Snp ∈ R
m×n. This data is represented in the

code by an m×n matrix variable s0, corresponding to the matrix S0, and an mn×np

matrix variable bfs, corresponding to the matrix

S :=
[
vec(S1) · · · vec(Snp)

]
∈ R

mn×np .

With this representation, the sum in (S (p̂)) is implemented as a matrix–vector prod-
uct:

vec
(
S (p̂)

)
= vec(S0)+Sp̂, or S (p̂) = S0 +vec−1(Sp̂). (S)

84 〈(S0,S, p̂) 7→ D̂ = S (p̂) 84〉≡
dh = s0 + reshape(bfs * ph, m, n);

Note 3.7. In many applications the matrices Sk are sparse, so that, for efficiency, they
can be stored and manipulated as sparse matrices.

A commonly encountered special case of an affine structure is

[
S (p̂)

]
i j
=

{
S0,i j, if Si j = 0

p̂Si j
otherwise

for some Si j ∈ {0,1, . . . ,np }m×n, (S)

3.2 Algorithms based on local optimization 85

or, written more compactly,

[
S (p̂)

]
i j
= S0,i j + p̂ext,Si j

, where p̂ext :=

[
0
p̂

]
.

In (S), each element of the structured matrix S (p) is equal to the corresponding ele-
ment of the matrix S0 or to the Si jth element of the parameter vector p. The structure
is then specified by the matrices S0 and S. Although (S) is a special case of the gen-
eral affine structure (S (p̂)), it covers all linear modeling problems considered in
this book and will therefore be used in the implementation of the solution method.

In the implementation of the algorithm, the matrix S corresponds to a vari-
able tts and the extended parameter vector pext corresponds to a variable pext.
Since in MATLAB indeces are positive integers (zero index is not allowed), in all
indexing operations of pext, the index is incremented by one. Given the matrices
S0 and S, specifying the structure, and a structure parameter vector p̂, the structured
matrix S (p̂) is constructed by

85a 〈(S0,S, p̂) 7→ D̂ = S (p̂) 85a〉≡ (87d 99b)
phext = [0; ph(:)]; dh = s0 + phext(tts + 1);

The matrix dimensions m, n, and the number of parameters np are obtained from S

as follows:
85b 〈S 7→ (m,n,np) 85b〉≡ (86c 87e 99a 100b)

[m, n] = size(tts); np = max(max(tts));

The transition from the specification of (S) to the specification in the general affine
case (S (p̂)) is done by

85c 〈S 7→ S 85c〉≡ (86c 87e 100b)
vec_tts = tts(:); NP = 1:np;

bfs = vec_tts(:, ones(1, np)) == NP(ones(m * n, 1), :);

Conversely, for a linear structure of the type (S), defined by S (and m, n), the matrix S
is constructed by

85d 〈S 7→ S 85d〉≡
tts = reshape(bfs * (1:np)’, m, n);

In most applications that we consider, the structure S is linear, so that s0 is an
optional input argument to the solvers with default value the zero matrix.

85e 〈default s0 85e〉≡ (86c 87e 99a 100b)
if ~exist(’s0’, ’var’) | isempty(s0), s0 = zeros(m, n); end

The default weight matrix W in the approximation criterion is the identity matrix.
85f 〈default weight matrix 85f〉≡ (86c 87e 100b)

if ~exist(’w’, ’var’) | isempty(w), w = eye(np); end

Minimization over p̂

In order to solve the optimization problem (SLRA), we change variables

p̂ 7→ ∆ p = p− p̂.

86 3 Algorithms

Then, the constraint is written as a system of linear equations with unknown ∆ p:

RS (p̂) = 0 ⇐⇒ RS (p−∆ p) = 0

⇐⇒ RS (p)−RS (∆ p)+RS0 = 0

⇐⇒ vec
(
RS (∆ p)

)
= vec

(
RS (p)

)
+vec(RS0)

⇐⇒
[
vec(RS1) · · · vec(RSnp)

]
︸ ︷︷ ︸

G(R)

∆ p = G(R)p+vec(RS0)︸ ︷︷ ︸
h(R)

⇐⇒ G(R)∆ p = h(R).

86a 〈form G(R) and h(R) 86a〉≡ (86c)
g = reshape(R * reshape(bfs, m, n * np), size(R, 1) * n, np);

h = g * p + vec(R * s0);

The inner minimimization in (SLRAR) with respect to the new variable ∆ p is a
linear least norm problem

minimize over ∆ p ‖∆ p‖W subject to G(R)∆ p = h(R) (LNP)

and has the analytic solution

∆ p∗(R) =W−1G⊤(R)
(
G(R)W−1G⊤(R)

)−1
h(R).

86b 〈solve the least-norm problem 86b〉≡ (86c)
dp = inv_w * g’ * (pinv(g * inv_w * g’) * h);

Finally, the cost function to be minimized over the parameter R is

f (R) = ‖∆ p∗(R)‖W =
√

∆ p∗⊤(R)W∆ p∗(R).

The function f corresponds to the data–model misfit function in data modeling prob-
lems and will be refered to as the structured low-rank approximation misfit.

86c 〈Structured low-rank approximation misfit 86c〉≡
function [M, ph] = misfit_slra(R, tts, p, w, s0, bfs, inv_w)

〈S 7→ (m,n,np) 85b〉
〈default s0 85e〉, 〈default weight matrix 85f〉
if ~exist(’bfs’) | isempty(bfs), 〈S 7→ S 85c〉, end

〈form G(R) and h(R) 86a〉
if ~exist(’inv_w’) | isempty(inv_w), inv_w = inv(w); end

〈solve the least-norm problem 86b〉
M = sqrt(dp’ * w * dp); ph = p - dp;

Defines:
misfit_slra, used in chunk 87.

Minimization over R

General purpose constrained optimization methods are used for the outer minimiza-
tion problem in (SLRAR), i.e., the minimization of f over R, subject to the constraint

3.2 Algorithms based on local optimization 87

RR⊤ = I. This is a nonconvex optimization problem, so that there is no guarantee
that a globally optimal solution is found.

87a 〈set optimization solver and options 87a〉≡ (87c 90b 193d)
prob = optimset();

prob.solver = ’fmincon’;

prob.options = optimset(’disp’, ’off’);

87b 〈call optimization solver 87b〉≡ (87c 90b 193d)
[x, fval, flag, info] = fmincon(prob); info.M = fval;

87c 〈nonlinear optimization over R 87c〉≡ (87e)
〈set optimization solver and options 87a〉
prob.x0 = Rini; inv_w = inv(w);

prob.objective = ...

@(R) misfit_slra(R, tts, p, w, s0, bfs, inv_w);

prob.nonlcon = @(R) deal([], [R * R’ - eye(size(R, 1))]);

〈call optimization solver 87b〉, R = x;

Uses misfit_slra 86c.

If not specified, the initial approximation is computed from a heuristic that ignores
the structure and replaces the weighted norm by the Frobenius norm, so that the re-
sulting problem can be solved by the singular value decomposition (function lra).

87d 〈default initial approximation 87d〉≡ (87e)
if ~exist(’Rini’) | isempty(Rini)

ph = p; 〈(S0,S, p̂) 7→ D̂ = S (p̂) 85a〉, Rini = lra(dh, r);

end

Uses lra 66.

The resulting function is:
87e 〈Structured low-rank approximation 87e〉≡

function [R, ph, info] = slra(tts, p, r, w, s0, Rini)

〈S 7→ (m,n,np) 85b〉, 〈S 7→ S 85c〉
〈default s0 85e〉, 〈default weight matrix 85f〉
〈default initial approximation 87d〉
〈nonlinear optimization over R 87c〉
if nargout > 1,

[M, ph] = misfit_slra(R, tts, p, w, s0, bfs, inv_w);

end

Defines:
slra, used in chunks 102e and 110.

Uses misfit_slra 86c.

Exercise 3.8. Use slra and r2x to solve approximately an overdetermined system
of linear equations AX ≈ B in the least squares sense. Check the accuracy of the
answer by using the analytical expression. ⊓⊔

Exercise 3.9. Use slra to solve the basic low-rank approximation problem

minimize over D̂ ‖D− D̂‖F subject to rank(D̂)≤ m.

(unstructured approximation in the Frobenius norm). Check the accuracy of the an-
swer by the Eckart–Young–Mirsky theorem (lra). ⊓⊔

88 3 Algorithms

Exercise 3.10. Use slra to solve the weighted low-rank approximation problem
(unstructured approximation in the weighted norm (‖ · ‖W), defined on page 62).
Check the accuracy of the answer in the special case of two-sided weighted low-
rank approximation, using Theorem 2.29. ⊓⊔

Algorithms for linear system identification

Approximate linear system identification problems can be solved as equivalent Han-
kel structured low-rank approximation problems. Therefore, the function slra,
implemented in the previous section can be used for linear time-invariant system
identification. This approach is developed in Section 4.3.

In this section an alternative approach for approximate system identification that
is motivated from a system theoretic view of the problem is used. The Hankel struc-
ture in the problem is exploited, which results in efficient computational methods.

Misfit computation

Consider the misfit between the data wd and a model B

misfit(wd,B) := min
ŵ

‖wd − ŵ‖2 subject to ŵ ∈ B. (misfit Lm,l)

Geometrically, misfit(wd,B) is the orthogonal projection of wd on B. Assuming
that B is controllable, B has a minimal image representation image

(
P(σ)

)
. In

terms of the parameter P, the constraint ŵ ∈B becomes ŵ = P(σ)ℓ, for some latent
variable ℓ. In a matrix form,

ŵ = TT (P)ℓ,

where

TT (P) :=

P0 P1 · · · Pl
P0 P1 · · · Pl

. . .
. . .

. . .

P0 P1 · · · Pl

 ∈ R

qT×(T+l). (T)

88 〈Toeplitz matrix constructor 88〉≡
function TP = blktoep(P, T)

[q, l1] = size(P); l = l1 - 1; TP = zeros(T * q, T + l);

ind = 1 + (0:T - 1) * q * (T + 1);

for i = 1:q

for j = 1:l1

TP(ind + (i - 1) + (j - 1) * (T * q)) = P(i, j);

end

end

Defines:
blktoep, used in chunk 89.

3.2 Algorithms based on local optimization 89

The misfit computation problem (misfit Lm,l) is equivalent to the standard linear
least squares problem

minimize over ℓ ‖wd −TT (P)ℓ‖, (misfitP)

so that the solution, implemented in the functions misfit_siso, is

ŵ = TT (P)
(
T ⊤

T (P)TT (P)
)−1

T ⊤
T (P)wd.

89 〈dist(wd,B) 89〉≡
function [M, wh] = misfit_siso(w, P)

try, [M, wh] = misfit_siso_efficient(w, P);

catch

〈reshape w and define q, T 26e〉
TP = blktoep(P, T); wh = reshape(TP * (TP \ w(:)), 2, T);

M = norm(w - wh, ’fro’);

end

Defines:
misfit_siso, used in chunks 90b, 118d, 120, and 129c.

Uses blktoep 88.

First, an efficient implementation (misfit_siso_efficient) of the misfit
computation function, exploiting the banded Toeplitz structure of the matrix TT (P),
is attempted. misfit_siso_efficient calls a function of the SLICOT library
to carry out the computation and requires a mex file, which is platform dependent.
If a mex file is not available, the computation is reverted to solution of (misfitP)
without exploiting the structure of TT (P) (MATLAB backslash operator).

Note 3.11 (Misfit computation by Kalman smoothing). The efficient implementation
in misfit_siso_efficient is based on structured linear algebra computa-
tions (Cholesky factorization of positive definite banded Toeplitz matrix). The com-
putational methods implemented in the SLICOT library use the generalized Schur
algorithm and have computational complexity O(np)

An alternative approach, which also results in O(np) methods, is based on the
system theoretic interpretation of the problem: equivalence between misfit compu-
tation and Kalman smoothing. In this latter approach, the computation is done by a
Riccati type recursion.

Misfit minimization

Consider the misfit minimization problem

B̂∗ := argmin
B̂

misfit(wd,B) subject to B̂ ∈ L q
m,l. (SYSID)

Using the representation B = image(P), (SYSID) is equivalent to

90 3 Algorithms

minimize over P ∈ R
q(l+1)×m misfit

(
wd, image

(
P(σ)

))

subject to P⊤P = Im,
(SYSIDP)

which is a constrained nonlinear least squares problem.
90a 〈Single input single output system identification 90a〉≡

function [sysh, wh, info] = ident_siso(w, n, sys)

if ~exist(’sys’, ’var’)

〈suboptimal approximate single input single output system identification 90c〉
else

〈(TF) 7→ P 90e〉
end

〈misfit minimization 90b〉
Defines:
ident_siso, used in chunks 91f and 129d.

Optimization Toolbox is used for performing the misfit minimization.
90b 〈misfit minimization 90b〉≡ (90a)

〈set optimization solver and options 87a〉
prob.x0 = P;

prob.objective = @(P) misfit_siso(w, P);

prob.nonlcon = @(P) deal([], [P(1, :) * P(1, :)’ - 1]);

〈call optimization solver 87b〉, P = x;

〈P 7→ (TF) 90d〉 sysh = sys;

if nargout > 1, [M, wh] = misfit_siso(w, P); end

Uses misfit_siso 89.

The initial approximation is computed from a relaxation ignoring the structure con-
straint:

90c 〈suboptimal approximate single input single output system identification 90c〉≡ (90a 129c)
R = lra(blkhank(w, n + 1), 2 * n + 1); 〈R 7→ P 90f〉

Uses blkhank 25b and lra 66.

The solution obtained by the optimization solver is an image representation of a
(locally) optimal approximate model B̂∗. In the function ident_siso, the image
representation is converted to a transfer function representation as follows:

90d 〈P 7→ (TF) 90d〉≡ (90b 91b)
p = fliplr(P(1, :)); q = fliplr(P(2, :)); sys = tf(q, p, -1);

The reverse transformation
90e 〈(TF) 7→ P 90e〉≡ (90 118d 120)

[q, p] = tfdata(tf(sys), ’v’); P = zeros(2, length(p));

P(1, :) = fliplr(p);

P(2, :) = fliplr([q zeros(length(p) - length(q))]);

is used when an initial approximation is specified by a transfer function representa-
tion. When no initial approximation is supplied, a default one is computed by un-
structured low-rank approximation, which produces a kernel representation of the
model. Transition from kernel to image representation is done indirectly by passing
through a transfer function representation:

90f 〈R 7→ P 90f〉≡ (90c)
〈R 7→ (TF) 91a〉 〈(TF) 7→ P 90e〉

3.2 Algorithms based on local optimization 91

where
91a 〈R 7→ (TF) 91a〉≡ (90f)

q = - fliplr(R(1:2:end)); p = fliplr(R(2:2:end));

sys = tf(q, p, -1);

For later use, next, we define also the reverse mapping:
91b 〈P 7→ R 91b〉≡

〈P 7→ (TF) 90d〉 〈(TF) 7→ R 91c〉
where

91c 〈(TF) 7→ R 91c〉≡ (91b)
[q, p] = tfdata(tf(sys), ’v’); R = zeros(1, length(p) * 2);

R(1:2:end) = - fliplr([q zeros(length(p) - length(q))]);

R(2:2:end) = fliplr(p);

Numerical example

The function ident_siso is applied on data obtained in the errors-in-variables
setup (EIV) on page 71. The true data generating model is a random single input
single output linear time-invariant system and the true data w0 is a random trajectory
of that system. In order to make the results reproducible, in all simulations, we first
initialize the random number generator:

91d 〈initialize the random number generator 91d〉≡ (91e 102a 105a 112b 116b 118d 120 123a 127a 129a 145a 164a
randn(’seed’, 0); rand(’seed’, 0);

91e 〈Test ident_siso 91e〉≡ 91f⊲
〈initialize the random number generator 91d〉
sys0 = drss(n); xini0 = rand(n, 1);

u0 = rand(T, 1); y0 = lsim(sys0, u0, 1:T, xini0);

w = [u0 y0] + s * randn(T, 2);

Defines:
test_ident_siso, used in chunk 91h.

The optimal approximation obtained by ident_siso
91f 〈Test ident_siso 91e〉+≡ ⊳91e 91g⊲

[sysh, wh, info] = ident_siso(w, n); info

Uses ident_siso 90a.

is verified by comparing it with the approximation obtained by the function slra
(called by the wrapper function ident_eiv, see Section 4.3)

91g 〈Test ident_siso 91e〉+≡ ⊳91f
[sysh_, wh_, info_] = ident_eiv(w, 1, n); info_

norm(sysh - sysh_)

Uses ident_eiv 118a.

In a specific example
91h 〈Compare ident_siso and ident_eiv 91h〉≡

n = 2; T = 20; s = 0.1; test_ident_siso

Uses test_ident_siso 91e.

92 3 Algorithms

the norm of the difference between the two computed approximations is of the order
of magnitude of the convergence tolerance used by the optimization solvers. This
shows that the methods converged to the same locally optimal solution.

Computation of an approximate greatest common divisor

Associated with a polynomial

p(z) := p0 + p1z+ · · ·+ pnzn

of degree at most n is an (n+1)-dimensional coefficients vector

p := col(p0, p1, . . . , pn) ∈ R
n+1

and vice verse a vector p ∈ R
n+1 corresponds to a polynomial p with degree at

most n. With some abuse of notation, we denote the polynomial and its coefficients
vector with the same letter. The intended meaning is understood from the context.

The coefficients vector of a polynomial, however, is not unique. (Scaling of the
coefficients vector by a nonzero number result in the same polynomial.) In order
to remove this nonuniqueness, we scale the coefficients, so that the highest power
coefficient is equal to one (monic polynomial). In what follows, it is assumed that
the coefficients are aways scaled in this way.

The polynomials p and p̂ of degree n are “close” to each other if the distance
measure

dist
(

p, p̂
)

:= ‖p− p̂‖2

is “small”, i.e., if the norm of the coefficients vector of the error polynomial ∆ p :=
p− p̂ is small.

Note 3.12. The distance dist
(

p, p̂
)
, defined above, might not be an appropriate dis-

tance measure in applications where the polynomial roots rather than coefficients
are of primary interest. Polynomial roots might be sensitive (especially for high
order polynomials) to perturbations in the coefficients, so that closeness of coeffi-
cients does not necessarily imply closeness of roots. Using the quadratic distance
measure in terms of the polynomial coefficients, however, simplifies the solution of
the approximate common divisor problem defined next.

Problem 3.13 (Approximate common divisor). Given polynomials p and q, and a
natural number d, smaller than the degrees of p and q, find polynomials p̂ and q̂ that
have a common divisor c of degree d and minimize the approximation error

dist
(

col(p,q),col(p̂, q̂)
)
.

The polynomial c is an optimal (in the specified sense) approximate common divisor
of p and q. ⊓⊔

3.2 Algorithms based on local optimization 93

Note 3.14. The object of interest in solving Problem 3.13 is the approximate com-
mon divisor c. The approximating polynomials p̂ and q̂ are auxiliary variables in-
troduced for the purpose of defining c.

Note 3.15. Problem 3.13 has the following system theoretic interpretation. Consider
the single-input single-output linear time-invariant system B =Bi/o(p,q). The sys-
tem B is controllable if and only if p and q have no common factor. Therefore,
Problem 3.13 finds the nearest uncontrollable system B̂ = Bi/o(p̂, q̂) to the given
system B. The bigger the approximation error is, the more robust the controllability
property of B is. In particular, with zero approximation error, B is uncontrollable.

Equivalent optimization problem

By definition, the polynomial c is a common divisor of p̂ and q̂ if there are polyno-
mials u and v, such that

p̂ = uc and q̂ = vc. (GCD)

With the auxiliary variables u and v, Problem 3.13 becomes the following optimiza-
tion problem:

minimize over p̂, q̂, u, v, and c dist
(

col(p,q),col(p̂, q̂)
)

subject to p̂ = uc, q̂ = vc, and degree(c) = d.
(AGCD)

Theorem 3.16. The optimization problem (AGCD) is equivalent to

minimize over c0, . . . ,cd−1 ∈ R f (c), (AGCD’)

where

f (c) := trace
([

p q
]⊤(

I−Tn+1(c)
(
T ⊤

n+1(c)Tn+1(c)
)−1

T ⊤
n+1(c)

)[
p q
])

,

and Tn+1(c) is an upper triangular Toeplitz matrix, defined in (T) on page 88.

The proof is given in Appendix B.
Compared with the original optimization problem (AGCD), in (AGCD’), the

constraint and the auxiliary decision variables p̂, q̂, u, and v are eliminated. This
achieves significant simplification from a numerical optimization point of view. The
equivalent problem (AGCD’) is a nonlinear least squares problem and can be solved
by standard local optimization methods, see Algorithm 1.

Since
f (c) = dist

(
col(p,q),col(p̂, q̂)

)

the value of the cost function f (c) shows the approximation errors in taking c as an
approximate common divisor of p and q. Optionally, Algorithm 1 returns a “certifi-
cate” p̂ and q̂ for c being an approximate common divisor of p and q with approxi-
mation error f (c).

94 3 Algorithms

Algorithm 1 Optimal approximate common divisor computation.
Input: Polynomials p and q and a positive integer d.
1: Compute an initial approximation cini ∈ Rd+1.
2: Execute a standard optimization algorithm for the minimization (AGCD’) with initial approx-

imation cini.
3: if p̂ and q̂ have to be displayed then

4: Solve for u and v the linear least squares problem in u and v

[
p q
]
= Tn−d+1(c)

[
u v
]
.

5: Define p̂ = u⋆ c and q̂ = v⋆ c, where ⋆ denotes discrete convolution.
6: end if

Output: The approximation c ∈Rd+1 found by the optimization algorithm upon convergence, the
value of the cost function f (c) at the optimal solution, and if computed p̂ and q̂.

In order to complete Algorithm 1, next, we specify the computation of the initial
approximation cini. Also, the fact that the analytic expression for f (c) involves the
highly structured matrix Tn−d+1(c) suggests that f (c) (and its derivatives) can be
evaluated efficiently.

Efficient cost function evaluation

The most expensive operation in the cost function evaluation is solving the least
squares problem [

p q
]
= Tn−d+1(c)

[
u v
]
.

Since Tn−d+1(c) is an upper triangular, banded, Toeplitz matrix, this operation can
be done efficiently. One approach is to compute efficiently the QR factorization
of Tn−d+1(c), e.g., via the generalized Schur algorithm. Another approach is to
solve the normal system of equations

T ⊤
n+1(c)

[
p q
]
= T ⊤

n−d+1(c)Tn−d+1(c)
[
u v
]
,

exploiting the fact that T ⊤
n−d+1(c)Tn−d+1(c) is banded and Toeplitz structured. The

first approach is implemented in the function MB02ID from the SLICOT library.
Once the least squares problem is solved, the product

Tn−d+1(c)
[
u v
]
=
[
c⋆u c⋆ v

]

is computed efficiently by the fast Fourier transform. The resulting algorithm has
computational complexity O(n) operations. The first derivative f ′(c) can be evalu-
ated also in O(n) operations, so assuming that d≪ n, the overall cost per iteration
for Algorithm 1 is O(n).

3.2 Algorithms based on local optimization 95

Initial approximation

Suboptimal initial approximation can be computed by the singular value decompo-
sition of the Sylvester (sub)matrix

Rd(p,q) =
[
T ⊤

n−d+1(p) T ⊤
n−d+1(q)

]

=

p0 q0

p1 p0 q1 q0
... p1

. . .
... q1

. . .

pn

...
. . . p0 qn

...
. . . q0

pn p1 qn q1
. . .

...
. . .

...
pn qn

∈ R
(2n−d+1)×(2n−2d+2).

Since, the approximate greatest common divisor problem (AGCD) is a structured
low-rank approximation problem, ignoring the Sylvester structure constraint results
a suboptimal solution method—unstructured low-rank approximation. A suboptimal
solution is therefore computable by the singular value decomposition.

The polynomial c is a common divisor of p̂ and q̂ if and only if there are polyno-
mials u and v, such that

p̂v = q̂u. (∗)

With degree(c) = d, the polynomial equation (∗) is equivalent to the system of al-
gebraic equations

Rd(p̂, q̂)

[
v

−u

]
= 0.

The degree constraint for c is equivalent to

degree(u) = n−d,

or equivalently un−d+1 6= 0. Since u is defined up to a scaling factor, we impose the
normalization un−d+1 = 1. This shows that problem (AGCD) is equivalent to

minimize over p̂, q̂ ∈ R
n+1 and u,v ∈ R

n−d+1
∥∥[p q

]
−
[
p̂ q̂
]∥∥

F

subject to Rd(p̂, q̂)

[
v

−u

]
= 0 and un−d+1 = 1.

(AGCD”)

The approximate common factor c is not explicitly computed in (AGCD”). Once
the optimal u and v are known, however, c can be found from (GCD). (By construc-
tion these equations have unique solution). Alternatively, without using the auxiliary
variables p̂ and q̂, c can be computed from the least squares problem

[
p

q

]
=

[
u

v

]
c,

96 3 Algorithms

or in linear algebra notation
[

p

q

]
=

[
T ⊤
d+1(u)

T ⊤
d+1(v)

]
c. (3.1)

Problem (AGCD”) is a structured low-rank approximation problem: it aims to
find a Sylvester rank deficient matrix Rd(p̂, q̂) as close as possible to a given matrix
Rd(p,q) with the same structure. If p and q have no common divisor of degree d,
Rd(p,q) is full rank so that an approximation is needed.

The (unstructured) low-rank approximation problem

minimize over D̂ and r

∥∥∥Rd(p,q)− D̂

∥∥∥
2

F

subject to D̂r = 0 and r⊤r = 1
(LRAr)

has an analytic solution in terms of the singular value decomposition of Rd(p,q).
The vector r ∈ R2(n−d+1) corresponding to the optimal solution of (LRAr) is equal
to the right singular vector of Rd(p,q) corresponding to the smallest singular value.
The vector col(v,−u) composed of the coefficients of the approximate divisors v

and −u is up to a scaling factor (that enforces the normalization constraint un−d+1 =
1) equal to r. This gives Algorithm 2 as a method for computing a suboptimal initial
approximation.

Algorithm 2 Suboptimal approximate common divisor computation.
Input: Polynomials p and q and an integer d.
1: Solve the unstructured low-rank approximation problem (LRAr).
2: Let col(v,−u) := r, where u,v ∈Rn−d+1.
3: Solve the least squares problem (3.1).

Output: The solution c of the least squares problem.

Numerical examples

Implementation of the method for computation of approximate common divisor,
described in this section, is available from the book’s web page. We verify the results
obtained by Algorithm 1 on examples from (Zhi and Yang, 2004) and (Karmarkar
and Lakshman, 1998). Up to the number of digits shown the results match the ones
reported in the literature.

3.2 Algorithms based on local optimization 97

Example 4.1 from (Zhi and Yang, 2004)

The given polynomials are

p(z) = (4+2z+ z2)(5+2z)+0.05+0.03z+0.04z2

q(z) = (4+2z+ z2)(5+ z)+0.04+0.02z+0.01z2

and an approximate common divisor c of degree d = 2 is sought. Algorithm 1 con-
verges in 4 iteration steps with the following answer

c(z) = 3.9830+1.9998z+1.0000z2.

To this approximate common divisor correspond approximating polynomials

p̂(z) = 20.0500+18.0332z+9.0337z2 +2.0001z3

q̂(z) = 20.0392+14.0178z+7.0176z2 +0.9933z3

and the approximation error is

f (c) = dist2
(

p, p̂
)
+dist2

(
q, q̂
)
= 1.5831×10−4.

Example 4.2, case 1, from (Zhi and Yang, 2004) (originally given in

(Karmarkar and Lakshman, 1998))

The given polynomials are

p(z) = (1− z)(5− z) = 5−6z+ z2

q(z) = (1.1− z)(5.2− z) = 5.72−6.3z+ z2

and an approximate common divisor c of degree d = 1 (a common root) is sought.
Algorithm 1 converges in 6 iteration steps with the following answer

c(z) =−5.0989+1.0000z.

The corresponding approximating polynomials are

p̂(z) = 4.9994−6.0029z+0.9850z2

q̂(z) = 5.7206−6.2971z+1.0150z2

and the approximation error is f (c) = 4.6630×10−4.

98 3 Algorithms

3.3 Data modeling using the nuclear norm heuristic

The nuclear norm heuristic leads to a semidefinite optimization problem, which can
be solved by existing algorithms with provable convergence properties and readily
available high quality software packages. Apart from theoretical justification and
easy implementation in practice, formulating the problem as a semidefinite pro-
gram has the advantage of flexibility. For example, adding regularization and affine
inequality constraints in the data modeling problem still leads to semidefinite opti-
mization problems that can be solved by the same algorithms and software as the
original problem.

A disadvantage of using the nuclear norm heuristic is the fact that the number of
optimization variables in the semidefinite optimization problem depends quadrati-
cally on the number of data points in the data modeling problem. This makes meth-
ods based on the nuclear norm heuristic impractical for problems with more than a
few hundreds of data points. Such problems are “small size” data modeling problem.

Nuclear norm heuristics for structured low-rank approximation

Regularized nuclear norm minimization

The nuclear norm of a matrix is the sum of the matrix’s singular values

‖M‖∗ = sum of the singular values of M. (NN)

Recall the mapping S , see (S (p̂)), on page 84, from a structure parameter
space Rnp to the set of matrices Rm×n. Regularized nuclear norm minimization

minimize over p̂ ‖S (p̂)‖∗+ γ‖p− p̂‖
subject to Gp̂ ≤ h

(NNM)

is a convex optimization problem and can be solved globally and efficiently. Using
the fact

‖D̂‖∗ < µ ⇐⇒ 1
2

(
trace(U)+ trace(V)

)
< µ and

[
U D̂⊤

D̂ V

]
� 0,

we obtain an equivalent problem

minimize over p̂, U , V , and ν
1
2

(
trace(U)+ trace(V)

)
+ γν

subject to
[

U S (p̂)⊤

S (p̂) V

]
� 0,

‖p− p̂‖< ν, and Gp̂ ≤ h,

(NNM’)

3.3 Data modeling using the nuclear norm heuristic 99

which can further be reduced to a semidefinite programming problem and solved by
standard methods.

Structured low-rank approximation

Consider the affine structured low-rank approximation problem (SLRA). Due to
the rank constraint, this problem is non-convex. Replacing the rank constraint by a
constraint on the nuclear norm of the affine structured matrix, however, results in a
convex relaxation of (SLRA)

minimize over p̂ ‖p− p̂‖ subject to ‖S (p̂)‖∗ ≤ µ . (RLRA)

The motivation for this heuristic of solving (SLRA) is that approximation with an
appropriately chosen bound on the nuclear norm tends to give solutions S (p̂) of
low (but nonzero) rank. Moreover, the nuclear norm is the tightest relaxation of the
rank function, in the same way ℓ1-norm is the tightest relaxation of the function
mapping a vector to the number of its nonzero entries.

Problem (RLRA) can also be written in the equivalent unconstrained form

minimize over p̂ ‖S (p̂)‖∗+ γ‖p− p̂‖. (RLRA’)

Here γ is a regularization parameter that is related to the parameter µ in (RLRA).
The latter formulation of the relaxed affine structured low-rank approximation prob-
lem is a regularized nuclear norm minimization problem (NNM’).

Literate programs

Regularized nuclear norm minimization

The CVX package is used in order to automatically translate problem (NNM’) into a
standard convex optimization problem and solve it by existing optimization solvers.

99a 〈Regularized nuclear norm minimization 99a〉≡ 99b⊲
function [ph, info] = nucnrm(tts, p, gamma, nrm, w, s0, g, h)

〈S 7→ (m,n,np) 85b〉, 〈default s0 85e〉
Defines:
nucnrm, used in chunks 100c and 105.

The code consists of definition of the optimization variables:
99b 〈Regularized nuclear norm minimization 99a〉+≡ ⊳99a 100a⊲

cvx_begin sdp; cvx_quiet(true);

variable U(n, n) symmetric;

variable V(m, m) symmetric;

variables ph(np) nu;

〈(S0,S, p̂) 7→ D̂ = S (p̂) 85a〉

100 3 Algorithms

and direct rewriting of the cost function and constraints of (NNM’) in CVX syntax:
100a 〈Regularized nuclear norm minimization 99a〉+≡ ⊳99b

minimize(trace(U) / 2 + trace(V) / 2 + gamma * nu);

subject to

[U dh’; dh V] > 0;

norm(w * (p - ph), nrm) < nu;

if (nargin > 6) & ~isempty(g), g * ph < h; end

cvx_end

The w argument specifies the norm (‖ · ‖w) and is equal to 1, 2, inf, or (in the case
of a weighted 2-norm) a np × np positive semidefinite matrix. The info output
variable is a structure with fields optval (the optimal value) and status (a string
indicating the convergence status).

Structured low-rank approximation

The following function finds suboptimal solution of the structured low-rank approx-
imation problem by solving the relaxation problem (RLRA’). Affine structures of the
type (S) are considered.

100b 〈Structured low-rank approximation using the nuclear norm 100b〉≡ 100d⊲
function [ph, gamma] = slra_nn(tts, p, r, gamma, nrm, w, s0)

〈S 7→ (m,n,np) 85b〉, 〈S 7→ S 85c〉, 〈default s0 85e〉, 〈default weight matrix 85f〉
if ~exist(’gamma’, ’var’), gamma = []; end % default gamma

if ~exist(’nrm’, ’var’), nrm = 2; end % default norm

Defines:
slra_nn, used in chunks 102d, 103a, 127b, and 129b.

If a parameter γ is supplied, the convex relaxation (RLRA’) is completely specified
and can be solved by a call to nucnrm.

100c 〈solve the convex relaxation (RLRA’) for given γ parameter 100c〉≡ (100d 101a)
ph = nucnrm(tts, p, gamma, nrm, w, s0);

Uses nucnrm 99a.

Large values of γ lead to solutions p̂ with small approximation error ‖p− p̂‖W , but
potentially high rank. Vice verse, small values of γ lead to solutions p̂ with low
rank, but potentially high approximation error ‖p− p̂‖W . If not given as an input
argument, a value of γ which gives an approximation matrix S (p̂) with numerical
rank r can be found by bisection on an a priori given interval [γmin,γmax]. The in-
terval can be supplied via the input argument gamma, in which case it is a vector
[γmin,γmax].

100d 〈Structured low-rank approximation using the nuclear norm 100b〉+≡ ⊳100b
if ~isempty(gamma) & isscalar(gamma)

〈solve the convex relaxation (RLRA’) for given γ parameter 100c〉
else

if ~isempty(gamma)

gamma_min = gamma(1); gamma_max = gamma(2);

else

gamma_min = 0; gamma_max = 100;

3.3 Data modeling using the nuclear norm heuristic 101

end

〈parameters of the bisection algorithm 101b〉
〈bisection on γ 101a〉

end

On each iteration of the bisection algorithm, the convex relaxation (RLRA’) is
solved for γ equal to the mid point (γmin+ γmax)/2 of the interval and the numerical
rank of the approximation S (p̂) is checked by computing the singular values of the
approximation. If the numerical rank is higher than r, γmax is redefined to the mid
point, so that the search continuous on smaller values of γ (which have the potential
of decreasing the rank). Otherwise, γmax is redefined to the mid point, so that the
search continuous on higher values of γ (which have the potential of increasing the
rank). The search continuous till the interval [γmin,γmax] is sufficiently small or a
maximum number of iterations is exceeded.

101a 〈bisection on γ 101a〉≡ (100d)
iter = 0;

while ((gamma_max - gamma_min) / gamma_max > rel_gamma_tol) ...

& (iter < maxiter)

gamma = (gamma_min + gamma_max) / 2;

〈solve the convex relaxation (RLRA’) for given γ parameter 100c〉
sv = svd(ph(tts));

if (sv(r + 1) / sv(1) > rel_rank_tol) ...

& (sv(1) > abs_rank_tol)

gamma_max = gamma;

else

gamma_min = gamma;

end

iter = iter + 1;

end

The rank test and the interval width test involve a priori set tolerances.
101b 〈parameters of the bisection algorithm 101b〉≡ (100d)

rel_rank_tol = 1e-6; abs_rank_tol = 1e-6;

rel_gamma_tol = 1e-5; maxiter = 20;

Examples

Unstructured and Hankel structured problems

The function slra_nn for affine structured low-rank approximation by the nuclear
norm heuristic is tested on randomly generated Hankel structured and unstructured
examples. A rank deficient “true” data matrix is constructed, where the rank r0 is a
simulation parameter. In the case of a Hankel structure, the “true” structure param-
eter vector p0 is generated as the impulse response (skipping the first sample) of a
discrete-time random linear time-invariant system of order r0. This ensures that the
“true” Hankel structured data matrix S (p0) has the desired rank r0.

102 3 Algorithms

102a 〈Test slra_nn 102a〉≡ 102b⊲
〈initialize the random number generator 91d〉
if strcmp(structure, ’hankel’)

np = m + n - 1; tts = hankel(1:m, m:np);

p0 = impulse(drss(r0), np + 1); p0 = p0(2:end);

Defines:
test_slra_nn, used in chunk 103.

In the unstructured case, the data matrix is generated by multiplication of random
m× r0 and r0×n factors of a rank revealing factorization of the data matrix S (p0).

102b 〈Test slra_nn 102a〉+≡ ⊳102a 102c⊲
else % unstructured

np = m * n; tts = reshape(1:np, m, n);

p0 = rand(m, r0) * rand(r0, n); p0 = p0(:);

end

The data parameter p, passed to the low-rank approximation function, is a noisy
version of the true data parameter p0, where the additive noise’s standard deviation
is a simulation parameter.

102c 〈Test slra_nn 102a〉+≡ ⊳102b 102d⊲
e = randn(np, 1); p = p0 + nl * e / norm(e) * norm(p0);

The results obtained by slra_nn
102d 〈Test slra_nn 102a〉+≡ ⊳102c 102e⊲

[ph, gamma] = slra_nn(tts, p, r0);

Uses slra_nn 100b.

are compared with the ones of alternative methods by checking the singular values
of S (p̂), indicating the numerical rank, and the fitting error ‖p− p̂‖.

In the case of a Hankel structure, the alternative methods, being used, is Kung’s
method (implemented in the function h2ss) and the method based on local opti-
mization (implemented in the function slra).

102e 〈Test slra_nn 102a〉+≡ ⊳102d 102f⊲
if strcmp(structure, ’hankel’)

sysh = h2ss([0; p], r0);

ph2 = impulse(sysh, np + 1); ph2 = ph2(2:end);

tts_ = hankel(1:(r0 + 1), (r0 + 1):np);

[Rh, ph3] = slra(tts_, p, r0);

sv = [svd(p(tts)) svd(ph(tts)) svd(ph2(tts)) svd(ph3(tts))]

cost = [norm(p - p) norm(p - ph) ...

norm(p - ph2) norm(p - ph3)]

Uses h2ss 79a and slra 87e.

In the unstructured case, the alternative method is basic low-rank approximation
(lra), which gives globally optimal result in this setup.

102f 〈Test slra_nn 102a〉+≡ ⊳102e
else % unstructured

[Rh, Ph, dh] = lra(p(tts)’, r0); dh = dh’;

sv = [svd(p(tts)) svd(ph(tts)) svd(dh)]

cost = [norm(p - p) norm(p - ph) norm(p - dh(:))]

end

〈trade-off curve 103a〉
Uses lra 66.

3.3 Data modeling using the nuclear norm heuristic 103

Finally, the numerical rank vs fitting error trade-off curves are computed and
plotted for the methods based on nuclear norm minimization and unstructured low-
rank approximation.

103a 〈trade-off curve 103a〉≡ (102f)
E = []; E_ = [];

for rr = 1:min(m,n) - 1

ph = slra_nn(tts, p, rr); E = [E norm(p - ph)];

if strcmp(structure, ’hankel’)

sysh = h2ss([0;p], rr);

ph = impulse(sysh, np + 1); ph = ph(2:end);

else % unstructured

if m > n, [Rh, Ph, dh] = lra(p(tts)’, rr); dh = dh’;

else [Rh, Ph, dh] = lra(p(tts), rr); end

ph = dh(:);

end

E_ = [E_ norm(p - ph)];

end

plot(E , 1:min(m,n)-1, ’bx’, ’markersize’, 8), hold on

plot(E_, 1:min(m,n)-1, ’ro’, ’markersize’, 8)

legend(’slra_nn’,’lra’)

plot(E , 1:min(m,n)-1, ’b-’, ’linewidth’, 2, ’markersize’, 8)

plot(E_, 1:min(m,n)-1, ’r-.’, ’linewidth’, 2, ’markersize’, 8)

print_fig(structure)

Uses h2ss 79a, lra 66, print_fig 25a, and slra_nn 100b.

The first test example is a 5×5, unstructured matrix, whose true value has rank 3.
Note that in this case the method lra, which is based on the singular value decom-
position gives an optimal approximation.

103b 〈Test slra_nn on unstructured problem 103b〉≡
m = 5; n = 5; r0 = 3; nl = 1; structure = ’unstructured’;

test_slra_nn

Uses test_slra_nn 102a.

The output of test_slra_nn is given in Table 3.1, left. It shows that the numeri-
cal rank (with tolerance 10−5) of both approximations is equal to the specified rank
but the approximation error achieved by the nuclear norm heuristic is about two
times the approximation error of the optimal approximation. The trade-off curve is
shown in Figure 3.1, left plot.

The second test example is a 5× 5, Hankel structured matrix, whose true value
has rank 3. In this case the singular value decomposition-based method h2ss and
the local optimization based method slra are also heuristics for solving the Hankel
structured low-rank approximation problem and give, respectively, suboptimal and
locally optimal results.

103c 〈Test slra_nn on Hankel structured problem 103c〉≡
m = 5; n = 5; r0 = 3; nl = 0.05; structure = ’hankel’;

test_slra_nn

Uses test_slra_nn 102a.

The output of the test_slra_nn is given in Table 3.1, right. It again shows that
the approximations have numerical rank matching the specification but the nuclear

104 3 Algorithms

Table 3.1 Output of test_slra_nn in unstructured problem.

sv =

4.8486 3.7087 4.8486

2.1489 1.0090 2.1489

1.5281 0.3882 1.5281

1.1354 0.0000 0.0000

0.5185 0.0000 0.0000

cost =

0 2.3359 1.2482

norm heuristic gives more than two times larger approximation error. The corre-
sponding trade-off curve is shown in Figure 3.1, right plot.

Table 3.2 Output of test_slra_nn in Hankel structured problem.

sv =

0.8606 0.8352 0.8667 0.8642

0.1347 0.1270 0.1376 0.1376

0.0185 0.0011 0.0131 0.0118

0.0153 0.0000 0.0000 0.0000

0.0037 0.0000 0.0000 0.0000

cost =

0 0.0246 0.0130 0.0127

0 1 2 3 4
1

1.5

2

2.5

3

3.5

4

‖p− p̂‖

ra
nk
(S

(p̂
))

Test 1

lra

slra_nn

0 0.1 0.2 0.3 0.4
1

1.5

2

2.5

3

3.5

4

‖p− p̂‖

lra

slra_nn

Test 2

Fig. 3.1 Rank vs approximation error trade-off curve.

3.3 Data modeling using the nuclear norm heuristic 105

Missing data estimation

A random rank deficient “true” data matrix is constructed, where the matrix dimen-
sions m×n and its rank r0 are simulation parameters.

105a 〈Test missing data 105a〉≡ 105b⊲
〈initialize the random number generator 91d〉
p0 = rand(m, r0) * rand(r0, n); p0 = p0(:);

Defines:
test_missing_data, used in chunk 106b.

The true matrix is unstructured:
105b 〈Test missing data 105a〉+≡ ⊳105a 105c⊲

np = m * n; tts = reshape(1:np, m, n);

and is perturbed by a sparse matrix with sparsity level od, where od is a simula-
tion parameter. The perturbation has constant values nl (a simulation parameter) in
order to simulate outliers.

105c 〈Test missing data 105a〉+≡ ⊳105b 105d⊲
pt = zeros(np, 1); no = round(od * np);

I = randperm(np); I = I(1:no);

pt(I) = nl * ones(no, 1); p = p0 + pt;

Under certain conditions, derived in (Candés et al, 2009), the problem of recover-
ing the true values from the perturbed data can be solved exactly by the regularized
nuclear norm heuristic with 1-norm regularization and regularization parameter

γ =

√
1

min(m,n)
.

105d 〈Test missing data 105a〉+≡ ⊳105c 105e⊲
ph1 = nucnrm(tts, p, 1 / sqrt(max(m, n)), 1, eye(np));

Uses nucnrm 99a.

In addition, the method can deal with missing data at known locations by setting
the corresponding entries of the weight vector w to zero. In order to test this feature,
we simulate the first element of the data matrix as missing and recover it by the
approximation problem

105e 〈Test missing data 105a〉+≡ ⊳105d 105f⊲
p(1) = 0;

ph2 = nucnrm(tts, p, 1 / sqrt(max(m, n)), ...

1, diag([0; ones(np - 1, 1)]));

Uses nucnrm 99a.

We check the approximation errors ‖p0 − p̂‖2, were p0 is the true value of the
data parameter and p̂ is its approximation, obtained by the nuclear norm heuristic
method. For comparison, we print also the perturbation size ‖p0 − p‖2.

105f 〈Test missing data 105a〉+≡ ⊳105e 106a⊲
[norm(p0 - ph1) norm(p0 - ph2) norm(p0 - p)]

106 3 Algorithms

Finally, we check the error of the recovered missing value.
106a 〈Test missing data 105a〉+≡ ⊳105f

[abs(p0(1) - ph1(1)) abs(p0(1) - ph2(1))]

The result of a particular test
106b 〈Test slra_nn on small problem with missing data 106b〉≡

m = 50; n = 100; r0 = 5; nl = 0.4; od = 0.15; test_missing_data

Uses test_missing_data 105a.

is

ans =

0.0000 0.0000 10.9969

ans =

1.0e-09 *

0.4362 0.5492

showing that the method indeed recovers the missing data exactly.

3.4 Notes and references

Efficient software for structured low-rank approximation

The SLICOT library includes high quality FORTRAN implementation of algorithms
for Cholesky factorization of positive definite Toeplitz banded matrices. The library
is used in a software package (Markovsky and Van Huffel, 2005; Markovsky et al,
2005) for solving structured low-rank approximation problems, based on the vari-
able projections approach (Golub and Pereyra, 2003) and Levenberg–Marquardt’s
algorithm, implemented in MINPACK. This algorithm is globally convergent with
a superlinear convergence rate.

Approximate greatest common divisor

An alternative method for solving structured low-rank approximation problems,
called structured total least norm, has been modified for Sylvester structured ma-
trices and applied to computation of approximate common divisor in (Zhi and
Yang, 2004). The structured total least norm approach is different from the approach
present in this chapter because it solves directly problem (AGCD) and does not use
the elimination step leading to the equivalent problem (AGCD’).

References 107

Nuclear norm heuristic

The nuclear norm relaxation for solving rank minimization problems (RM) was
proposed in (Fazel, 2002). It is a generalization of the ℓ1-norm heuristic from sparse
vector approximation problems to low rank matrix approximation problems. The
CVX package is developed and maintained by Grant and Boyd (????), see also
(Grant and Boyd, 2008). A Python version is also available (Dahl and Vanden-
berghe, 2010).

The computational engines of CVX are SDPT3 and SeDuMi. These solvers can
deal with a few tens of parameters (np < 100). An efficient interior point method for
solving (NNM), which can deal with up to 500 parameters, is presented in (Liu and
Vandenberghe, 2009). The method is implemented in Python.

References

Candés E, Li X, Ma Y, Wright J (2009) Robust principal component analysis?
www-stat.stanford.edu/~candes/papers/RobustPCA.pdf

Dahl J, Vandenberghe L (2010) CVXOPT: Python software for convex optimization.
URL abel.ee.ucla.edu/cvxopt

Fazel M (2002) Matrix rank minimization with applications. PhD thesis, Elec. Eng.
Dept., Stanford University

Golub G, Pereyra V (2003) Separable nonlinear least squares: the variable projec-
tion method and its applications. Institute of Physics, Inverse Problems 19:1–26

Grant M, Boyd S (????) CVX: Matlab software for disciplined convex program-
ming. stanford.edu/~boyd/cvx

Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs.
In: Blondel V, Boyd S, Kimura H (eds) Recent Advances in Learning and Control,
Springer, stanford.edu/~boyd/graph_dcp.html, pp 95–110

Karmarkar N, Lakshman Y (1998) On approximate GCDs of univariate polynomi-
als. In: Watt S, Stetter H (eds) J. Symbolic Comput., vol 26, pp 653–666, special
issue on Symbolic Numeric Algebra for Polynomials

Liu Z, Vandenberghe L (2009) Interior-Point method for nuclear norm approx-
imation with application to system identification. SIAM J Matrix Anal Appl
31(3):1235–1256

Markovsky I, Van Huffel S (2005) High-performance numerical algorithms and
software for structured total least squares. J Comput Appl Math 180(2):311–331,
DOI 10.1016/j.cam.2004.11.003

Markovsky I, Van Huffel S, Pintelon R (2005) Block-Toeplitz/Hankel structured
total least squares. SIAM J Matrix Anal Appl 26(4):1083–1099, DOI 10.1137/
S0895479803434902

Zhi L, Yang Z (2004) Computing approximate GCD of univariate polynomials by
structure total least norm. In: MM Research Preprints, 24, Academia Sinica, pp
375–387

Chapter 4

Applications in system, control, and signal
processing

Summary: In this chapter, applications of structured low-rank approximation for

1. approximate realization,
2. model reduction,
3. linear prediction (also known as output only identification and sum-of-damped

exponentials modeling),
4. harmonic retrieval,
5. errors-in-variables system identification,
6. output error system identification,
7. finite impulse response system identification (or, equivalently, deconvolution),
8. distance to uncontrollability, and
9. pole placement by a low-order controller,

are reviewed. The types of structure occurring in these applications are affine:
(block) Hankel, Toeplitz, and Sylvester.

4.1 Introduction

Structured low-rank approximation is defined as deterministic data approximation.

Problem SLRA (Structured low-rank approximation). Given a structure speci-
fication

S : Rnp → R
m×n, with m ≤ n,

a parameter vector p ∈R
np , a vector norm ‖ ·‖, and an integer r, 0 < r < min(m,n),

minimize over p̂ ‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r. (SLRA)

⊓⊔
Equivalently, the problem can be posed as (maximum likelihood) parameter estima-
tion in the errors-in-variables setting:

109

110 4 Applications in system, control, and signal processing

p = p0 + p̃, where rank
(
S (p0)

)
≤ r and p̃ ∼ N(0,σ 2V).

The statistical setting gives a recipe for choosing the norm (‖ · ‖ = ‖ · ‖V−1)
and a “quality certificate” for the approximation method (SLRA): the method
works “well” (consistency) and is optimal in a statistical sense (minimal
asymptotic error covariance) under certain specified conditions.

The assumptions underlying the statistical setting are that the data p is generated
by a true model that is in the considered model class with additive noise p̃ that is a
stochastic process satisfying certain additional assumptions. Model-data mismatch,
however is often due to a restrictive linear time-invariant model class being used and
not (only) due to measurement noise. This implies that the approximation aspect of
the method is often more important than the stochastic estimation one. The prob-
lems reviewed in this chapter are stated as deterministic approximation problems
although they can be given also the interpretation of defining maximum likelihood
estimators under appropriate stochastic assumptions.

All problems are special cases of Problem SLRA for certain specified choices of
the norm ‖ · ‖, structure S , and rank r. In all problems the structure is affine, so
that the algorithm and corresponding function slra, developed in Chapter 3, for
solving affine structured low-rank approximation problems can be used for solving
the problems in this chapter.

110 〈solve Problem SLRA 110〉≡ (111a 115 118a 119a 122a)
[R, ph, info] = slra(tts, par, r, [], s0);

Uses slra 87e.

4.2 Model reduction

Approximate realization

Define the 2-norm ‖∆H‖2 of a matrix-valued signal ∆H ∈ (Rp×m)T+1 as

‖∆H‖2 :=

√
T

∑
t=0

‖∆H(t)‖2
F,

and let σ be the shift operator

σ(H)(t) = H(t +1).

Acting on a finite time series
(
H(0),H(1), . . . ,H(T)

)
, σ removes the first sam-

ple H(0).

4.2 Model reduction 111

Problem 4.1 (Approximate realization). Given Hd ∈ (Rp×m)T and a complexity
specification l, find an optimal approximate model for Hd of a bounded complex-
ity (m,l), such that

minimize over Ĥ and B̂ ‖Hd − Ĥ‖2

subject to Ĥ is the impulse response of B̂ ∈ L m+p
m,l .

⊓⊔

111a 〈2-norm optimal approximate realization 111a〉≡
function [sysh, hh, info] = h2ss_opt(h, l)

〈reshape H and define m, p, T 79b〉
〈approximate realization structure 111b〉
〈solve Problem SLRA 110〉
〈p̂ 7→ Ĥ 111c〉, 〈Ĥ 7→ B̂ 112a〉

Defines:
h2ss_opt, used in chunks 112–14.

Problem 4.1 is equivalent to Problem SLRA, with

• norm ‖ · ‖= ‖ · ‖2,
• Hankel structured data matrix S (p) = Hl+1(σHd), and
• rank reduction by the number of outputs p.

111b 〈approximate realization structure 111b〉≡ (111a)
par = vec(h(:, :, 2:end)); s0 = []; r = l * p;

tts = blkhank(reshape(1:length(par), p, m, T - 1), l + 1);

Uses blkhank 25b.

The statement follows from the equivalence

Ĥ is the impulse response of B̂ ∈ Lm,l ⇐⇒ rank
(
Hl+1(σ Ĥ)

)
≤ pl.

The optimal approximate model B̂∗ does not depend on the shape of the Hankel
matrix as long as the Hankel matrix dimensions are sufficiently large: at least p(l+
1) rows and at least m(l+1) columns. However, solving the low-rank approximation
problem for a data matrix Hl′+1(σHd), where l′ > l, one needs to achieve rank
reduction by p(l′ − l+ 1) instead of by p. Larger rank reduction leads to more
difficult computational problems. On one hand, the cost per iteration gets higher
and on another hand, the search space gets higher dimensional, which makes the
optimization algorithm more susceptible to local minima.

The mapping p̂ 7→ Ĥ from the solution p̂ of the structured low-rank approxi-
mation problem to the optimal approximation Ĥ of the noisy impulse response H

is reshaping the vector p̂ as a m× p× T tensor hh, representing the sequence
Ĥ(1), . . . ,Ĥ(T −1) and setting Ĥ(0) = H(0) (since D̂ = H(0)).

111c 〈p̂ 7→ Ĥ 111c〉≡ (111a)
hh = zeros(p, m, T); hh(:, :, 1) = h(:, :, 1);

hh(:, :, 2:end) = reshape(ph(:), p, m, T - 1);

112 4 Applications in system, control, and signal processing

The mapping Ĥ 7→ B̂ is system realization, i.e., the 2-norm (locally) optimal
realization B̂∗ is obtained by exact realization of the approximation Ĥ, computed
by the structured low-rank approximation method.

112a 〈Ĥ 7→ B̂ 112a〉≡ (111a)
sysh = h2ss(hh, l * p);

Uses h2ss 79a.

By construction, the approximation Ĥ of H has an exact realization in the model
class L m+p

m,l .

Note 4.2. In the numerical solution of the structured low-rank approximation prob-
lem, the kernel representation (rankR) on page 83 of the rank constraint is used. The
parameter R, computed by the solver, gives a kernel representation of the optimal
approximate model B̂∗. The kernel representation can subsequently be converted
to a state space representation. This gives an alternative way of implementing the
function h2ss_opt to the one using system realization (Ĥ 7→ B̂). The same note
applies to the other problems, reviewed in the chapter. ⊓⊔

Example

The following script verifies that the local optimization based method h2ss_opt
improves the suboptimal approximation computed by Kung’s method h2ss. The
data is a noisy impulse response of a random stable linear time-invariant system.
The number of inputs m and outputs p, the order n of the system, the number of data
points T, and the noise standard deviation s are simulation parameters.

112b 〈Test h2ss_opt 112b〉≡ 112c⊲
〈initialize the random number generator 91d〉
n = p * l; sys0 = drss(n, p, m);

h0 = reshape(shiftdim(impulse(sys0, T), 1), p, m, T);

h = h0 + s * randn(size(h0));

Defines:
test_h2ss_opt, used in chunk 112d.

The solutions, obtained by the unstructured and Hankel structured low-rank approx-
imation methods, are computed and the relative approximation errors are printed.

112c 〈Test h2ss_opt 112b〉+≡ ⊳112b
[sysh, hh] = h2ss(h, n); norm(h(:) - hh(:)) / norm(h(:))

[sysh_, hh_, info] = h2ss_opt(h, l);

norm(h(:) - hh_(:)) / norm(h(:))

Uses h2ss 79a and h2ss_opt 111a.

The optimization based method improves the suboptimal results of the singular
value decomposition based method at the price of extra computation, a process ref-
ered to as iterative refinement of the solution.

112d 〈Compare h2ss and h2ss_opt 112d〉≡
m = 2; p = 3; l = 1; T = 25; s = 0.2; test_h2ss_opt

Uses test_h2ss_opt 112b.

 0.6231 for h2ss and 0.5796 for h2ss_opt

4.2 Model reduction 113

Model reduction

The finite time-T H2 norm ‖∆B‖2,T of a linear time-invariant system ∆B is defined
as the 2-norm of the sequence of its first T Markov parameters, i.e., if ∆H is the
impulse response of ∆B, ‖∆B‖2,T := ‖∆H‖2.

Problem 4.3 (Finite time H2 model reduction). Given a linear time-invariant sys-
tem Bd ∈ L q

m,l and a complexity specification lred < l, find an optimal approxima-
tion of Bd with bounded complexity (m,lred), such that

minimize over B̂ ‖Bd − B̂‖2,T subject to B̂ ∈ L q
m,lred

. ⊓⊔

Problem 4.3 is equivalent to Problem SLRA with

• norm ‖ · ‖= ‖ · ‖2,
• Hankel structured data matrix S (p) = Hl+1(σHd), where Hd is the impulse

response of Bd, and
• rank reduction by the number of outputs p := q−m,

which shows that finite time H2 model reduction is equivalent to the approximate
realization problem with Hd being the impulse response of Bd. In practice, Bd need
not be linear time-invariant system since in the model reduction problem only the
knowledge of its impulse response Hd is used.

113 〈Finite time H2 model reduction 113〉≡
function [sysh, hh, info] = mod_red(sys, T, lred)

[sysh, hh, info] = h2ss_opt(shiftdim(impulse(sys, T), 1), lred);

Defines:
mod_red, used in chunk 127d.

Uses h2ss_opt 111a.

Exercise 4.4. Compare the results of mod_red with the ones obtained by using un-
structured low-rank approximation (finite-time balanced model reduction) on simu-
lation examples. ⊓⊔

Output only identification

Excluding the cases of multiple poles, the model class of autonomous linear time-
invariant systems L p

0,l is equivalent to the sum-of-damped exponentials model class,
i.e., signals y that can be represented in the form

y(t) =
l

∑
k=1

αkeβktei(ωkt+φk), (i =
√
−1).

The parameters {αk,βk,ωk,φk }lj=1 of the sum-of-damped exponentials model have
the following meaning: αk are amplitudes, βk damping factors, ωk frequencies, and
φk initial phases.

114 4 Applications in system, control, and signal processing

Problem 4.5 (Output only identification). Given a signal yd ∈ (Rp)T and a com-
plexity specification l, find an optimal approximate model for yd of bounded com-
plexity (0,l), such that

minimize over B̂ and ŷ ‖yd − ŷ‖2

subject to ŷ ∈ B̂|[1,T] and B̂ ∈ L p

0,l.
⊓⊔

Problem 4.5 is equivalent to Problem SLRA with

• norm ‖ · ‖= ‖ · ‖2,
• Hankel structured data matrix S (p) = Hl+1(yd), and
• rank reduction by the number of outputs p,

which shows that output only identification is equivalent to approximate realization
and is, therefore, also equivalent to finite time H2 model reduction. In the signal
processing literature, the problem is known as linear prediction.

114a 〈Output only identification 114a〉≡
function [sysh, yh, xinih, info] = ident_aut(y, l)

[sysh, yh, info] = h2ss_opt(y, l);

〈impulse response realization 7→ autonomous system realization 114b〉
Defines:
ident_aut, used in chunk 211c.

Uses h2ss_opt 111a.

Let Bi/s/o(A,b,C,d) be a realization of y. Then the response of the autonomous
system Bss(A,C) to initial condition x(0)= b is y. This gives a link between impulse
response realization and autonomous system realization:

114b 〈impulse response realization 7→ autonomous system realization 114b〉≡ (114a 115)
xinih = sysh.b; sysh = ss(sysh.a, [], sysh.c, [], -1);

Exercise 4.6. Compare the results of ident_aut with the ones obtained by using
unstructured low-rank approximation on simulation examples. ⊓⊔

Harmonic retrieval

The aim of the harmonic retrieval problem is to approximate the data by a sum of
sinusoids. From a system theoretic point of view, harmonic retrieval aims to approx-
imate the data by a marginally stable linear time-invariant autonomous system1.

Problem 4.7 (Harmonic retrieval). Given a signal yd ∈ (Rp)T and a complex-
ity specification l, find an optimal approximate model for yd that is in the model
class L p

0,l and is marginally stable, i.e.,

1 A linear time-invariant autonomous system is marginally stable if all its trajectories, except for
the y = 0 trajectory, are bounded and do not converge to zero.

4.2 Model reduction 115

minimize over B̂ and ŷ ‖yd − ŷ‖2

subject to ŷ ∈ B̂|[1,T], B̂ ∈ L p

0,l, and B̂ is marginally stable. ⊓⊔

Due to the stability constraint, Problem 4.7 is not a special case of prob-
lem SLRA. In the univariate case p = 1, however, a necessary condition for an
autonomous model B to be marginally stable is that a kernel representation ker(R)
of B is either palindromic,

R(z) :=
l

∑
i=0

ziRi is palindromic : ⇐⇒ Rℓ−i = Ri, for i = 0,1, . . . ,l

or antipalindromic,

R(z) is antipalindromic : ⇐⇒ Rℓ−i =−Ri, for i = 0,1, . . . ,l.

The antipalindromic case is nongeneric in the space of the marginally stable sys-
tems, so as relaxation of the stability constraint, we can use the constraint that the
kernel representation is palindromic.

Problem 4.8 (Harmonic retrieval, relaxed version, scalar case). Given a signal
yd ∈ (R)T and a complexity specification l, find an optimal approximate model
for yd that is in the model class L 1

0,l and has a palindromic kernel representation,
such that

minimize over B̂ and ŷ ‖yd − ŷ‖2

subject to ŷ ∈ B̂|[1,T], B̂ ∈ L 1
0,l and ker(R̂) = B̂,with R palindromic. ⊓⊔

115 〈Harmonic retrieval 115〉≡
function [sysh, yh, xinih, info] = harmonic_retrieval(y, l)

〈harmonic retrieval structure 116a〉
〈solve Problem SLRA 110〉, yh = ph; sysh = h2ss(yh, n);

〈impulse response realization 7→ autonomous system realization 114b〉
Defines:
harmonic_retrieval, used in chunk 116b.

Uses h2ss 79a.

The constraint “R palindromic” can be expressed as a structural constraint on the
data matrix, which reduces the relaxed harmonic retrieval problem to the structured
low-rank approximation problem. Problem 4.8 is equivalent to Problem SLRA with

• norm ‖ · ‖= ‖ · ‖2,
• structured data matrix composed of a Hankel matrix next to a Toeplitz matrix:

S (p) =
[
Hl+1(y) lHl+1(y)

]
,

where

116 4 Applications in system, control, and signal processing

lHl+1(y) :=

yl+1 yl+2 · · · yT

...
...

...
y2 y3 . . . yT−l+1

y1 y2 . . . yT−l

 ,

and
• rank reduction by one.

116a 〈harmonic retrieval structure 116a〉≡ (115)
par = y(:); np = length(par); n = l * 1; r = n; s0 = [];

tts = [blkhank(1:np, n + 1) flipud(blkhank(1:np, n + 1))];

Uses blkhank 25b.

The statement follows from the equivalence

ŷ ∈ B̂|[1,T], B̂ ∈ L 1
0,l and ker(R̂) = B̂ is palindromic

⇐⇒ rank
([

Hl+1(ŷ) lHl+1(ŷ)
])

≤ l.

In order to show it, let ker(R), with R(z) = ∑l
i=0 ziRi full row rank, be a kernel

representation of B ∈ L 1
0,l. Then ŷ ∈ B̂|[1,T] is equivalent to

[
R0 R1 · · · Rl

]
Hl+1(ŷ) = 0.

If, in addition, R is palindromic, then
[
Rl · · · R1 R0

]
Hl+1(ŷ) = 0 ⇐⇒

[
R0 R1 · · · Rl

]
lHl+1(ŷ) = 0.

We have that [
R0 R1 · · · Rl

][
Hl+1(ŷ) lHl+1(ŷ)

]
= 0. (∗)

which is equivalent to

rank
([

Hl+1(ŷ) lHl+1(ŷ)
])

≤ l.

Conversely, (∗) implies ŷ ∈ B̂|[1,T] and R palindromic.

Example

The data is generated as a sum of random sinusoids with additive noise. The num-
ber hn of sinusoids, the number of samples T, and the noise standard deviation s
are simulation parameters.

116b 〈Test harmonic_retrieval 116b〉≡
〈initialize the random number generator 91d〉
t = 1:T; f = 1 * pi * rand(hn, 1); phi = 2 * pi * rand(hn, 1);

y0 = sum(sin(f * t + phi(:, ones(1, T))));

yt = randn(size(y0)); y = y0 + s * norm(y0) * yt / norm(yt);

[sysh, yh, xinih, info] = harmonic_retrieval(y, hn * 2);

4.3 System identification 117

plot(t, y0, ’k-’, t, y, ’k:’, t, vec(yh), ’b-’),

ax = axis; axis([1 T ax(3:4)])

print_fig(’test_harmonic_retrieval’)

Defines:
test_harmonic_retrieval, used in chunk 117.

Uses harmonic_retrieval 115 and print_fig 25a.

Figure 4.1 shows the true signal, the noisy signal, and the estimate obtained with
harmonic_retrieval in the following simulation example:

117 〈Example of harmonic retrieval 117〉≡
clear all, T = 50; hn = 2; s = 0.015; test_harmonic_retrieval

Uses test_harmonic_retrieval 116b.

10 20 30 40 50
−2

−1

0

1

2

t

y d
,ŷ

Fig. 4.1 Results of harmonic_retrieval: solid line — true system’s trajectory y0, dotted
dotted — noisy data yd, dashed line — best approximation ŷ.

4.3 System identification

Errors-in-variables identification

In errors-in-variables data modeling problems, the observed variables are a priori
known (or assumed) to be noisy. This prior knowledge is used to correct the data,
so that the corrected data is consistent with a model in the model class. The result-
ing problem is equivalent of the misfit minimization problem (see, Problem 2.33),
considered in Chapter 2.

Problem 4.9 (Errors-in-variables identification). Given T samples, q variables,
vector signal wd ∈ (Rq)T , a signal norm ‖ · ‖, and a model complexity (m,l),

minimize over B̂ and ŵ ‖wd − ŵ‖
subject to ŵ ∈ B̂|[1,T] and B̂ ∈ L q

m,l.
⊓⊔

118 4 Applications in system, control, and signal processing

118a 〈Errors-in-variables identification 118a〉≡
function [sysh, wh, info] = ident_eiv(w, m, l)

〈reshape w and define q, T 26e〉
〈errors-in-variables identification structure 118b〉
〈solve Problem SLRA 110〉, wh = reshape(ph(:), q, T);

〈exact identification: ŵ 7→ B̂ 118c〉
Defines:
ident_eiv, used in chunks 91g and 118d.

Problem 4.9 is equivalent to Problem SLRA with

• Hankel structured data matrix S (p) = Hl+1(wd) and
• rank reduction with the number of outputs p

118b 〈errors-in-variables identification structure 118b〉≡ (118a)
par = w(:); np = length(par); n = l * 1;

p = q - m; r = m * (l + 1) + n;

tts = blkhank(reshape(1:np, q, T), l + 1); s0 = [];

Uses blkhank 25b.

The identified system is recovered from the optimal approximating trajectory ŵ

by exact identification.

118c 〈exact identification: ŵ 7→ B̂ 118c〉≡ (118a 119a)
sysh = w2h2ss(wh, m, n);

Uses w2h2ss 82c.

Example

In this example, the approximate model computed by the function ident_eiv is
compared with the model obtained by the function w2h2ss. Although w2h2ss is
an exact identification method, it can be used as a heuristic for approximate identifi-
cation. The data is generated in the errors-in-variables setup (see, (EIV) on page 71).
The true system is a random single input single output system.

118d 〈Test ident_eiv 118d〉≡
〈initialize the random number generator 91d〉
m = 1; p = 1; n = p * l; sys0 = drss(n, p, m);

xini0 = rand(n, 1); u0 = rand(T, m);

y0 = lsim(sys0, u0, 1:T, xini0);

w = [u0’; y0’] + s * randn(m + p, T);

sys = w2h2ss(w, m, n); 〈(TF) 7→ P 90e〉 misfit_siso(w, P)

[sysh, wh, info] = ident_eiv(w, m, l); info.M

Defines:
test_ident_eiv, used in chunk 118e.

Uses ident_eiv 118a, misfit_siso 89, and w2h2ss 82c.

In a particular example
118e 〈Compare w2h2ss and ident_eiv 118e〉≡

l = 4; T = 30; s = 0.1; test_ident_eiv

Uses test_ident_eiv 118d.

the obtained results are misfit 1.2113 for w2h2ss and 0.2701 for ident_eiv.

4.3 System identification 119

Output error identification

In the errors-in-variables setting, using an input-output partitioning of the variables,
both the input and the output are noisy. In some applications, however, the input is
not measured; it is designed by the user. Then, it is natural to assume that the input
is noise free. This leads to the output error identification problem.

Problem 4.10 (Output error identification). Given a signal

wd =
(
wd(1), . . . ,wd(T)

)
, wd(t) ∈ R

q,

with an input/output partitioning w = (u,y), dim(u) = m, and a complexity specifi-
cation l, find an optimal approximate model for wd of a bounded complexity (m,l),
such that

minimize over B̂ and ŷ ‖yd − ŷ‖2

subject to (ud, ŷ) ∈ B̂|[1,T] and B̂ ∈ L q
m,l.

⊓⊔

119a 〈Output error identification 119a〉≡
function [sysh, wh, info] = ident_oe(w, m, l)

〈reshape w and define q, T 26e〉
〈output error identification structure 119b〉
〈solve Problem SLRA 110〉, wh = [w(1:m, :); reshape(ph(:), p, T)];

〈exact identification: ŵ 7→ B̂ 118c〉
Defines:
ident_oe, used in chunks 120 and 208b.

Output error identification is a limiting case of the errors-in-variables identifi-
cation problem when the noise variance tends to zero. Alternatively, output error
identification is a special case in the prediction error setting when the noise term is
not modeled.

As shown next, Problem 4.10 is equivalent to Problem SLRA with

• norm ‖ · ‖= ‖ · ‖2,
• data matrix

S (p) =

[
Hl+1(ud)
Hl+1(yd)

]

composed of a fixed block and a Hankel structured block, and
• rank reduction by the number of outputs p.

119b 〈output error identification structure 119b〉≡ (119a)
par = vec(w((m + 1):end, :)); np = length(par); p = q - m;

j = T - l; n = l * p; r = m * (l + 1) + n;

s0 = [blkhank(w(1:m, :), l + 1); zeros((l + 1) * p, j)];

tts = [zeros((l + 1) * m, j); blkhank(reshape(1:np, p, T), l + 1)];

Uses blkhank 25b.

The statement is based on the equivalence

120 4 Applications in system, control, and signal processing

(ud, ŷ)|[1,T−l] ∈ B̂|[1,T−l] and B̂ ∈ Lm,l

⇐⇒ rank
([

Hl+1(ud)
Hl+1(ŷ)

])
≤ m(l+1)+pl,

which is a corollary of the following lemma.

Lemma 4.11. The signal w is a trajectory of a linear time-invariant system of com-

plexity bounded by (m,l), i.e.,

w|[1,T−l] ∈ B|[1,T−l] and B ∈ L q
m,l (∗)

if and only if

rank
(
Hl+1(w)

)
≤ m(l+1)+(q−m)l. (∗∗)

Proof. (=⇒) Assume that (∗) holds and let ker(R), with

R(z) =
l

∑
i=0

ziRi ∈ R
g×q[z]

full row rank, be a kernel representation of B. The assumption B ∈ Lm,l implies
that g ≥ p := q−m. From w ∈ B|[1,T], we have that

[
R0 R1 · · · Rl

]
Hl+1(w) = 0, (∗∗∗)

which implies that (∗∗) holds.
(⇐=) Assume that (∗∗) holds. Then, there is a full row rank matrix

R :=
[
R0 R1 · · · Rl

]
∈ R

p×q(l+1),

such that (∗∗∗). Define the polynomial matrix R(z) = ∑l
i=0 ziRi. Then the system B

induced by R(z) via the kernel representation ker
(
R(σ)

)
is such that (∗) holds. ⊓⊔

Example

This example is analogous to the example of the errors-in-variables identification
method. The approximate model obtained with the function w2h2ss is compared
with the approximate model obtained with ident_oe. In this case, the data is
generated in the output error setting, i.e., the input is exact and the output is noisy.
In this simulation setup we expect that the optimization based method ident_oe
improves the result obtained with the subspace based method w2h2ss.

120 〈Test ident_oe 120〉≡
〈initialize the random number generator 91d〉
m = 1; p = 1; n = l * p; sys0 = drss(n, p, m);

xini0 = rand(n, 1); u0 = rand(T, m); y0 = lsim(sys0, u0, 1:T, xini0);

w = [u0’; y0’] + s * [zeros(m, T); randn(p, T)];

sys = w2h2ss(w, m, n); 〈(TF) 7→ P 90e〉 misfit_siso(w, P)

[sysh, wh, info] = ident_oe(w, m, l); info.M

4.3 System identification 121

Defines:
test_ident_oe, used in chunk 121a.

Uses ident_oe 119a, misfit_siso 89, and w2h2ss 82c.

In the following simulation example
121a 〈Example of output error identification 121a〉≡

l = 4; T = 30; s = 0.1; test_ident_oe

Uses test_ident_oe 120.

w2h2ss achieves misfit 1.0175 and ident_oe achieves misfit 0.2331.

Finite impulse response system identification

Let FIRm,l be the model class of finite impulse response linear time-invariant sys-
tems with m inputs and lag at most l, i.e.,

FIRm,l := {B ∈ Lm,l | B has finite impulse response and m inputs}.

Identification of a finite impulse response model in the output error setting leads to
the ordinary linear least squares problem

[
Ĥ(0) Ĥ(1) · · · Ĥ(l)

]
Hl+1(ud) =

[
yd(1) · · · yd(T −l)

]
.

121b 〈Output error finite impulse response identification 121b〉≡
function [hh, wh] = ident_fit_oe(w, m, l)

〈reshape w and define q, T 26e〉
〈Finite impulse response identification structure 122b〉
D = par(tts);

hh_ = D(((m * (l + 1)) + 1):end, :) / D(1:(m * (l + 1)), :);

hh = reshape(hh_, p, m, l + 1); hh = hh(:, :, end:-1:1);

uh = w(1:m, :); yh = [hh_ * D(1:(m * (l + 1)), :) zeros(p, l)];

wh = [uh; yh];

Defines:
ident_fir_oe, used in chunk 123b.

Next, we define the finite impulse response identification problem in the errors-
in-variables setting.

Problem 4.12 (Errors-in-variables finite impulse response identification). Given
a signal

wd =
(
wd(1), . . . ,wd(T)

)
, wd(t) ∈ R

q,

with an input/output partition w = (u,y), with dim(u) = m, and a complexity spec-
ification l, find an optimal approximate finite impulse response model for wd of
bounded complexity (m,l), such that

minimize over B̂ and ŵ ‖wd − ŵ‖2

subject to ŵ ∈ B̂|[1,T] and B̂ ∈ FIRm,l.
⊓⊔

122 4 Applications in system, control, and signal processing

122a 〈Errors-in-variables finite impulse response identification 122a〉≡
function [hh, wh, info] = ident_fir_eiv(w, m, l)

〈reshape w and define q, T 26e〉
〈Finite impulse response identification structure 122b〉
〈solve Problem SLRA 110〉, hh = rio2x(R)’;

hh = reshape(hh, p, m, l + 1);

hh = hh(:, :, end:-1:1);

uh = reshape(ph(1:(T * m)), m, T);

yh = reshape(ph(((T * m) + 1):end), p, T - l);

wh = [uh; [yh zeros(p, l)]];

Defines:
ident_fir_eiv, used in chunk 123b.

Uses rio2x 43b.

Problem 4.12 is equivalent to Problem SLRA with

• norm ‖ · ‖= ‖ · ‖2,
• data matrix

S (p) =

[
Hl+1(ud)[

yd(1) · · · yd(T −l)
]
]
,

composed of a fixed block and a Hankel structured block, and
• rank reduction by the number of outputs p.

122b 〈Finite impulse response identification structure 122b〉≡ (121b 122a)
p = q - m; r = (l + 1) * m;

par = vec([w(1:m, :), w((m + 1):end, 1:(T - l))]); s0 = [];

tts = [blkhank((1:(T * m)), l + 1);

reshape(T * m + (1:((T - l) * p)), p, T - l)];

Uses blkhank 25b.

The statement follows from the equivalence

ŵ|1,T−l ∈ B|[1,T−l] and B̂ ∈ FIRm,l

⇐⇒ rank
([

Hl+1(û)[
ŷ(1) · · · ŷ(T −l)

]
])

≤ m(l+1).

In order to show it, let

H =
(
H(0),H(1), . . . ,H(l),0,0, . . .

)
.

be the impulse response of B̂ ∈ FIRm,l. The signal ŵ = (û, ŷ) is a trajectory of B if
and only if

[
H(l) · · · H(1) H(0)

]
Hl+1(û) =

[
ŷ(1) · · · ŷ(T −l)

]
.

Equivalently, ŵ = (û, ŷ) is a trajectory of B if and only if

[
H(l) · · · H(1) H(0) −Ip

][Hl+1(û)[
ŷ(1) · · · ŷ(T −l)

]
]
= 0,

or,

4.3 System identification 123

rank
([

Hl+1(û)[
ŷ(1) · · · ŷ(T −l)

]
])

≤ m(l+1).

For exact data, i.e., assuming that

yd(t) = (H ⋆ud)(t) :=
l

∑
τ=0

H(τ)ud(t − τ)

the finite impulse response identification problem is equivalent to the deconvolution
problem: Given the signals ud and yd := H ⋆ ud, find the signal H. For noisy data,
the finite impulse response identification problem can be viewed as an approximate

deconvolution problem. The approximation is in the sense of finding the nearest
signals û and ŷ to the given ones ud and yd, such that ŷ := Ĥ ⋆ û, for a signal Ĥ with
a given length l.

Example

Random data from a moving average finite impulse response system is generated
in the errors-in-variables setup. The number of inputs and outputs, the system lag,
number of observed data points, and the noise standard deviation are simulation
parameters.

123a 〈Test ident_fir 123a〉≡ 123b⊲
〈initialize the random number generator 91d〉,
h0 = ones(m, p, l + 1); u0 = rand(m, T); t = 1:(l + 1);

y0 = conv(h0(:), u0); y0 = y0(end - T + 1:end);

w0 = [u0; y0]; w = w0 + s * randn(m + p, T);

Defines:
test_ident_fir, used in chunk 123c.

The output error and errors-invariables finite impulse response identification meth-
ods ident_fir_oe and ident_fir_eiv are applied on the data and the rela-
tive fitting errors ‖wd − ŵ‖/‖wd‖ are computed.

123b 〈Test ident_fir 123a〉+≡ ⊳123a
[hh_oe, wh_oe] = ident_fir_oe(w, m, l);

e_oe = norm(w(:) - wh_oe(:)) / norm(w(:))

[hh_eiv, wh_eiv, info] = ident_fir_eiv(w, m, l);

e_eiv = norm(w(:) - wh_eiv(:)) / norm(w(:))

Uses ident_fir_eiv 122a and ident_fir_oe 121b.

The obtained result in the following example
123c 〈Example of finite impulse response identification 123c〉≡

m = 1; p = 1; l = 10; T = 50; s = 0.5; test_ident_fir

Uses test_ident_fir 123a.

are: relative error 0.2594 for ident_fir_oe and 0.2391 for ident_fir_eiv.

124 4 Applications in system, control, and signal processing

4.4 Analysis and synthesis

Distance to uncontrollability

Checking controllability of a linear time-invariant system B is a rank test problem.
However, the matrices which rank deficiency indicates lack of controllability for B
are structured and, depending on the representation of B, might be nonlinear trans-
formations of the system parameters. Computing the numerical rank of a structured
matrix by the singular value decomposition no longer gives a guarantee that there
is a nearby matrix with the specified rank that has the same structure as the given
matrix. For checking controllability, this implies that the system might be declared
close to uncontrollable, but that there is no nearby system that is uncontrollable. In
other words, the standard singular value decomposition test might be pessimistic.

Let Lctrb be the set of uncontrollable linear time-invariant systems and let
dist(B,B̂) be a measure for the distance from B to B̂. Consider for simplicity
the single input single output case and let Bi/o(P,Q), be an input/output representa-
tion of B. Moreover, without loss of generality, assume that P is monic. With this
normalization the parameters P,Q are unique and, therefore, the distance measure

dist(B,B̂) :=
√
‖P− P̂‖2

2 +‖Q− Q̂‖2
2 (dist)

is a property of the pair of systems (B,B̂).
In terms of the parameters P̂ and Q̂, the constraint B̂ ∈ Lctrb is equivalent to

rank deficiency of the Sylvester matrix R(P̂,Q̂) (see (R) on page 11). With re-
spect to the distance measure (dist), the problem of computing the distance from B
to uncontrollability is equivalent to a Sylvester structured low-rank approximation
problem

minimize over P̂ and Q̂ ‖P− P̂‖2
2 +‖Q− Q̂‖2

2

subject to rank
(
R(P̂,Q̂)

)
≤ degree(P)+degree(Q)−1,

for which numerical algorithms are developed in Section 3.2. The implementation
details are left as an exercise for the reader (see Note 3.15 and Problem P.20).

Pole placement by a low-order controller

Consider the single input single output feedback system shown in Figure 4.2. The
polynomials P and Q, define the transfer function Q/P of the plant and are given.
They are assumed to be relatively prime and the transfer function Q/P is assumed
to satisfy the constraint

deg(Q)≤ deg(P) =: lP,

4.4 Analysis and synthesis 125

which ensures that the plant is a causal linear time-invariant system. The polynomi-
als Y and X parameterize the controller Bi/o(X ,Y) and are unknowns. The design
constraints are that the controller should be causal and have order bounded by a
specified integer lX . These specifications translate to the following constraints on
the polynomials Y and X

deg(Y)≤ deg(X) =: lX < lP. (deg)

The pole placement problem is to determine X and Y , so that the poles of the closed-
loop system are as close as possible in some specified sense to desired locations,
given by the roots of a polynomial F , where deg(F) = lX + lP. We consider a
modification of the pole placement problem that aims to assign exactly the poles of
a plant that is as close to the given plant as possible.

−
yr Q/P

Y/X

Fig. 4.2 Feedback control system.

In what follows, we use the correspondence between lP +1 dimensional vectors
and lPth degree polynomials

col(P0,P1, . . . ,PlP
) ∈ R

lP+1 ↔ P(z) = P0 + P1z + · · ·+ PlP
zlP ∈ R[z],

and (with some abuse of notation) refer to P as both a vector and a polynomial.

Problem 4.13 (Pole placement by low-order controller). Given

1. the transfer function Q/P of a plant,
2. a polynomial F , whose roots are the desired poles of the closed-loop system, and
3. a bound lX < deg(P) on the order of the controller,

find the transfer function Y/X of the controller, such that

1. the degree constraint (deg) is satisfied and
2. the controller assigns the poles of a system whose transfer function Q̂/P̂ is as

close as possible to the transfer function Q/P in the sense that

∥∥col(P,Q)− col(P̂,Q̂)
∥∥

2

is minimized. ⊓⊔

Next, we write down explicitly the considered optimization problem, which
shows its equivalence to a structured low-rank approximation problem. The closed-
loop transfer function is

126 4 Applications in system, control, and signal processing

QX

PX +QY
,

so that a solution to the pole placement problem is given by a solution to the Dio-
phantine equation

PX +QY = F

The Diophantine equation can be written as a Sylvester structured system of equa-
tions

P0 Q0

P1
. . . Q1

. . .
...

. . . P0
...

. . . Q0

PlP
P1 QlP

Q1
. . .

...
. . .

...
PlP

QlP

︸ ︷︷ ︸
RlX+1(P,Q)

X0
...

XlX

Y0
...

YlX

=

F0
...

FlP

FlP+1
...

FlP+lX

︸ ︷︷ ︸
F

,

which is an overdetermined system of equations due to the degree constraint (deg).
Therefore Problem 4.13 can be written as

minimize over P̂, Q̂ ∈ R
lP+1 and X , Y ∈ R

lX+1
∥∥∥∥
[

P

Q

]
−
[

P̂

Q̂

]∥∥∥∥
2

subject to RlX+1(P̂,Q̂)

[
X

Y

]
= F.

Problem 4.13 is equivalent to Problem SLRA with

• norm ‖ · ‖= ‖ · ‖2,
• data matrix

S (p) =

[[
F0 F1 · · · FlP+lX

]

R⊤
lX+1(P,Q)

]
,

composed of a fixed block and a Sylvester structured block, and
• rank reduction by one.

Indeed

RlX+1(P̂,Q̂)

[
X

Y

]
= F ⇐⇒ rank

(
S (p̂)

)
≤ 2lX +1.

Exercise 4.14. Implement the method for pole placement by low-order controller,
outlined in this section, using the function slra. Test it on simulation examples
and compare the results with the ones obtained with the MATLAB function place.

4.5 Simulation examples 127

4.5 Simulation examples

Model reduction

In this section, we compare the nuclear norm heuristic based methods, developed
in Section 3.3, for structured low-rank approximation with classical methods for
Hankel structured low-rank approximation, such as Kung’s method and local opti-
mization based methods, on single input single output model reduction problems.
The order n of the system Bd, the bound nred for the order of the reduced system B̂,
and the approximation horizon T are simulation parameters. The system B with the
specified order n is selected as a random stable single input single output system.

127a 〈Test model reduction 127a〉≡ 127b⊲
〈initialize the random number generator 91d〉
sys = c2d(rss(n), 1);

h = impulse(sys, T); sh = h(2:(T + 1));

Defines:
test_mod_red, used in chunk 128.

The nuclear norm approximation is computed by the function slra_nn.
127b 〈Test model reduction 127a〉+≡ ⊳127a 127c⊲

tts = blkhank(1:T, lred + 1); hh1 = [h(1); slra_nn(tts, sh, lred)];

Uses blkhank 25b and slra_nn 100b.

Kung’s method is a singular value decomposition-based heuristic and is imple-
mented in the function h2ss.

127c 〈Test model reduction 127a〉+≡ ⊳127b 127d⊲
[sysh2, hh2] = h2ss(h, r); hh2 = hh2(:);

Uses h2ss 79a.

Model reduction, based on local optimization, is done by solving Hankel structured
low-rank approximation problem, using the function mod_red.

127d 〈Test model reduction 127a〉+≡ ⊳127c 127e⊲
[sysh3, hh3] = mod_red(sys, T, r); hh3 = hh3(:);

Uses mod_red 113.

We compare the results by checking the (numerical) rank of Hnred+1(σ Ĥ) and the
approximation error ‖H − Ĥ‖2.

127e 〈Test model reduction 127a〉+≡ ⊳127d 127f⊲
sh = h(2:end); shh1 = hh1(2:end); shh2 = hh2(2:end); shh3 = hh3(2:end);

sv = [svd(sh(tts)) svd(shh1(tts)) svd(shh2(tts)) svd(shh3(tts))]

cost = [norm(h - h) norm(h - hh1) norm(h - hh2) norm(h - hh3)]

The Markov parameters of the high order system and the low order approximations
are plotted for visual inspection of the quality of the approximations.

127f 〈Test model reduction 127a〉+≡ ⊳127e
plot(h, ’:k’, ’linewidth’, 4), hold on,

plot(hh1, ’b-’), plot(hh2, ’r-.’), plot(hh3, ’r-’)

legend(’high order sys.’, ’nucnrm’, ’kung’, ’slra’)

128 4 Applications in system, control, and signal processing

The results of an approximation of a 50th order system by a 4th order system
with time horizon 25 time steps

128 〈Test structured low-rank approximation methods on a model reduction problem 128〉≡
l = 50; lred = 4; T = 25; test_mod_red, print_fig(’test_mod_red’)

Uses print_fig 25a and test_mod_red 127a.

are

sv =

0.8590 0.5660 0.8559 0.8523

0.6235 0.3071 0.6138 0.6188

0.5030 0.1009 0.4545 0.4963

0.1808 0.0190 0.1462 0.1684

0.1074 0.0000 0.0000 0.0000

cost =

0 0.3570 0.0904 0.0814

and Figure 4.3. The nuclear norm approximation gives worse results than the singu-
lar value decomposition based heuristic, which in turn can be further improved by
the local optimization heuristic.

0 10 20 30
−0.5

0

0.5

τ

H
d
,Ĥ

slra_nn
h2ss
slra

data

Fig. 4.3 Impulse responses of the high order system (dotted line) and the low-order approximations
obtained by the nuclear norm heuristic (dashed line), Kung’s method (dashed dotted line), and a
local optimization based method (solid line).

System identification

Next we compare the nuclear norm heuristic with an alternative heuristic method,
based on the singular value decomposition, and a method based on local optimiza-
tion, on single input single output system identification problems. The data is gen-
erated according to the errors-in-variables model (EIV). A trajectory w0 of a linear

4.5 Simulation examples 129

time-invariant system B0 of order n0 is corrupted by noise, where the noise w̃ is
zero mean, white, Gaussian with covariance σ 2, i.e.,

wd = w0 + w̃.

The system B0, referred to as the “true system”, is generated as a random stable
single input single output system. The trajectory w0 is then generated as a random
trajectory of B0. The order n0, the trajectory length T , and the noise standard devi-
ation σ are simulation parameters. The approximation order is set equal to the order
of the true system.

129a 〈Test system identification 129a〉≡ 129b⊲
〈initialize the random number generator 91d〉
sys0 = drss(n0); u0 = randn(T, 1); xini0 = randn(n0, 1);

y0 = lsim(sys0, u0, 1:T, xini0); w0 = [u0’; y0’];

w = w0 + nl * randn(size(w0)); n = n0;

Defines:
test_sysid, used in chunk 129g.

The nuclear norm approximation is computed by
129b 〈Test system identification 129a〉+≡ ⊳129a 129c⊲

tts = blkhank(reshape(1:(2 * T), 2, T), n + 1);

wh1 = slra_nn(tts, w(:), 2 * n + 1);

Uses blkhank 25b and slra_nn 100b.

Next we apply an identification method obtained by solving suboptimally the
Hankel structured low-rank approximation problem ignoring the structure:

129c 〈Test system identification 129a〉+≡ ⊳129b 129d⊲
〈suboptimal approximate single input single output system identification 90c〉
[M2, wh2] = misfit_siso(w, P);

Uses misfit_siso 89.

Finally, we apply the optimization based method ident_siso
129d 〈Test system identification 129a〉+≡ ⊳129c 129e⊲

[sysh3, wh3, info] = ident_siso(w, n); M3 = info.M;

Uses ident_siso 90a.

The results are compared by checking the rank constraint, the approximation error,
129e 〈Test system identification 129a〉+≡ ⊳129d 129f⊲

sv = [svd(wh1(tts)) svd(wh2(tts)) svd(wh3(tts))]

cost = [norm(w(:) - wh1) norm(w(:) - wh2(:)) norm(w(:) - wh3(:))]

and plotting the approximations on top of the data.
129f 〈Test system identification 129a〉+≡ ⊳129e

plot(w(2, :), ’k’), hold on, plot(wh1(2:2:end), ’r’)

plot(wh2(2, :), ’b-’), plot(wh3(2, :), ’c-.’)

legend(’data’, ’nucnrm’, ’lra’, ’slra’)

The results of
129g 〈Test structured low-rank approximation methods on system identification 129g〉≡

n0 = 2; T = 25; nl = 0.2; test_sysid, print_fig(’test_sysid’)

Uses print_fig 25a and test_sysid 129a.

130 4 Applications in system, control, and signal processing

are

sv =

3.3862 4.6877 4.7428

2.8827 4.2789 4.2817

2.8019 4.1504 4.1427

0.6283 1.2102 1.3054

0.0000 0.3575 0.4813

0.0000 0.0000 0.0000

cost =

1.6780 0.8629 0.6676

They are consistent with previous experiments: the nuclear norm approximation
gives worse results than the singular value decomposition based heuristic, which in
turn can be further improved by the local optimization heuristic.

4.6 Notes and references

System theory

Survey on applications of structured low-rank approximation is given in De Moor
(1993) and (Markovsky, 2008). Approximate realization is a special identification
problem (the input is a pulse and the initial conditions are zeros). Nevertheless the
exact version of this problem is a well studied problem. The classical references are
the Ho-Kalman’s realization algorithm (Ho and Kalman, 1966), see also (Kalman
et al, 1969, Chapter 10). Approximate realization methods, based on the singular
value decomposition, are proposed in (Kung, 1978; Zeiger and McEwen, 1974).

Comprehensive treatment of model reduction methods is given in (Antoulas,
2005). The balanced model reduction method is proposed by Moore (1981) and
error bounds are derived by Glover (1984). Proper orthogonal decomposition is a
popular method for nonlinear model reduction. This method is unstructured low-
rank approximation of a matrix composed of “snapshots” of the state vector of the
system. The method is data-driven in the sense that the method operates on data of
the full order system and a model of that system is not derived.

Errors-in-variables system identification methods are developed in (Aoki and
Yue, 1970; Lemmerling and De Moor, 2001; Markovsky et al, 2005; Pintelon et al,
1998; Roorda, 1995; Roorda and Heij, 1995). Their consistency properties are stud-
ied in (Kukush et al, 2005; Pintelon and Schoukens, 2001). A survey paper on
errors-in-variables system identification is (Söderström, 2007). Most of the work
on the subject is presented in the classical input/output setting, i.e., the proposed
methods are defined in terms of transfer function, matrix fraction description, or in-
put/state/output representations. The salient feature of the errors-in-variables prob-
lems, however, is that all variables are treated on an equal footing as noise corrupted.

4.6 Notes and references 131

Therefore, the input/output partitioning implied by the classical model representa-
tions is irrelevant in the errors-in-variables problem.

Signal processing

Linear prediction methods based on optimization techniques are developed in
(Bresler and Macovski, 1986; Cadzow, 1988). Cadzow (1988) proposed a method
for Hankel structured low-rank approximation that alternates between unstructured
low-rank approximation and structure approximation. This method however does
not converge to a locally optimal solution. See (De Moor, 1994) for a counter exam-
ple. Application of structured low-rank approximation methods for audio processing
is described in (Lemmerling et al, 2003). The so called shape from moments prob-
lem (Golub et al, 1999; Gustafsson et al, 2000; Milanfar et al, 1995) is equivalent to
Hankel structured low-rank approximation (Schuermans et al, 2006).

Computer vision

An overview of the application of low-rank approximation (total least squares) in
motion analysis is given in (Mühlich and Mester, 1998). Image deblurring applica-
tions are presented in (Fu and Barlow, 2004; Mastronardi et al, 2004; Pruessner and
O’Leary, 2003). The image deblurring problem is solved by regularized structured
low-rank approximation methods in (Mastronardi et al, 2005; Ng et al, 2000, 2002;
Younan and Fan, 1998).

Analysis problems

The distance to uncontrollability with respect to the distance measure dist is natu-
rally defined as

min
B̂∈Lctrb

dist(B,B̂).

The distance to uncontrollability proposed in (Paige, 1981, Section X) matches the
definition given in this book by taking as distance measure

dist(B,B̂) =
∥∥∥
[
A B
]
−
[
Â B̂
]∥∥∥

2

2
, (∗)

where A,B and Â, B̂ are parameters of input/state/output representations

B = Bi/s/o(A,B,C,D) and B̂ = Bi/s/o(Â, B̂,Ĉ,D̂),

respectively. Computing distance to uncontrollability with respect to (∗) received
significant attention in the literature, but has a drawback: (∗) depends on the choice

132 4 Applications in system, control, and signal processing

of the state space basis. In other words, (∗) is representation dependent and, there-
fore, not a genuine property of the pair of systems (B,B̂).

References

Antoulas A (2005) Approximation of Large-Scale Dynamical Systems. SIAM
Aoki M, Yue P (1970) On a priori error estimates of some identification methods.

IEEE Trans Automat Control 15(5):541–548
Bresler Y, Macovski A (1986) Exact maximum likelihood parameter estimation of

superimposed exponential signals in noise. IEEE Trans Acust, Speech, Signal
Proc 34:1081–1089

Cadzow J (1988) Signal enhancement—A composite property mapping algorithm.
IEEE Trans Signal Proc 36:49–62

De Moor B (1993) Structured total least squares and L2 approximation problems.
Linear Algebra Appl 188–189:163–207

De Moor B (1994) Total least squares for affinely structured matrices and the noisy
realization problem. IEEE Trans Signal Proc 42(11):3104–3113

Fu H, Barlow J (2004) A regularized structured total least squares algorithm for
high-resolution image reconstruction. Linear Algebra Appl 391(1):75–98

Glover K (1984) All optimal Hankel-norm approximations of linear multivariable
systems and their l∞-error bounds. Int J Control 39(6):1115–1193

Golub G, Milanfar P, Varah J (1999) A stable numerical method for inverting shape
from moments. SIAM J Sci Comput 21:1222–1243

Gustafsson B, He C, Milanfar P, Putinar M (2000) Reconstructing planar domains
from their moments. Inverse Problems 16:1053–1070

Ho BL, Kalman RE (1966) Effective construction of linear state-variable models
from input/output functions. Regelungstechnik 14(12):545–592

Kalman RE, Falb PL, Arbib MA (1969) Topics in Mathematical System Theory.
McGraw-Hill

Kukush A, Markovsky I, Van Huffel S (2005) Consistency of the structured total
least squares estimator in a multivariate errors-in-variables model. J Statist Plann
Inference 133(2):315–358, DOI 10.1016/j.jspi.2003.12.020

Kung S (1978) A new identification method and model reduction algorithm via
singular value decomposition. In: Proc. 12th Asilomar Conf. Circuits, Systems,
Computers, Pacific Grove, pp 705–714

Lemmerling P, De Moor B (2001) Misfit versus latency. Automatica 37:2057–2067
Lemmerling P, Mastronardi N, Van Huffel S (2003) Efficient implementation of a

structured total least squares based speech compression method. Linear Algebra
Appl 366:295–315

Markovsky I (2008) Structured low-rank approximation and its applications. Auto-
matica 44(4):891–909, DOI 10.1016/j.automatica.2007.09.011

References 133

Markovsky I, Willems JC, Van Huffel S, Moor BD, Pintelon R (2005) Application of
structured total least squares for system identification and model reduction. IEEE
Trans Automat Control 50(10):1490–1500, DOI 10.1109/TAC.2005.856643

Mastronardi N, Lemmerling P, Kalsi A, O’Leary D, Van Huffel S (2004) Implemen-
tation of the regularized structured total least squares algorithms for blind image
deblurring. Linear Algebra Appl 391:203–221

Mastronardi N, Lemmerling P, Van Huffel S (2005) Fast regularized structured to-
tal least squares algorithm for solving the basic deconvolution problem. Numer
Linear Algebra Appl 12(2–3):201–209

Milanfar P, Verghese G, Karl W, Willsky A (1995) Reconstructing polygons from
moments with connections to array processing. IEEE Trans Signal Proc 43:432–
443

Moore B (1981) Principal component analysis in linear systems: Controllability,
observability and model reduction. IEEE Trans Automat Control 26(1):17–31

Mühlich M, Mester R (1998) The role of total least squares in motion analysis. In:
Burkhardt H (ed) Proc. 5th European Conf. Computer Vision, Springer-Verlag,
pp 305–321

Ng M, Plemmons R, Pimentel F (2000) A new approach to constrained total least
squares image restoration. Linear Algebra Appl 316(1–3):237–258

Ng M, Koo J, Bose N (2002) Constrained total least squares computations for high
resolution image reconstruction with multisensors. Int J Imaging Systems Tech-
nol 12:35–42

Paige CC (1981) Properties of numerical algorithms related to computing control-
lability. IEEE Trans Automat Control 26:130–138

Pintelon R, Schoukens J (2001) System Identification: A Frequency Domain Ap-
proach. IEEE Press, Piscataway, NJ

Pintelon R, Guillaume P, Vandersteen G, Rolain Y (1998) Analyses, development,
and applications of TLS algorithms in frequency domain system identification.
SIAM J Matrix Anal Appl 19(4):983–1004

Pruessner A, O’Leary D (2003) Blind deconvolution using a regularized structured
total least norm algorithm. SIAM J Matrix Anal Appl 24(4):1018–1037

Roorda B (1995) Algorithms for global total least squares modelling of finite mul-
tivariable time series. Automatica 31(3):391–404

Roorda B, Heij C (1995) Global total least squares modeling of multivariate time
series. IEEE Trans Automat Control 40(1):50–63

Schuermans M, Lemmerling P, Lathauwer LD, Van Huffel S (2006) The use of
total least squares data fitting in the shape from moments problem. Signal Proc
86:1109–1115

Söderström T (2007) Errors-in-variables methods in system identification. Auto-
matica 43:939–958

Younan N, Fan X (1998) Signal restoration via the regularized constrained total least
squares. Signal Proc 71:85–93

Zeiger H, McEwen A (1974) Approximate linear realizations of given dimension
via Ho’s algorithm. IEEE Trans Automat Control 19:153–153

Part II

Miscellaneous generalizations

Chapter 5

Missing data, centering, and constraints

Summary: Linear model identification from data with missing values is posed in
Section 5.1 as a weighted low-rank approximation problem with weights related to
the missing values equal to zero. Alternating projections and variable projections
methods for solving the resulting problem are outlined and implemented. The meth-
ods are evaluated on synthetic data and real data from the MovieLens data sets.

low-rank approximation is a data modeling tool. Data centering, on the other
hand, is a common preprocessing step. The combination of low-rank approxima-
tion with data centering is studied in Section 5.2. In the case of approximation in
the Frobenius norm (uniform weighting) and no constraints apart from the rank
constraint, the common preprocessing practice of mean subtraction leads to opti-
mal results. Preprocessing by mean subtraction, however, is not the only way to
optimally preprocess the data. In the case of approximation by a weighted norm
and/or structure constraints on the approximation, preprocessing by mean subtrac-
tion leads, in general, to suboptimal results. We show, how classical solution meth-
ods for weighted and structured low-rank approximation can be modified for doing
optimal preprocessing at the same time as low-rank approximation.

The problem of solving approximately in the least squares sense an overdeter-
mined system of linear equations with complex valued coefficients, where the ele-
ments of the solution vector are constrained to have the same phase is reduced in
Section 5.3 to a generalized low rank matrix approximation.

An approximate rank revealing factorization problem with structure constraints
on the normalized factors is considered. Examples of structure, motivated by an
application of the problem in microarray data analysis, are sparsity, nonnegativ-
ity, periodicity, and smoothness. An alternating projections algorithm is developed.
Although the algorithm is motivated by a specific application in microarray data
analysis, the approach is applicable to other types of structure.

137

138 5 Missing data, centering, and constraints

5.1 Weighted low-rank approximation with missing data

Modeling problems with missing data occur in

• factor analysis of data from questioners due to questions left unanswered,
• computer vision due to occlusions,
• signal processing due to irregular measurements in time/space, and
• control due to malfunction of measurement devices.

In this section, we present a method for linear static modeling with missing data. The
problem is posed as an element-wise weighted low-rank approximation problem
with nonnegative weights, i.e.,

minimize over D̂ ‖D− D̂‖Σ subject to rank(D̂)≤ m, (EWLRA)

where

‖∆D‖Σ := ‖Σ ⊙∆D‖F =

√√√√
q

∑
i=1

N

∑
j=1

σi jei j, Σ ∈ R
q×N and Σ ≥ 0

is a seminorm. (The σi j’s are weights; not noise standard deviations.) In the extreme
case of a zero weight, e.g., σi j = 0, the corresponding element di j of D is not taken
into account in the approximation and therefore it is treated as a missing value. In
this case, the approximation problem is called a singular problem. The algorithms,
described in Chapter 3, for the regular weighted low-rank approximation problem
fail in the singular case. In this section, the methods are extended to solve singular
problems and therefore account for missing data.

Exercise 5.1 (Missing rows and columns). Show that in the case of missing rows
and/or columns of the data matrix, the singular low-rank approximation problem
reduces to a smaller dimensional regular problem. ⊓⊔

Using the image representation, we have

rank(D̂)≤ m ⇐⇒ there are P ∈ R
q×m and L ∈ R

m×N ,

such that D̂ = PL, (RRF)

which turns problem (EWLRA) into the following parameter optimization problem

minimize over P ∈ R
q×m and L ∈ R

m×N ‖D−PL‖Σ . (EWLRAP)

Unfortunately the problem is nonconvex and there are no efficient methods to solve
it. We present local optimization methods based on the alternating projections and
variable projection approaches. These methods are initialized by a suboptimal solu-
tion of (EWLRAP), computed by a direct method.

5.1 Weighted low-rank approximation with missing data 139

Algorithms

Direct method

The initial approximation for the iterative optimization methods is obtained by solv-
ing unweighted low-rank approximation problem where all missing elements (en-
coded as NaN’s) are filled in by zeros.

139a 〈low-rank approximation with missing data 139a〉≡
function [p, l] = lra_md(d, m)

d(isnan(d)) = 0; [q, N] = size(d);

if nargout == 1, 〈data compression 139c〉, end

〈matrix approximation 139b〉
Defines:
lra_md, used in chunks 142b and 146b.

The problem is solved using the singular value decomposition, however, in view
of the large scale of the data the function svds which computes selected singular
values and corresponding singular vectors is used instead of the function svd.

139b 〈matrix approximation 139b〉≡ (139a)
[u, s, v] = svds(d, m); p = u(:, 1:m); l = p’ * d;

The model B̂ = image(P) depends only on the left singular vectors of the data
matrix D. Therefore, B̂ is an optimal model for the data DQ, where Q is any or-
thogonal matrix. Let

D⊤ = Q

[
R1

0

]
, where R1 is upper triangular (QR)

be the QR factorization of D⊤. For N ≫ q, computing the QR factorization and
the singular value decomposition of R1 is a more efficient alternative for finding
an image representation of the optimal subspace than computing the singular value
decomposition of D.

139c 〈data compression 139c〉≡ (139a)
d = triu(qr(d’))’; d = d(1:q, :);

(After these assignments, the variable d is equal to R1.)

Alternating projections

The alternating projections method exploits the fact that problem (EWLRAP) is a
linear least squares problem in either P or L. This suggests a method of alternatively
minimizing over P with L fixed to the value computed on the previous iteration step
and minimizing over L with P fixed to the value computed on the previous itera-
tion step. A summary of the alternating projections method is given in Algorithm 3.
MATLAB-like notation is used for indexing a matrix. For a q×N matrix D and sub-
sets I and J of the sets of, respectively, row and column indexes, DI ,J denotes

140 5 Missing data, centering, and constraints

the submatrix of D with elements whose indexes are in I and J . Either of I
and J can be replaced by “:” in which case all rows/columns are indexed.

On each iteration step of the alternating projections algorithm, the cost function
value is guaranteed to be non-increasing and is typically decreasing. It can be shown
that the iteration converges and that the local convergence rate is linear.

The quantity e(k), computed on step 9 of the algorithm is the squared approxima-
tion error

e(k) = ‖D− D̂(k)‖2
Σ

on the kth iteration step. Convergence of the iteration is judged on the basis of the
relative decrease of the error e(k) after an update step. This corresponds to choosing
a tolerance on the relative decrease of the cost function value. More expensive al-
ternatives are to check the convergence of the approximation D̂(k) or the size of the
gradient of the cost function with respect to the model parameters.

Variable projections

In the second solution method, (EWLRAP) is viewed as a double minimization
problem

minimize over P ∈ R
q×m min

L∈Rm×N
‖D−PL‖2

Σ

︸ ︷︷ ︸
f (P)

. (EWLRA′
P)

The inner minimization is a weighted least squares problem and therefore can be
solved in closed form. Using MATLAB set indexing notation, the solution is

f (P) =
N

∑
j=1

D⊤
J , j diag(Σ 2

J , j)PJ ,:
(
P⊤
J ,: diag(Σ 2

J , j)PJ ,:
)−1

P⊤
J ,: diag(Σ 2

J , j)DJ , j,

(5.1)
where J is the set of indexes of the non-missing elements in the jth column of D.

Exercise 5.2. Derive the expression (5.1) for the function f in (EWLRA′
P). ⊓⊔

The outer minimization is a nonlinear least squares problem and can be solved by
general purpose local optimization methods. The inner minimization is a weighted
projection on the subspace spanned by the columns of P. Consequently, f (P) has
the geometric interpretation of the sum of squared distances from the data points
to the subspace. Since the parameter P is modified by the outer minimization, the
projections are on a varying subspace.

Note 5.3 (Gradient and Hessian of f). In the implementation of the method, we
are using finite difference numerical computation of the gradient and Hessian of f .
(These approximations are computed by the optimization method.) More efficient
alternative, however, is to supply to the method analytical expressions for the gradi-
ent and the Hessian.

5.1 Weighted low-rank approximation with missing data 141

Algorithm 3 Alternating projections algorithm for weighted low-rank approxima-
tion with missing data.
Input: Data matrix D ∈ Rq×N , rank constraint m, elementwise nonnegative weight matrix Σ ∈

Rq×N , and relative convergence tolerance ε .
1: Initial approximation: compute the Frobenius norm low-rank approximation of D with missing

elements filled in with zeros
P(0) := lra_md(D,m).

2: Let k := 0.
3: repeat

4: Let e(k) := 0.
5: for j = 1, . . . ,N do

6: Let J be the set of indexes of the non-missing elements in D:, j.
7: Define

c := diag(ΣJ , j)DJ , j = ΣJ , j ⊙DJ , j

P := diag(ΣJ , j)P
(k)
J ,: = (ΣJ , j1

⊤
m)⊙P

(k)
J ,:

8: Compute

ℓ
(k)
j :=

(
P⊤P

)−1
P⊤c.

9: Let
e(k) := e(k)+‖c−Pℓ

(k)
j ‖2.

10: end for

11: Define
L(k) =

[
ℓ
(k)
1 · · · ℓ(k)N

]
.

12: Let e(k+1) := 0.
13: for i = 1, . . . ,q do

14: Let I be the set of indexes of the non-missing elements in the ith row Di,:.
15: Define

r := Di,I diag(Σi,I) = Di,I ⊙Σi,I

L := L
(k)
:,I diag(Σi,I) = L

(k)
:,I ⊙ (1mΣi,I).

16: Compute

p
(k+1)
i := rL⊤(LL⊤)−1

.

17: Let
e(k+1) := e(k+1)+‖r− p

(k+1)
i L‖2.

18: end for

19: Define

P(k+1) =

p
(k+1)
1
...

p
(k+1)
q

 .

20: k = k+1.
21: until |e(k)− e(k−1)|/e(k) < ε .
Output: Locally optimal solution D̂ = D̂(k) := P(k)L(k) of (EWLRAP).

142 5 Missing data, centering, and constraints

Implementation

Both the alternating projections and the variable projections methods for solving
weighted low-rank approximation problems with missing data are callable through
the function wlra.

142a 〈Weighted low-rank approximation 142a〉≡
function [p, l, info] = wlra(d, m, s, opt)

tic, 〈default parameters opt 142b〉
switch lower(opt.Method)

case {’altpro’, ’ap’}

〈alternating projections method 143a〉
case {’varpro’, ’vp’}

〈variable projections method 144b〉
otherwise

error(’Unknown method %s’, opt.Method)

end

info.time = toc;

Defines:
wlra, used in chunks 146b and 232.

The output parameter info gives the

• approximation error ‖D− D̂‖2
Σ (info.err),

• number of iterations (info.iter), and
• execution time (info.time) for computing the local approximation D̂.

The optional parameter opt specifies the

• method (opt.Method) and, in the case of the variable projections method, al-
gorithm (opt.alg) to be used,

• initial approximation (opt.P),
• convergence tolerance ε (opt.TolFun),
• an upper bound on the number of iterations (opt.MaxIter), and
• level of printed information (opt.Display).

The initial approximation opt.P is a q×m matrix, such that the columns of P(0)

form a basis for the span of the columns of D̂(0), where D̂(0) is the initial approxi-
mation of D, see step 1 in Algorithm 3. If it is not provided via the parameter opt,
the default initial approximation is chosen to be the unweighted low-rank approxi-
mation of the data matrix with all missing elements filled in with zeros.

Note 5.4 (Large scale, sparse data). In an application of (EWLRA) to building rec-
ommender systems, the data matrix D is large but only a small fraction of the el-
ements are given. Such problems can be handled efficiently, encoding D and Σ as
sparse matrices. The convention in this case is that missing elements are zeros.

142b 〈default parameters opt 142b〉≡ (142a)
if ~exist(’opt.MaxIter’), opt.MaxIter = 100; end

if ~exist(’opt.TolFun’), opt.TolFun = 1e-5; end

if ~exist(’opt.Display’), opt.Display = ’off’; end

if ~exist(’opt.Method’), opt.Method = ’ap’; end

5.1 Weighted low-rank approximation with missing data 143

if ~exist(’opt.alg’), opt.alg = ’lsqnonlin’; end

if ~exist(’opt.P’), p = lra_md(d, m); else p = opt.P, end

Uses lra_md 139a.

Alternating projections

The iteration loop for the alternating projections algorithm is:

143a 〈alternating projections method 143a〉≡ (142a)
[q, N] = size(d); sd = norm(s .* d, ’fro’) ^ 2;

cont = 1; k = 0;

while (cont)

〈compute L, given P 143b〉
〈compute P, given L 143c〉
〈check exit condition 143d〉
〈print progress information 144a〉

end

info.err = el; info.iter = k;

The main computational steps on each iteration of the algorithm are the two
weighted least squares problems.

143b 〈compute L, given P 143b〉≡ (143 144)
dd = []; % vec(D - DH)

for j = 1:N

J = find(s(:, j));

sJj = full(s(J, j));

c = sJj .* full(d(J, j));

P = sJj(:, ones(1, m)) .* p(J, :); % = diag(sJj) * p(J, :)

l(:, j) = P \ c; dd = [dd; c - P * l(:, j)];

end

ep = norm(dd) ^ 2;

143c 〈compute P, given L 143c〉≡ (143a)
dd = []; % vec(D - DH)

for i = 1:q

I = find(s(i, :));

sIi = full(s(i, I));

r = sIi .* full(d(i, I));

L = sIi(ones(m, 1), :) .* l(:, I); % = l(:, I) * diag(sIi)

p(i, :) = r / L; dd = [dd, r - p(i, :) * L];

end

el = norm(dd) ^ 2;

The convergence is checked by the size of the relative decrease in the approxi-
mation error e(k) after one update step.

143d 〈check exit condition 143d〉≡ (143a)
k = k + 1; re = abs(el - ep) / el;

cont = (k < opt.MaxIter) & (re > opt.TolFun) & (el > eps);

144 5 Missing data, centering, and constraints

If the optional parameter opt.Display is set to ’iter’, wlra prints on each
iteration step the relative approximation error.

144a 〈print progress information 144a〉≡ (143a)
switch lower(opt.Display)

case ’iter’,

fprintf(’%2d : relative error = %18.8f\n’, k, el / sd)

end

Variable projections

Optimization Toolbox is used for performing the outer minimization in (EWLRA′
P),

i.e., the nonlinear minimization over the P parameter. The parameter opt.alg
specifies the algorithm to be used. The available options are

• fminunc — a quasi-Newton type algorithm, and
• lsqnonlin — a nonlinear least squares algorithm.

Both algorithm allow for numerical approximation of the gradient and Hessian
through finite difference computations. In version of the code shown next, the nu-
merical approximation is used.

144b 〈variable projections method 144b〉≡ (142a)
switch lower(opt.alg)

case {’fminunc’}

[p, err, f, info] = fminunc(@(p)mwlra(p, d, s), p, opt);

case {’lsqnonlin’}

[p, rn, r, f, info] = ...

lsqnonlin(@(p)mwlra2(p, d, s), p, [], []);

otherwise

error(’Unknown algorithm %s.’, opt.alg)

end

[info.err, l] = mwlra(p, d, s); % obtain the L parameter

Uses mwlra 144c and mwlra2 144d.

The inner minimization in (EWLRA′
P) has an analytic solution (5.1). The imple-

mentation of (5.1) is the chunk of code for computing the L parameter, given the P

parameter, already used in the alternating projections algorithm.
144c 〈dist(D ,B) (weighted low-rank approximation) 144c〉≡

function [ep, l] = mwlra(p, d, s)

N = size(d, 2); m = size(p, 2); 〈compute L, given P 143b〉
Defines:
mwlra, used in chunk 144b.

In the case of using a nonlinear least squares type algorithm, the cost function is not
the sum of squares of the errors but the correction matrix ∆D (dd).

144d 〈Weighted low-rank approximation correction matrix 144d〉≡
function dd = mwlra2(p, d, s)

N = size(d, 2); m = size(p, 2); 〈compute L, given P 143b〉
Defines:
mwlra2, used in chunk 144b.

5.1 Weighted low-rank approximation with missing data 145

Test on simulated data

A “true” random rank-m matrix D0 is selected by generating randomly its factors P0

and L0 in a rank revealing factorization

D0 = P0L0, where P0 ∈ R
q×m and L0 ∈ R

m×N .

145a 〈Test missing data 2 145a〉≡ 145b⊲
〈initialize the random number generator 91d〉
p0 = rand(q, m); l0 = rand(m, N);

Defines:
test_missing_data2, used in chunks 147 and 148.

The location of the given elements is chosen randomly row by row. The number of
given elements is such that the sparsity of the resulting matrix, defined as the ratio
of the number of missing elements to the total number qN of elements, matches the
specification r.

The number of given elements of the data matrix is
145b 〈Test missing data 2 145a〉+≡ ⊳145a 145c⊲

ne = round((1 - r) * q * N);

Then the number of given elements of the data matrix per row is
145c 〈Test missing data 2 145a〉+≡ ⊳145b 145d⊲

ner = round(ne / q);

The variables I and J contain the row and column indeces of the given elements.
They are randomly chosen.

145d 〈Test missing data 2 145a〉+≡ ⊳145c 145e⊲
I = []; J = [];

for i = 1:q

I = [I i*ones(1, ner)]; rp = randperm(N); J = [J rp(1:ner)];

end

ne = length(I);

By construction there are ner given elements in each row of the data matrix,
however, there may be columns with a few (or even zero) given elements. Columns
with less than m given elements can not be recovered from the given observations,
even when the data is noise-free. Therefore, we remove such columns from the data
matrix.

145e 〈Test missing data 2 145a〉+≡ ⊳145d 146a⊲
tmp = (1:N)’;

J_del = find(sum(J(ones(N, 1),:) ...

== tmp(:, ones(1, ne)), 2) < m);

l0(:, J_del) = [];

tmp = sparse(I, J, ones(ne, 1), q, N); tmp(:, J_del) = [];

[I, J] = find(tmp); N = size(l0, 2);

Next, a noisy data matrix with missing elements is constructed by adding to the
true values of the given data elements independent, identically, distributed, zero

146 5 Missing data, centering, and constraints

mean, Gaussian noise, with a specified standard deviation s. The weight matrix Σ
is binary: σi j = 1 if di j is given and σi j = 1 if di j is missing.

146a 〈Test missing data 2 145a〉+≡ ⊳145e 146b⊲
d0 = p0 * l0;

Ie = I + q * (J - 1);

d = zeros(q * N, 1);

d(Ie) = d0(Ie) + sigma * randn(size(d0(Ie)));

d = reshape(d, q, N);

s = zeros(q, N); s(Ie) = 1;

The methods implemented in lra and wlra are applied on the noisy data ma-
trix D with missing elements and the results are validated against the complete true
matrix D0.

146b 〈Test missing data 2 145a〉+≡ ⊳146a 146c⊲
tic, [p0, l0] = lra_md(d, m); t0 = toc;

err0 = norm(s .* (d - p0 * l0), ’fro’) ^ 2;

e0 = norm(d0 - p0 * l0, ’fro’) ^ 2;

[ph1, lh1, info1] = wlra(d, m, s);

e1 = norm(d0 - ph1 * lh1, ’fro’) ^ 2;

opt.Method = ’vp’; opt.alg = ’fminunc’;

[ph2, lh2, info2] = wlra(d, m, s, opt);

e2 = norm(d0 - ph2 * lh2, ’fro’) ^ 2;

opt.Method = ’vp’; opt.alg = ’lsqnonlin’;

[ph3, lh3, info3] = wlra(d, m, s, opt);

e3 = norm(d0 - ph3 * lh3, ’fro’) ^ 2;

Uses lra_md 139a and wlra 142a.

For comparison, we use also a method for low rank matrix completion, called
singular value thresholding (Cai et al, 2009).. Although the singular value thresh-
olding method is initially designed for the of exact case, it can cope with noisy data
as well, i.e., solve low-rank approximation problems with missing data. The method
is based on convex relaxation of the rank constraint and does not require an initial
approximation.

146c 〈Test missing data 2 145a〉+≡ ⊳146b 147a⊲
tau = 5 * sqrt(q * N); delta = 1.2 / (ne / q / N);

try

tic, [U, S, V] = SVT([q N], Ie, d(Ie), tau, delta);

t4 = toc;

dh4 = U(:, 1:m) * S(1:m, 1:m) * V(:, 1:m)’;

catch

dh4 = NaN; t4 = NaN; % SVT not installed

end

err4 = norm(s .* (d - dh4), ’fro’) ^ 2;

e4 = norm(d0 - dh4, ’fro’) ^ 2;

The final result shows the

• relative approximation error ‖D− D̂‖2
Σ/‖D‖2

Σ ,
• estimation error ‖D0 − D̂‖2

F/‖D0‖2
F, and

• computation time

5.1 Weighted low-rank approximation with missing data 147

for the five methods.
147a 〈Test missing data 2 145a〉+≡ ⊳146c

nd = norm(s .* d, ’fro’)^2; nd0 = norm(d0, ’fro’) ^ 2;

format long

res = [err0/nd info1.err/nd info2.err/nd info3.err/nd err4/nd;

e0/nd0 e1/nd0 e2/nd0 e3/nd0 e4/nd0;

t0 info1.time info2.time info3.time t4]

First, we call the test script with exact (noise-free) data.
147b 〈Missing data experiment 1: small sparsity, exact data 147b〉≡

q = 10; N = 100; m = 2; r = 0.1; sigma = 0;

test_missing_data2

Uses test_missing_data2 145a.

The experiment corresponds to a matrix completion problem (Candés and Recht,
2009). The results, summarized in Tables 5.1, show that all methods, except for
lra_md, complete correctly (up to numerical errors) the missing elements. As
proved by Candés and Recht (2009), exact matrix completion is indeed possible
in the case of Experiment 1.

Table 5.1 Results for Experiment 1. (SVT — singular value thresholding, VP — variable projec-
tions)

lra_md ap VP + fminunc VP + lsqnonlin SVT
‖D− D̂‖2

Σ/‖D‖2
Σ 0.02 0 0 0 0

‖D0 − D̂‖2
F/‖D‖2

F 0.03 0 0 0 0
Execution time (sec) 0.04 0.18 0.17 0.18 1.86

The second experiment is with noisy data.
147c 〈Missing data experiment 2: small sparsity, noisy data 147c〉≡

q = 10; N = 100; m = 2; r = 0.1; sigma = 0.1;

test_missing_data2

Uses test_missing_data2 145a.

The results, shown in Tables 5.2, indicate that the methods implemented in wlra
converge to the same (locally) optimal solution. The alternating projections method,
however, is about 100 times faster than the variable projections methods, using the
Optimization Toolbox functions fminunc and lsqnonlin, and about 10 times
faster than the singular value thresholding method. The solution produces by the
singular value thresholding method is suboptimal but close to being (locally) opti-
mal.

Table 5.2 Results for Experiment 2.

lra ap VP + fminunc VP + lsqnonlin SVT
‖D− D̂‖2

Σ/‖D‖2
Σ 0.049 0.0257 0.0257 0.0257 0.025

‖D0 − D̂‖2
F/‖D‖2

F 0.042 0.007 0.007 0.007 0.007
Execution time (sec) 0.04 0.11 0.11 0.11 1.51

148 5 Missing data, centering, and constraints

In the third experiment we keep the noise standard deviation the same as in Ex-
periment 2 but increase the sparsity.

148 〈Missing data experiment 3: bigger sparsity, noisy data 148〉≡
q = 10; N = 100; m = 2; r = 0.4; sigma = 0.1;

test_missing_data2

Uses test_missing_data2 145a.

The results, shown in Tables 5.3, again indicate that the methods implemented in
wlra converge to the same (locally) optimal solutions. In this case, the singular
value thresholding method is further away from being (locally) optimal, but is still
much better than the solution of lra_md — 1% vs 25% relative prediction error.

Table 5.3 Results for Experiment 3

lra_md ap VP + fminunc VP + lsqnonlin SVT
‖D− D̂‖2

Σ/‖D‖2
Σ 0.17 0.02 0.02 0.02 0.02

‖D0 − D̂‖2
F/‖D‖2

F 0.27 0.018 0.018 0.018 0.17
Execution time (sec) 0.04 0.21 0.21 0.21 1.87

The three methods based on local optimization (ap, VP + fminunc, VP +
lsqnonlin) need not compute the same solution even when started from the same
initial approximation. The reason for this is that the methods only guarantee con-
vergence to a locally optimal solution, however, the problem is non convex and may
have multiple local minima. Moreover, the trajectories of the three methods in the
parameter space are different because the update rules of the methods are different.

The computation times for the three methods are different. The number of float-
ing point operations per iteration can be estimated theoretically which gives an indi-
cation which of the methods may be the faster per iteration. Note, however, that the
number of iterations, needed for convergence, is not easily predictable, unless the
methods are started “close” to a locally optimal solution. The alternating projections
methods is most efficient per iteration but needs most iteration steps. In the current
implementation of the methods, the alternating projections method is still the win-
ner of the the three methods for large scale data sets because for q more than a few
hundreds optimization methods are too computationally demanding. This situation
may be improved by analytically computing the gradient and Hessian.

Test on the MovieLens data

The MovieLens data sets were collected and published by the GroupLens Research
Project at the University of Minnesota in 1998. Currently, they are recognized as a
benchmark for predicting missing data in recommender systems. The “100K data
set” consists of 100000 ratings of q = 943 users’ on N = 1682 movies and demo-
graphic information for the users. (The ratings are encoded by integers in the range
from 1 to 5.) Here, we use only the ratings, which constitute a q×N matrix with

5.1 Weighted low-rank approximation with missing data 149

missing elements. The task of a recommender system is to fill in the missing ele-
ments.

Assuming that the true complete data matrix is rank deficient, building a recom-
mender system is a problem of low-rank approximation with missing elements. The
assumption that the true data matrix is low rank is reasonable in practice because
user ratings are influences by a few factors. Thus, we can identify typical users (re-
lated to different combinations of factors) and reconstruct the ratings of any user as
a linear combination of the ratings of the typical users. As long as the typical users
are fewer than the number of users, the data matrix is low rank. In reality, the num-
ber of factors is not small but there are a few dominant ones, so that the true data
matrix is approximately low rank.

It turns out that two factors allow us to reconstruct the missing elements with 7.1%
average error. The reconstruction results are validated by cross validation with 80%
identification data and 20% validation data. Five such partitionings of the data are
given on the MovieLens web site. The matrix

Σ
(k)
idt ∈ {0,1}q×N

indicates the positions of the given elements in the kth partition:

• Σ
(k)
idt,i j = 1 means that the element Di j is used for identification and

• Σ
(k)
idt,i j = 0 means that Di j is missing.

Similarly, Σ
(k)
val indicates the validation elements in the kth partition.

Table 5.4 shows the mean relative identification and validation errors

eidt :=
1
5

5

∑
k=1

‖D− D̂(k)‖2
Σ
(k)
idt

/‖D‖2
Σ
(k)
idt

and

eval :=
1
5

5

∑
k=1

‖D− D̂(k)‖2
Σ
(k)
val

/‖D‖2
Σ
(k)
val

,

where D̂(k) is the reconstructed matrix in the kth partitioning of the data. The singu-
lar value thresholding method issues a message “Divergence!”, which explains the
poor results obtained by this method.

Table 5.4 Results on the MovieLens data.
lra_md ap SVT

Mean identification error eidt 0.100 0.060 0.298
Mean prediction error eval 0.104 0.071 0.307
Mean execution time (sec) 1.4 156 651

150 5 Missing data, centering, and constraints

5.2 Affine data modeling

Problem formulation

Closely related to the linear model is the affine one. The observations

D = {d1, . . . ,dN }

satisfy an affine static model B if D ⊂B, where B is an affine set, i.e., B = c+B′,
with B′ ⊂R

q a linear model and c∈R
q an offset vector. Obviously, the affine model

class contains as a special case the linear model class. The parameter c, however,
allows us to account for a constant offset in the data. Consider, for example, the data

D = {
[

1
1

]
,
[

1
−1

]
},

which satisfies the affine model

B =
[

1
0

]
+{d |

[
1 0
]

d = 0}

but is not fitted by a linear model of dimension one.
Subtracting the offset c from the data vector d, reduces the affine modeling prob-

lem with known offset parameter to an equivalent linear modeling problem. In a
realistic data modeling setup, however, the offset parameter is unknown and has to
be identified together with the linear model B′. An often used heuristic for solving
this problem is to replace the offset c by the mean

E(D) :=
1
N

D1N = (d1 + · · ·+dN)/N ∈ R
q,

where
D =

[
d1 · · ·dN

]

is the data matrix and 1N is the vector in R
N with all elements equal to one. This

leads to the following two-stage procedure for identification of affine models:

1. pre-processing step: subtract the mean from the data points,
2. linear identification step: identify a linear model for the centered data.

When the aim is to derive an optimal in some specified sense approximate affine
model, the two-stage procedure may lead to suboptimal results. Indeed, even if the
data centering and linear identification steps are individually optimal with respect to
the desired optimality criterion, their composition need not be optimal for the affine
modeling problem, i.e., simultaneous subspace fitting and centering.

It is not clear a priori whether the two-stage procedure is optimal when com-
bined with other data modeling approaches. It turns out that, in the case of low-rank
approximation in the Frobenius norm with no additional constraints, the two-stage
procedure is optimal. It follows from the analysis that a solution is not unique. Also,

5.2 Affine data modeling 151

counter examples show that in the more general cases of weighted and Hankel struc-
tured low-rank approximation problems, the two-stage procedure is suboptimal.
Methods based on the alternating projections and variable projections algorithms
are developed in these cases.

Matrix centering

The matrix centering operation is subtraction of the mean E(D) from all columns of
the data matrix D:

C(D) := D−E(D)1⊤N = D(I− 1
N

1N1⊤N).

The following proposition justifies the name “matrix centering” for C(·).

Proposition 5.5 (Matrix centering) The matrix C(D) is column centered, i.e., its

mean is zero:

E
(

C(D)
)
= 0.

The proof is left as an exercise, see Problem P.21.
Next we give an interpretation of the mean computation as a simple optimal

modeling problem.

Proposition 5.6 (Mean computation as an optimal modeling) E(D) is solution of

the following optimization problem:

minimize over D̂ and c ‖D− D̂‖F

subject to D̂ = c1⊤N .
⊓⊔

The proof is left as an exercise, see Problem P.22.

Note 5.7 (Intercept). Data fitting with an intercept is a special case of centering when
all but one of the row means are set to zero, i.e., centering of one row. Intercept is
appropriate when an input/output partition of the variables is imposed and there is a
single output that has an offset.

Unweighted low-rank approximation with centering

In this section, we consider the low-rank approximation problem in the Frobenius
norm with centering:

minimize over D̂ and c ‖D− c1⊤N − D̂‖F

subject to rank(D̂)≤ m.
(LRAc)

152 5 Missing data, centering, and constraints

The following theorem shows that the two-stage procedure yields a solution
to (LRAc).

Theorem 5.8 (Optimality of the two-stage procedure). A solution to (LRAc) is

the mean of D, c∗ = E(D), and an optimal in a Frobenius norm rank-m approxima-

tion D̂∗ of the centered data matrix C(D).

Proof. Using a kernel representation of the rank constraint

rank(D̂)≤ m ⇐⇒ there is full rank matrix R ∈ R
(q−m)×q, such that RD̂ = 0,

we have the following equivalent problem to (LRAc)

minimize over D̂, c, and R ∈ R
(q−m)×q ‖D− c1⊤N − D̂‖2

F

subject to RD̂ = 0 and RR⊤ = Iq−m.
(LRAc,R)

The Lagrangian of (LRAc,R) is

L(D̂,c,R,Λ ,Ξ) :=
q

∑
i=1

N

∑
j=1

(di j − ci − d̂i j)
2 +2trace(RD̂Λ)+ trace

(
Ξ(I−RR⊤)

)
.

Setting the partial derivatives of L to zero, we obtain the necessary optimality con-
ditions

∂L/∂ D̂ = 0 =⇒ D− c1⊤N − D̂ = R⊤Λ⊤, (L1)

∂L/∂c = 0 =⇒ Nc = (D− D̂)1N , (L2)

∂L/∂R = 0 =⇒ D̂Λ = R⊤Ξ , (L3)

∂L/∂Λ = 0 =⇒ RD̂ = 0, (L4)

∂L/∂Ξ = 0 =⇒ RR⊤ = I. (L5)

The theorem follows from the system of equations (L1–L5). Next we list the deriva-
tion steps.

From (L3), (L4), and (L5), it follows that Ξ = 0 and from (L1), we obtain

D− D̂ = c1⊤N +R⊤Λ⊤.

Substituting the last identity in (L2), we have

Nc = (c1⊤N +R⊤Λ⊤)1N = Nc+R⊤Λ⊤1N =⇒ R⊤Λ⊤1N = 0

=⇒ Λ⊤1N = 0.

Multiplying (L1) from the left by R and using (L4) and (L5), we have

R(D− c1⊤N) = Λ⊤. (∗)

5.2 Affine data modeling 153

Now, multiplication of the last identity from the right by 1N and use of Λ⊤1N = 0,
shows that c is the row mean of the data matrix D,

R(D1N −Nc) = 0 =⇒ c =
1
N

D1N .

Next, we show that D̂ is an optimal in a Frobenius norm rank-m approximation
of D− c1⊤N . Multiplying (L1) from the right by Λ and using D̂Λ = 0, we have

(D− c1⊤N)Λ = R⊤Λ⊤Λ . (∗∗)

Defining
Σ :=

√
Λ⊤Λ and V := ΛΣ−1,

(∗) and (∗∗) become

R(D− c1⊤N) = ΣV⊤, V⊤V = I

(D− c1⊤N)V = R⊤Σ , RR⊤ = I.

The above equations show that the rows of R and the columns of V span, respec-
tively, left and right m-dimensional singular subspaces of the centered data matrix
D− c1⊤N . The optimization criterion is minimization of

‖D− D̂− c1⊤N‖F = ‖R⊤Λ⊤‖F =
√

trace(ΛΛ⊤) = trace(Σ).

Therefore, a minimum is achieved when the rows of R and the columns of V span
the, respectively left and right m-dimensional singular subspaces of the centered
data matrix D− c1⊤N , corresponding to the m smallest singular values. The solution
is unique if and only if the mth singular value is strictly bigger than the (m+ 1)st
singular value. Therefore, D̂ is a Frobenius norm optimal rank-m approximation of
the centered data matrix D− c1⊤N , where c = D1N/N. ⊓⊔
Theorem 5.9 (Nonuniqueness). Let

D̂ = PL, where P ∈ R
q×m and L ∈ R

m×N

be a rank revealing factorization of an optimal in a Frobenius norm rank-m approx-

imation of the centered data matrix C(D). The solutions of (LRAc) are of the form

c∗(z) = E(D)+Pz

D̂∗(z) = P(L− z1⊤N)
for z ∈ R

m.

Proof.

c1⊤N + D̂ = c1⊤N +PL

= c1⊤N +Pz1⊤N +PL−Pz1⊤N

= (c+Pz)︸ ︷︷ ︸
c′

1⊤N +P(L− z1⊤N)︸ ︷︷ ︸
L′

= c′1⊤N + D̂′

154 5 Missing data, centering, and constraints

Therefore, if (c,D̂) is a solution, then (c′,D̂′) is also a solution. From Theorem 5.8,
it follows that c = E(D), D̂ = PL is a solution. ⊓⊔

The same type of nonuniqueness appears in weighted and structured low-rank
approximation problems with centering. This can cause problems in the optimiza-
tion algorithms and implies that solutions produced by different methods can not be
compared directly.

Weighted low-rank approximation with centering

Consider the weighted low-rank approximation problem with centering:

minimize over D̂ and c ‖D− D̂− c1⊤‖W

subject to rank(D̂)≤ m,
(WLRAc)

where W is a symmetric positive definite matrix and ‖ · ‖W is the weighted norm,
defined in (‖·‖W). The two-stage procedure of computing the mean in a preprocess-
ing step and then the weighted low-rank approximation of the centered data matrix,
in general, yields a suboptimal solution to (WLRAc). We present two algorithms
for finding a locally optimal solution to (WLRAc). The first one is an alternating
projections type method and the second one is a variable projections type method.
First, however, we present a special case of (WLRAc) with analytic solution that is
more general than the case W = αI, with α 6= 0.

Two-sided weighted low-rank approximation

Theorem 5.10 (Reduction to an unweighted problem). A solution to (WLRAc), in

the case

W =Wr ⊗Wl, where Wl ∈ R
q×q and Wr ∈ R

N×N (Wr ⊗Wl)

with Wr1N = λ 1N , for some λ , is

c∗ =
√

W−1
l c∗m/

√
λ , D̂∗ =

√
W−1

l D̂∗
m

√
W−1

r ,

where (c∗m,D̂
∗
m) is a solution to the unweighted low-rank approximation problem

with centering

minimize over D̂m and cm ‖Dm − cm1⊤N − D̂m‖F

subject to rank(D̂m)≤ m.

for the modified data matrix Dm :=
√

WlD
√

Wr.

5.2 Affine data modeling 155

Proof. Using the property Wr1N = λ 1N of Wr, we have

‖D− D̂− c1⊤‖W = ‖
√

Wl(D− D̂− c1⊤)
√

Wr‖F

= ‖Dm − D̂m − cm1⊤‖F

where

Dm =
√

WlD
√

Wr, D̂m =
√

WlD̂
√

Wr, and cm =
√

Wlc
√

λ .

Therefore, the considered problem is equivalent to the low-rank approximation
problem (LRAc) for the modified data matrix Dm. ⊓⊔

Alternating projections algorithm

Using the image representation of the rank constraint

rank(D̂)≤ m ⇐⇒ D̂ = PL, where P ∈ R
q×m and L ∈ R

m×N ,

we obtain the following problem equivalent to (WLRAc)

minimize over P ∈ R
q×m, L ∈ R

m×N , and c ∈ R
q ‖D−PL− c1⊤N‖W .

(WLRAc,P)
The method is motivated by the fact that (WLRAc,P) is linear in c and P as well as
in c and L. Indeed,

‖D− c1⊤N −PL‖W =

∥∥∥∥vec(D)−
[
IN ⊗P 1N ⊗ Iq

][vec(L)
c

]∥∥∥∥
W

=

∥∥∥∥vec(D)−
[
L⊤⊗ Iq 1N ⊗ Iq

][vec(P)
c

]∥∥∥∥
W

.

This suggests an iterative algorithm alternating between minimization over c and P

with a fixed L and over c and L with a fixed P, see Algorithm 4. Each iteration step is
a weighted least squares problem, which can be solved globally and efficiently. The
algorithm starts from an initial approximation c(0), P(0), L(0) and on each iteration
step updates the parameters with the newly computed values from the last least
squares problem. Since on each iteration the cost function value is guaranteed to be
non increasing and the cost function is bounded from below, the sequence of cost
function values, generated by the algorithm converges. Moreover, it can be shown
that the sequence of parameter approximations c(k), P(k), L(k) converges to a locally
optimal solution of (WLRAc,P).

Example 5.11. Implementation of the methods for weighted and structured low-
rank approximation with centering, presented in this section, are available from the
book’s web page. Figure 5.1 shows the sequence of the cost function values for a
randomly generated weighted rank-1 approximation problem with q = 3 variables

156 5 Missing data, centering, and constraints

and N = 6 data points. The mean of the data matrix and the approximation of the
mean, produced by the Algorithm 4 are, respectively

c(0) =

0.5017
0.7068
0.3659

 and ĉ =

0.4365
0.6738
0.2964

 .

The weighted rank-1 approximation of the matrix D − c(0)1⊤N has approximation
error 0.1484, while the weighted rank-1 approximation of the matrix D − ĉ1⊤N
has approximation error 0.1477. This proves the suboptimality of the two-stage
procedure—data centering, followed by weighted low-rank approximation.

1 2 3 4 5 6

0.15

0.16

0.17

0.18

0.19

0.2

0.21

k

f k

Fig. 5.1 Sequence of cost function values, produced by Algorithm 4.

Variable projections algorithm

The variable projections approach is based on the observation that (WLRAc,P) is a
double minimization problem

minimize over P ∈ R
q×m f (P)

where the inner minimization is a weighted least squares problem

f (P) := min
L∈Rm×N , c∈Rq

‖D−PL− c1⊤N‖W

and therefore can be solved analytically. This reduces the original problem to a
nonlinear least squares problem over P only. We have that

f (P) =

√
vec⊤(D)WP

(
P⊤W P

)−1
P⊤W vec(D),

5.2 Affine data modeling 157

Algorithm 4 Alternating projections algorithm for weighted low-rank approxima-
tion with centering.
Input: data matrix D ∈Rq×N , rank constraint m, positive definite weight matrix W ∈RNq×Nq, and

relative convergence tolerance ε .
1: Initial approximation: compute the mean c(0) := E(D) and the rank-m approximation D̂(0) of

the centered matrix D− c(0)1⊤N . Let P(0) ∈ R
q×m and L(0) ∈ R

m×N are full rank matrices, such
that D̂(0) = P(0)L(0).

2: k := 0.
3: repeat

4: Let P :=
[
IN ⊗P(k) 1N ⊗ Iq

]
and

[
vec(L(k+1))

ĉ(k+1)

]
:=
(
P⊤WP

)−1
P⊤W vec(D).

5: Let L :=
[
L(k+1)⊤⊗ Iq 1N ⊗ Iq

]
and

[
vec(P(k+1))

ĉ(k+1)

]
:=
(
L⊤W L

)−1
L⊤W vec(D).

6: Let D̂(k+1) := P(k+1)L(k+1).
7: k = k+1.
8: until ‖D̂(k)− D̂(k−1)‖W/‖D̂(k)‖W < ε .

Output: Locally optimal solution ĉ := ĉ(k) and D̂∗ = D̂(k) of (WLRAc,P).

where
P :=

[
IN ⊗P 1N ⊗ Iq

]
.

For the outer minimization any standard unconstrained nonlinear (least squares)
algorithm is used.

Example 5.12. For the same data, initial approximation, and convergence tolerance
as in Example 5.11, the variable projections algorithm, using numerical approxima-
tion of the derivatives in combination with quasi-Newton method converges to a lo-
cally optimal solution with approximation error 0.1477—the same as the one found
by the alternating projections algorithm. The optimal parameters found by the two
algorithms are equivalent up to the nonuniqueness of a solution (Theorem 5.9).

Hankel low-rank approximation with centering

In the case of data centering we consider the following modified Hankel low-rank
approximation problem:

minimize over ŵ and c ‖w− c− ŵ‖2

subject to rank
(
Hn+1(ŵ)

)
≤ r.

(HLRAc)

158 5 Missing data, centering, and constraints

Algorithm

Consider the kernel representation of the rank constraint

rank
(
Hn+1(ŵ)

)
≤ r ⇐⇒ there is full rank matrix R ∈ R

p×(n+1)q

such that RHn+1(wd) = 0.

We have
RHn+1(ŵ) = 0 ⇐⇒ T (R)ŵ = 0,

where

T (R) =

R0 R1 · · · Rn

R0 R1 · · · Rn

. . .
. . .

. . .

R0 R1 · · · Rn

(all missing elements are zeros). Let P be a full rank matrix, such that

image(P) = ker
(
T (R)

)
.

Then the constraint of (HLRAc) can be replaced by

there is ℓ, such that ŵ = Pℓ,

which leads to the following problem equivalent to (LRAc)

minimize over R f (R),

where

f (R) := min
c,ℓ

∥∥∥∥w−
[
1N ⊗ Iq P

][c

ℓ

]∥∥∥∥
2
.

The latter is a standard least squares problem, so that the evaluation of f for a
given R can be done efficiently. Moreover, one can exploit the Toeplitz structure
of the matrix T in the computation of P and in the solution of the least squares
problem.

Example 5.13. The data sequence is

w(t) = 0.9t +1, t = 1, . . . ,10.

The sequence (0.91, . . . ,0.910) satisfies a difference equation

σw = aw

(a first order autonomous linear time-invariant model), however, a shifted sequence
w(t) = 0.9t +c, with c 6= 0, does not satisfy such an equation. The mean of the data
is E(w) = 1.5862, so that the centered data w(t)−E(D) is not a trajectory of a first
order autonomous linear time-invariant model. Solving the Hankel structured low-

5.3 Complex least squares problem with constrained phase 159

rank approximation problem with centering (HLRAc), however, yields the exact
solution ĉ = 1.

Preprocessing by centering the data is common in system identification. Exam-
ple 5.13 shows that preprocessing can lead to suboptimal results. Therefore, there
is need for methods that combine data preprocessing with the existing identification
methods. The algorithm derived in this section is such a method for identification in
the errors-in-variables setting. It can be modified for output error identification, i.e.,
assuming that the input of the system is known exactly.

5.3 Complex least squares problem with constrained phase

Problem formulation

The problem considered in this section is defined as follows.

Problem 5.14. Given a complex valued m×n matrix A and an m×1 vector b, find a
real valued n×1 vector x and a number φ , such that the equation’s error or residual
of the overdetermined system of linear equations

Axeiφ ≈ b, (i is the imaginary unit)

is minimized in the least squares sense, i.e.,

minimize over x ∈ R
n and φ ∈ (−π ,π] ‖Axeiφ −b‖2. (CLS)

⊓⊔
Problem (CLS) is a complex linear least squares problem with constraint that all
elements of the solution have the same phase.

As formulated, (CLS) is a nonlinear optimization problem. General purpose local
optimization methods can be used for solving it, however, this approach has the
usual disadvantages of local optimization methods: need of initial approximation, no
guarantee of global optimality, convergence issues, and no insight in the geometry
of the solutions set. In (Bydder, 2010) the following closed form solution of (CLS)
is derived

x̂ =
(
ℜ(AHA)

)+
ℜ(AHbe−iφ) (SOL1 x̂)

φ̂ =
1
2
∠
(
(AHb)⊤ℜ(AHA)+(AHb)

)
, (SOL1 φ̂)

where ℜ(A)/ℑ(A) is the real/imaginary part, ∠(A) is the angle, AH is the complex
conjugate transpose, and A+ is the pseudoinverse of A. Moreover, in the case when
a solution of (CLS) is not unique, (SOL1 x̂, SOL1 φ̂) is a least norm element of the
solution set, i.e., a solution (x,φ), such that ‖x‖2 is minimized. Expression (SOL1

160 5 Missing data, centering, and constraints

x̂) is the result of minimizing the cost function ‖Axeiφ − b‖2 with respect to x, for
a fixed φ . This is a linear least squares problems (with complex valued data and
real valued solution). Then minimization of the cost function with respect to φ ,
for x fixed to its optimal value (SOL1 x̂), leads through a nontrivial chain of steps
to (SOL1 φ̂).

Solution

Problem (CLS) is equivalent1 to the problem

minimize over x ∈ R
n and φ ′ ∈ (−π ,π] ‖Ax−beiφ ′‖2, (CLS’)

where φ ′ =−φ . With

y1 := ℜ(eiφ ′
) = cos(φ ′) = cos(φ) and y2 := ℑ(eiφ ′

) = sin(φ ′) =−sin(φ),

we have [
ℜ(beiφ ′

)

ℑ(beiφ ′
)

]
=

[
ℜ(b) −ℑ(b)
ℑ(b) ℜ(b)

][
y1
y2

]
.

Then, (CLS’) is furthermore equivalent to the problem

minimize over x ∈ R
n and y ∈ R

2
∥∥∥∥
[

ℜ(A)
ℑ(A)

]
x−
[

ℜ(b) −ℑ(b)
ℑ(b) ℜ(b)

]
y

∥∥∥∥
subject to ‖y‖2 = 1,

or

minimize over z ∈ R
n+2 z⊤C⊤Cz subject to z⊤D⊤Dz = 1, (CLS”)

with

C :=
[

ℜ(A) ℜ(b) −ℑ(b)
ℑ(A) ℑ(b) ℜ(b)

]
∈ R

2m×(n+2) and D :=
[

0 0
0 I2

]
∈ R

(n+2)×(n+2).

(C, D)
It is well known that a solution of problem (CLS”) can be obtained from the general-
ized eigenvalue decomposition of the pair of matrices (C⊤C,D). More specifically,
the smallest generalized eigenvalue λmin of (C⊤C,D) is equal to the minimum value
of (CLS”), i.e.,

λmin = ‖Ax̂eiφ̂ −b‖2
2.

If λmin is simple, a corresponding generalized eigenvector zmin is of the form

1 Two optimization problems are equivalent if the solution of the first can be obtained from the
solution of the second by a one-to-one transformation. Of practical interest are equivalent problems
for which the transformation is “simple”.

5.3 Complex least squares problem with constrained phase 161

zmin = α

x̂

−cos(φ̂)
sin(φ̂)

 ,

for some α ∈ R. We have the following result.

Theorem 5.15. Let λmin be the smallest generalized eigenvalue of the pair of matri-

ces (C⊤C,D), defined in (C, D), and let zmin be a corresponding generalized eigen-

vector. Assuming that λmin is a simple eigenvalue, problem (CLS) has unique solu-

tion, given by

x̂ =
1

‖z2‖2
z1, φ̂ = ∠(−z2,1 + iz2,2), where zmin =:

[
z1

z2

] }
n}
2
. (SOL2)

Remarks:

1. Generalized eigenvalue decomposition vs generalized singular value decompo-

sition Since the original data are the matrix A and the vector b, the generalized
singular value decomposition of the pair (C,D) can be used instead of the gen-
eralized eigenvalue decomposition of the pair (C⊤C,D). This avoids “squaring”
the data and is recommended from a numerical point of view.

2. Link to low-rank approximation and total least squares Problem (CLS”) is
equivalent to the generalized low-rank approximation problem

minimize over Ĉ ∈ R
2m×(n+2)

∥∥(C−Ĉ)D
∥∥

F

subject to rank(Ĉ)≤ n+1 and ĈD⊥ =CD⊥,
(GLRA)

where

D⊥ =

[
In 0
0 0

]
∈ R

(n+2)×(n+2)

and ‖ · ‖F is the Frobenius norm. Indeed, the constraints of (GLRA) imply that

∥∥(C−Ĉ)D
∥∥

F = ‖b− b̂‖2, where b̂ = Axeiφ .

The normalization (SOL2) is reminiscent to the generic solution of the total least
squares problems. The solution of total least squares problems, however, involves
a normalization by scaling with the last element of a vector zmin in the approx-
imate kernel of the data matrix C, while the solution of (CLS) involves normal-
ization by scaling with the norm of the last two elements of the vector zmin.

3. Uniqueness of the solution and minimum norm solutions A solution x of (CLS)
is nonunique when A has nontrivial null space. This source of nonuniqueness is
fixed in (Bydder, 2010) by choosing from the solutions set a least norm solution.
A least norm solution of (CLS), however, may also be nonunique due to possible
nonuniquess of φ . Consider the following example,

162 5 Missing data, centering, and constraints

A =

[
1 i

−i 1

]
, b =

[
1
−i

]
,

which has two least norm solutions

x̂eiφ1 =

[
1
0

]
and x̂′eiφ2 =

[
0
−i

]
.

Moreover, there is a trivial source of nonuniqueness in x and φ due to

xeiφ =−xei(φ±π)

with both φ and one of the angles φ ±π in the interval (−π ,π].

Computational algorithms

Solution (SOL1 x̂, SOL1 φ̂) gives a straightforward procedure for computing a least
norm solution of problem (CLS).

162a 〈Complex least squares, solution by (SOL1 x̂, SOL1 φ̂) 162a〉≡
function cx = cls1(A, b)

invM = pinv(real(A’ * A)); Atb = A’ * b;

phi = 1 / 2 * angle((Atb).’ * invM * Atb);

x = invM * real(Atb * exp(-i * phi));

cx = x * exp(i * phi);

Defines:
cls1, used in chunk 165b.

The corresponding computational cost is

cls1 — O(n2m+n3).

Theorem 5.15 gives two alternative procedures—one based on the generalized
eigenvalue decomposition:

162b 〈Complex least squares, solution by generalized eigenvalue decomposition 162b〉≡
function cx = cls2(A, b)

〈define C, D, and n 162c〉
[v, l] = eig(C’ * C, D); l = diag(l);

l(find(l < 0)) = inf; % ignore nevative values

[ml, mi] = min(l); z = v(:, mi);

phi = angle(-z(end - 1) + i * z(end));

x = z(1:(end - 2)) / norm(z((end - 1):end));

cx = x * exp(i * phi);

Defines:
cls2, used in chunk 165b.

162c 〈define C, D, and n 162c〉≡ (162 163)
C = [real(A) real(b) -imag(b);

imag(A) imag(b) real(b)];

n = size(A, 2); D = diag([zeros(1, n), 1, 1]);

5.3 Complex least squares problem with constrained phase 163

and the other one based on the generalized singular value decomposition:
163a 〈Complex least squares, solution by generalized singular value decomposition 163a〉≡

function cx = cls3(A, b)

〈define C, D, and n 162c〉
[u, v] = gsvd(C, D); z = v(:, 1);

phi = angle(-z(end - 1) + i * z(end));

x = pinv(C(:, 1:n)) * [real(b * exp(- i * phi));

imag(b * exp(- i * phi))];

cx = x * exp(i * phi);

Defines:
cls3, used in chunk 165b.

The computational costs are

cls2 — O
(
(n+2)2m+(n+2)3)

and
cls3 — O

(
m3 +(n+2)2m2 +(n+2)2m+(n+2)3).

Note, however, that cls2 and cls3 compute the full generalized eigenvalue
decomposition and generalized singular value decomposition, respectively, while
only the smallest generalized eigenvalue/eigenvector or singular value/singular vec-
tor pair is needed for solving (CLS). This suggests a way of reducing the computa-
tional complexity by a factor of magnitude.

The equivalence between problem (CLS) and the generalized low-rank approx-
imation problem (GLRA), noted in remark 2 above, allows us to use the algorithm
from (Golub et al, 1987) for solving problem (CLS). The resulting Algorithm 5 is
implemented in the function cls4.

163b 〈Complex least squares, solution by Algorithm 5 163b〉≡
function cx = cls4(A, b)

〈define C, D, and n 162c〉
R = triu(qr(C, 0));

[u, s, v] = svd(R((n + 1):(n + 2), (n + 1):end));

phi = angle(v(1, 2) - i * v(2, 2));

x = R(1:n, 1:n) \ (R(1:n, (n + 1):end) * [v(1, 2); v(2, 2)]);

cx = x * exp(i * phi);

Defines:
cls4, used in chunk 165b.

Its computational cost is
cls4 — O

(
(n+2)2m

)
.

Table 5.5 Summary of methods for solving the complex least squares problem (CLS).

function method computational cost
cls1 (SOL1 x̂, SOL1 φ̂) O(n2m+n3)
cls2 full generalized eigenvalue decomp. O

(
(n+2)2m+(n+2)3

)

cls3 full generalized singular value decomp. O
(
m3 +(n+2)2m2 +(n+2)2m+(n+2)3

)

cls4 Algorithm 5 O
(
(n+2)2m

)

164 5 Missing data, centering, and constraints

Algorithm 5 Solution of problem (CLS) using generalized low-rank approximation.
Input: A ∈Cm×n, b ∈ Cm×1

1: QR factorization of C, QR =C.

2: Define R =:
[

R11 R12
0 R22

] }
n}
2

, where R11 ∈ Rn×n.

3: Singular value decomposition of R22, UΣV⊤ = R22.

4: Let φ̂ := ∠(v12 − iv22) and x̂ := R−1
11 R12

[
v12
v22

]
.

Output: x̂eiφ̂

Numerical examples

Generically, the four solution methods implemented in the functions cls1, . . . ,
cls4 compute the same result, which is equal to the unique solution of prob-
lem (CLS). As predicted by the theoretical computation costs, the method based on
Algorithm 5 is the fastest of the four methods when both the number of equations
and the number of unknowns is growing, see Figure 5.2.

500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

cls1
cls2
cls3
cls4

number of equations m

co
m

pu
ta

tio
n

tim
e

(s
ec

)

n = 200

100 200 300 400 500 600 700
0

1

2

3

4

5

6

cls1

cls2

cls3

cls4

co
m

pu
ta

tio
n

tim
e

(s
ec

)

m = 700

number of unknowns n

Fig. 5.2 Computation time for the four methods, implemented in the functions cls1, . . . , cls4.

The figures are generated by using random test data
164a 〈Computation time for cls1-4 164a〉≡ 164b⊲

〈initialize the random number generator 91d〉
mm = 1000; nm = 1000; s = {’b-’ ’g-.’ ’r:’ ’c-’};

Am = rand(mm, nm) + i * rand(mm, nm);

bm = rand(mm, 1) + i * rand(mm, 1);

Defines:
test_cls, never used.

and solving problems with increasing number of equations m

164b 〈Computation time for cls1-4 164a〉+≡ ⊳164a 165a⊲
Nm = 10; M = round(linspace(500, 1000, Nm)); n = 200;

for j = 1:Nm, m = M(j); 〈call cls1-4 165b〉 end

k = 1; x = M; ax = [500 1000 0 0.5]; name = ’cls-f1’;

〈plot cls results 165c〉

5.4 Approximate low rank factorization with structured factors 165

as well as increasing number of unknowns n

165a 〈Computation time for cls1-4 164a〉+≡ ⊳164b
Nn = 10; N = round(linspace(100, 700, Nn)); m = 700;

for j = 1:Nn, n = N(j); 〈call cls1-4 165b〉 end

k = 2; x = N; ax = [100 700 0 6]; name = ’cls-f2’;

〈plot cls results 165c〉

165b 〈call cls1-4 165b〉≡ (164b 165a)
A = Am(1:m, 1:n); b = bm(1:m);

for i = 1:4 % cls1, cls2, cls3, cls4

eval(sprintf(’tic, x = cls%d(A, b); t(%d) = toc;’, i, i))

end

T(:, j) = t’;

Uses cls1 162a, cls2 162b, cls3 163a, and cls4 163b.

165c 〈plot cls results 165c〉≡ (164b 165a)
figure(k), hold on

for i = 1:4 plot(x, T(i, :), s{i}, ’linewidth’, 2), end

legend(’cls1’, ’cls2’, ’cls3’, ’cls4’)

for i = 1:4, plot(x, T(i, :), [s{i}(1) ’o’]), end

axis(ax), print_fig(name)

Uses print_fig 25a.

5.4 Approximate low rank factorization with structured factors

Problem formulation

Rank estimation

Consider an q×N real matrix D0 with rank m0 < q and let

D0 = P0L0, where P0 ∈ R
q×m0 and L0 ∈ R

m0×N

be a rank revealing factorization of D0. Suppose that instead of D0 a matrix

D := D0 + D̃

is observed, where D̃ is a perturbation, e.g., D̃ can represent rounding errors in a
finite precision arithmetic or measurement errors in data acquisition. The rank of
the perturbed matrix D may not be equal to m0. If D̃ is random, generically, D is
full rank, so that from a practical point of view, a nonzero perturbation D̃ makes the
matrix D full rank. If, however, D̃ is “small”, in the sense that its Frobenius norm
‖D̃‖F is less than a constant ε (defining the perturbation size), then D will be “close”
to a rank-m0 matrix in the sense that the distance of D to the manifold of rank-m0

matrices

166 5 Missing data, centering, and constraints

dist(D,m0) := min
D̂

‖D− D̂‖F subject to rank(D̂) = m0 (5.2)

is less than the perturbation size ε . Therefore, provided that the size ε of the pertur-
bation D̃ is known, the distance measure dist(D,m), for m = 1,2, . . ., can be used to
estimate the rank of the unperturbed matrix as follows

m̂= argmin{m | dist(D,m)< ε }.

Problem (5.2) has analytic solution in terms of the singular values σ1, . . . ,σq of D

dist(D,m0) :=
√

σ 2
m0+1 + · · ·+σ 2

q , (dist)

and therefore the rank of D0 can be estimated from the decay of the singular val-
ues of D (find the largest singular value that is sufficiently small compared to the
perturbation size ε). This is the standard way for rank estimation in numerical lin-
ear algebra, where the estimate m̂ is called numerical rank of D, cf., page 40. The
question occurs:

Given a perturbed matrix D := D0 + D̃, is the numerical rank of D the “best”
estimate for the rank of D0, and if so, in what sense?

The answer to the above question depends on the type of the perturbation D̃.
If D̃ is a random matrix with zero mean elements that are normally distributed,
independent, and with equal variances, then the estimate D̂, defined by (5.2) is a
maximum likelihood estimator of D0, i.e., it is statistically optimal. If, however, one
or more of the above assumptions are not satisfied, D̂ is not optimal and can be
improved by modifying problem (5.2). Our objective is to justify this statement in
a particular case when there is prior information about the true matrix D0 in the
form of structure in a normalized rank-revealing factorization and the elements of
the perturbation D̃ are independent but possibly with different variances.

Prior knowledge in the form of structure

In applications often there is prior knowledge about the unperturbed matrix D0,
apart from the basic one that D0 is rank deficient. Whenever available, such prior
knowledge is beneficial to use in the computation of the distance measure dist(D,m).
Using the prior knowledge amounts to modification of problem (5.2). For example,
common prior information in image and text classification is nonnegativity of the
elements of D0. In this case, we require the approximation D̂ to be nonnegative and
in order to achieve this, we impose nonnegativity of the estimate D̂ as an extra con-
straint in (5.2). Similarly, in signal processing and system theory the matrix D0 is
Hankel or Toeplitz structured and the relevant modification of (5.2) is to constrain D̂

5.4 Approximate low rank factorization with structured factors 167

to have the same structure. In chemometrics, the measurement errors d̃i j may have
different variances σ 2vi j, which are known (up to a scaling factor) from the mea-
surement setup or from repeated experiments. Such prior information amounts to
changing the cost function ‖D− D̂‖F to the weighted norm ‖D− D̂‖Σ of the error
matrix D− D̂, where the elements of the weight matrix Σ are up to a scaling factor
equal to the inverse square root of the error variance σ 2V . In general, either the ad-
dition of constraints on D̂ or the replacement of the Frobenius norm with a weighted
norm, renders the modified distance problem (5.2) difficult to solve. A globally op-
timal solution can no longer be given in terms of the singular values of D and the
resulting optimization problem is nonconvex.

A factorization D = PL is nonunique; for any r × r nonsingular matrix T , we
obtain a new factorization D = P′L′, where P′ := PT−1 and L′ = TL. Obviously,
this imposes a problem in estimating the factors P and L from the data D. In order
to resolve the nonuniqueness problem, we assume that

P =

[
Im
P′

]
.

Next, we present an algorithm for approximate low rank factorization with struc-
tured factors and test its performance on synthetic data. We use the alternating pro-
jections approach, because it is easier to modify for constrained optimization prob-
lems. Certain constrained problems can be treated also using a modification of the
variable projections.

Statistical model and maximum likelihood estimation problem

Consider the errors-in-variables model

D = D0 + D̃, where D0 = P0L0, with

P0 ∈ R
q×m, L0 ∈ R

m×N , m< q

and vec(D̃)∼ N
(
0,σ 2 diag(v)

)
.

(EIV0)

The true data matrix D0 has rank equal to m and the measurement errors d̃i j are zero
mean, normal, and uncorrelated, with covariance σ 2vi+q(j−1). The vector v ∈ R

qN

specifies the element-wise variances of the measurement error matrix D̃ up to an
unknown factor σ 2.

In order to make the parameters P0 and L0 unique, we impose the normalization
constraint (or assumption on the “true” parameter values)

P0 =

[
Im
P′

0

]
. (A1)

168 5 Missing data, centering, and constraints

In addition, the block P′
0 of P0 has elements (specified by a selector matrix S) equal

to zero
Svec(P′

0) = 0. (A2)

The parameter L0 is periodic with a period l ∈ Z+

L0 = 1⊤l ⊗L′
0, (A3)

nonnegative
L′

0 ≥ 0, (A4)

and with smooth rows in the sense that

‖L′
0D‖2

F ≤ δ , (A5)

where δ > 0 is a smoothness parameter and D is a finite difference matrix

D :=

1 −1
−1 1

. . .
. . .

−1 1

 .

Define the q×N matrix

Σ = vec−1
([

v
−1/2
1 · · · v

−1/2
qN

])
:=

v
−1/2
1 v

−1/2
q+1 · · · v

−1/2
q(N−1)+1

v
−1/2
2 v

−1/2
q+2 · · · v

−1/2
q(N−1)+2

...
...

...

v
−1/2
q v

−1/2
2q · · · v

−1/2
qN

. (Σ)

The maximum likelihood estimator for the parameters P0 and L0 in (EIV0) under as-
sumptions (A1–A5), with known parameters m, v, S, and δ , is given by the following
optimization problem:

minimize over P′, L′, and D̂ ‖D− D̂‖2
Σ (cost function) (C0)

subject to D̂ =CP (rank constraint)

P =
[

Im
P′

]
(normalization of P) (C1)

Svec(P′) = 0 (zero elements of P′) (C2)

L = 1⊤l ⊗L′ (periodicity of L) (C3)

L′ ≥ 0 (nonnegativity of L) (C4)

‖L′D‖2
F ≤ δ (smoothness of L) (C5)

The rank and measurement errors assumptions in the model (EIV0) imply the
weighted low-rank approximation nature of the estimation problem (C0–C5) with

5.4 Approximate low rank factorization with structured factors 169

weight matrix given by (Σ). Furthermore, the assumptions (A1–A5) about the true
data matrix D0 correspond to the constraints (C1–C5) in the estimation problem.

Computational algorithm

Algorithm 6 Alternating projections algorithm for solving problem (C0–C5).

• Find an initial approximation (P′(0),L′(0)).
• For k = 0,1, . . . till convergence do

1. P′(k+1) := argminP′ ‖D−PL‖2
Σ subject to (C1–C2) with L′ = L′(k)

2. L′(k+1) := argminL′ ‖D−PL‖2
Σ subject to (C3–C5) with P′ = P′(k+1)

The alternating projections algorithm, see Algorithm 6, is based on the observa-
tion that the cost function (C0) is quadratic and the constraints (C1–C5) are linear
in either P or L. Therefore, for a fixed value of P, (C0–C5) is a nonnegativity con-
strained least squares problem in L and vice verse, for a fixed value of L, (C0–C5)
is a constrained least squares problem in P. These problems correspond to, respec-
tively, steps 1 and 2 of the algorithm. Geometrically they are projections. In the
unweighted (i.e., Σ = 1q1⊤N) and unconstrained case, the problem on step 1 is the
orthogonal projection

D̂ = DL⊤(LL⊤)−1L⊤ = DΠL

of the row of D on the span of the rows of L, and problem on step 2 is the orthogonal
projection

D̂ = P(P⊤P)−1P⊤D = ΠPD

of the columns of D on the span of the column of P. The algorithm iterates the two
projections.

Note 5.16 (Rank deficient factors P and L). If the factor L is rank deficient, the in-
dicated inverse in the computation of the projected matrix P∗ does not exist. (This
happens when the rank of the approximation D̂ if less than m.) The projection P∗,
however, is still well defined by the optimization problem on step 1 of the algo-
rithm and can be computed in closed form by replacing the inverse with the pseudo
inverses. The same is true when the factor L is rank deficient.

Theorem 5.17. Algorithm 6 is globally and monotonically convergent in the ‖ · ‖Σ

norm, i.e., if

D̂(k) := P(k)L(k)

is the approximation on the kth step of the algorithm, then

f (k) := ‖D− D̂(k)‖2
Σ → f ∗, as k → ∞. (f (k)→ f ∗)

170 5 Missing data, centering, and constraints

Assuming that there exists a solution to the problem (C0–C5) and any (locally opti-

mal) solution is unique (i.e., it is a strict minimum), the sequences D̂(k), P(k), and L(k)

converge element-wise, i.e.,

D̂(k) → D∗, P(k) → P∗, and L(k) → L∗, as k → ∞, (D(k) → D∗)

where D̂∗ := P∗L∗ is a (locally optimal) solution of (C0–C5).

The proof is given in Appendix B.

Simulation results

In this section, we show empirically that exploiting prior knowledge ((Σ) and as-
sumptions (A1–A5)) improves the performance of the estimator. The data matrix D

is generated according to the errors-in-variables model (EIV0) with parameters
N = 100, q = 6, and m = 2. The true low rank matrix D0 = P0L0 is random and
the parameters P0 and L0 are normalized according to assumption (A1) (so that they
are unique). For the purpose of validating the algorithm, the element p0,qN is set to
zero but this prior knowledge is not used in the parameter estimation.

The estimation algorithm is applied on M = 100 independent noise realizations
of the data D. The estimated parameters on the ith repetition are denoted by P(i), L(i)

and D̂(i) := P(i)L(i). The performance of the estimator is measured by the following
average relative estimation errors:

eD =
1
M

M

∑
i=1

‖D0 − D̂(i)‖2
F

‖D0‖2
F

, eP =
1
M

M

∑
i=1

‖P0 −P(i)‖2
F

‖P0‖2
F

,

eL =
1
M

M

∑
i=1

‖L0 −L(i)‖2
F

‖L0‖2
F

, and ez =
1
M

M

∑
i=1

|p(i)qN |.

For comparison the estimation errors are reported for the low-rank approximation
algorithm, using only the normalization constraint (A1), as well as for the proposed
algorithm, exploiting the available prior knowledge. The difference between the two
estimation errors is an indication of how important is the prior knowledge in the
estimation.

Lack of prior knowledge is reflected by specific choice of the simulation param-
eters as follows:

homogeneous errors ↔ Σ = ones(q,N)
no periodicity ↔ l = 1
no zeros in P′ ↔ S = []
no sign constraint on L′ ↔ nonneg= 0

We perform the following experiments: which test individually the effect of (Σ),
assumptions (A2), (A3), (A4), and their combined effect on the estimation error.

5.4 Approximate low rank factorization with structured factors 171

Σ l S = [] nonneg

rand(q,N) 1 yes 0
ones(q,N) 3 yes 0
ones(q,N) 1 no 0
ones(q,N) 1 yes 1
rand(q,N) 3 no 1

Figures 5.3–5.7 show the average relative estimation errors (solid line is the esti-
mator that exploits prior knowledge and dashed line is the estimator that does not
exploit prior knowledge) versus the measurement noise standard deviation σ , for the
five experiments. The vertical bars on the plots visualize the standard deviation of
the estimates. The results indicate that main factors for the improved performance
of the estimator are:

1. assumption (A3) — known zeros in the P′
0 and

2. (Σ) — known covariance structure of the measurement noise.

Files reproducing the numerical results and figures presented are available from the
book’s web page.

Implementation of Algorithm 6

Initial approximation

For initial approximation (P′(0),L′(0)) we choose the normalized factors of a rank
revealing factorization of the solution D̂ of (5.2). Let

D =UΣV⊤

be the singular value decomposition of D and define the partitioning

U =:
m q−m[
U1 U2

]
, Σ =:

m q−m[
Σ1 0
0 Σ2

]
m

q−m
, V =:

m N −m[
V1 V2

]
.

Furthermore, let [
U11

U21

]
:=U, with U11 ∈ R

m×m.

Then
P′(0) :=U21U−1

11 and L(0) :=U11ΣV⊤

define the Frobenius-norm optimal unweighted and unconstrained low-rank approx-
imation

D̂(0) :=
[

I

P′(0)

]
L(0).

172 5 Missing data, centering, and constraints

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

σ

e D

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

σ

e L

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

σ

e P

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

σ

e z

Fig. 5.3 Effect of weighting (solid line — exploiting prior knowledge, dashed line — without
exploiting prior knowledge, vertical bars — standard deviations).

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

σ

e D

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

σ

e L

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ

e P

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

σ

e z

Fig. 5.4 Effect of periodicity of L (solid line — exploiting prior knowledge, dashed line — without
exploiting prior knowledge, vertical bars — standard deviations).

5.4 Approximate low rank factorization with structured factors 173

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

σ

e D

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

σ

e L

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

σ

e P

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

σ

e z

Fig. 5.5 Effect of zero elements in P (solid line — exploiting prior knowledge, dashed line —
without exploiting prior knowledge, vertical bars — standard deviations).

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

σ

e D

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

σ

e L

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

σ

e P

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

σ

e z

Fig. 5.6 Effect of nonnegativity of L (solid line — exploiting prior knowledge, dashed line —
without exploiting prior knowledge, vertical bars — standard deviations).

174 5 Missing data, centering, and constraints

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

σ

e D

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

σ

e L

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

σ

e P

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

σ

e z

Fig. 5.7 Effect of weighting, periodicity, and nonnegativity of L, and zero elements in P (solid line
— exploiting prior knowledge, dashed line — without exploiting prior knowledge, vertical bars —
standard deviations).

More sophisticated choices for the initial approximation that take into account the
weight matrix Σ are described in Section 2.4.

Separable least squares problem for P

In the weighted case, the projection on step 1 of the algorithm is computed sepa-
rately for each row pi of P. Let di be the ith row of D and wi be the ith row of Σ .
The problem

minimize over P ‖D−PL‖2
Σ subject to (C1–C2)

is equivalent to the problem

minimize over pi ‖(di − piL)diag(wi)‖2
2

subject to (C1–C2), for i = 1, . . . ,m.
(∗)

The projection on step 2 of the algorithm is not separable due to constraint (C5).

5.4 Approximate low rank factorization with structured factors 175

Taking into account constraint (C1)

Since the first m rows of P are fixed, we do not solve (∗) for i = 1, . . . ,m, but define

pi := e⊤i , for i = 1, . . . ,m,

where ei is the ith unit vector (the ith column of the identity matrix Im).

Taking into account constraint (C2)

Let Si be a selector matrix for the zeros in the ith row of P

Svec(P′) = 0 ⇐⇒ piSi = 0, for i = m+1, . . . ,q.

(If there are no zeros in the ith row, then Si is skipped.) The ith problem in (∗)
becomes

minimize over pi ‖(di − piL)diag(wi)‖2
2 subject to piSi = 0. (∗∗)

Let the rows of the matrix Ni form a basis for the left null space of Si. Then piSi = 0
if and only if pi = ziNi, for certain zi, and problem (∗∗) becomes

minimize over zi ‖(di − ziNiL)diag(wi)‖2
2.

Therefore, the solution of (∗) is

pi,∗ = diL⊤N⊤
i (NiLL⊤N⊤

i)−1Ni.

Note 5.18. It is not necessary to explicitly construct the matrices Si and compute
basis Ni for their left null spaces. Since Si is a selector matrix, it is a submatrix of
the identity matrix Im. The rows of the complementary submatrix of Im form a basis
for the left null space of Si. This particular matrix Ni is also a selector matrix, so that
the product NiL need not be computed explicitly.

Taking into account constraint (C3)

We have,

D−PL = D−P(1⊤l ⊗L′) =
[
D1 · · · Dl

]
−P

[
L′ · · · L′]

=

D1
...

Dl

−

P
...
P

L′ =: D′− (1l ⊗P)︸ ︷︷ ︸

P′

L′ = D′−P′L′.

Let

176 5 Missing data, centering, and constraints

Σ ′ :=

Σ1
...

Σl

 , where Σ =:

[
Σ1 · · · ΣN

]
.

Then the problem

minimize over L ‖D−PL‖2
Σ subject to (C3–C5)

is equivalent to the problem

minimize over L′ ‖D′−P′L′‖2
Σ ′ subject to (C4–C5).

Taking into account constraint (C4)

Adding the nonnegativity constraint changes the least squares problem to a nonneg-
ative least squares problem, which is a standard convex optimization problem for
which robust and efficient methods and software exist.

Taking into account constraint (C5)

The problem

minimize over L ‖D−PL‖2
Σ subject to ‖LD‖2

F ≤ δ

is equivalent to a regularized least squares problem

minimize over L ‖D−PL‖2
Σ + γ‖LD‖2

F

for certain regularization parameter γ . The latter problem is equivalent to the stan-
dard least squares problem

minimize over L

∥∥∥∥
[

diag
(

vec(Σ)
)

vec(D)
0

]
−
[

diag
(

vec(Σ)
)
(I⊗P)√

γ(D⊤⊗ I)

]
vec(L)

∥∥∥∥
2

2
.

Stopping criteria

The iteration is terminated when the following stopping criteria are satisfied

‖P(k+1)L(k+1)−P(k)L(k)‖Σ/‖P(k+1)L(k+1)‖Σ < εD,

‖(P(k+1)−P(k))L(k+1)‖Σ/‖P(k+1)L(k+1)‖Σ < εP, and

‖L(k+1)(L(k+1)−L(k))‖Σ/‖P(k+1)L(k+1)‖Σ < εL.

Here εD, εP, and εL are user defined relative convergence tolerances for D, P, and L,
respectively.

5.5 Notes and references 177

5.5 Notes and references

Missing data

Optimization methods for solving weighted low-rank approximation problems with
nonsingular weight matrix have been considered in the literature under different
names:

• criss-cross multiple regression (Gabriel and Zamir, 1979),
• Riemannian singular value decomposition (De Moor, 1993),
• maximum likelihood principal component analysis (Wentzell et al, 1997),
• weighted low-rank approximation (Manton et al, 2003), and
• weighted low-rank approximation (Markovsky et al, 2005).

Gabriel and Zamir (1979) consider an element-wise weighted low-rank approxi-
mation problem with diagonal weight matrix W , and propose an iterative solution
method. Their method, however, does not necessarily converge to a minimum point,
see the discussion in (Gabriel and Zamir, 1979, Section 6, page 491). Gabriel and
Zamir (1979)) proposed an alternating projections algorithm for the case of un-
weighted approximation with missing values, i.e., wi j ∈ {0,1}. Their method was
further generalized by Srebro (2004) for arbitrary weights.

The Riemannian singular value decomposition framework of De Moor (1993)
includes the weighted low-rank approximation problem with rank specification
r = min(m,n)− 1 and a diagonal weight matrix W as a special case. In (De Moor,
1993), an algorithm resembling the inverse power iteration algorithm is proposed.
The method, however, has no proven convergence properties.

Manton et al (2003) treat the problem as an optimization over a Grassman man-
ifold and propose steepest decent and Newton type algorithms. The least squares
nature of the problem is not exploited in this work and the proposed algorithms are
not globally convergent.

The maximum likelihood principal component analysis method of Wentzell et al
(1997) is developed for applications in chemometrics, see also (Schuermans et al,
2005). This method is an alternating projections algorithm. It applies to the general
weighted low-rank approximation problems and is globally convergent. The conver-
gence rate, however, is linear and the method could be rather slow when the r+1st
and the rth singular values of the data matrix D are close to each other. In the un-
weighted case this situation corresponds to lack of uniqueness of the solution, cf.,
Theorem 2.23. The convergence properties of alternating projections algorithms are
studied in (Kiers, 2002; Krijnen, 2006)

An implementation of the singular value thresholding method in MATLAB is
available at http://svt.caltech.edu/ Practical methods for solving the
recommender system problem are given in (Segaran, 2007). The MovieLens data
set is available from (GroupLens, 2009).

178 5 Missing data, centering, and constraints

Nonnegative low-rank approximation

The notation D ≥ 0 is used for a matrix D ∈Rq×N whose elements are nonnegative.
A low-rank approximation problem with element-wise nonnegativity constraint

minimize over D̂ ‖D− D̂‖
subject to rank(D̂)≤ m and D̂ ≥ 0

(NNLRA)

arises in Markov chains (Vanluyten et al, 2006) and image mining (Lee and Seung,
1999). Using the image representation, we obtain the following problem

minimize over D̂, P ∈ R
q×m, and L ∈ R

m×N ‖D− D̂‖
subject to D̂ = PL and P,L ≥ 0,

(NNLRAP)

which is a relaxation of problem (NNLRA). The minimal m, for which (NNLRAP)
has a solution, is called the positive rank of D̂ (Berman and Shaked-Monderer,
2003). In general, the positive rank is less than or equal to the rank.

Note that due to the nonnegativity constraint on D̂, the problem can not be solved
using the variable projections method. (There is no closed form solution for the
equivalent problem with D̂ eliminated.) The alternating projections algorithm, how-
ever, can be used almost without modification for the solution of the relaxed prob-
lem (NNLRAP). Let the norm ‖ · ‖ in (NNLRA) be the Frobenius norm. (In the
context of Markov chains more adequate is the choice of the Kullback–Leibler di-
vergence as a distance measure between D and D̂.) Then at each iteration step of the
algorithm two least squares problems with nonnegativity constraint (i.e., standard
optimization problems) are solved. The resulting alternating least squares algorithm
is Algorithm 7.

Algorithm 7 Alternating projections algorithm for nonnegative low-rank approxi-
mation
Input: Data matrix D, desired rank m, and convergence tolerance ε .
1: Set k := 0 and compute an initial approximation D̂(0) := P(0)L(0) from the singular value de-

composition by setting all negative elements to zero.
2: repeat

3: k := k+1.
4: Solve: L(k) := argminL ‖D−P(k−1)L‖ subject to L ≥ 0.
5: Solve: P(k) := argminP ‖D−PL(k)‖ subject to P ≥ 0.
6: until ‖P(k−1)L(k−1)−P(k)L(k)‖< ε

Output: A locally optimal solution D̂∗ := P(k)L(k) to problem (NNLRAP).

References 179

References

Berman A, Shaked-Monderer N (2003) Completely positive matrices. World Scien-
tific Publishing Co

Bydder M (2010) Solution of a complex least squares problem with constrained
phase. Linear Algebra Appl 433(11–12):1719–1721

Cai JF, Candés E, Shen Z (2009) A singular value thresholding algorithm for matrix
completion. URL www-stat.stanford.edu/~candes/papers/SVT.

pdf

Candés E, Recht B (2009) Exact matrix completion via convex optimization. Found
Comput Math 9:717–772

De Moor B (1993) Structured total least squares and L2 approximation problems.
Linear Algebra Appl 188–189:163–207

Gabriel K, Zamir S (1979) Lower rank approximation of matrices by least squares
with any choice of weights. Technometrics 21:489–498

Golub G, Hoffman A, Stewart G (1987) A generalization of the Eckart–Young–
Mirsky matrix approximation theorem. Linear Algebra Appl 88/89:317–327

GroupLens (2009) Movielens data sets. www.grouplens.org/node/73
Kiers H (2002) Setting up alternating least squares and iterative majorization algo-

rithms for solving various matrix optimization problems. Comput Stat Data Anal
41:157–170

Krijnen W (2006) Convergence of the sequence of parameters generated by alter-
nating least squares algorithms. Comput Stat Data Anal 51:481–489

Lee D, Seung H (1999) Learning the parts of objects by non-negative matrix factor-
ization. Nature 401:788–791

Manton J, Mahony R, Hua Y (2003) The geometry of weighted low-rank approxi-
mations. IEEE Trans Signal Proc 51(2):500–514

Markovsky I, Rastello ML, Premoli A, Kukush A, Van Huffel S (2005) The element-
wise weighted total least squares problem. Comput Statist Data Anal 50(1):181–
209, DOI 10.1016/j.csda.2004.07.014

Schuermans M, Markovsky I, Wentzell P, Van Huffel S (2005) On the equivalence
between total least squares and maximum likelihood PCA. Analytica Chimica
Acta 544:254–267, DOI 10.1016/j.aca.2004.12.059

Segaran T (2007) Programming Collective Intelligence: Building Smart Web 2.0
Applications. O’Reilly Media

Srebro N (2004) Learning with matrix factorizations. PhD thesis, MIT
Vanluyten B, Willems JC, De Moor B (2006) Matrix factorization and stochastic

state representations. In: Proc. 45th IEEE Conf. on Dec. and Control, San Diego,
California, pp 4188–4193

Wentzell P, Andrews D, Hamilton D, Faber K, Kowalski B (1997) Maximum likeli-
hood principal component analysis. J Chemometrics 11:339–366

Chapter 6

Nonlinear static data modeling

Summary: Algebraic and geometric data fitting problems for a model class of affine
varieties with bounded complexity (dimension and degree) are equivalent to low-
rank approximation of a polynomially structured matrix constructed from the data.
In algebraic fitting problems, the approximating matrix is unstructured and the cor-
responding low-rank approximation problem can be solved analytically by the sin-
gular value decomposition. In geometric fitting problems, the approximating matrix
is polynomially structured and, except for the case of an affine model class, no an-
alytic solution is know. The equivalence of nonlinear data modeling and low-rank
approximation unifies existing curve fitting methods, showing that algebraic fitting
is a relaxation of geometric fitting, obtained by removing the structure constraint,
and reveals new solution approaches.

6.1 A framework for nonlinear static data modeling

Introduction

Identifying a curve in a set of curves that best fits given data points is a common
problem in computer vision, statistics, and coordinate metrology. More abstractly,
approximation by Fourier series, wavelets, splines, and sum-of-exponentials are also
curve fitting problems. In the applications, the fitted curve is a model for the data
and, correspondingly, the set of candidate curves is a model class.

Data modeling problems are specified by choosing a model class and a fitting cri-
terion. The fitting criterion is maximisation of a measure for fit between the data and
a model. Equivalently, the criterion can be formulated as minimization of a measure
for lack of fit (misfit) between the data and a model. Data modeling problems can be
classified according to the type of model and the type of fitting criterion as follows:

• linear/affine vs nonlinear model class,
• algebraic vs geometric fitting criterion.

181

182 6 Nonlinear static data modeling

A model is a subset of the data space. The model is linear/affine if it is a sub-
space/affine set. Otherwise, it is nonlinear. A geometric fitting criterion minimises
the sum-of-squares of the Euclidean distances from the data points to a model. An
algebraic fitting criterion minimises an equation error (residual) in a representation
of the model. In general, the algebraic fitting criterion has no simple geometric in-
terpretation. Problems using linear model classes and algebraic criteria are easier
to solve numerically than problems using nonlinear model classes and geometric
criteria.

In this chapter, a nonlinear model class of bounded complexity, consisting of
affine varieties, i.e., kernels of systems of multivariable polynomials is considered.
The complexity of an affine variety is defined as the pair of the variety’s dimen-
sion and the degree of its polynomial representation. In Section 6.2, an equivalence
is established between the data modeling problem and low-rank approximation of
a polynomially structured matrix constructed from the data. Algorithms for solv-
ing nonlinearly structured low-rank approximation problems are presented in Sec-
tion 6.3. As illustrated in Section 6.4, the low-rank approximation setting makes
possible to use a single algorithm and a piece of software for solving a wide variety
of curve fitting problems.

Data, model class, and model complexity

We consider static multivariate modeling problems. The to-be-modelled data D is a
set of N observations (also called data points)

D =
{

d1, . . . ,dN

}
⊂ R

q.

The observations d1, . . . ,dN are real q-dimensional vectors. A model for the data D
is a subset of the data space Rq and a model class M q for D is a set of subsets of the
data space R

q, i.e., M q is an element of the powerset 2R
q

. For example, the linear
model class in R

q consists of the subspaces of Rq. An example of a nonlinear model
class in R2 is the set of the conic sections. When the dimension q of the data space
is understood from the context, it is skipped from the notation of the model class.

In nonlinear data modeling problems, the model is usually represented by a func-
tion y = f (u), where d = Π col(u,y), with Π a permutation matrix. The correspond-
ing statistical estimation problem is regression. As in the linear case, we call the
functional relation y = f (u) among the variables u and y, an input/output represen-
tation of the model

B = {Π col(u,y) | y = f (u)} (I/O)

that this relation defines. The input/output representation y = f (u) implies that the
variables u are inputs and the variables y are outputs of the model B.

Input-output representations are appealing because they are explicit functions,
mapping some variables (inputs) to other variables (outputs) and thus display a
causal relation among the variables (the inputs cause the outputs). The alternative

6.1 A framework for nonlinear static data modeling 183

kernel representation

B = ker(R) := {d ∈ R
q | R(d) = 0} (KER)

defines the model via an implicit function R(d) = 0, which does not a priori bound
one set of variables as a cause and another set of variables as an effect.

A priori fixed causal relation, imposed on the model by an input/output represen-
tation, is restrictive. Consider, for example, data fitting by a model that is a conic
section. Only parabolas and lines can be represented by functions. Hyperbolas, el-
lipses, and the vertical line {(u,y) | u = 0} are not graphs of a function y = f (u)
and therefore can not be modeled by an input/output representation.

The complexity of a linear static model B is defined as the dimension of B, i.e.,
the smallest number m, such that there is a linear function P : Rm → R

q, for which

B = image(P) := {P(ℓ) | ℓ ∈ R
m }. (IMAGE)

Similarly, the dimension of a nonlinear model B is defined as the smallest natu-
ral number m, such that there is a (possibly nonlinear) function P : Rm → Rq, for
which (IMAGE) holds. In the context of nonlinear models, however, the model di-
mension alone is not sufficient to define the model complexity. For example, in R2

both a linear model (a line passing through the origin) and an ellipse have dimen-
sion equal to one, however, it is intuitively clear that the ellipse is a more “complex”
model than the line.

The missing element in the definition of the model complexity in the nonlinear
case is the “complexity” of the function P. In what follows, we restrict to models
that can be represented as kernels of polynomial functions, i.e., we consider models
that are affine varieties. Complexity of an affine variety (IMAGE) is defined as the
pair (m,d), where m is the dimension of B and d is the degree of R. This definition
allows us to distinguish a linear or affine model (d = 1) from a nonlinear model
(d > 1) with the same dimension. For a model B with complexity (m,d), we call d
the degree of B.

The complexity of a model class is the maximal complexity (in a lexicographic
ordering of the pairs (m,d)) over all models in the class. The model class of com-
plexity bounded by (m,d) is denoted by Pm,d.

Special cases

The model class Pq
m,d and the related exact and approximate modeling problems

(EM) and (AM) have as an important special case the linear model class and linear
data modeling problems.

1. Linear/affine model class of bounded complexity. An affine model B (i.e., an
affine set in R

q) is an affine variety, defined by a first order polynomial through
kernel or image representation. The dimension of the affine variety coincides

184 6 Nonlinear static data modeling

with the dimension of the affine set. Therefore, Pq

m,1 is an affine model class
in R

q with complexity bounded by m. The linear model class in R
q, with dimen-

sion bounded by m, is a subset L q

m,0 of Pq

m,1.
2. Geometric fitting by a linear model. Approximate data modeling using the linear

model class L q
m and the geometric fitting criterion (dist) is a low-rank approxi-

mation problem

minimize over D̂
∥∥Φ(D)−Φ(D̂)

∥∥
F

subject to rank
(
Φ(D̂)

)
≤ m,

(LRA)

where
Φ(D) :=

[
d1 · · · dN

]
.

The rank constraint in (LRA) is equivalent to the constraint that the data D̂ is
exact for a linear model of dimension bounded by m. This justifies the statement
that exact modeling is an ingredient of approximate modeling.

3. Algebraic curves. In the special case of a curve in the plane, we use the notation

x := first component d1· of d and y := second component d2· of d.

Note that w = col(x,y) is not necessarily an input/output partitioning of the vari-
ables. An affine variety of dimension one is called an algebraic curve.
A second order algebraic curve

B = {d = col(x,y) | d⊤Ad +b⊤d+ c = 0},

where A = A⊤, b, and c are parameters, is a conic section. Examples of 3rd order
algebraic curves, see Figure 6.1, are the cissoid

B = {col(x,y) | y2(1+ x)− (1− x)3 = 0},

and the folium of Descartes

B = {col(x,y) | x3 + y3 −3xy = 0},

Examples of 4rd order algebraic curves, see Figure 6.2, are the eight curve

B = {col(x,y) | y2 − x2 + x4 = 0}

and the limacon of Pascal

B = {col(x,y) | y2 + x2 − (4x2 −2x+4y2)2 = 0},

The four-leaved rose, see Figure 6.3,

B = {col(x,y) | (x2 + y2)3 −4x2y2 = 0}

is a sixth order algebraic curve.

6.1 A framework for nonlinear static data modeling 185

−1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

x

y

Cissoid

−2 −1 0 1 2
−2

−1

0

1

2

x

Folium of Descartes

Fig. 6.1 Examples of algebraic curves of 3rd order.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

Eight curve

0 0.2 0.4 0.6 0.8
−0.5

0

0.5

x

Limacon of Pascal

Fig. 6.2 Examples of algebraic curves of 4th order.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

Four-leaved rose

Fig. 6.3 Example of an algebraic curve of 6th order.

186 6 Nonlinear static data modeling

6.2 Nonlinear low-rank approximation

Parametrisation of the kernel representations

Consider a kernel representation (KER) of an affine variety B ∈Pq
m,d, parametrized

by a p×1 multivariable polynomial R. The number of monomials in q variables with
degree d or less is

qext :=
(
q+d

d

)
=

(q+d)!
d!q!

. (qext)

Define the vector of all such monomials

φ(d) :=
[
φ1(d) · · · φqext(d)

]⊤
.

The polynomial R can be written as

RΘ (d) =
qext

∑
k=1

Θkφk(d) =Θφ(d), (RΘ)

where Θ is an p×qext parameter matrix.
In what follows, we assume that the monomials are ordered in φ(d) in decreasing

degree according to the lexicographic ordering (with alphabet the indexes of d). For
example, with q= 2, d= 2, and d = col(x,y),

qext = 6 and φ⊤(x,y) = [φ1 φ2 φ3 φ4 φ5 φ6]
= [x2 xy x y2 y 1]

In general,
φk(d) = d

dk1
1· · · · d

dkq
q· , for k = 1, . . . ,qext, (φk)

where

• d1·, . . . ,dq· ∈ R are the elements of d ∈ R
q, and

• dki ∈ Z+, is the degree of the ith element of d in the kth monomial φk.

The matrix formed from the degrees dki

D=
[
dki

]
∈ R

qext×q

uniquely defines the vector of monomials φ . The degrees matrix D depends only on
the number of variables q and the degree d. For example, with q= 2 and d= 2,

D⊤ =

[
2 1 1 0 0 0
0 1 0 2 1 0

]
.

The function monomials generates an implicit function phi that evaluates the
2-variate vector of monomials φ , with degree d.

6.2 Nonlinear low-rank approximation 187

187a 〈Monomials constructor 187a〉≡ 187b⊲
function [Deg, phi] = monomials(deg)

Defines:
monomials, used in chunks 192a and 194e.

First an extended degrees matrix Dext ∈ {0,1, . . . ,d}(d+1)2×2, corresponding to all
monomials xdxydy with degrees at most d, is generated. It can be verified that

Dext =
[
rd⊗1d+1 1d+1 ⊗ rd

]
, where rd :=

[
0 1 · · · d

]⊤

is such a matrix; moreover, the monomials are ordered in decreasing degree.
187b 〈Monomials constructor 187a〉+≡ ⊳187a 187c⊲

Deg_ext = [kron([0:deg]’, ones(deg + 1, 1)), ...

kron(ones(deg + 1, 1), [0:deg]’)];

Then the rows of Dext are scanned and those with degree less than or equal to d are
selected to form a matrix D.

187c 〈Monomials constructor 187a〉+≡ ⊳187b
str = []; Deg = []; q = 2;

for i = 1:size(Deg_ext, 1)

if (sum(Deg_ext(i, :)) <= deg)

for k = q:-1:1,

str = sprintf(’.* d(%d,:) .^ %d %s’, ...

k, Deg_ext(i, k), str);

end

str = sprintf(’; %s’, str(4:end));

Deg = [Deg_ext(i, :); Deg];

end

end

eval(sprintf(’phi = @(d) [%s];’, str(2:end)))

Minimality of the kernel representation is equivalent to the condition that the pa-
rameter Θ is full row rank. The nonuniqueness of RΘ corresponds to a nonunique-
ness of Θ . The parameters Θ and QΘ , where Q is a nonsingular matrix, define the
same model. Therefore, without loss of generality, we can assume that the represen-
tation is minimal and normalise it, so that

ΘΘ⊤ = Ip.

Note that a p× qext full row rank matrix Θ defines via (RΘ) a polynomial ma-
trix RΘ , which defines a minimal kernel representation (KER) of a model BΘ

in Pq
m,d. Therefore, Θ defines a function

BΘ : Rp×qext → Pq
m,d.

Vice verse, a model B in Pq
m,d corresponds to a (nonunique) p×qext full row rank

matrix Θ , such that B = BΘ . For a given q, there are one-to-one mappings

qext ↔ d and p↔ m,

defined by (qext) and p= q−m, respectively.

188 6 Nonlinear static data modeling

Main results

We show a relation of the approximate modeling problems (AM) and (EM) for the
model class Pm,d to low-rank approximation problems.

Proposition 6.1 (Algebraic fit ⇐⇒ unstructured low-rank approximation) The

algebraic fitting problem for the model class of affine varieties with bounded com-

plexity Pm,d

minimize over Θ ∈ R
p×qext

√√√√
N

∑
j=1

∥∥RΘ (d j)
∥∥2

F

subject to ΘΘ⊤ = Ip

(AM′
Θ)

is equivalent to the unstructured low-rank approximation problem

minimize over Φ̂ ∈ R
q×p ‖Φd(D)− Φ̂‖F

subject to rank(Φ̂)≤ qext −p.
(LRA)

Proof. Using the polynomial representation (RΘ), the squared cost function of (AM′
Θ)

can be rewritten as a quadratic form

N

∑
j=1

∥∥RΘ (d j)
∥∥2

F =
∥∥ΘΦd(D)

∥∥2
F

= trace
(
ΘΦd(D)Φ⊤

d (D)Θ⊤)= trace
(
ΘΨd(D)Θ⊤).

Therefore, the algebraic fitting problem is equivalent to an eigenvalue problem
for Ψd(D) or, equivalently (see the Notes and References section of Chapter 2),
to low-rank approximation problem for Φd(D). ⊓⊔

Proposition 6.2 (Geometric fit ⇐⇒ polynomial structured low rank approx.)

The geometric fitting problem for the model class of affine varieties with bounded

complexity Pm,d

minimize over B ∈ Pm,d dist(D ,B) (AM)

is equivalent to the polynomially structured low-rank approximation problem

minimize over D̂ ∈ R
q×N ‖D− D̂‖F

subject to rank
(
Φd(D̂)

)
≤ qext −p.

(PSLRA)

Proof. Problem (AM) is equivalent to

6.3 Algorithms 189

minimize over D̂ and B

√√√√
N

∑
j=1

‖d j − d̂ j‖2
2

subject to D̂ ⊂ B ∈ Pm,d.

(∗)

Using the condition

D̂ ⊂ B ∈ Pm,d =⇒ rank
(
Φd(D̂)

)
≤ qext −p (MPUM)

to replace the constraint of (∗) with a rank constraint for the structured matrix
Φd(D̂) = Φd(D̂), this latter problem becomes a polynomially structured low-rank
approximation problem (PSLRA). ⊓⊔

Propositions 6.1 and 6.2 show a relation between the algebraic and geometric
fitting problems.

Corollary 6.3. The algebraic fitting problem (AM′
Θ) is a relaxation of the geometric

fitting problem (AM), obtained by removing the structure constraint of the approxi-

mating matrix Φd(D̂).

6.3 Algorithms

In the linear case, the misfit computation problem is a linear least norm problem.
This fact is effectively used in the variable projections method. In the nonlinear
case, the misfit computation problem is a nonconvex optimization problem. Thus the
elimination step of the variable projections approach is not possible in the nonlinear
case. This requires the data approximation D̂ = { d̂1, . . . , d̂N } to be treated as an
extra optimization variable together with the model parameter Θ . As a result, the
computational complexity and sensitivity to local minima increases in the nonlinear
case.

The above consideration makes critical the choice of the initial approximation.
The default initial approximation is obtained from a direct method such as the alge-
braic fitting method. Next, we present a modification of the algebraic fitting method
that is motivated by the objective of obtaining an unbiased estimate in the errors-in-
variables setup.

Bias corrected low-rank approximation

Assume that the data D is generated according to the errors-in-variables model

190 6 Nonlinear static data modeling

d j = d0, j + d̃ j, where d0, j ∈ B0 ∈ Pm,q

and vec
([

d̃1 · · · d̃N

])
∼ N(0,σ 2IqN). (EIV)

Here B0 is the to-be-estimated true model. The estimate B̂ obtained by the alge-
braic fitting method (AM′

Θ) is biased, i.e., E(B̂) 6= B0. In this section, we derive a
bias correction procedure. The correction depends on the noise variance σ 2, how-
ever, the noise variance can be estimated from the data D together with the model
parameter Θ̂ . The resulting bias corrected estimate B̂c is invariant to rigid trans-
formations. Simulation results show that B̂c has smaller orthogonal distance to the
data than alternative direct methods.

Define the matrices

Ψ := Φd(D)Φ⊤
d (D) and Ψ0 := Φd(D0)Φ

⊤
d (D0)

The algebraic fitting method computes the rows of parameter estimate Θ̂ as eigen-
vectors related to the p smallest eigenvalues of Ψ . We construct a “corrected” matrix
Ψc, such that

E(Ψc) =Ψ0. (∗)

This property ensures that the corrected estimate Θ̂c, obtained from the eigenvectors
related to the p smallest eigenvalues of Ψc, is unbiased.

190a 〈Bias corrected low-rank approximation 190a〉≡
function [th, sh] = bclra(D, deg)

[q, N] = size(D); qext = nchoosek(q + deg, deg);

〈construct the corrected matrix Ψc 192a〉
〈estimate σ2 and θ 192c〉

Defines:
bclra, used in chunk 194e.

The key tool to achieve bias correction is the sequence of the Hermite polynomi-
als, defined by the recursion

h0(x) = 1, h1(x) = x, and

hk(x) = xhk−1(x)− (k−2)hk−2(x), for k = 2,3, . . .

(See Table 6.1 for explicit expressions of h2, . . . , h10.) The Hermite polynomials
have the deconvolution property

E
(
hk(x0 + x̃)

)
= xk

0, where x̃ ∼ N(0,1). (∗∗)

The following code generates a cell array h of implicit function that evaluate
the sequence of Hermite polynomials: h{k+1}(d)= hk(d). (The difference in the
indexes of the h and h is due to MATLAB convention indexes to be positive integers.)

190b 〈define the Hermite polynomials 190b〉≡ (192a)
h{1} = @(x) 1; h{2} = @(x) x;

for k = 3:(2 * deg + 1)

h{k} = @(x) [x * h{k - 1}(x) zeros(1, mod(k - 2, 2))] ...

6.3 Algorithms 191

Table 6.1 Explicit expressions of the Hermite polynomials h2, . . . , h10.

h2(x) = x2 −1
h3(x) = x3 −3x

h4(x) = x4 −6x2 +3
h5(x) = x5 −10x3 +15x

h6(x) = x6 −15x4 +45x2 −15
h7(x) = x7 −21x5 +105x3 −105x

h8(x) = x8 −28x6 +210x4 −420x2 +105
h9(x) = x9 −36x7 +378x5 −1260x3 +945x

h10(x) = x10 −45x8 +630x6 −3150x4 +4725x2 −945

- [0 (k - 2) * h{k - 2}(x)];

end

We have,

Ψ =
N

∑
ℓ=1

φ(dℓ)φ
⊤(dℓ) =

N

∑
ℓ=1

[
φi(dℓ)φ j(dℓ)

]
,

and, from (φk), the (i, j)th element of Ψ is

ψi j =
N

∑
ℓ=1

d
di1+d j1
1ℓ · · · d

diq+d jq

qℓ =
N

∑
ℓ=1

q

∏
k=1

(d0,kℓ+ d̃kℓ)
diq+d jq.

By the data generating assumption (EIV), d̃kℓ are independent, zero mean, normally
distributed. Then, using the deconvolution property (∗∗) of the Hermit polynomials,
we have that

ψc,i j :=
N

∑
ℓ=1

q

∏
k=1

hdik+d jk
(dkℓ) (ψi j)

has the unbiasness property (∗), i.e.,

E(ψc,i j) =
N

∑
ℓ=1

q

∏
k=1

d
dik+d jk

0,kℓ =: ψ0,i j.

The elements ψc,i j of the corrected matrix are even polynomials of σ of degree
less than or equal to

dψ =

⌈
qd+1

2

⌉
.

The following code constructs a 1× (dψ + 1) vector of the coefficients of ψc,i j as
a polynomial of σ 2. Note that the product of Hermite polynomials in (ψi j) is a
convolution of their coefficients.

191 〈construct ψc,i j 191〉≡ (192a)
Deg_ij = Deg(i, :) + Deg(j, :);

for l = 1:N

psi_ijl = 1;

for k = 1:q

192 6 Nonlinear static data modeling

psi_ijl = conv(psi_ijl, h{Deg_ij(k) + 1}(D(k, l)));

end

psi_ijl = [psi_ijl zeros(1, dpsi - length(psi_ijl))];

psi(i, j, :) = psi(i, j, :) + ...

reshape(psi_ijl(1:dpsi), 1, 1, dpsi);

end

The corrected matrix

Ψc(σ
2) =Ψc,0 +σ 2Ψc,1 + · · ·+σ 2dψΨc,dψ

is then obtained by computing its elements in the lower triangular part
192a 〈construct the corrected matrix Ψc 192a〉≡ (190a) 192b⊲

〈define the Hermite polynomials 190b〉
Deg = monomials(deg);

dpsi = ceil((q * deg + 1) / 2);

psi = zeros(qext, qext, dpsi);

for i = 1:qext

for j = 1:qext

if i >= j

〈construct ψc,i j 191〉
end

end

end

Uses monomials 187a.

and using the symmetry property to fill in the upper triangular part
192b 〈construct the corrected matrix Ψc 192a〉+≡ (190a) ⊳192a

for k = 1:dpsi,

psi(:, :, k) = psi(:, :, k) + triu(psi(:, :, k)’, 1);

end

The rows of the parameter Θ̂ form a basis for the p-dimensional (approximate)
null space of Ψc(σ

2)
ΘΨc(σ

2) = 0.

Computing simultaneously σ and Θ is a polynomial eigenvalue problem: the noise
variance estimate is the minimum eigenvalue and the parameter estimate is a corre-
sponding eigenvector.

192c 〈estimate σ2 and θ 192c〉≡ (190a)
[evec, ev] = polyeig_(psi); ev(find(ev < 0)) = inf;

[sh2, min_ind] = min(ev);

sh = sqrt(sh2); th = evec(:, min_ind);

(The function polyeig_ is a minor modification of the standard MATLAB func-
tion polyeig. The input to polyeig_ is a 3-dimensional tensor while the input
to polyeig is a sequence of matrices—the slices of the tensor in the third dimen-
sion.)

6.4 Examples 193

Method based on local optimization

The nonlinearly structured low-rank approximation problem (PSLRA) is solved nu-
merically using Optimization Toolbox.

193a 〈Polynomially structured low-rank approximation 193a〉≡ 193b⊲
function [th, Dh, info] = pslra(D, phi, r, xini)

[q, N] = size(D); nt = size(phi(D), 1);

Defines:
pslra, used in chunk 194e.

If not specified, the initial approximation is taken as the algebraic fit and the noisy
data points.

193b 〈Polynomially structured low-rank approximation 193a〉+≡ ⊳193a 193c⊲
if (nargin < 4) | isempty(xini)

tini = lra(phi(D), r); xini = [D(:); tini(:)];

end

Uses lra 66.

Anonymous functions that extract the data approximation D̂ and the model param-
eter θ from the optimization parameter x are defined next.

193c 〈Polynomially structured low-rank approximation 193a〉+≡ ⊳193b 193d⊲
Dh = @(x) reshape(x(1:(q * N)), q, N);

th = @(x) reshape(x((q * N + 1):end), nt - r, nt)’;

The optimization problem is set and solved, using the Optimization Toolbox:
193d 〈Polynomially structured low-rank approximation 193a〉+≡ ⊳193c

〈set optimization solver and options 87a〉
prob.objective = @(x) norm(D - Dh(x), ’fro’);

prob.nonlcon = @(x) deal([], ...

[th(x)’ * phi(Dh(x)), th(x)’ * th(x) - eye(nt - r)]);

prob.x0 = xini;

〈call optimization solver 87b〉 Dh = Dh(x); th = th(x);

6.4 Examples

In this section, we apply the algebraic and geometric fitting methods on a range
of algebraic curve fitting problems. In all examples, except for the last one, the
data D is simulated in the errors-in-variables setup, see (EIV) on page 190. The
perturbations d̃ j, j = 1, . . . ,N are independent, zero mean, normally distributed 2×1
vectors with covariance matrix σ 2I2. The true model B0 = ker(r0), the number of
data points N, and the perturbation standard deviation σ are simulation parameters.
The true model is plotted by a solid line, the data points by circles, the algebraic fit
by a dotted line, the bias corrected fit by dashed dotted line, and the geometric fit by
a dashed line.

194 6 Nonlinear static data modeling

Test function

The test script test_curve_fitting assumes that the simulation parameters:

• polynomial r in x and y, defined as a symbolic object;
• degree d of r;
• number of data points N;
• noise standard deviation σ ; and
• coordinates ax of a rectangle for plotting the results

are already defined.

194a 〈Test curve fitting 194a〉≡
〈initialize the random number generator 91d〉
〈default parameters 194b〉
〈generate data 194c〉
〈fit data 194e〉
〈plot results 195a〉

Defines:
test_curve_fitting, used in chunks 195–97.

If not specified, q= 2, m= 1.
194b 〈default parameters 194b〉≡ (194a)

if ~exist(’q’), q = 2; end

if ~exist(’m’), m = 1; end

if ~exist(’xini’), xini = []; end

The true (D0) and noisy (D) data points are generated by plotting the true model
194c 〈generate data 194c〉≡ (194a) 194d⊲

figure,

H = plot_model(r, ax, ’LineStyle’, ’-’, ’color’, ’k’);

Uses plot_model 195b.

and sampling N equidistant points on the curve
194d 〈generate data 194c〉+≡ (194a) ⊳194c

D0 = [];

for h = H’,

D0 = [D0 [get(h, ’XData’); get(h, ’YData’)]];

end

D0 = D0(:, round(linspace(1, size(D0, 2), N)));

D = D0 + s * randn(size(D0));

The data is fitted by the algebraic (lra), bias corrected (bclra), and geometric
(pslra) fitting methods:

194e 〈fit data 194e〉≡ (194a 198)
qext = nchoosek(q + deg, deg); p = q - m;

[Deg, phi] = monomials(deg);

th_exc = lra(phi(D), qext - p)’;

th_ini = bclra(D, deg);

[th, Dh] = pslra(D, phi, qext - p, xini);

Uses bclra 190a, lra 66, monomials 187a, and pslra 193a.

6.4 Examples 195

The noisy data and the fitted models are plotted on top of the true model:
195a 〈plot results 195a〉≡ (194a 198)

hold on; plot(D(1,:), D(2,:), ’o’, ’markersize’, 7);

plot_model(th2poly(th_exc, phi), ax, ...

’LineStyle’, ’:’, ’color’, ’k’);

plot_model(th2poly(th_ini, phi), ax, ...

’LineStyle’, ’-.’, ’color’, ’r’);

plot_model(th2poly(th, phi), ax, ...

’LineStyle’, ’-’, ’color’, ’b’);

axis(ax); print_fig(sprintf(’%s-est’, name))

Uses plot_model 195b, print_fig 25a, and th2poly 195c.

Plotting the algebraic curve

B = {d | φ(d)θ = 0}

in a region, defined by the vector rect, is done with the function plot_model.
195b 〈Plot the model 195b〉≡

function H = plot_model(r, rect, varargin)

H = ezplot(r, rect);

if nargin > 2, for h = H’, set(h, varargin{:}); end, end

Defines:
plot_model, used in chunks 194c and 195a.

The function th2poly converts a vector of polynomial coefficients to a function
that evaluates that polynomial.

195c 〈Θ 7→ RΘ 195c〉≡
function r = th2poly(th, phi), r = @(x, y) th’ * phi([x y]’);

Defines:
th2poly, used in chunk 195a.

Fitting algebraic curves in R2

Simulation 1: Parabola

B = {col(x,y) | y = x2 +1}

195d 〈Curve fitting examples 195d〉≡ 196a⊲
clear all

name = ’parabola’;

N = 20; s = 0.1;

deg = 2; syms x y;

r = x^2 - y + 1;

ax = [-1 1 1 2.2];

test_curve_fitting

Uses test_curve_fitting 194a.
−1 −0.5 0 0.5 1
1

1.2

1.4

1.6

1.8

2

2.2

196 6 Nonlinear static data modeling

Simulation 2: Hyperbola

B = {col(x,y) | x2 − y2 −1 = 0}

196a 〈Curve fitting examples 195d〉+≡ ⊳195d 196b⊲
name = ’hyperbola’;

N = 20; s = 0.3;

deg = 2; syms x y;

r = x^2 - y^2 - 1;

ax = [-2 2 -2 2];

test_curve_fitting

Uses test_curve_fitting 194a.
−2 −1 0 1 2

−2

−1

0

1

2

Simulation 3: Cissoid

B= {col(x,y) | y2(1+x)= (1−x)3}

196b 〈Curve fitting examples 195d〉+≡ ⊳196a 196c⊲
name = ’cissoid’;

N = 25; s = 0.02;

deg = 3; syms x y;

r = y^2 * (1 + x) ...

- (1 - x)^3;

ax = [-1 0 -10 10];

test_curve_fitting

Defines:
examples_curve_fitting, never

used.
Uses test_curve_fitting 194a.

−1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Simulation 4: Folium of Descartes

B = {col(x,y) | x3 + y3 −3xy = 0}

196c 〈Curve fitting examples 195d〉+≡ ⊳196b 197a⊲
name = ’folium’;

N = 25; s = 0.1;

deg = 3; syms x y;

r = x^3 + y^3 - 3 * x * y;

ax = [-2 2 -2 2];

test_curve_fitting

Uses test_curve_fitting 194a.
−2 −1 0 1 2

−2

−1

0

1

2

6.4 Examples 197

Simulation 5: Eight curve

B = {col(x,y) | y2 − x2 + x4 = 0}

197a 〈Curve fitting examples 195d〉+≡ ⊳196c 197b⊲
name = ’eight’;

N = 25; s = 0.01;

deg = 4; syms x y;

r = y^2 - x^2 + x^4;

ax = [-1.1 1.1 -1 1];

test_curve_fitting

Uses test_curve_fitting 194a.
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Simulation 6: Limacon of Pascal

B = {col(x,y) | y2 + x2 − (4x2 −
2x+4y2)2 = 0}

197b 〈Curve fitting examples 195d〉+≡ ⊳197a 197c⊲
name = ’limacon’;

N = 25; s = 0.002;

deg = 4; syms x y;

r = y^2 + x^2 - (4 * x^2 ...

- 2 * x + 4 * y^2)^2;

ax = [-.1 .8 -0.5 .5];

test_curve_fitting

Uses test_curve_fitting 194a. 0 0.2 0.4 0.6 0.8
−0.5

0

0.5

Simulation 7: Four-leaved rose

B = {(x,y) | (x2+y2)3−4x2y2 = 0}

197c 〈Curve fitting examples 195d〉+≡ ⊳197b 198⊲
name = ’rose’;

N = 30; s = 0.002;

deg = 6; syms x y;

r = (x^2 + y^2)^3 ...

- 4 * x^2 * y^2;

ax = [-1 1 -1 1];

test_curve_fitting

Uses test_curve_fitting 194a. −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

198 6 Nonlinear static data modeling

Simulation 8: “Special data”

example from (Gander et al, 1994)

198 〈Curve fitting examples 195d〉+≡ ⊳197c
name = ’special-data’;

D = [1 2 5 7 9 3 6 8 ;

7 6 8 7 5 7 2 4];

D0 = D; deg = 2;

xini = [D(:)’ 1 0 0 1 0 -1]’;

figure, ax = [-4 10 -1 9];

〈fit data 194e〉 〈plot results 195a〉
0 5 10

0

2

4

6

8

6.5 Notes and references

Fitting curves to data is a basic problem in coordinate metrology, see (Van Huffel,
1997, Part IV). In the computer vision literature, there is a large body of work on
ellipsoid fitting (see, e.g., (Bookstein, 1979; Fitzgibbon et al, 1999; Gander et al,
1994; Kanatani, 1994; Markovsky et al, 2004)), which is a special case of the con-
sidered in this chapter data fitting problem when the degree of the polynomial is
equal to two.

In the systems and control literature, the geometric distance is called misfit and
the algebraic distance is called latency, see (Lemmerling and De Moor, 2001). Iden-
tification of a linear time-invariant dynamical systems, using the latency criterion
leads to the autoregressive moving average exogenous setting, see (Ljung, 1999;
Söderström and Stoica, 1989). Identification of a linear time-invariant dynamical
systems, using the misfit criterion leads to the errors-in-variables setting, see (Söder-
ström, 2007).

State-of-the art image segmentation methods are based on the level set approach
(Sethian, 1999). Level set methods use implicit equations to represent a contour in
the same way we use kernel representations to represent a model in this chapter.
The methods used for parameter estimation in the level set literature, however, are
based on solution of partial differential equations while we use classical parameter
estimation/optimization methods.

Relaxation of the nonlinearly structured low-rank approximation problem, based
on ignoring the nonlinear structure and thus solving the problem as unstructured
low-rank approximation, (i.e., the algebraic fitting method) is known in the machine
learning literature as kernel principal component analysis (Schölkopf et al, 1999).
The principal curves, introduced in (Hastie and Stuetzle, 1989), lead to a problem
of minimizing the sum of squares of the distances from data points to a curve. This
is a polynomially structured low-rank approximation problem. More generally, di-
mensionality reduction by manifold learning, see, e.g., (Zhang and Zha, 2005) is

References 199

related to the problem of fitting an affine variety to data, which is also polynomially
structured low-rank approximation.

Nonlinear (Vandermonde) structured total least squares problems are discussed
in (Lemmerling et al, 2002; Rosen et al, 1998) and are applied to fitting a sum of
damped exponentials model to data. Fitting a sum of damped exponentials to data,
however, can be solved as a linear (Hankel) structured approximation problem. In
contrast, the geometric data fitting problem considered in this chapter in general can
not be reduced to a linearly structured problem and is therefore a genuine application
of nonlinearly structured low-rank approximation.

The problem of passing from image to kernel representation of the model is
known as the implicialization problem (Cox et al, 2004, Page 96) in computer alge-
bra. The reverse transformation—passing from a kernel to an image representation
of the model, is a problem of solving a system of multivariable polynomial equa-
tions.

References

Bookstein FL (1979) Fitting conic sections to scattered data. Computer Graphics
Image Proc 9:59–71

Cox D, Little J, O’Shea D (2004) Ideals, varieties, and algorithms. Springer
Fitzgibbon A, Pilu M, Fisher R (1999) Direct least-squares fitting of ellipses. IEEE

Trans Pattern Anal Machine Intelligence 21(5):476–480
Gander W, Golub G, Strebel R (1994) Fitting of circles and ellipses: Least squares

solution. BIT 34:558–578
Hastie T, Stuetzle W (1989) Principal curves. J American Statistical Association

84:502–516
Kanatani K (1994) Statistical bias of conic fitting and renormalization. IEEE Trans

Pattern Anal Machine Intelligence 16(3):320–326
Lemmerling P, De Moor B (2001) Misfit versus latency. Automatica 37:2057–2067
Lemmerling P, Van Huffel S, De Moor B (2002) The structured total least squares

approach for nonlinearly structured matrices. Numer Linear Algebra Appl 9(1–
4):321–332

Ljung L (1999) System Identification: Theory for the User. Prentice-Hall, Upper
Saddle River, NJ

Markovsky I, Kukush A, Van Huffel S (2004) Consistent least squares fit-
ting of ellipsoids. Numerische Mathematik 98(1):177–194, DOI 10.1007/
s00211-004-0526-9

Rosen J, Park H, Glick J (1998) Structured total least norm for nonlinear problems.
SIAM J Matrix Anal Appl 20(1):14–30

Schölkopf B, Smola A, Müller K (1999) Kernel principal component analysis., MIT
Press, Cambridge, MA, pp 327–352

Sethian J (1999) Level Set Methods and Fast Marching Methods. Cambridge Uni-
versity Press

200 6 Nonlinear static data modeling

Söderström T (2007) Errors-in-variables methods in system identification. Auto-
matica 43:939–958

Söderström T, Stoica P (1989) System Identification. Prentice Hall
Van Huffel S (ed) (1997) Recent Advances in Total Least Squares Techniques and

Errors-in-Variables Modeling. SIAM, Philadelphia
Zhang Z, Zha H (2005) Principal manifolds and nonlinear dimension reduction via

local tangent space alignment. SIAM J on Scientific Computing 26:313–338

Chapter 7

Fast measurements of slow processes

Summary: Motivated by an application in metrology for speed up of measurement
devices, the following problem is considered: given output observations of a stable
linear time-invariant system with known dc-gain, generated by a step input, find the
input. If a model of the data generating process is available, the input estimation
problem is solved as an equivalent state estimation problem for an autonomous sys-
tem. Otherwise, the input estimation problem is reduced to standard system iden-
tification problems: 1) identification from step response data and 2) autonomous
system identification. The link to autonomous system identification suggests a data-
driven solution, i.e., an algorithm for computation of the input value without iden-
tifying a representation of the system. The data-driven algorithm is a structured
low-rank approximation problem.

7.1 Introduction

The core idea developed in this chapter is expressed in the following problem from
(Luenberger, 1979, Page 53):

Problem 7.1. A thermometer reading 21◦C, which has been inside a house for a
long time, is taken outside. After one minute the thermometer reads 15◦C; after two
minutes it reads 11◦C. What is the outside temperature? (According to Newton’s
law of cooling, an object of higher temperature than its environment cools at a rate
that is proportional to the difference in temperature.) ⊓⊔
The solution of the problem shows that measurement of a signal from a “slow”
processes can be speeded up by data processing. The solution applies to the special
case of exact data from a first order single input single output linear time-invariant
system. Our purpose is to generalize Problem 7.1 and its solution to multi input multi
output processes with higher order linear time-invariant dynamics and to make the
solution a practical tool for improvement of the speed-accuracy characteristics of
measurement devices by signal processing.

201

202 7 Fast measurements of slow processes

A method for speeding up of measurement devices is of generic interest. Specific
applications can be found in process industry where the process, the measurement
device, or both have slow dynamics, e.g., processes in biotechnology that involve
chemical reactions and convection. Of course, the notion of “slow process” is rel-
ative. There are applications, e.g., weight measurement, where the dynamics may
be fast according to the human perception but slow according to the state-of-the-art
technological requirements.

The dynamics of the process is assumed to be linear time-invariant but otherwise
it need not be known. Knowledge of the process dynamics simplifies considerably
the problem. In some applications, however, such knowledge is not available a pri-
ori. For example, in Problem 7.1 the heat exchange coefficient (cooling time con-
stant) depends on unknown environmental factors, such as pressure and humidity.
As another example, consider the dynamic weighing problem, where the unknown
mass of the measured object affects the dynamics of the weighting process. The lin-
earity assumption is justifiable on the basis that nonlinear dynamical processes can
be approximated by linear models, and existence of an approximate linear model is
often sufficient for solving the problem to a desirable accuracy. The time-invariance
assumption can be relaxed in the recursive estimation algorithms proposed by us-
ing windowing of the processed signal and forgetting factor in the recursive update
formula.

Although only the steady-state measurement value is of interest, the solution of
Problem 7.1 identifies explicitly the process dynamics as a byproduct. The pro-
posed methods for dynamic weighing (see the notes and references section) are also
model-based and involve estimation of model parameters. Similarly, the generalized
problem considered reduces to a system identification question—find a system from
step response data. Off-line and recursive methods for solving this latter problem,
under different noise assumptions, exist in the literature, so that these methods can
be readily used for input estimation.

In this chapter, a method for estimation of the parameter of interest—the input
step value—without identifying a model of the measurement process is described.
The key idea that makes model-free solution possible comes from work on data-
driven estimation and control. The method proposed requires only a solution of a
system of linear equations and is computationally more efficient and less expensive
to implement in practice than the methods based on system identification. Modifi-
cations of the model-free algorithm compute approximate solutions that are optimal
for different noise assumptions. The modifications are obtained by replacing ex-
act solution of a system of linear equations with approximate solution by the least
squares method or one of its variations. On-line versions of the data-driven method,
using ordinary or weighted least squares approximation criterion, are obtained by
using a standard recursive least squares algorithms. Windowing of the processed
signal and forgetting factor in the recursive update allow us to make the algorithm
adaptive to time-variation of the process dynamics.

The possibility of using theoretical results, algorithms, and software for different
standard identification methods in the model based approach and approximation
methods in the data-driven approach lead to a range of new methods for speed-

7.1 Introduction 203

up of measurement devices. These new methods inherit desirable properties (such
as consistency, statistical and computational efficiency) from the identification or
approximation methods being used.

The generalization of Problem 7.1 considered is defined in this section. In Sec-
tion 7.2, the simpler version of the problem when the measurement process dy-
namics is known is solved by reducing the problem to an equivalent state estima-
tion problem for an augmented autonomous system. Section 7.3 reduces the general
problem without known model to standard identification problems—identification
from step response data as well as identification in a model class of autonomous
system (sum-of-damped exponentials modeling). Then the data-driven method is
derived as a modification of the method based on autonomous system identifica-
tion. Examples and numerical results showing the performance of the methods are
presented in Section 7.4. The proofs of the statements are almost identical for the
continuous and discrete-time cases, so that only the proof for the discrete-time case
is given.

Problem formulation

Problem 7.1 can be restated more abstractly as follows.

Problem 7.2. A step input u = ūs, where ū ∈ R, is applied to a first order stable
linear time-invariant system with unit dc-gain1. Find the input step level ū from the
output values y(0) = 21, y(1) = 15, and y(2) = 11. ⊓⊔
The heat exchange dynamics in Problem 7.1 is indeed a first order stable linear
time-invariant system with unit dc-gain and step input. The input step level ū is
therefore equal to the steady-state value of the output and is the quantity of interest.
Stating Problem 7.1 in system theoretic terms opens a way to generalizations and
makes clear the link of the problem to system identification. The general problem
considered is defined as follows.

Problem 7.3. Given output observations

y =
(
y(t1), . . . ,y(tT)

)
, where y(t) ∈ R

p

at given moments of time 0 ≤ t1 < · · · < tT , of a stable linear time-invariant system
B ∈L p+m

m,n with known dc-gain G ∈Rp×m, generated by a step input u = ūs (but not
necessarily zero initial conditions), find the input step value ū ∈ R

m. ⊓⊔
The known dc-gain assumption imposed in Problem 7.3 corresponds to calibration
of the measurement device in real-life metrological applications. Existence of a dc-

1 The dc (or steady state) gain of a linear time-invariant system, defined by an input/output repre-
sentation with transfer function H , is G = H(0) in the continuous-time case and G = H(1) in the
discrete-time case. As the name suggest the dc gain G is the input-output amplification factor in a
steady state regime, i.e., constant input and output.

204 7 Fast measurements of slow processes

gain, however, requires stability hence the process is assumed to be a stable dynam-
ical system. By this assumption, in a steady-state regime, the output of the device
is ȳ = Gū, so that, provided G is a full column rank matrix, the value of interest is
uniquely determined as ū = G+ȳ, where G+ is a left inverse of G. Obviously, with-
out prior knowledge of G and without G beginning full column rank, ū can not be
inferred from ȳ. Therefore, we make the following standing assumption.

Assumption 7.4 The measurement process dynamics B is a stable linear time-

invariant system with full column rank dc-gain, i.e.,

rank(G) = m, where G := dcgain(B) ∈ R
p×m.

Note 7.5 (Exact vs noisy observations). Problem 7.3, aims to determine the exact

input value ū. Correspondingly, the given observations y of the sensor are assumed
to be exact. Apart from the problem of finding the exact value of ū from exact
data y, the practically relevant estimation and approximation problems are consid-
ered, where the observations are subject to measurement noise

y = y0 + ỹ, where y0 ∈ B and ỹ is white process with ỹ(t)∼ N(0,V) (OE)

and/or the process dynamics is not finite dimensional linear time-invariant.

Despite the unrealistic assumption of exact observations, Problem 7.3 poses a
valid theoretical question that needs to be answered before more realistic approxi-
mate and stochastic versions are considered. In addition to its theoretical (and ped-
agogical) value, the solution of Problem 7.3 leads to algorithms for computation
of ū that with small modifications (approximate rather than exact identification and
approximate solution of an overdetermined system of equations) produce approx-
imations of ū in the case of noisy data and/or process dynamics that is not linear
time-invariant.

We start in the next section by solving the simpler problem of speed-up of a
sensor when the measurement process dynamics B is known.

Problem 7.6. Given a linear time-invariant system B ∈ L m+p
m,n and an output trajec-

tory y of B, obtained from a step input u = ūs, find the step level ū ∈ R
m. ⊓⊔

7.2 Estimation with known measurement process dynamics

Proposition 7.7 Define the maps between an nth order linear time-invariant system

with m inputs and an n+ mth order autonomous system with m poles at 0 in the

continuous-time case, or at 1 in the discrete-time case:

B 7→ Baut by Baut := {y | there is ū, such that (ūs,y) ∈ B }

and

7.2 Estimation with known measurement process dynamics 205

Baut 7→ B by B := Bi/s/o(A,B,C,D), where Baut = Bi/s/o (Aaut,Baut) ,

with

Aaut :=
[

A B

0 Im

]
and Caut :=

[
C D

]
. (∗)

Then

(ūs,y) ∈ B ∈ L m+p
m,n ⇐⇒ y ∈ Baut ∈ L p

0,n+m and Baut has

m poles at 0 in the continuous-time case, or at 1 in the discrete-time case.

The state vector x of Bi/s/o(A,B,C,D) and the state vector xaut of Bi/s/o(Aaut,Caut),
are related by xaut = (x, ū).

Proof.

(ūs,y) ∈ B = Bi/s/o(A,B,C,D)

⇐⇒ σx = Ax+Būs, y =Cx+Dūs, x(0) = xini

⇐⇒ σx = Ax+Būs, σ ū = ū, y =Cx+Dūs, x(0) = xini

⇐⇒ σxaut = Aautxaut, y =Cautxaut, xaut(0) = (xini, ū)

⇐⇒ y ∈ Baut = Bi/s/o (Aaut,Baut) ⊓⊔

Proposition 7.7 shows that Problem 7.6 can be solved as a state estimation prob-
lem for the augmented system Bi/s/o(Aaut,Baut). In the case of discrete-time ex-
act data y, a dead-beat observer computes the exact state vector in a finite (less
than n+m) time steps. In the case of noisy observations (OE), the maximum likeli-
hood state estimator is the Kalman filter.

The algorithm for input estimation, resulting from Proposition 7.7 is:
205a 〈Algorithm for sensor speedup in the case of known dynamics 205a〉≡

function uh = stepid_kf(y, a, b, c, d, v, x0, p0)

[p, m] = size(d); n = size(a, 1);

if nargin == 6,

x0 = zeros(n + m, 1); p0 = 1e8 * eye(n + m);

end

〈model augmentation: B 7→ Baut 205b〉
〈state estimation: (y,Baut) 7→ xaut = (x, ū) 206〉

Defines:
stepid_kf, used in chunks 214c, 215b, and 223b.

The obligatory inputs to the function stepid_kf are a T × p matrix y of uni-
formly sampled outputs (y(t) =y(t,:)’), parameters a, b, c, d of a state space
representation Bi/s/o(A,B,C,D) of the measurement process, and the output noise
variance v. The output uh is a T × m matrix of the sequence of parameter ū esti-
mates û(t) =uh(t,:)’. The first step B 7→ Baut of the algorithm is implemented
as follows, see (∗).

205b 〈model augmentation: B 7→ Baut 205b〉≡ (205a)
a_aut = [a b; zeros(m, n) eye(m)]; c_aut = [c d];

206 7 Fast measurements of slow processes

Using the function tvkf_oe, which implements the time-varying Kalman filter
for an autonomous system with output noise, the second step

(y,Baut) 7→ xaut = (x, ū)

of the algorithm is implemented as follows.
206 〈state estimation: (y,Baut) 7→ xaut = (x, ū) 206〉≡ (205a)

xeh = tvkf_oe(y, a_aut, c_aut, v, x0, p0);

uh = xeh((n + 1):end, :)’;

Uses tvkf_oe 224a.

The optional parameters x0 and p0 of stepid_kf specify prior knowledge about
mean and covariance of the initial state xaut(0). The default value is a highly uncer-
tain initial condition.

Denote by nf the order of the Kalman filter. We have that nf = n+m. The compu-
tational cost of processing the data by the time-varying Kalman filter is O(n2

f +nfp)
floating point operations per discrete-time step, provided the filter gain is precom-
puted and stored off-line. Note, however, that in the solution of Problem 7.3, pre-
sented in Section 7.3, the equivalent autonomous model has state dimension n+ 1,
independent of the value of m.

Note 7.8 (Comparison of other methods with stepid_kf). In the case of noisy
data (OE), stepid_kf is a statistically optimal estimator for the parameter ū.
Therefore, the performance of stepid_kf is an upper bound for the achievable
performance with the methods described in the next section.

Although stepid_kf is theoretically optimal estimator of ū, in practice it need
not be the method of choice even when an a priori given model for the measurement
process and the noise covariance are available. The reason for this, perhaps paradox-
ical statement, is that in practice the model of the process and the noise covariance
are not known exactly and the performance of the method may degrade significantly
as a result of the uncertainty in the given prior knowledge. The alternative methods
that do not relay on a priori given model, may be more robust in case of large uncer-
tainty. In specific cases, this claim can be justified theoretically on the basis of the
sensitivity of the Kalman filter to the model parameters. In general cases, the claim
can be observed experimentally or by numerical simulation.

7.3 Estimation with unknown measurement process dynamics

Solution by reduction to identification from step response data

Problem 7.3 resembles a classical identification problem of finding a linear time-
invariant system from step response data, except that

• the input is unknown,

7.3 Estimation with unknown measurement process dynamics 207

• the dc-gain of the system is constrained to be equal to the given matrix G, and
• the goal of the problem is to find the input rather than the unknown system dy-

namics.

As shown next, the first two peculiarities of Problem 7.3 are easily dealt with. The
third one is addressed by the data-driven algorithm.

The following proposition shows that Problem 7.3 can be solved equivalently as
a standard system identification problem from step response data.

Proposition 7.9 Let P ∈ R
m×m be a nonsingular matrix and define the mappings

(P,B) 7→ B′, by B′ := {(Pu,y) | (u,y) ∈ B }

and

(P,B′) 7→ B, by B := {(P−1u,y) | (u,y) ∈ B′ }.
Then, under Assumption 7.4, we have that

(ūs,y) ∈ B ∈ L m+p
m,n and dcgain(B) = G

⇐⇒ (1ms,y) ∈ B′ ∈ L m+p
m,n and dcgain(B′) = G′, (∗)

where ū = P1m and GP = G′.

Proof. Obviously, B ∈ L m+p
m,n and dcgain(B) = G implies B′ ∈ L m+p

m,n and

dcgain(B′) = GP =: G′.

Vice verse, if B′ ∈ L m+p
m,n and dcgain(B′) = G′, then B ∈ L m+p

m,n and

dcgain(B) = P−1G′ = G.

With ȳ := limt→∞ y(t), we have

(1ms,y) ∈ B′ =⇒ G′1m = ȳ and (ūs,y) ∈ B′ =⇒ Gū = ȳ.

Therefore, G′1m = GP1m = Gū. Finally, using Assumption 7.4, we obtain P1m = ū.
⊓⊔

Note 7.10. The input value 1m in (∗) is arbitrary. The equivalence holds for any
nonzero vector ū′, in which case ū = Pū′.

The importance of Proposition 7.9 stems from the fact that while in the left hand
side of (∗) the input ū is unknown and the gain G is known, in the right hand side
of (∗), the input 1m is known and the gain G′ is unknown. Therefore, for the case
p = m, the standard identification problem of finding B′ ∈ L p+m

m,n from the data
(1ms,y) is equivalent to Problem 7.3, i.e., find ū ∈ R

m and B ∈ L p+m
m,n , such that

(1ms,y)∈B and dcgain(B)=G. (The p= m condition is required in order to ensure
that the system GP = G′ has a unique solution P for any p× m full column rank
matrices G and G′.)

208 7 Fast measurements of slow processes

Next, we present an algorithm for solving Problem 7.3 using Proposition 7.9.
208a 〈Algorithm for sensor speedup based on reduction to step response system identification 208a〉≡

function [uh, sysh] = stepid_si(y, g, n)

〈system identification: (1ms,y) 7→ B′ 208b〉
〈ū := G−1G′1m, where G′ := dcgain(B′) 208c〉

Defines:
stepid_si, never used.

The input to the function stepid_si is a T × p matrix y of uniformly sampled
output values (y(t) = y(t,:)’), a nonsingular p× m matrix g, and the system
order n. For simplicity, in stepid_si as well as in the following algorithms, the
order n of the measurement process B is assumed known. In case of unknown
system order, one of the many existing order estimation methods (see, (Stoica and
Selén, 2004)) can be used.

For exact data, the map (1ms,y) 7→B′ is the exact identification problem of com-
puting the most powerful unfalsified model of (1ms,y) in the model class of linear-
time invariant systems. For noisy data, an approximation of the “true” system B′

is obtained by an approximate identification method. The approximation criterion
should reflect known properties of the noise, e.g., in the case of observations cor-
rupted by measurement noise (OE), an output error identification method should be
selected.

Using the function ident_oe, the pseudo-code of stepid_si is completed
as follows.

208b 〈system identification: (1ms,y) 7→ B′ 208b〉≡ (208a)
sysh = ident_oe([y ones(size(y))], n);

Uses ident_oe 119a.

and
208c 〈ū := G−1G′1m, where G′ := dcgain(B′) 208c〉≡ (208a)

[p, m] = size(g); uh = sum(g \ dcgain(sysh), 2);

Note 7.11 (Output error identification). The shown implementation of stepid_si
is optimal (maximum likelihood) for data y generated according to (OE).

Note 7.12 (Recursive implementation). The function ident_oe is an off-line iden-
tification method. Replacing it with the recursive identification methods results in
a recursive algorithm for solution of Problem 7.3. The easy modification of the
pseudo-code for different situations, such as different noise assumptions, different
model class, and batch vs on-line implementation, is possible by the reduction of
Problem 7.3 to a standard problem in system identification, for which well devel-
oped theory, algorithms, and software exist.

Solution by identification of an autonomous system

An alternative way of solving Problem 7.3 is to exploit its equivalence to au-
tonomous system identification, stated in the following proposition.

7.3 Estimation with unknown measurement process dynamics 209

Proposition 7.13 Define the maps

(B, ū) 7→ B′
aut, by B′

aut := {y | (sū,y) ∈ B }

and

(B′
aut,G) 7→ B, by B := Bi/s/o(A,B,C,D),

where B′
aut = Bi/s/o

([
A Bū

0 λ1

]
,
[
C Dū

])
,

λ1 = 0 in the continuous-time case or λ1 = 1 in the discrete-time case.

We have that

(sū,y) ∈B ∈L m+p
m,n and dcgain(B) = G ⇐⇒ y ∈B′

aut ∈L p

0,n+1 and

B′
aut has a pole at 0 in the continuous-time or 1 in the discrete-time. (∗)

Proof. Let z1, . . . ,zn be the poles of B, i.e.,

{z1, . . . ,zn } := λ (B).

An output y of B to a step input u = ūs is of the form

y(t) =
(

ū+
n

∑
i=1

αi pi(t)z
t
i

)
s(t), for all t,

where pi is a polynomial function (of degree equal to the multiplicity of zi minus
one), and αi ∈ Rn. This shows that y is a response of an autonomous linear time-
invariant system with poles 1∪λ (B).

A system B′
aut ∈ L p

0,n+1 with a pole at 1, admits a minimal state space represen-
tation

Bi/s/o

([
A b

0 1

]
,
[
C d
])

.

The “⇒” implication in (∗) follows from the definition of the map (B, ū) 7→ B′
aut.

The “⇐” implication in (∗) follows from

y ∈ B′
aut = Bi/s/o

([
A b

0 1

]
,
[
C d
])

=⇒ there exist initial conditions x(0) ∈ R
n and z(0) = zini ∈ R,

such that σx = Ax+bz, y =Cx+dz, σz = z

=⇒ there exist initial condition x(0) = xini ∈ R
n and z ∈ R,

such that σx = Ax+bz, y =Cx+dz

=⇒ (zs,y) ∈ B = Bi/s/o(A,b,C,d).

Using the prior knowledge about the dc-gain of the system, we have

210 7 Fast measurements of slow processes

ȳ := lim
t→∞

y(t) = Gū.

On the other hand, (zs,y) ∈ B = Bi/s/o(A,b,C,d) implies that

ȳ :=
(
C(I−A)−1b+d

)
z̄.

These relations give us the system of linear equations for ū

(
C(I−A)−1b+d

)
z̄ = Gū. (∗∗)

By Assumption 7.4, ū is uniquely determined from (∗∗). ⊓⊔

The significance of Proposition 7.13 is that Problem 7.3 can be solved equiva-
lently as an autonomous system identification problem with a fixed pole at 0 in the
continuous-time case or at 1 in the discrete-time case. The following proposition
shows how a preprocessing step makes possible standard methods for autonomous
system identification (or equivalently sum-of-damped exponential modeling) to be
used for identification of a system with a fixed pole at 0 or 1.

Proposition 7.14

y ∈ Bi/s/o

([
A b

0 0

]
,
[
C d
])

⇐⇒ ∆y :=
d
dt

y ∈ ∆B := Bi/s/o(A,C)

in the continuous-time case

y ∈ Bi/s/o

([
A b

0 1

]
,
[
C d
])

⇐⇒ ∆y := (1−σ−1)y ∈ ∆B := Bi/s/o(A,C)

in the discrete-time case

Proof. Let p be the characteristic polynomial of the matrix A.

y ∈ Bi/s/o(Ae,Ce) := Bi/s/o

([
A b

0 1

]
,
[
C d
])

⇐⇒ p(σ−1)(1−σ−1)y = 0.

On the other hand, we have

∆y := (1−σ−1)y ∈ ∆B := Bi/s/o(A,C) ⇐⇒ p(σ−1)(1−σ−1)y = 0.

The initial conditions (xini, ū) of Bi/s/o(Ae,Ce) and ∆xini of Bi/s/o(A,C) are re-
lated by

(I−A)xini = ∆xini. ⊓⊔

Once the model parameters A and C are determined via autonomous system iden-
tification from ∆y, the parameter of interest ū can be computed from the equation

y = ȳ+ yaut, where ȳ = Gū and yaut ∈ Bi/s/o(A,C) = ∆B. (AUT)

7.3 Estimation with unknown measurement process dynamics 211

Using the fact that the columns of the extended observability matrix OT (A,C) form
a basis for ∆B|[1,T], we obtain the following system of linear equations for the
estimation of ū

[
1T ⊗G OT (A,C)

][ū

xini

]
= col

(
y(ts), . . . ,y(Tts)

)
. (SYS AUT)

Propositions 7.13 and 7.14, together with (SYS AUT), lead to the following al-
gorithm for solving Problem 7.3.

211a 〈Algorithm for sensor speedup based on reduction to autonomous system identification 211a〉≡
function [uh, sysh] = stepid_as(y, g, n)

〈preprocessing by finite difference filter ∆y := (1−σ−1)y 211b〉
〈autonomous system identification: ∆y 7→ ∆B 211c〉
〈computation of ū by solving (SYS AUT) 211d〉

Defines:
stepid_as, never used.

where
211b 〈preprocessing by finite difference filter ∆y := (1−σ−1)y 211b〉≡ (211a 212)

dy = diff(y);

and, using the function ident_aut
211c 〈autonomous system identification: ∆y 7→ ∆B 211c〉≡ (211a)

sysh = ident_aut(dy, n);

Uses ident_aut 114a.

Notes 7.11 and 7.12 apply for stepid_as as well. Alternatives to the prediction
error method in the second step are methods for sum-of-damped exponential mod-
eling (e.g., the Prony, Yule-Walker, or forward-backward linear prediction methods)
and approximate system realization methods (e.g., Kung’s method, implemented
in the function h2ss). Theoretical results and numerical studies justify different
methods as being effective for different noise assumptions. This allows us to pick
the “right” identification method, to be used in the algorithm for solving Problem 7.3
under additional assumptions or prior knowledge about the measurement noise.

Finally, the third step of stepid_as is implemented as follows.
211d 〈computation of ū by solving (SYS AUT) 211d〉≡ (211a)

T = size(y, 1); [p, m] = size(g); yt = y’; O = sysh.c;

for t = 2:T

O = [O; O(end - p + 1:end, :) * sysh.a];

end

xe = [kron(ones(T, 1), g) O] \ yt(:); uh = xe(1:m);

Data-driven solution

A signal w is persistently exciting of order l if the Hankel matrix Hl(w) has full
row rank. By Lemma 4.11, a persistently exciting signals of order l can not be fitted
exactly by a system in the model class L0,l. Persistency of excitation of the input is
a necessary identifiability condition in exact system identification.

212 7 Fast measurements of slow processes

Assuming that ∆y is persistently exciting of order n,

Bmpum(∆y) = ∆B.

Since,
Bmpum(∆y) = span

(
{σ τ ∆y | τ ∈ R}

)
,

we have that
Bmpum(∆y)|[1,T−n] = span

(
HT−n(∆y)

)
.

Then, from (AUT), we obtain the system of linear equations for ū

[
1T−n⊗G HT−n(∆y)

]
︸ ︷︷ ︸

H

[
ū

ℓ

]
= col

(
y
(
(n+1)ts

)
, . . . ,y

(
Tts
))

, (SYS DD)

which depends only on the given output data y and gain matrix G. The resulting
model-free algorithm is:

212 〈Data-driven algorithm for sensor speedup 212〉≡
function uh = stepid_dd(y, g, n, ff)

if nargin == 3, ff = 1; end

〈preprocessing by finite difference filter ∆y := (1−σ−1)y 211b〉
〈computation of ū by solving (SYS DD) 213〉

Defines:
stepid_dd, used in chunks 214c, 215b, and 223a.

As proved next, stepid_dd computes the correct parameter value ū under less
restrictive condition than identifiability of ∆B from ∆y, i.e., persistency of excita-
tion of ∆y of order n is not required.

Proposition 7.15 Let

(u,y) :=
((

ū, . . . , ū︸ ︷︷ ︸
T times

)
,
(
y(1), . . . ,y(T)

))
∈ B|[1,T], (∗)

for some ū ∈R
m. Then, if the number of samples T is larger than or equal to 2n+m,

where n is the order of the data generating system B, and Assumption 7.4 holds,

the estimate computed by stepid_dd equals the true input value ū.

Proof. The derivation of (SYS DD) and the exact data assumption (∗) imply that
there exists ℓ̄ ∈ R

n, such that (ū, ℓ̄) is a solution of (SYS DD). Our goal is to show
that all solutions of (SYS DD) are of this form.

By Assumption 7.4, B is a stable system, so that 1 6∈ λ (B). It follows that for
any ȳ ∈ R

p,
(ȳ, . . . , ȳ︸ ︷︷ ︸

T times

) 6∈ Baut|[1,T] = ∆B|[1,T].

Therefore,
span(1T ⊗G)∩Baut|[1,T] = {0}.

7.3 Estimation with unknown measurement process dynamics 213

By the assumption T ≥ 2n+m, the matrix H in (SYS DD) has at least as many rows
as columns. Then using the full column rank property of G (Assumption 7.4), it
follows that a solution ū of (SYS DD) is unique. ⊓⊔

Note 7.16 (Nonuniqueness of a solution ℓ of (SYS DD)). Under the assumptions of
Proposition 7.15, the first m elements of a solution of (SYS DD) are unique. The
solution for ℓ, however, may be nonunique. This happens if and only if the order
of Bmpum(∆y) is less than n, i.e., Bmpum(∆y) ⊂ ∆B. A condition on the data for
Bmpum(∆y)⊂ ∆B is that ∆y is persistently exciting of order less than n. Indeed,

dim
(
Bmpum(∆y)

)
= rank

(
HT−n(∆y)

)
.

It follows from Note 7.16 that if the order n is not specified a priori but is es-
timated from the data by, e.g., computing the numerical rank of HT−n(∆y), the
system of equations (SYS DD) has a unique solution.

Note 7.17 (Relaxed assumption). The methods stepid_si and stepid_as,
based on a model computed from the data y using a system identification method,
require identifiability conditions. By Proposition 7.15, however, stepid_dd does
not require identifiability. The order specification in stepid_dd can be relaxed to
an upper bound of the true system order, in which case any solution of (SYS DD)
recovers ū from its unique first m elements.

The data-driven algorithm can be implemented recursively and generalized to
estimation under different noise assumptions. The following code chunk uses a
standard recursive least squares algorithm, implemented in the function rls, for
approximate solution of (SYS DD).

213 〈computation of ū by solving (SYS DD) 213〉≡ (212)
T = size(y, 1); [p, m] = size(g);

Tt = T - n; yt = y((n + 1):T, :)’; if n == 0, dy = [0; dy]; end

x = rls([kron(ones(Tt, 1), g), blkhank(dy, Tt)], yt(:), ff);

uh = x(1:m, p:p:end)’; uh = [NaN * ones(n, m); uh];

Uses blkhank 25b and rls 225a.

The first estimated parameter uh(1, :) is computed at time

Tmin =

⌈
n+m

p

⌉
+n.

In rls, the first ⌈(n+m)/p⌉−1 samples are used for initialization, so that in order to
match the index of uh with the actual discrete-time when the estimate is computed,
uh is padded with n additional rows.

Using the recursive least squares algorithm rls, the computational cost of
stepid_dd is O

(
(m+ n)2p

)
. Therefore, its computational complexity compares

favourably with the one of stepid_kf with precomputed filter gain (see Sec-
tion 7.2). The fact that Problem 7.3 can be solved with the same order of com-
putations with and without knowledge of the process dynamics is surprising and
remarkable. We consider this fact as our main result.

214 7 Fast measurements of slow processes

In the next section, the performance of stepid_dd and stepid_kf is com-
pared on test examples, where the data is generated according to the output error
noise model (OE).

Note 7.18 (Mixed least squares Hankel structured total least squares approximation

method). In case of noisy data (OE), the ordinary least squares approximate solution
of (SYS DD) is not maximum likelihood. The reason for this is that the matrix in
the left-hand-side of (SYS DD) depends on y, which is perturbed by the noise. A
statistically better approach is to be used the mixed least squares total least squares
approximation method that accounts for the fact that the block 1T ⊗G in H is exact
but the block HT−n(∆y) of H as well as the right hand side of (SYS DD) are noisy.
The least squares total least squares method, however, requires the more expensive
singular value decomposition of the matrix

[
H y
]

and is harder to implement as a
recursive on-line method. In addition, although the mixed least squares total least
squares approximation method improves on the standard least squares method it is
also not maximum likelihood either, because it does not take into account the Hankel
structure of the perturbations. A maximum-likelihood data-driven method requires
an algorithm for structured total least squares.

7.4 Examples and real-life testing

Simulation setup

In the simulations, we use the output error model (OE). The exact data y0 in the esti-
mation problems is a uniformly sampled output trajectory y0 =

(
y0(ts), . . . ,y0(Tts)

)

of a continuous-time system B = Bi/s/o(A,B,C,D), obtained with input u0 and ini-
tial condition xini.

214a 〈Test sensor speedup 214a〉≡ 214b⊲
〈initialize the random number generator 91d〉
sys = c2d(ss(A, B, C, D), ts); G = dcgain(sys);

[p, m] = size(G); n = size(sys, ’order’);

y0 = lsim(sys, u0, [], xini);

Defines:
test_sensor, used in chunks 217–22.

According to (OE), the exact trajectory y0 is perturbed with additive noise ỹ, which
is modelled as a zero mean, white, stationary, Gaussian process with standard devi-
ation Σ .

214b 〈Test sensor speedup 214a〉+≡ ⊳214a 214c⊲
y = y0 + randn(T, p) * s;

After the data y is simulated, the estimation methods stepid_kf and stepid_dd
are applied

214c 〈Test sensor speedup 214a〉+≡ ⊳214b 215a⊲
uh_dd = stepid_dd(y, G, n, ff);

uh_kf = stepid_kf(y, sys.a, sys.b, sys.c, sys.d, ...

7.4 Examples and real-life testing 215

s^2 * eye(size(D, 1)));

Uses stepid_dd 212 and stepid_kf 205a.

and the corresponding estimates are plotted as functions of time, together with the
“naive estimator”

û := G+y, where G+ = (G⊤G)−1G⊤.

215a 〈Test sensor speedup 214a〉+≡ ⊳214c 215b⊲
figure(2 * (exm_n - 1) + 1), hold on,

if n > 0, Tmin = 2 * n + 1; else Tmin = 2; end, t = Tmin:T;

plot(t, y0(t, :) / G’, ’k-’), plot(t, y(t, :) / G’, ’k:’),

plot(t, u0(t, :), ’k-’), plot(t, uh_dd(t, :), ’-b’),

plot(t, uh_kf(t, :), ’-.r’), ax = axis;

axis([Tmin T ax(3:4)]), print_fig([’example-’ int2str(exm_n)])

Uses print_fig 25a.

The plotted results are in the interval [2n+m,T], because 2n+m is the minimum
number of samples needed for estimation of ū. The convention used to denote the
different estimates by different line styles is summarized in Table 7.1.

Table 7.1 Legend for the line style styles in figures showing simulation results.

line style — corresponds to
dashed — true parameter value ū

solid — true output trajectory y0
dotted — naive estimate û = G+y

dashed — stepid_kf

dashed-dotted — stepid_dd

Let û(i)(t) be the estimate of ū, using the data
(
y(1), . . . ,y(t)

)
in an ith Monte

Carlo repetition of the estimation experiment. In addition to the results for a specific
noise realization, the average estimation errors of the compared methods

e =
1
N

N

∑
i=1

‖ū− û(i)‖1, where ‖x‖1 :=
n

∑
i=1

|xi|

are computed and plotted over n independent noise realizations.
215b 〈Test sensor speedup 214a〉+≡ ⊳215a

N = 100; clear e_dd e_kf e_nv

for i = 1:N

y = y0 + randn(T, p) * s;

e_nv(:, i) = sum(abs(u0 - y / G’), 2);

uh_dd = stepid_dd(y, G, n, ff);

e_dd(:, i) = sum(abs(u0 - uh_dd), 2);

uh_kf = stepid_kf(y, sys.a, sys.b, sys.c, sys.d, ...

s^2 * eye(size(D, 1)));

e_kf(:, i) = sum(abs(u0 - uh_kf), 2);

end

figure(2 * (exm_n - 1) + 2), hold on

216 7 Fast measurements of slow processes

plot(t, mean(e_dd(t, :), 2), ’-b’),

plot(t, mean(e_kf(t, :), 2), ’-.r’),

plot(t, mean(e_nv(t, :), 2), ’:k’),

ax = axis; axis([Tmin T 0 ax(4)]),

print_fig([’example-error-’ int2str(exm_n)])

exm_n = exm_n + 1;

Uses print_fig 25a, stepid_dd 212, and stepid_kf 205a.

The script file examples_sensor_speedup.m, listed in the rest of this sec-
tion, reproduces the simulation results. The variable exm_n is the currently exe-
cuted example.

216a 〈Sensor speedup examples 216a〉≡ 217a⊲
clear all, close all, exm_n = 1;

Defines:
examples_sensor_speedup, never used.

Dynamic cooling

The first example is the temperature measurement problem from the introduction.
The heat transfer between the thermometer and its environment is governed by
Newton’s law of cooling, i.e., the changes in the thermometer’s temperature y is
proportional to the difference between the thermometer’s temperature and the en-
vironment’s temperature ū. We assume that the heat capacity of the environment
is much larger than the heat capacity of the thermometer, so that the heat transfer
between the thermometer and the environment does not change the environment’s
temperature. Under this assumption, the dynamics of the measurement process is
given by the differential equation

d
dt

y = a
(
ūs− y

)
,

where a is a positive constant that depends on the thermometer and the environment.
The differential equation defines a first order linear time-invariant dynamical system
B = Bi/s/o(−a,a,1,0) with input u = ūs.

216b 〈cooling process 216b〉≡ (217 222)
A = -a; B = a; C = 1; D = 0;

The dc-gain of the system is equal to 1, so that it can be assumed known, inde-
pendent of the process’s parameter a. This matches the setup of Problem 7.3, where
the dc-gain is assumed a priori known but the process dynamics is not.

7.4 Examples and real-life testing 217

Simulation 1: exact data

217a 〈Sensor speedup examples 216a〉+≡ ⊳216a 217b⊲
a = 0.5; 〈cooling process 216b〉 T = 15; ts = 1; s = 0.0;

xini = 1; ff = 1; u0 = ones(T, 1) * (-1); test_sensor

Uses test_sensor 214a.

4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

t

sp
ec

ifi
c

ou
tp

ut
y

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

t

av
er

ag
e

er
ro

r
e

The average error for both stepid_kf and stepid_dd is zero (up to errors
incurred by the numerical computation). The purpose of showing simulation results
of an experiment with exact data is verification of the theoretical results stating that
the methods solve Problem 7.3.

In the case of output noise (OE), stepid_kf is statistically optimal estimator,
while stepid_dd, implemented with the (recursive) least squares approximation
method, is not statistically optimal (see Note 7.18). In the next simulation example
we show how far from optimal is stepid_dd in the dynamic colling example with
the simulation parameters given below.

Simulation 2: noisy data

217b 〈Sensor speedup examples 216a〉+≡ ⊳217a 218b⊲
a = 0.5; 〈cooling process 216b〉 T = 15; ts = 1; s = 0.02;

xini = 1; ff = 1; u0 = ones(T, 1) * (-1); test_sensor

Uses test_sensor 214a.

4 6 8 10 12 14
−1.2

−1

−0.8

−0.6

−0.4

−0.2

t

sp
ec

ifi
c

ou
tp

ut
y

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

t

av
er

ag
e

er
ro

r
e

218 7 Fast measurements of slow processes

Temperature-pressure measurement

Consider ideal gas in a closed container with a fixed volume. We measure the tem-
perature (as described in the previous section) by a slow but accurate thermometer,
and the pressure by fast but inaccurate pressure sensor. By Gay-Lussac’s law, the
temperature (measured in Kelvin) is proportional to the pressure, so by proper cal-
ibration, we can measure the temperature also with the pressure sensor. Since the
pressure sensor is much faster than the thermometer, we model it as a static system.
The measurement process in this example is a multivariable (one input, two outputs)
system Bi/s/o(A,B,C,D), where

A =−a, B = a, C =

[
1
0

]
, and D =

[
0
1

]
.

218a 〈temperature-pressure process 218a〉≡ (218b)
A = -a; B = a; C = [1; 0]; D = [0; 1];

Problem 7.3 in this example can be viewed as a problem of “blending” the mea-
surements of two sensors in such a way that a faster and more accurate measurement
device is obtained. The algorithms developed can be applied directly to process the
vector values data sequence y, thus solving the “data fusion” problem.

Simulation 3: using two sensors

218b 〈Sensor speedup examples 216a〉+≡ ⊳217b 219⊲
a = 0.5; T = 15; ts = 1; 〈temperature-pressure process 218a〉 ff = 1;

s = diag([0.02, 0.05]); xini = 1; u0 = ones(T, 1) * (-1);

test_sensor

Uses test_sensor 214a.

4 6 8 10 12 14
−1.1

−1

−0.9

−0.8

−0.7

−0.6

t

sp
ec

ifi
c

ou
tp

ut
y

4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

t

av
er

ag
e

er
ro

r
e

Comparing the results of Simulation 3 with the ones of Simulation 2 (exper-
iment with the temperature sensor only), we see about two fold initial improve-
ment of the average errors of all methods, however, in a long run the naive
and stepid_dd methods show smaller improvement. The result is consistent
with the intuition that the benefit in having fast but inaccurate second sensor is
to be expected mostly in the beginning when the estimate of the slow but ac-
curate sensor is still far off the true value. This intuitive explanation is con-
firmed by the results of an experiment in which only the pressure sensor is used.

7.4 Examples and real-life testing 219

Simulation 4: pressure sensor only

219 〈Sensor speedup examples 216a〉+≡ ⊳218b 220c⊲
A = []; B = []; C = []; D = 1; T = 15; ts = 1; s = 0.05;

xini = []; ff = 1; u0 = ones(T, 1) * (-1); test_sensor

Uses test_sensor 214a.

5 10 15
−1.1

−1.05

−1

−0.95

−0.9

t

sp
ec

ifi
c

ou
tp

ut
y

5 10 15
0

0.01

0.02

0.03

0.04

0.05

t

av
er

ag
e

er
ro

r
e

Dynamic weighing

The third example is the dynamic weighing problem. An object with mass M is
placed on a weighting platform with mass m that is modelled as a mass, spring,
damper system, see Figure 7.1.

M

m

kd

|
|

|
|

|

y(t)

| | | | | | | | | | | | | | | |

Fig. 7.1 Dynamic weighing setup.

At the time of placing the object, the platform is in a specified (in general
nonzero) initial condition. The object placement has the effect of a step input as
well as a step change of the total mass of the system—platform and object. The goal
is to measure the object’s mass while the platform is still in vibration.

We choose the origin of the coordinate system at the equilibrium position of the
platform when there is no object placed on it with positive direction being upwards,
perpendicular to the ground. With y(t) being the platform’s position at time t, the
measurement process B is described by the differential equation

220 7 Fast measurements of slow processes

(M+m)
d2

dt2 y =−ky−d
d
dt

y−Mg,

where g is the gravitational constant,
220a 〈define the gravitational constant 220a〉≡ (220b)

g = 9.81;

k is the elasticity constant of the spring, and d is the damping constant of the damper.
Defining the state vector x = (y, d

d t
y) and taking as an input u0 = Ms, we obtain the

following state space representation Bi/s/o(A,b,c,0) of B, where

A =

[
0 1
k

M+m
d

M+m

]
, B =

[
0

− g
M+m

]
, C =

[
1 0
]
, and D = 0.

220b 〈weighting process 220b〉≡ (220 221)
〈define the gravitational constant 220a〉
A = [0, 1; -k / (m + M), -d / (m + M)];

B = [0; -g / (m + M)]; C = [1, 0]; D = 0;

u0 = ones(T, 1) * M;

Note that the process parameters and, in particular, its poles depend on the unknown
parameter M, however, the dc-gain

dcgain(B) =−g

k

is independent of M. Therefore, the setup in Problem 7.3—prior knowledge of the
dc-gain but unknown process dynamics—matches the actual setup of the dynamic
weighing problem.

Next, we test the methods stepid_kf and stepid_dd on dynamic weighing
problems with different object’s masses.

Simulation 5: M = 1

220c 〈Sensor speedup examples 216a〉+≡ ⊳219 221a⊲
m = 1; M = 1; k = 1; d = 1; T = 12; 〈weighting process 220b〉
ts = 1; s = 0.02; ff = 1; xini = 0.1 * [1; 1]; test_sensor

Uses test_sensor 214a.

6 8 10 12
0.9

1

1.1

1.2

1.3

1.4

t

sp
ec

ifi
c

ou
tp

ut
y

6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

t

av
er

ag
e

er
ro

r
e

7.4 Examples and real-life testing 221

Simulation 6: M = 10

221a 〈Sensor speedup examples 216a〉+≡ ⊳220c 221b⊲
m = 1; M = 10; k = 1; d = 1; T = 15; 〈weighting process 220b〉
ts = 1; s = 0.05; ff = 1; xini = 0.1 * [1; 1]; test_sensor

Uses test_sensor 214a.

5 10 15
4

6

8

10

12

14

16

18

t

sp
ec

ifi
c

ou
tp

ut
y

5 10 15
0

1

2

3

4

5

6

7

t

av
er

ag
e

er
ro

r
e

Simulation 7: M = 100

221b 〈Sensor speedup examples 216a〉+≡ ⊳221a 222⊲
m = 1; M = 100; k = 1; d = 1; T = 70; 〈weighting process 220b〉
ts = 1; s = 0.5; ff = 1; xini = 0.1 * [1; 1]; test_sensor

Uses test_sensor 214a.

10 20 30 40 50 60 70
−50

0

50

100

150

200

t

sp
ec

ifi
c

ou
tp

ut
y

10 20 30 40 50 60 70
0

20

40

60

80

100

120

t

av
er

ag
e

er
ro

r
e

Time-varying parameter

Finally, we show an example with a time-varying measured parameter ū. The mea-
surement setup is the cooling process with the parameter a changing from 1 to 2 at
time t = 25. The performance of the estimates in the interval [1,25] (estimation of
the initial value 1) was already observed in Simulations 1 and 2 for the exact and
noisy case, respectively. The performance of the estimates in the interval [26,50]
(estimation of the new value ū = 2) is new characteristic for the adaptive properties
of the algorithms.

222 7 Fast measurements of slow processes

Simulation 8: parameter jump

222 〈Sensor speedup examples 216a〉+≡ ⊳221b
a = 0.1; 〈cooling process 216b〉 T = 50; ts = 1; s = 0.001; ff = 0.5;

u0 = [ones(T / 2, 1); 2 * ones(T / 2, 1)]; xini = 0;

test_sensor

Uses test_sensor 214a.

10 20 30 40 50
0

0.5

1

1.5

2

2.5

t

sp
ec

ifi
c

ou
tp

ut
y

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

t

av
er

ag
e

er
ro

r
e

The result shows that by choosing “properly” the forgetting factor f (f = 0.5
in Simulation 8), stepid_dd tracks the changing parameter value. In contrast,
stepid_kf which assumes constant parameter value is much slower in correcting
the old parameter estimate û ≈ 1.

Currently the choice of a the forgetting factor f is based on the heuristic rule that
“slowly” varying parameter requires value of f “close” to 1 and “quickly” changing
parameter requires value of f close to 0. A suitable value is fine tuned by trail and
error.

Another possibility for making stepid_dd adaptive is to include windowing
of the data y by down-dating of the recursive least squares solution. In this case the
tunable parameter (similar to the forgetting factor) is the window length. Again there
is an obvious heuristic for choosing the window length but no systematic procedure.
Windowing and exponential weighting can be combined, resulting in a method with
two tunable parameter.

Real-life testing

The data-driven algorithms for input estimation are tested also on real-life data of
the “dynamic cooling” application. The experimental setup for the data collection is
based on the Lego NXT mindstorms digital signal processor and digital temperature
sensor, see Figure 7.2.

As a true measured value ū, we take the (approximate) steady-state temperature
ȳ := y(40). In order to apply the model based stepid_kf method, the measured
data is fitted by a first order model and an output error standard deviation σ =
0.01 is hypothesised. The fit of the model to the data is shown in Figure 7.3, left.
The data-driven algorithm stepid_dd is applied with forgetting factor f = 0.75.

7.4 Examples and real-life testing 223

Fig. 7.2 Experimental setup: Lego NXT mindstorms brick (left) and temperature sensor (right).

The recursive estimation results are shown in Figure 7.3, right. Although initially
the model based estimation method is more accurate, after 15 sec. the data-driven
method outperforms it.

First, we load the data and apply the data-driven algorithm
223a 〈Test sensor speedup methods on measured data 223a〉≡ 223b⊲

load(’y-tea.mat’); ub = y(end);

T = length(y); G = 1; n = 1; ff = .75; s = 0.01;

uh_dd = stepid_dd(y, G, n, ff);

Defines:
test_lego, never used.

Uses stepid_dd 212.

Then the data is modeled by removing the steady state value and fitting an exponen-
tial to the residual. The obtained model is a first order dynamical system, which is
used for the model based input estimation method.

223b 〈Test sensor speedup methods on measured data 223a〉+≡ ⊳223a 223c⊲
yc = y - ub; f = yc(1:end - 1) \ yc(2:end);

yh = f .^ (0:(T - 1))’ * yc(1) + ub;

sys = ss(f, 1 - f, 1, 0, t(2) - t(1));

uh_kf = stepid_kf(y, sys.a, sys.b, sys.c, sys.d, s^2);

Uses stepid_kf 205a.

Finally, the estimation results for the naive, model-based, and data-driven meth-
ods are plot for comparison.

223c 〈Test sensor speedup methods on measured data 223a〉+≡ ⊳223b
figure(1), hold on, plot(t, y, ’b-’, t, yh, ’r-’)

axis([1 t(end) y(1) y(end)]), print_fig(’lego-test-fit’)

figure(2), hold on,

plot(t, abs(ub - y / G’), ’k-’),

plot(t, abs(ub - uh_dd), ’-b’),

plot(t, abs(ub - uh_kf), ’-.r’),

axis([t(10) t(end) 0 5]), print_fig(’lego-test-est’)

Uses print_fig 25a.

224 7 Fast measurements of slow processes

10 20 30 40
35

40

45

50

55

60

65

time, sec.

y
an

d
ŷ

10 20 30 40
0

1

2

3

4

5

time, sec.

y
an

d
ŷ

Fig. 7.3 Left: model fit to the data (solid blue—measured data, dashed red—model fit). Right: pa-
rameter estimates (solid black—naive estimator, dashed blue—stepid_dd, dashed dotted red—
stepid_kf).

Auxiliary functions

Time-varying Kalman filter

The function tvkf_oe implements the time-varying Kalman filter for the discrete-
time autonomous stochastic system, described by the state space representation

σx = Ax, y =Cx+ v,

where v is a stationary, zero mean, white, Gaussian noise with covariance V .
224a 〈Time-varying Kalman filter for autonomous output error model 224a〉≡ 224b⊲

function x = tvkf_oe(y, a, c, v, x0, p)

T = size(y, 1); y = y’;

Defines:
tvkf_oe, used in chunk 206.

The optional parameters x0 and p specify prior knowledge about the mean value of
the initial state x(0) and its error covariance matrix P. The default value is highly
uncertain zero mean random vector.

The Kalman filter algorithm (see, (Kailath et al, 2000, Theorem 9.2.1)) is

K := APC⊤(V +CPC⊤)−1

σ x̂ = Ax̂+K
(
y−Cx̂

)
, x(0) = xini

σP = APA⊤−K(V +CPC⊤)K⊤, P(0) = Pini.

224b 〈Time-varying Kalman filter for autonomous output error model 224a〉+≡ ⊳224a
x = zeros(size(a, 1), T); x(:, 1) = x0;

for t = 1:(T-1)

k = (a * p * c’) / (v + c * p * c’);

x(:, t + 1) = a * x(:, t) + k * (y(:, t) - c * x(:, t));

p = a * p * a’ - k * (v + c * p * c’) * k’;

end

7.5 Notes and references 225

Recursive least squares

The function rls implements an (exponentially weighted) recursive least squares
algorithm (see, (Kailath et al, 2000, Lemma 2.6.1 and Problem 2.6)) for a system
of linear equations Ax ≈ b, where A ∈ Rm×n, i.e., rls computes the (exponen-
tially weighted) least squares approximate solutions x(n), . . . ,x(m) of the sequence
of problems A1:i,:x(i)≈ b1:i, for i = n, . . . ,m.

225a 〈Recursive least squares 225a〉≡ 225b⊲
function x = rls(a, b, f)

[m, n] = size(a); finv = 1 / f;

Defines:
rls, used in chunk 213.

The input parameter f, f ∈ (0,1], is called forgetting factor and specifies an expo-
nential weighting f iri of the residual r := Ax−b in the least squares approximation
criterion.

Let a(i) be the ith row of A and let b(i) := bi. The (exponentially weighted)
recursive least squares algorithm is

K :=
1
f

Pa⊤
(

1+
1
f

aPa⊤
)−1

σx = x+K(b−ax), x(0) = xini

σP =
1
f

(
P−KaP

)
, P(0) = Pini.

225b 〈Recursive least squares 225a〉+≡ ⊳225a
〈initialization 225c〉
for i = (n + 1):m

ai = a(i, :);

k = finv * p * ai’ / (1 + finv * ai * p * ai’);

x(:, i) = x(:, i - 1) + k * (b(i) - ai * x(:, i - 1));

p = finv * (p - k * ai * p);

end

The algorithm is initialized with the solution of the system formed by the first n
equations

xini := A−1
1:n,:b1:n, Pini := (A⊤

1:n,:A1:n,:)
−1.

225c 〈initialization 225c〉≡ (225b)
ai = a(1:n, 1:n); x = zeros(n, m);

x(:, n) = ai \ b(1:n); p = inv(ai’ * ai);

7.5 Notes and references

In metrology the problem considered in this chapter is called dynamic measurement.
The methods proposed in the literature, see the survey (Eichstädt et al, 2010) and the

226 7 Fast measurements of slow processes

references there in, pose and solve the problem as a compensator design problem,
i.e., the input estimation problem is solved by:

1. designing off-line a dynamical system, called compensator, such that the series
connection of the measurement process with the compensator is an identity, and

2. processing on-line the measurements by the compensator.

Most authors aim at a linear time-invariant compensator and assume that a model
of the measurement process is a priori given. This is done presumably due to the
simplification that the linear-time invariant assumption of the compensator brings in
the design stage and the reduced computational cost in the on-line implementation
compared to alternative nonlinear compensators. In the case of known model, step 1
of the dynamic measurement problem reduces to the classical problem of design-
ing an inverse system (Sain and Massey, 1969). In the presence of noise, however,
compensators that take into account the noise are needed. To the best of our knowl-
edge, there is no theoretically sound solution of the dynamic measurement problem
in the noisy case available in the literature although, as shown in Section 7.2, the
problem reduces to a state estimation problem for a suitably defined autonomous
linear time-invariant system. As a consequence, under standard assumptions about
the measurement and process noises, the maximum likelihood solution is given by
the Kalman filter, designed for the autonomous system.

More flexible is the approach of (Shu, 1993), where the compensator is tuned
on-line by a parameter estimation algorithm. In this case, the compensator is a non-
linear system and an a priori given model of the process is no longer required. The
solutions proposed in (Jafaripanah et al, 2005; Shu, 1993), however, are tailored
to the dynamic weighing problem, where the measurement process dynamics is a
specific second order system.

Compared with the existing results on the dynamic measurement problem in the
literature the methods described in the chapter have the following advantages.

• The considered measurement process dynamics is a general linear multivariable
system. This is a significant generalization of the previously considered dynamic
measurement problems (single input single output, first and second order sys-
tems).

• In the case of known measurement process dynamics, the problem is shown to be
equivalent to a state estimation problem for an augmented system, which implies
that the standard Kalman filter, designed for the augmented system is the optimal
estimator in the case of Gaussian noise. Efficient filtering algorithms for systems
with m constant inputs that avoid the increase in the state dimension from the
original system’s order n to n+ m are described in (Friedland, 1969; Willman,
1969).

• In the case of unknown measurement process dynamics, the problem is solved as
an input estimation problem. The solution leads to recursive on-line algorithms
that can be interpreted as nonlinear compensators, however, we do not a priori
restrict the solution to a special type of compensator, such as linear time-invariant
system tuned by an adaptive filter of a specific type.

References 227

• The data-driven solution derived uses a recursive least squares algorithm, so that
it can be viewed as a nonlinear compensator, similar to the one of (Shu, 1993)
derived for the case of a second order single input single output system. The data-
driven solution proposed, however, applies to higher order multivariable systems.
In addition, unlike the use of recursive least squares in (Shu, 1993) for model pa-
rameter estimation, the data-driven algorithm estimates directly the parameter of
interest. This leads to significant computational savings. The on-line computa-
tional cost of the data-driven algorithm is comparable to the one of running a full
order linear time-invariant compensator in the case of known process model.
The data driven method for estimation of the input value is similar to the data
driven simulation and control methods of (Markovsky, 2010; Markovsky and
Rapisarda, 2008). The key link between the set of system’s trajectories and
the image of the Hankel matrix requiring persistency of excitation of the input
and controllability of the system is proven in (Willems et al, 2005), see also
(Markovsky et al, 2006, Section 8.4).

References

Eichstädt S, Elster C, Esward T, Hessling J (2010) Deconvolution filters for the
analysis of dynamic measurement processes: a tutorial. Metrologia 47:522–533

Friedland B (1969) Treatment of bias in recursive filtering. IEEE Trans Automat
Control 14(4):359–367

Jafaripanah M, Al-Hashimi B, White N (2005) Application of analog adaptive fil-
ters for dynamic sensor compensation. IEEE Trans Instrumentation Measurement
54:245–251

Kailath T, Sayed AH, Hassibi B (2000) Linear Estimation. Prentice Hall
Luenberger DG (1979) Introduction to Dynamical Systems: Theory, Models and

Applications. John Wiley
Markovsky I (2010) Closed-loop data-driven simulation. Int J Contr

83(10):2134–2139, DOI 10.1080/00207179.2010.508093, URL http:

//eprints.soton.ac.uk/266868/

Markovsky I, Rapisarda P (2008) Data-driven simulation and control. Int J Con-
trol 81(12):1946–1959, DOI 10.1080/00207170801942170, URL http://

eprints.soton.ac.uk/263423/

Markovsky I, Willems JC, Van Huffel S, De Moor B (2006) Exact and Approx-
imate Modeling of Linear Systems: A Behavioral Approach. No. 11 in Mono-
graphs on Mathematical Modeling and Computation, SIAM, DOI 10.1137/1.
9780898718263

Sain M, Massey J (1969) Invertibility of linear time-invariant dynamical systems.
IEEE Trans Automat Control 14:141–149

Shu W (1993) Dynamic weighing under nonzero initial conditions. IEEE Trans In-
strumentation Measurement 42(4):806–811

228 7 Fast measurements of slow processes

Stoica P, Selén Y (2004) Model-order selection: A review of information criterion
rules. IEEE Signal Proc Magazine 21:36–47

Willems JC, Rapisarda P, Markovsky I, Moor BD (2005) A note on persistency of
excitation. Control Lett 54(4):325–329

Willman W (1969) On the linear smoothing problem. IEEE Trans Automat Control
14(1):116–117

Appendix A

Approximate solution of an overdetermined
system of equations

Approximate solution of an overdetermined system of linear equations AX ≈ B is
one of the main topics in (numerical) linear algebra and is covered in any linear
algebra textbook, see, e.g., (Strang, 1976, Section 3.3), (Meyer, 2000, Sections 4.6
and 5.14), and (Trefethen and Bau, 1997, Lecture 11). The classical approach is
approximate solution in the least squares sense:

minimize over B̂ and X ‖B− B̂‖F subject to AX = B̂, (LS)

where the matrix B is modified as little as possible in the sense of minimizing the
correction size ‖B− B̂‖F, so that the modified system of equations AX = B̂ is com-
patible. The classical least squares problem has an analytic solution: assuming that
that the matrix A is full column rank, the unique least squares approximate solu-
tion is

X̂ls = (A⊤A)−1A⊤B and B̂ls = A(A⊤A)−1A⊤B.

In the case when A is rank deficient, the solution is either nonunique or does not
exist. Such least squares problems are solved numerically by regularization tech-
niques, see, e.g., (Björck, 1996, Section 2.7).

There are many variations and generalizations of the least squares method for
solving approximately an overdetermined system of equations. Well known ones are
methods for recursive least squares approximation (Kailath et al, 2000, Section 2.6),
regularized least squares (Hansen, 1997), linear and quadratically constrained least
squares problems (Golub and Van Loan, 1996, Section 12.1).

Next, we list generalizations related to the class of the total least squares methods
because of their close connection to corresponding low-rank approximation prob-
lems. Total least squares methods are low-rank approximation methods using an
input/output representation of the rank constraint. In all these problems the basic
idea is to modify the given data as little as possible, so that the modified data defines
a consistent system of equations. In the different methods, however, the correction is
done and its size is measured in different ways. This results in different properties of
the methods in a stochastic estimation setting and motivates the use of the methods
in different practical setups.

229

230 A Approximate solution of an overdetermined system of equations

• The data least squares (Degroat and Dowling, 1991) method is the “reverse”
of the least squares method in the sense that the matrix A is modified and the
matrix B is not:

minimize over Â and X ‖A− Â‖F subject to ÂX = B. (DLS)

As in the least squares problem, the solution of the data least squares is com-
putable in closed form.

• The classical total least squares (Golub, 1973; Golub and Reinsch, 1970; Golub
and Van Loan, 1980) method modifies symmetrically the matrices A and B:

minimize over Â, B̂, and X
∥∥[A B

]
−
[
Â B̂
]∥∥

F

subject to ÂX = B̂.
(TLS)

Conditions for existence and uniqueness of a total least squares approximate so-
lution are given in terms of the singular value decomposition of the augmented
data matrix

[
A B
]
. In the generic case when a unique solution exists, that solu-

tion is given in terms of the right singular vectors of
[
A B
]

corresponding to the
smallest singular values. In this case, the optimal total least squares approxima-
tion

[
Â B̂
]

of the data matrix
[
A B
]

coincides with the Frobenius norm optimal
low-rank approximation of

[
A B
]
, i.e., in the generic case, the model obtained by

the total least squares method coincides with the model obtained by the unstruc-
tured low-rank approximation in the Frobenius norm.

Theorem A.1. Let D̂∗ be a solution to the low-rank approximation problem

minimize over D̂ ‖D− D̂‖F subject to rank(D̂)≤ m

and let B̂∗ = image(D̂∗) be the corresponding optimal linear static model. The

parameter X̂∗ of an input/output representation B̂∗ = Bi/o(X̂
∗) of the optimal

model is a solution to the total least squares problem (TLS) with data matrices

m
{

q−m
{
[

A⊤

B⊤

]
= D ∈ R

q×N .

A total least squares solution X̂∗ exists if and only if an input/output representa-

tion Bi/o(X̂
∗) of B̂∗ exists and is unique if and only if an optimal model B̂∗ is

unique. In the case of existence and uniqueness of a total least squares solution

D̂∗ =
[
Â∗ B̂∗]⊤ , where Â∗X̂∗ = B̂∗.

The theorem makes explicit the link between low-rank approximation and total
least squares. From a data modeling point of view,

A Approximate solution of an overdetermined system of equations 231

total least squares is low-rank approximation of the data matrix D =
[
A B
]⊤,

followed by input/output representation of the optimal model.

231a 〈Total least squares 231a〉≡
function [x, ah, bh] = tls(a, b)

n = size(a, 2); [r, p, dh] = lra([a b]’, n);

〈low-rank approximation 7→ total least squares solution 231b〉
Defines:
tls, never used.

Uses lra 66.

231b 〈low-rank approximation 7→ total least squares solution 231b〉≡ (231a 232)
x = p2x(p); ah = dh(1:n, :); bh = dh((n + 1):end, :);

Lack of solution of the total least squares problem (TLS)—a case called nongeneric
total least squares problem—is caused by lack of existence of an input/output rep-
resentation of the model. Nongeneric total least squares problems are considered in
(Paige and Strakos, 2005; Van Huffel and Vandewalle, 1988, 1991).

• The generalized total least squares (Van Huffel and Vandewalle, 1989) method mea-
sures the size of the data correction matrix

[
∆A ∆B

]
:=
[
A B
]
−
[
Â B̂
]

after row and column weighting:

minimize over Â, B̂, and X
∥∥Wl
([

A B
]
−
[
Â B̂
])

Wr
∥∥

F

subject to ÂX = B̂.
(GTLS)

Here the matrices are Wl and Wr are positive semidefinite weight matrices—Wl cor-
responds to weighting of the rows and Wr to weighting of the columns of the correc-
tion

[
∆A ∆B

]
. Similarly to the classical total least squares problem, the existence

and uniqueness of a generalized total least squares approximate solution is deter-
mined from the singular value decomposition. The data least squares and total least
squares problems are special cases of the generalized total least squares problem.

• The restricted total least squares (Van Huffel and Zha, 1991) method constrains the
correction to be in the form

[
∆A ∆B

]
= PeELe, for some E,

i.e., the row and column span of the correction matrix are constrained to be within
the given subspaces image(Pe) and image(L⊤

e), respectively. The restricted total
least squares problem is:

minimize over Â, B̂, E, and X ‖E‖F

subject to
[
A B
]
−
[
Â B̂
]
= PeELe and ÂX = B̂.

(RTLS)

232 A Approximate solution of an overdetermined system of equations

The generalized total least squares problem is a special case of (RTLS).
• The Procrustes problem: given m×n real matrices A and B,

minimize over X ‖B−AX‖F subject to X⊤X = In

is a least squares problem with a constraint that the unknown X is an orthogonal
matrix. The solution is given by X = UV⊤, where UΣV⊤ is the singular value de-
composition of AB⊤, see (Golub and Van Loan, 1996, page 601).

• The weighted total least squares (De Moor, 1993, Section 4.3) method general-
izes the classical total least squares problem by measuring the correction size by a
weighted matrix norm ‖ · ‖W

minimize over Â, B̂, and X
∥∥[A B

]
−
[
Â B̂
]∥∥

W

subject to ÂX = B̂.
(WTLS)

Special weighted total least squares problems correspond to weight matrices W with
special structure, e.g., diagonal W corresponds to element-wise weighted total least

squares (Markovsky et al, 2005). In general, the weighted total least squares prob-
lem has no analytic solution in terms of the singular value decomposition, so that
contrary to the above listed generalizations, weighted total least squares problems,
in general, can not be solved globally and efficiently. Weighted low-rank approx-
imation problems, corresponding to the weighted total least squares problem are
considered in (Manton et al, 2003; Markovsky and Van Huffel, 2007a; Wentzell
et al, 1997).

232 〈Weighted total least squares 232〉≡
function [x, ah, bh, info] = wtls(a, b, s, opt)

n = size(a, 2);

[p, l, info] = wlra([a b]’, n, s, opt); dh = p * l;

〈low-rank approximation 7→ total least squares solution 231b〉
Defines:
wtls, never used.

Uses wlra 142a.

• The regularized total least squares (Beck and Ben-Tal, 2006; Fierro et al, 1997;
Golub et al, 1999; Sima, 2006; Sima et al, 2004) methods is defined as

minimize over Â, B̂, and X
∥∥[A B

]
−
[
Â B̂
]∥∥

F
+ γ‖DX‖F

subject to ÂX = B̂.
(RegTLS)

Global and efficient solution methods for solving regularized total least squares
problems are derived in (Beck and Ben-Tal, 2006).

• The structured total least squares method (Abatzoglou et al, 1991; De Moor, 1993)
method is a total least squares method with the additional constraint that the correc-
tion should have certain specified structure

References 233

minimize over Â, B̂, and X
∥∥[A B

]
−
[
Â B̂
]∥∥

F

subject to ÂX = B̂ and
[
Â B̂
]

has a specified structure.
(STLS)

Hankel and Toeplitz structured total least squares problems are the most often stud-
ied ones due to the their application in signal processing and system theory.

• The structured total least norm method (Rosen et al, 1996) is the same as the struc-
tured total least squares method with a general matrix norm in the approximation
criterion instead of the Frobenius norm.

For generalizations and applications of the total least squares problem in the pe-
riods 1990–1996, 1996–2001, and 2001–2006, see respectively the edited books
(Van Huffel, 1997), (Van Huffel and Lemmerling, 2002), and the special issues
(Van Huffel et al, 2007a,b). An overview of total least squares problems is given
in (Markovsky and Van Huffel, 2007b; Markovsky et al, 2010; Van Huffel and Zha,
1993).

References

Abatzoglou T, Mendel J, Harada G (1991) The constrained total least squares tech-
nique and its application to harmonic superresolution. IEEE Trans Signal Proc
39:1070–1087

Beck A, Ben-Tal A (2006) On the solution of the Tikhonov regularization of the
total least squares. SIAM J Optimization 17(1):98–118

Björck Å (1996) Numerical Methods for Least Squares Problems. SIAM
De Moor B (1993) Structured total least squares and L2 approximation problems.

Linear Algebra Appl 188–189:163–207
Degroat R, Dowling E (1991) The data least squares problem and channel equaliza-

tion. IEEE Trans Signal Proc 41:407–411
Fierro R, Golub G, Hansen P, O’Leary D (1997) Regularization by truncated total

least squares. SIAM J Sci Comp 18(1):1223–1241
Golub G (1973) Some modified matrix eigenvalue problems. SIAM Review 15:318–

344
Golub G, Reinsch C (1970) Singular value decomposition and least squares solu-

tions. Numer Math 14:403–420
Golub G, Van Loan C (1980) An analysis of the total least squares problem. SIAM

J Numer Anal 17:883–893
Golub G, Van Loan C (1996) Matrix Computations, 3rd edn. Johns Hopkins Uni-

versity Press
Golub G, Hansen P, O’Leary D (1999) Tikhonov regularization and total least

squares. SIAM J Matrix Anal Appl 21(1):185–194
Hansen PC (1997) Rank-Deficient and Discrete Ill-Posed Problems: Numerical As-

pects of Linear Inversion. SIAM
Kailath T, Sayed AH, Hassibi B (2000) Linear Estimation. Prentice Hall

234 A Approximate solution of an overdetermined system of equations

Manton J, Mahony R, Hua Y (2003) The geometry of weighted low-rank approxi-
mations. IEEE Trans Signal Proc 51(2):500–514

Markovsky I, Van Huffel S (2007a) Left vs right representations for solving
weighted low rank approximation problems. Linear Algebra Appl 422:540–552,
DOI 10.1016/j.laa.2006.11.012

Markovsky I, Van Huffel S (2007b) Overview of total least squares methods. Signal
Proc 87:2283–2302

Markovsky I, Rastello ML, Premoli A, Kukush A, Van Huffel S (2005) The element-
wise weighted total least squares problem. Comput Statist Data Anal 50(1):181–
209, DOI 10.1016/j.csda.2004.07.014

Markovsky I, Sima D, Van Huffel S (2010) Total least squares methods. Wiley In-
terdisciplinary Reviews: Comput Stat 2(2):212–217, DOI 10.1002/wics.65

Meyer C (2000) Matrix Analysis and Applied Linear Algebra. SIAM
Paige C, Strakos Z (2005) Core problems in linear algebraic systems. SIAM J Matrix

Anal Appl 27:861–875
Rosen J, Park H, Glick J (1996) Total least norm formulation and solution of struc-

tured problems. SIAM J Matrix Anal Appl 17:110–126
Sima D (2006) Regularization techniques in model fitting and parameter estimation.

PhD thesis, ESAT, K.U.Leuven
Sima D, Van Huffel S, Golub G (2004) Regularized total least squares based on

quadratic eigenvalue problem solvers. BIT 44:793–812
Strang G (1976) Linear Algebra and Its Applications. Academic Press
Trefethen L, Bau D (1997) Numerical Linear Algebra. SIAM
Van Huffel S (ed) (1997) Recent Advances in Total Least Squares Techniques and

Errors-in-Variables Modeling. SIAM, Philadelphia
Van Huffel S, Lemmerling P (eds) (2002) Total Least Squares and Errors-in-

Variables Modeling: Analysis, Algorithms and Applications. Kluwer
Van Huffel S, Vandewalle J (1988) Analysis and solution of the nongeneric total

least squares problem. SIAM J Matrix Anal Appl 9:360–372
Van Huffel S, Vandewalle J (1989) Analysis and properties of the generalized total

least squares problem AX ≈ B when some or all columns in A are subject to error.
SIAM J Matrix Anal 10(3):294–315

Van Huffel S, Vandewalle J (1991) The total least squares problem: Computational
aspects and analysis. SIAM, Philadelphia

Van Huffel S, Zha H (1991) The restricted total least squares problem: Formulation,
algorithm and properties. SIAM J Matrix Anal Appl 12(2):292–309

Van Huffel S, Zha H (1993) The total least squares problem. In: Rao C (ed) Hand-
book of Statistics: Comput. Stat., vol 9, Elsevier, Amsterdam, pp 377–408

Van Huffel S, Cheng CL, Mastronardi N, Paige C, Kukush A (2007a) Editorial: Total
least squares and errors-in-variables modeling. Comput Stat Data Anal 52:1076–
1079

Van Huffel S, Markovsky I, Vaccaro RJ, Söderström T (2007b) Guest editorial:
Total least squares and errors-in-variables modeling. Signal Proc 87(10):2281–
2282

References 235

Wentzell P, Andrews D, Hamilton D, Faber K, Kowalski B (1997) Maximum likeli-
hood principal component analysis. J Chemometrics 11:339–366

Appendix B

Proofs

. . . the ideas and the arguments with which the mathematician is

concerned have physical, intuitive or geometrical reality long

before they are recorded in the symbolism.

The proof is meaningful when it answers the students doubts,

when it proves what is not obvious. Intuition may fly the student

to a conclusion but where doubt remains he may then be asked

to call upon plodding logic to show the overland route to the

same goal.

Kline (1974)

Proof of Proposition 2.23

The proof is given in (Vanluyten et al, 2006). Let D̂∗ be a solution to

D̂∗ := argmin
D̂

‖D− D̂‖ subject to rank(D̂)≤ m. (LRA)

and let
D̂∗ :=U∗Σ ∗(V ∗)⊤

be a singular value decomposition of D̂∗. By the unitary invariance of the Frobenius
norm, we have that

‖D− D̂∗‖F = ‖(U∗)⊤(D− D̂∗)V ∗‖F = ‖(U∗)⊤DV ∗
︸ ︷︷ ︸

D̂

−Σ ∗‖F,

which shows that Σ ∗ is an optimal approximation of D̂. Partition

D̂ =:
[

D̂11 D̂12

D̂21 D̂22

]

conformably with Σ ∗ =:
[

Σ∗
1 0

0 0

]
and observe that

rank
([

Σ ∗
1 D̂12

0 0

])
≤ m and D̂12 6= 0 =⇒

∥∥∥∥D̂−
[

Σ ∗
1 D̂12

0 0

]∥∥∥∥
F
<

∥∥∥∥D̂−
[

Σ ∗
1 0

0 0

]∥∥∥∥
F
,

so that D̂12 = 0. Similarly D̂21 = 0. Observe also that

rank

([
D̂11 0
0 0

])
≤ m and D̂11 6= Σ ∗

1 =⇒
∥∥∥∥D̂−

[
D̂11 0

0 0

]∥∥∥∥
F
<

∥∥∥∥D̂−
[

Σ ∗
1 0

0 0

]∥∥∥∥
F
,

237

238 B Proofs

so that D̂11 = Σ ∗
1 . Therefore,

D̂ =

[
Σ ∗

1 0
0 D̂22

]
.

Let
D̂22 =U22Σ22V⊤

22

be the singular value decomposition of D̂22. Then the matrix
[

I 0
0 U⊤

22

]
D̂

[
I 0
0 V22

]
=

[
Σ ∗

1 0
0 Σ22

]

has optimal rank-m approximation Σ ∗ =:
[

Σ∗
1 0

0 0

]
, so that

min
(

diag(Σ ∗
1)
)
> max

(
diag(Σ22)

)

Therefore,

D =U∗
[

I 0
0 U22

][
Σ ∗

1 0
0 Σ22

][
I 0
0 V⊤

22

]
(V ∗)⊤

is a singular value decomposition of D.
Then, if σm > σm+1, the rank-m truncated singular value decomposition

D̂∗ =U∗
[

Σ ∗
1 0

0 0

]
(V ∗)⊤ =U∗

[
I 0
0 U22

][
Σ ∗

1 0
0 0

][
I 0
0 V⊤

22

]
(V ∗)⊤

is unique and D̂∗ is the unique solution of (LRA). Moreover, D̂∗ is simultaneously
optimal in any unitarily invariant norm.

Proof of Proposition 2.32

The probability density function of the observation vector vec(D) is

p
B̂,D̂

(
vec(D)

)
=

const ·exp
(
− 1

2σ2 ‖vec(D)−vec(D̂)‖2
V−1

)
,

if image(D̂)⊂ B̂ and dim(B̂)≤ m

0, otherwise,

where “const” is a term that does not depend on D̂ and B̂. The log-likelihood func-
tion is

ℓ(B̂,D̂) =

−const · 1
2σ2 ‖vec(D)−vec(D̂)‖2

V−1 ,

if image(D̂)⊂ B̂ and dim(B̂)≤ m

−∞, otherwise,

and the maximum likelihood estimation problem is

B Proofs 239

minimize over B̂ and D̂
1

2σ 2 ‖vec(D)−vec(D̂)‖2
V−1

subject to image(D̂)⊂ B̂ and dim(B̂)≤ m,

which is an equivalent problem to Problem 2.31 with ‖ · ‖= ‖ · ‖V−1 .

Note B.1 (Weight matrix in the norm specification). The weight matrix W in the
norm specification is the inverse of the measurement noise covariance matrix V . In
case of singular covariance matrix (e.g., missing data) the method needs modifica-
tion.

Proof of Theorem 3.16

The polynomial equations (GCD) are equivalent to the following systems of alge-
braic equations

p̂0

p̂1
...

p̂n

= T ⊤

d+1(u)

c0

c1
...

cd

 ,

q̂0

q̂1
...

q̂n

= T ⊤

d+1(v)

c0

c1
...

cd

 ,

where the Toeplitz matrix constructor T is defined in (T) on page 88. Rewriting
and combining the above equations, we have that a polynomial c is a common factor
of p̂ and q̂ with degree(c)≤ d if and only if the system of equations

p̂0 q̂0
p̂1 q̂1
...

...
p̂n q̂n

= T ⊤

n−d+1(c)

u0 v0
u1 v1
...

...
un−d vn−d

has a solution.
The condition degree(c) = d implies that the highest power coefficient cd of c

is different from 0. Since c is determined up to a scaling factor, we can impose the
normalization cd = 1. Conversely, imposing the constraint cd = 1 in the optimiza-
tion problem to be solved ensures that degree(c) = d. Therefore, Problem 3.13 is
equivalent to

minimize over p̂, q̂ ∈ R
n+1, u, v ∈ R

n−d+1, and c0, . . . ,cd−1 ∈ R

trace
(([

p q
]
−
[
p̂ q̂
])⊤ ([

p q
]
−
[
p̂ q̂
]))

subject to
[
p̂ q̂
]
= T ⊤

n−d+1(c)
[
u v
]
.

Substituting
[
p̂ q̂
]

in the cost function and minimizing with respect to
[
u v
]

by
solving a least squares problem gives the equivalent problem (AGCD’).

240 B Proofs

Proof of Theorem 5.17

First, we show that the sequence D̂(1),D̂(1), . . . ,D̂(k), . . . converges monotonically in
the Σ -weighted norm ‖ ·‖Σ . On each iteration, Algorithm 6 solves two optimization
problems (steps 1 and 2), which cost functions and constraints coincide with the
ones of problem (C0–C5). Therefore, the cost function ‖D−D̂(k)‖2

Σ is monotonically
nonincreasing. The cost function is bounded from below, so that the sequence

‖D− D̂(1)‖2
Σ , ‖D− D̂(2)‖2

Σ , . . .

is convergent. This proves (f (k)→ f ∗).
Although, D̂(k) converges in norm, it may not converge element-wise. A suffi-

cient condition for element-wise convergence is that the underlying optimization
problem has a solution and this solution is unique, see (Kiers, 2002, Theorem 5).
The element-wise convergence of D̂(k) and the uniqueness (due to the normalization
condition (A1)) of the factors P(k) and L(k), implies element-wise convergence of
the factor sequences P(k) and L(k) as well. This proves (D(k) → D∗).

In order to show that the algorithm convergence to a minimum point of (C0–C5),
we need to verify that the first order optimality conditions for (C0–C5) are satisfied
at a cluster point of the algorithm. The algorithm converges to a cluster point if and
only if the union of the first order optimality conditions for the problems on steps 1
and 2 are satisfied. Then

P′(k−1) = P′(k) =: P′∗ and L′(k−1) = L′(k) =: L′∗.

From the above conditions for a stationary point and the Lagrangians of the prob-
lems of steps 1 and 2 and (C0–C5), it is easy to see that the union of the first order
optimality conditions for the problems on steps 1 and 2 coincides with the first order
optimality conditions of (C0–C5).

References

Kiers H (2002) Setting up alternating least squares and iterative majorization algo-
rithms for solving various matrix optimization problems. Comput Stat Data Anal
41:157–170

Kline M (1974) Why Johnny Can’t Add: The Failure of the New Math. Random
House Inc

Vanluyten B, Willems JC, De Moor B (2006) Matrix factorization and stochastic
state representations. In: Proc. 45th IEEE Conf. on Dec. and Control, San Diego,
California, pp 4188–4193

Appendix P

Problems

P.1 (Least squares data fitting). Verify that the least squares fits, shown in Fig-
ure 1.1 on page 4, minimize the sums of squares of horizontal and vertical distances.
The data points are:

d1 =

[
−2
1

]
, d2 =

[
−1
4

]
, d3 =

[
0
6

]
, d4 =

[
1
4

]
, d5 =

[
2
1

]
,

d6 =

[
2
−1

]
, d7 =

[
1
−4

]
, d8 =

[
0
−6

]
, d9 =

[
−1
−4

]
, d10 =

[
−2
−1

]
.

P.2 (Distance from a data point to a linear model). The 2-norm distance from a
point d ∈ R

q to a linear static model B ⊂ R
q is defined as

dist(d,B) := min
d̂∈B

‖d − d̂‖2, (dist)

i.e., dist(d,B) is the shortest distance from d to a point d̂ in B. A vector d̂∗ that
achieves the minimum of (dist) is a point in B that is closest to d.

Next we consider the special case when B is a linear static model.

1. Let
B = image(a) = {αa | α ∈ R}.

Explain how to find dist
(
d, image(a)

)
. Find

dist
(

col(1,0), image
(

col(1,1)
))
.

Note that the best approximation d̂∗ of d in image(a) is the orthogonal projection
of d onto image(a).

2. Let B = image(P), where P is a given full column rank matrix. Explain how to
find dist(d,B).

3. Let B = ker(R), where R is a given full row rank matrix. Explain how to find
dist(d,B).

4. Prove that in the linear static case, a solution d̂∗ of (dist) is always unique?

241

242 P Problems

5. Prove that in the linear static case, the approximation error ∆d∗ := d − d̂∗ is
orthogonal to B. Is the converse true, i.e., is it true that if for some d̂, d − d̂ is
orthogonal to B, then d̂ = d̂∗?

P.3 (Distance from a data point to an affine model). Consider again the distance
dist(d,B) defined in (dist). In this problem, B is an affine static model, i.e.,

B = B′+a,

where B′ is a linear static model and a is a fixed vector.

1. Explain how to reduce the problem of computing the distance from a point to an
affine static model to an equivalent problem of computing the distance from a
point to a linear static model (Problem P.2).

2. Find

dist

([
0
0

]
,ker(

[
1 1
]
)+

[
1
2

])
.

P.4 (Geometric interpretation of the total least squares problem). Show that the
total least squares problem

minimize over x ∈ R, â ∈ R
N , and b̂ ∈ R

N
N

∑
j=1

∥∥∥∥d j −
[

â j

b̂ j

]∥∥∥∥
2

2

subject to â jx = b̂ j, for j = 1, . . . ,N

(tls)

minimizes the sum of the squared orthogonal distances from the data points d1, . . . ,dN

to the fitting line
B = {col(a,b) | xa = b}

over all lines passing through the origin, except for the vertical line.

P.5 (Unconstrained problem, equivalent to the total least squares problem).

A total least squares approximate solution xtls of the linear system of equations
Ax ≈ b is a solution to the following optimization problem

minimize over x, Â, and b̂

∥∥∥
[
A b
]
−
[
Â b̂

]∥∥∥
2

F
subject to Âx = b̂. (TLS)

Show that (TLS) is equivalent to the unconstrained optimization problem

minimize ftls(x), where ftls(x) :=
‖Ax−b‖2

2

‖x‖2
2 +1

. (TLS’)

Give an interpretation of the function ftls.

P.6 (Lack of total least squares solution). Using the formulation (TLS’), derived
in Problem P.5, show that the total least squares line fitting problem (tls) has no
solution for the data in Problem P.1.

P Problems 243

P.7 (Geometric interpretation of rank-1 approximation). Show that the rank-1
approximation problems

minimize over R ∈ R
1×2, R 6= 0, and D̂ ∈ R

2×N ‖D− D̂‖2
F

subject to RD̂ = 0.
(lraR)

and

minimize over P ∈ R
2×1 and L ∈ R

1×N ‖D− D̂‖2
F

subject to D̂ = PL.
(lraP)

minimize the sum of the squared orthogonal distances from the data points d1, . . . ,dN

to the fitting line B = ker(P) = image(P) over all lines passing through the origin.
Compare and contrast with the similar statement in Problem P.4.

P.8 (Quadratically constrained problem, equivalent to rank-1 approximation).

Show that (lraP) is equivalent to the quadratically constrained optimization problem

minimize flra(P) subject to P⊤P = 1, (lra′P)

where
flra(P) = trace

(
D⊤(I−PP⊤)D

)
.

Explain how to find all solutions of (lraP) from a solution of (lra′P). Assuming that a
solution to (lra′P) exists, is it unique?

P.9 (Line fitting by rank-1 approximation). Plot the cost function flra(P) for the
data in Problem P.1 over all P such that P⊤P= 1. Find from the graph of flra the min-
imum points. Using the link between (lra′P) and (lraP), established in Problem P.7,
interpret the minimum points of flra in terms of the line fitting problem for the data
in Problem P.1. Compare and contrast with the total least squares approach, used in
Problem P.6.

P.10 (Analytic solution of a rank-1 approximation problem). Show that for the
data in Problem P.1,

flra(P) = P⊤
[

140 0
0 20

]
P.

Using geometric or analytic arguments, conclude that the minimum of flra for a P

on the unit circle is 20 and is achieved for

P∗,1 = col(0,1) and P∗,2 = col(0,−1).

Compare the results with those obtained in Problem P.9.

P.11 (Analytic solution of two-variate rank-1 approximation problem). Find an
analytic solution of the Frobenius norm rank-1 approximation of a 2×N matrix.

244 P Problems

P.12 (Analytic solution of scalar total least squares). Find an analytic expression
for the total least squares solution of the system ax ≈ b, where a,b ∈ R

m.

P.13 (Alternating projections algorithm for low-rank approximation). In this
problem, we consider a numerical method for rank-r approximation:

minimize over D̂ ‖D− D̂‖2
F

subject to rank(D̂)≤ m.
(LRA)

The alternating projections algorithm, outlined next, is based on an image represen-
tation D̂ = PL, where P ∈ R

q×m and L ∈ R
m×N , of the rank constraint.

Algorithm 8 Alternating projections algorithm for low rank approximation

Input: A matrix D ∈ R
q×N , with q ≤ N, an initial approximation D̂(0) = P(0)L(0), P(0) ∈ R

q×m,
L(0) ∈ R

m×N , with m≤ q, and a convergence tolerance ε > 0.
1: Set k := 0.
2: repeat

3: k := k+1.
4: Solve: P(k+1) := argminP ‖D−PL(k)‖2

F
5: Solve: L(k+1) := argminL ‖D−P(k+1)L‖2

F

6: D̂(k+1) := P(k+1)L(k+1)

7: until ‖D̂(k)− D̂(k+1)‖F < ε

Output: Output the matrix D̂(k+1).

1. Implement the algorithm and test it on random data matrices D of different di-
mensions with different rank specifications and initial approximations. Plot the
approximation errors

ek := ‖D− D̂(k)‖2
F, for k = 0,1, . . .

as a function of the iteration step k and comment on the results.
* 2. Give a proof or a counter example for the conjecture that the sequence of approx-

imation errors e := (e0,e1, . . .) is well defined, independent of the data and the
initial approximation.

* 3. Assuming that e is well defined. Give a proof or a counter example for the con-
jecture that e converges monotonically to a limit point e∞.

* 4. Assuming that e∞ exists, give proofs or counter examples for the conjectures
that e∞ is a local minimum of (LRA) and e∞ is a global minimum of (LRA).

P.14 (Two-sided weighted low rank approximation). Prove Theorem 2.29 on
page 67.

P.15 (Most poweful unfalsified model for autonomous models). Given a trajec-
tory

y =
(
y(1),y(2), . . . ,y(T)

)

P Problems 245

of an autonomous linear time-invariant system B of order n, find a state space rep-
resentation Bi/s/o(A,C) of B. Modify your procedure, so that it does not require
prior knowledge of the system order n but only an upper bound nmax for it.

P.16 (Algorithm for exact system identification). Develop an algorithm for ex-
act system identification that computes a kernel representation of the model, i.e.,
implement the mapping

wd 7→ R(z), where B̂ := ker
(
R(z)

)
is the identified model.

Consider separately the cases of known and unknown model order. You can assume
that the system is single input single output.

P.17 (A simple method for approximate system identification). Modify the algo-
rithm developed in Problem P.16, so that it can be used as an approximate identifi-
cation method. You can assume that the system is single input single output and the
order is known.

* P.18 (When is Bmpum(wd) equal to the data generating system?). Choose a (ran-
dom) linear time-invariant system B0 (the “true data generating system”) and a
trajectory wd = (ud,yd) of B0. The aim is to recover the data generating system B0

back from the data wd. Conjecture that this can be done by computing the most
powerful unfalsified model Bmpum(wd). Verify whether and when in simulation
Bmpum(wd) coincides with B0. Find counter examples when the conjecture is not
true and based on this experience revise the conjecture. Find sufficient conditions
for Bmpum(wd) = B0.

P.19 (Algorithms for approximate system identification).

1. Download the file flutter.dat from a Database for System Identification
(Moor et al, 1997).

2. Apply the function developed in Problem ?? on the flutter data using model order
n= 3.

3. Compute the misfit between the flutter data and the model obtained in step 1.
4. Compute a locally optimal model of order n= 3 and compare the misfit with the

one obtained in step 3.
5. Repeat steps 2–4 for different partitions of the data into identification and vali-

dation parts (e.g., first 60% for identification and remaining 40% for validation).
More specifically, use only the identification part of the data to find the models
and compute the misfit on the unused validation part of the data.

P.20 (Computing approximate common divisor with slra). Given polynomials
p and q of degree n or less and an integer d < n, use slra to solve the Sylvester
structured low rank approximation problem

minimize over p̂, q̂ ∈ R
n+1

∥∥[p q
]
−
[
p̂ q̂
]∥∥

F

subject to rank
(
Rd(p̂, q̂)

)
≤ 2n−2d+1

246 P Problems

in order to compute an approximate common divisor c of p and q with degree at
least d. Verify the answer with the alternative approach developed in Section 3.2.

P.21 (Matrix centering). Prove Proposition 5.5.

P.22 (Mean computation as an optimal modeling). Prove Proposition 5.6.

P.23 (Nonnegative low rank approximation). Implement and test the algorithm
for nonnegative low rank approximation (Algorithm 7 on page 178).

P.24 ((Luenberger, 1979, Page 53)). A thermometer reading 21◦C, which has been
inside a house for a long time, is taken outside. After one minute the thermome-
ter reads 15◦C; after two minutes it reads 11◦C. What is the outside temperature?
(According to Newton’s law of cooling, an object of higher temperature than its
environment cools at a rate that is proportional to the difference in temperature.)

P.25. Solve first Problem P.24. Consider the system of equations

[
1T−n⊗G HT−n(∆y)

][ū

ℓ

]
= col

(
y
(
(n+1)ts

)
, · · · ,y

(
Tts
))

, (SYS DD)

(the data-driven algorithm for input estimation on page 212) in the case of a first
order single input single output system and three data points. Show that the solution
of the system (SYS DD) coincides with the one obtained in Problem P.24.

P.26. Consider the system of equations (SYS DD) in the case of a first order single
input single output system and N data points. Derive an explicit formula for the
least squares approximate solution of (SYS DD). Propose a recursive algorithm that
updates the current solution when new data point is obtained.

P.27. Solve first Problem P.26. Implement the solution obtained in Problem P.26 and
validate it against the function stepid_dd.

References

Luenberger DG (1979) Introduction to Dynamical Systems: Theory, Models and
Applications. John Wiley

Moor BD, Gersem PD, Schutter BD, Favoreel W (1997) DAISY: A database for
identification of systems. Journal A 38(3):4–5, available from http://homes.

esat.kuleuven.be/~smc/daisy/

Appendix S

Solutions

P.1 (Least squares data fitting). Minimization of the vertical distances (lse) for
the data in the example is

col(−2,−1,0,1,2,2,1,0,−1,−2)︸ ︷︷ ︸
a

x = col(1,4,6,4,1,−1,−4,−6,−4,−1)︸ ︷︷ ︸
b

.

The least squares approximate solution is given by

xls = (a⊤a)−1a⊤b =
−2−4+0+4+2−2−4+0+4+2

a⊤a
= 0,

so that the corresponding fitting line is

Bls = {d = col(a,0) | a ∈ R}

the horizontal line passing through the origin.
Minimization of the horizontal distances (lse′), is a = bx′, with the a and b de-

fined above. The least squares approximate solution in this case is

x′ls = (b⊤b)−1b⊤a = 0,

so that the corresponding fitting line is

B′
ls = {d = col(0,b) | b ∈ R}

the vertical line passing through the origin.

P.2 (Distance from a data point to a linear model).

1. Using the image representation image(P) of the model B, the distance compu-
tation problem (tls”) is equivalent to the standard least squares problem

dist(d,B) := min‖d − d̂‖2 subject to d̂ = Pℓ.

247

248 S Solutions

Therefore, assuming that P is full column rank, the best approximation is

d̂∗ = P(P⊤P)−1P⊤d =: ΠPd (d∗)

and the distance of d to B is

dist(d,B) = ‖d− d̂∗‖2 =
√

d⊤(I−ΠP)d. (distP)

The assumption that “P is full column rank” can be done without loss of gen-
erality because there are aways full column rank P’s such that image(P) = B
(choose any basis for B).

2. Using the kernel representation ker(R) of the model B, the distance computation
problem (tls”) is equivalent to the problem

dist(d,B) := min
d̂

‖d− d̂‖2 subject to Rd̂ = 0.

As written, this problem is not a standard least squares problem, however, with
the change of variables ∆d := d− d̂ it can be rewritten as an equivalent ordinary
least norm problem

dist(d,B) := min
d̂

‖∆d‖2 subject to R∆d = Rd.

Therefore, assuming that R is full row rank,

∆d∗ = R⊤(RR⊤)−1Rd = ΠR⊤d

and
dist(d,B) = ‖∆d∗‖2 =

√
d⊤ΠR⊤d. (distR)

Again, the assumption that R is full row rank is done without loss of generality
because there are full row rank matrices R, such that ker(R) = B.

3. Substituting d =
[

1
0

]
and P =

[
1
1

]
in (distP), we have

dist
([

1
0

]
, image

([
1
1

]))
=

√√√√[1 0
]
([

1 0
0 1

]
−
[

1
1

]([
1 1
][1

1

])−1 [
1 1
]
)[

1
0

]

=

√
[
1 0
][1/2 −1/2

−1/2 1/2

][
1
0

]
= 1/

√
2

S Solutions 249

1

1√
2

B

d

d̂

4. As shown in part 1, d̂∗ is unique (and can be computed by, e.g., (d∗) and (distR)).
5. A vector ∆d is orthogonal to the model B if and only if ∆d is orthogonal to all

vectors in B. Using (d∗) and the basis P for B, we have

∆d∗⊤P = (d− d̂∗)⊤P = d⊤(I−ΠP)P = 0,

which shows that is ∆d∗ is orthogonal to B.
The converse statement “∆d = d− d̂ being orthogonal to B implies that d̂ is the
closest point in B to d” is also true. It completes the proof of what is known
as the orthogonality principle—d̂ is an optimal approximation of a point d in a
model B if and only if the approximation error d− d̂ is orthogonal to B.

P.3 (Distance from a data point to an affine model).

• The problem of computing dist(d,B) reduces to an equivalent problem of com-
puting the distance of a point to a subspace by the change of variables

d′ := d−a.

We have

dist(d,B) = min
d̂∈B

‖d − d̂‖2 = min
d̂′∈B′

‖d′− d̂′‖2 = dist(d′,B′).

• Using the change of variables argument we have

dist
([

0
0

]
,ker(

[
1 1
]
)+

[
1
2

])
= dist

(
−
[

1
2

]
,ker(

[
1 1
]
)

)
.

Then using (distR) we have

dist
(
−
[

1
2

]
,ker(

[
1 1
]
)

)
=

√
[
1 2
][1

1

]([
1 1
][1

1

])−1 [
1 1
][1

2

]
=
√

9/2.

250 S Solutions

3 √
3√
2

B

B′

d̂′

d

d̂′

P.4 (Geometric interpretation of the total least squares problem). The con-
straint of (tls),

â jx = b̂ j, for j = 1, . . . ,N

is equivalent to the constraint that

d̂1 := (â1, b̂1), . . . , d̂N := (âN , b̂N)

lie on the line
Bi/o(x) := {d = col(a,b) ∈ R

2 | ax = b},
i.e., (tls) can be written as

minimize over x and d̂1, . . . , d̂N ∑N
j=1

∥∥d j − d̂ j

∥∥2
2

subject to d̂ j ∈ Bi/o(x), for j = 1, . . . ,N.
(tls’)

In turn, problem (tls’) is equivalent to minimization of the function ftls : R → R

defined by

ftls(x) := min
d̂1,...,d̂N

N

∑
j=1

∥∥d j − d̂ j

∥∥2
2

subject to d̂ j ∈ Bi/o(x), for j = 1, . . . ,N.

(tls”)

The minimization in (tls”) is separable in the variables d̂1, . . . , d̂N , i.e., (tls”) decou-
ples into N independent problems

ftls,i(x) = min
d̂ j

∥∥d j − d̂ j

∥∥2
2 subject to d̂ j ∈ Bi/o(x).

By the orthogonality principle, ftls, j(x) is the squared orthogonal distance from d j

to the line Bi/o(x). Subsequently,

ftls(x) =
N

∑
j=1

ftls, j(x)

is the sum of squared orthogonal distances from the data points to the line Bi/o(x).

S Solutions 251

For any x ∈ R, Bi/o(x) is a line passing through the origin and any line passing
through the origin, except for the vertical line, corresponds to a set Bi/o(x), for some
x ∈ R. Therefore, the total least squares problem minx∈R ftls(x) minimizes the sum
of squared orthogonal distances from the data points to a line, over all lines passing
through the origin, except for the vertical line.

P.5 (Unconstrained problem, equivalent to the total least squares problem).

The total least squares approximation problem (TLS) is minx ftls(x), where

ftls(x) = min
Â,b̂

∥∥[A b
]
−
[
Â b̂

]∥∥2
F subject to Âx = b̂ (ftls)

or with the change of variables ∆A := A− Â and ∆b := b− b̂,

ftls(x) = min
∆A,∆b

∥∥[∆A ∆b
]∥∥2

F subject to Ax−b = ∆Ax−∆b. (f ′tls)

Define

∆b := Ax−b, ∆D :=
[
∆A ∆b

]⊤
, and r =

[
x⊤ −1

]

in order to write (f ′tls) as a standard linear least norm problem

min
∆D

∥∥∆D
∥∥2

F subject to r∆D = ∆b⊤.

The least norm solution for ∆D is

∆D∗ =
r⊤∆b

rr⊤
,

so that, we have

ftls(x) = ‖∆D∗‖2
F = trace

(
(∆D∗)⊤D∗)= ∆b⊤∆b

rr⊤
=

‖Ax−b‖2

‖x‖2 +1
.

From Problem P.4 and the derivation of ftls, we see that ftls(x) is the sum of squared
orthogonal distances from the data points to the model Bi/o(x), defined by x.

P.6 (Lack of total least squares solution). The total least squares line fitting
method, applied to the data in Problem P.1 leads to the overdetermined system of
equations

col(−2,−1,0,1,2,2,1,0,−1,−2)︸ ︷︷ ︸
a

x = col(1,4,6,4,1,−1,−4,−6,−4,−1)︸ ︷︷ ︸
b

.

Therefore, using the (TLS’) formulation, the problem is to minimize the function

ftls(x) =
(ax−b)⊤(ax−b)

x2 +1
= · · · substituting a and b with

their numerical values
· · ·= 20

x2 +7
x2 +1

.

252 S Solutions

The first derivative of ftls is

d
dx

ftls(x) =− 240x

(x2 +1)2 ,

so that ftls has a unique stationary point at x = 0. The second derivative of ftls at
x = 0 is negative, so that the stationary point is a maximum. This proves that the
function ftls has no minimum and therefore the total least squares problem has no
solution.

Figure S.1 shows the plot of ftls over the interval [−6.3,6.3]. It can be verified
that the infimum of ftls is 20 and ftls has asymptotes

ftls(x)→ 20 for x →±∞,

i.e., the infimum is achieved asymptotically as x tends to infinity and to minus infin-
ity.

−6 −4 −2 0 2 4 6

20

40

60

80

100

120

140

x

f t
ls
(x
)

Fig. S.1 Cost function of the total least squares problem (TLS’) in Problem P.6.

P.7 (Geometric interpretation of rank-1 approximation). In both problems
(lraR) and (lraP) the cost function is

‖D− D̂‖2
F =

N

∑
j=1

‖d j − d̂ j‖2
2,

i.e., the sum of the squared distances from the data points d j to their approxima-
tions d̂ j . The rank-1 constraint of

D̂ =
[
d̂1 · · · d̂N

]
,

however, is equivalent to the constraint that the approximations d̂ j lie on a line B
passing through the origin. In (lraR), B = ker(R) and, in (lraP), B = image(P).
By the orthogonality principle, d̂ j must be the orthogonal projection of d j on B,

S Solutions 253

so that ‖d − d̂ j‖2
2 is the squared orthogonal distance from d j to B. Therefore, the

rank-1 approximation problems (lraR) and (lraP) minimize the sum of the squared
orthogonal distances from the data points to the fitting line B = ker(P) = image(P)
over all lines passing through the origin.

Comparing the geometric interpretations of the low rank approximation problems
(lraR) and (lraP) and the total least squares problem (tls), we see that in both cases
the same data fitting criterion is minimized, however, the minimization is over dif-
ferent sets of candidate solutions—in the low rank approximation problems all lines
passing through the origin are considered, while in the total least squares problem
all lines passing through the origin except for the vertical line are considered.

P.8 (Quadratically constrained problem, equivalent to rank-1 approximation).

Consider the rank-1 approximation problem (lraP) and observe that for a fixed pa-
rameter P ∈ R

2×1, problem (lraP) becomes a least squares problem in the parame-
ter L ∈ R

1×N

minimize over L ‖D−PL‖2
F

Assuming that P is full column rank (i.e., P 6= 0), the solution is unique and is
given by

L∗ = (P⊤P)−1P⊤D.

Then the minimum flra(P) = ‖D−PL∗‖2
F is given by

flra(P) = trace
(

D⊤(I−P(P⊤P)−1P⊤)D
)
.

The function flra, however, depends only on the direction of P, i.e.,

flra(P) = flra(αP), for all α 6= 0.

Therefore, without loss of generality we can assume that ‖P‖2 = 1. This argument
and the derivation of flra show that problem (lra′P) is equivalent to problem (lraP).
All solutions of (lraP) are obtained from a solution P′∗ of (lra′P) by multiplication
with a nonzero scalar and vice verse a solution P∗ of (lraP) is reduced to a solution
of (lra′P) by normalization P∗/‖P∗‖. A solution to (lra′P), however, is still not unique
because if P′∗ is a solution so is −P′∗.

P.9 (Line fitting by rank-1 approximation). The set of vectors P ∈ R
2, such that

P⊤P = 1, is parametrized by

P(θ) =

[
cos(θ)
sin(θ)

]
,

where θ ∈ [0,2π). The plot of flra
(
P(θ)

)
over θ is shown in Figure S.2. The global

minimum points are

θ ∗,1 = π/2 and θ ∗,2 = 3π/2

(indicated with dots on the figure) and the global minimum is

254 S Solutions

flra
(
P(θ ∗,1)

)
= flra

(
P(θ ∗,2)

)
= 20.

The minimum points

θ ∗,1 = π/2 and θ ∗,2 = 3π/2

correspond to optimal parameters

P∗,1 =
[

0
1

]
and P∗,2 =

[
0
−1

]
, (∗)

which in the context of the line fitting problem correspond to the vertical line passing
through the origin. The link between the low rank approximation (lraP) and total
least squares (tls) problems allow us to compare their respective cost functions flra
and ftls. In particular, we see that flra achieves the infimum of ftls.

0

20

50

100

140

θ

f l
ra
(P

(θ
))

π/2 π 3π/2 2π

Fig. S.2 Cost function of the rank-1 approximation problem (lra′P) in Problem P.9.

P.10 (Analytic solution of a rank-1 approximation problem). We have

flra(P) = trace
(
D⊤(I−PP⊤)D

)

= trace
(
(I−PP⊤)DD⊤)

= · · · substituting the data and using P⊤P = p2
1 + p2

2 = 1 · · ·

= trace
([

p2
2 −p1 p2

−p1 p2 p2
1

][
20 0
0 140

])

= 140p2
1 +20p2

2 = 140sin2(θ)+20cos2(θ).

From the analytic expression of flra it is easy to see that

20 ≤ flra
(
P(θ)

)
≤ 140

and the minimum is achieved for (∗), which is the result established in Problem P.9
by less rigorous methods.

S Solutions 255

P.14 (Two-sided weighted low rank approximation). Define

Dm :=
√

WlD
√

Wr and D̂m :=
√

WlD̂
√

Wr.

Since Wl and Wr are nonsingular,

rank(D̂) = rank(D̂m).

Then, from (WLRA2), we obtain the equivalent problem

minimize over D̂m ‖Dm − D̂m‖F

subject to rank(D̂m)≤ m,
(WLRA2’)

which is an unweighted low rank approximation.

P.11 (Analytic solution of two-variate rank-1 approximation problem). A so-
lution is given by the eigenvalue decomposition of the 2×2 matrix

S := DD⊤ =

[
s1 s12

s21 s2

]
=

[
∑N

j=1 d2
1 j ∑N

j=1 d1 jd2 j

∑N
j=1 d1 jd2 j ∑N

j=1 d2
2 j

]
.

Let λ1 and λ2 be the eigenvalues of S. We have

λ1 +λ2 = s1 + s2 =⇒ λ2 = s1 + s2 −λ1

λ1λ2 = s1s2 − s2
12

Substituting the expression for λ2 in the second equation, we have

λ 2
1 − (s1 + s2)λ1 +(s1s2 − s2

12) = 0,

so that

λ1,2 =
1
2

(
s1 + s2 ±

√
(s1 − s2)2 +4s2

12

)
.

Let λmin be the smaller eigenvalue. (It corresponds to the minus sign.)
Next, we solve for an eigenvector v, corresponding to λmin:

(s−λminI)v = 0

m

s1 − s2 +

√
(s1 − s2)2 +4s2

12 2s12

2s12 s2 − s1 +
√
(s1 − s2)2 +4s2

12

v = 0.

Provided, s12 6= 0, i.e., the rows of D are not perpendicular,

v = α

[
x

−1

]
, where x :=

s2 − s1 +
√
(s1 − s2)2 +4s2

12

2s12
, (∗)

256 S Solutions

and α is an arbitrary nonzero constants.
In this case, parameters of kernel and image representations of the optimal model

are

R =
[
x −1

]
, and P =

[
1
x

]
.

(We fixed α = 1.) Finally, the optimal approximation D̂ of D is

D̂ = P(P⊤P)−1P⊤D =
x

1+ x2

[
1
x
d11 +d21 · · · 1

x
d1N + xd2N

d11 + xd21 · · · d1N + xd2N

]
.

Note that in the case s12 6= 0, alternative formulas for the eigenvector v, correspond-
ing to λmin can be derived.

P.12 (Analytic solution of scalar total least squares). In the case when a is not
perpendicular to b, the total least squares solution exists and is unique. In this case,
it is given by (∗) (derived in Problem P.11). In the case when a ⊥ b, but ‖a‖> ‖b‖,
the total least squares solution is x = 0. Otherwise, a total least squares solution does
not exists.

P.13 (Alternating projections algorithm for low-rank approximation).

a) MATLAB code for the alternating least squares algorithm:
256a 〈Alternating least squares algorithm for low rank approximation 256a〉≡

function [dh, e] = lra_als(d, p, l, tol, maxiter)

dh = p*l;

e(1) = norm(d - dh, ’fro’) ^ 2;

for i = 2:maxiter

p = d * l’ / (l * l’); l = (p’ * p) \ p’ * d;

dh_old = dh; dh = p * l; e(i) = norm(d - dh, ’fro’) ^ 2;

if norm(dh_old - dh, ’fro’) ^ 2 < tol, break, end

end

Defines:
lra_als, used in chunk 256b.

A typical error convergence plot (for a 10×10 matrix with rank specification r = 5)
is shown on Figure S.3.

256b 〈test lra_als 256b〉≡
q = 10; N = 10; r = 5;

d = rand(q, N); p = rand(q, r); l = rand(r, N);

[dh, e] = lra_als(d, p, l, 0.0, 25); plot(e)

print_fig(’als-conv’)

Uses lra_als 256a.

The convergence is monotonic. The approximation error drops significantly in the
first few iteration steps and after that decreases slowly.

b) The sequence e is well defined when P(k) and L(k) are full rank for all k = 0,1, . . .,
however, it may not be well defined when P(k) or L(k) become rank deficient at
certain iteration step k. Indeed, rank efficiently of P(k) or L(k) implies that a solution
for, respectively, L(k) or P(k+1) is not unique. Then, depending on the choice of the
solution different values of ek+1 may be obtained.

S Solutions 257

0 5 10 15 20
0.8

1

1.2

1.4

1.6

1.8

2

iteration step k

ap
pr

ox
im

at
io

n
er

ro
r

e k

Fig. S.3 Error convergence plot for the alternating least squares algorithm in Problem P.13 (ran-
dom 10×10 matrix, rank specification r = 5, and random initial approximation).

For example, the data Problem P.1 with the initial approximation L(0) = 1⊤10, results
in P(1) = 0, which implies that L(1) is arbitrary. Choosing L(1) =

[
1 0 · · · 0

]
, leads

to the error sequence

e1 = 160, e2 = 20, e3 = 20, . . .

while L(1) =
[
0 · · · 0 1

]
, leads to the error sequence

e1 = 160, e2 = 116, e3 = 29, e4 = 20.1996, e5 = 20.0041, e6 = 20.0001, . . .

c) See, the proof of Theorem 5.17 on page 240.
d) See, the proof of Theorem 5.17 on page 240.

P.15 (Most poweful unfalsified model for autonomous models). Realization of
H : Z+ → R

p×m is equivalent to exact modeling of the time series

wd,1 = (ud,1,yd,1) := (δe1,h1), . . . ,wd,m = (ud,m,yd,m) := (δem,hm).

Consider the impulse response H of the system

Bi/s/o
(
A,
[
b1 · · · bm

]
,C,•

)

and the responses y1, . . . ,ym of the autonomous system Bi/s/o(A,C) due to the initial
conditions b1, . . . ,bm. It is easy to verify that

σH =
[
y1 · · · ym

]
.

Thus, with the obvious substitution

B =
[
x1

0 · · · xm0
]
,

where x1
0, . . . ,x

m
0 are the initial conditions generating the responses h1, . . . ,hm, real-

ization algorithms can be used for exact identification of an autonomous system and

258 S Solutions

vice verse; algorithms for identification of an autonomous systems can be used for
realization.

P.16 (Algorithm for exact system identification). If the order n of the system is
known, the exact identification problem reduces to the computation of a basis for
the left kernel of the Hankel matrix Hn+1(wd).

258a 〈wn2r 258a〉≡
function R = wn2r(w, n), R = null(blkhank(w, n + 1)’)’;

With unknown order, one can proceed iteratively by attempting to find an exact
model of order n = 1,2, . . ., till such a model exists. This approach moreover guar-
antees that the result is the most powerful unfalsified model for the data in the model
class of linear time-invariant systems.

258b 〈w2r 258b〉≡
function R = w2r(w)

〈reshape w and define q, T (never defined)〉
nmax = floor((T - ttw) / (ttw + 1));

for n = 1:nmax

R = wn2r(w, n); if ~isempty(R), break, end

end

P.17 (Algorithm for approximate system identification). A trivial modification
in wn2r—replacement of exact by approximate computation of left kernel—makes
wn2r an approximate identification method. The modification based on replacment
of null by lra in wn2r is used as initial approximation in the optimization based
method ident_siso and in Problem P.19. In the single input single output case,
the resulting function is

258c 〈wn2r_approx 258c〉≡
function R = wn2r_approx_siso(w, n)

R = lra(blkhank(w, n + 1), 2 * n + 1);

P.18 (When is Bmpum(wd) equal to the data generating system?). Sufficeint
conditions are given in Willems et al (2005).

P.19 (Algorithms for approximate system identification).

258d 〈test_flutter 258d〉≡
load flutter.dat; u = flutter(:, 1); y = flutter(:, 2); w = [u’; y’]; n = 3;

R = wn2r(w, n); 〈R 7→ P (never defined)〉
[M1, wh1] = misfit_siso(w, P)

[sysh2, wh2, info] = ident_siso(w, n); M2 = info.M;

figure(1), plot(w(1, :), ’k-’), hold on, plot(wh1(1, :), ’b-’), plot(wh2(1,

figure(2), plot(w(2, :), ’k-’), hold on, plot(wh1(2, :), ’b-’), plot(wh2(2,

P.20 (Computing approximate common divisor with slra).

258e 〈Sylvester matrix constructor 258e〉≡
function S = sylvester(R, q, n)

[g, nc] = size(R); S = zeros(n * g, nc + (n - 1) * q);

for i = 1:n

S((1:g) + (i - 1) * g, (1:nc) + (i - 1) * q) = R;

end

S Solutions 259

259 〈Approximate common divisor 259〉≡
function c = agcd(R, q, n)

g = size(R, 1); l = size(R, 2) / q - 1;

S = sylvester(R, q, n);

w = lra(S’, size(S, 2) - n)’; T = size(w, 1);

c = lra(blkhank(reshape(w’, q, n, T), n + 1), n);

P.21 (Matrix centering).

E
(

C(D)
)
= E

(
D−E(D)1⊤N

)

=
1
N

(
D− 1

N
D1N1⊤N

)
1N

=
1
N

D1N − 1
N2 D1N 1⊤N 1N︸ ︷︷ ︸

N

= 0.

P.22 (Mean computation as an optimal modeling). The optimization problem is
a linear least squares problem and its solution is

ĉ = D1N(1
⊤
N 1N)

−1 =
1
N

D1N = E(D).

P.23 (Nonnegative low rank approximation).

P.24 ((Luenberger, 1979, Page 53)). Let y(t) be the reading of the thermometer at
time t and let ū be the environmental temperature. From Newton’s law of cooling,
we have that

d
d t

y = a
(
ūs− y

)

for some unknown constant a ∈ R, a > 0, which describes the cooling process.
Integrating the differential equation, we obtain an explicit formula for y in terms of
the constant a, the environmental temperature ū, and the initial condition y(0)

y(t) = e−aty(0)+(1− e−at)ū, for t ≥ 0 (∗)

The problem is to find ū from (∗) given that

y(0) = 21, y(1) = 15, and y(2) = 11.

Substituting the data in (∗), we obtain a nonlinear system of two equations in the
unknowns ū and f := e−a

{
y(1) = f y(0)+(1− f)ū
y(2) = f 2y(0)+(1− f 2)ū

(∗∗)

We may stop here and declare that the solution can be computed by a method for
solving numerically a general nonlinear system of equations. (Such methods and
software are available, see, e.g., (Dennis and Schnabel, 1987).)

260 S Solutions

System (∗∗), however, can be solved without using “nonlinear” methods. Define
∆y to be the temperature increment from one measurement to the next, i.e.,

∆y(t) := y(t)− y(t−1), for all t.

The increments satisfy the homogeneous differential equation

d
dt

∆y(t) = a∆y(t),

so that
∆y(t +1) = e−a∆y(t) for t = 0,1, . . . (∗∗∗)

From the given data we evaluate

∆y(0) = y(1)− y(0) = 15−21 =−6, ∆y(1) = y(2)− y(1) = 11−15 =−4.

Substituting in (∗∗∗), we find the constant

f = e−a = 2/3.

With f known, the problem of solving (∗∗) in ū is linear, and the solution is found
to be ū = 3◦C.

P.25 The system (SYS DD) is
[

g ∆y(2)
g ∆y(3)

][
ū

ℓ

]
=

[
y(2)
y(3)

]
,

and has the unique solution
[

ū

ℓ

]
=

1

g
(
y(1)−2y(2)+ y(3)

)
[

y(1)y(3)− y2(2)
g
(
y(3)− y(2)

)
]
.

It can be shown that in this case

e−a = f =
ℓ

ℓ−1
and ℓ=

f

f −1
.

P.26 The system (SYS DD) is

g ∆y(2)
...

...
g ∆y(T)

[

ū

ℓ

]
=

y(2)
...

y(T)

 ,

and the corresponding normal equations are
[

(T −1)g2 g∑T
t=2 ∆y(t)

g∑T
t=2 ∆y(t) ∑T

t=2 ∆y2(t)

][
ū

ℓ

]
=

[
g∑T

t=2 y(t)

∑T
t=2 ∆y(t)y(t)

]
.

References 261

The least squares approximation of ū is

û(T) =
1

g
(
(T −1)∑T

t=2 ∆y2(t)−
(

∑T
t=2 ∆y(t)

)2
)

(T

∑
t=2

∆y2(t)
T

∑
t=2

y(t)−
T

∑
t=2

∆y(t)
T

∑
t=2

∆y(t)y(t)
)

A recursive algorithm for computing û in real time requires only the four running
sums

t

∑
τ=2

∆y2(τ),
t

∑
τ=2

∆y(τ),
t

∑
τ=2

y(τ), and
t

∑
τ=2

∆y(τ)y(τ).

P.27

References

Dennis J, Schnabel R (1987) Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Society for Industrial Mathematics

Luenberger DG (1979) Introduction to Dynamical Systems: Theory, Models and
Applications. John Wiley

Willems JC, Rapisarda P, Markovsky I, Moor BD (2005) A note on persistency of
excitation. Control Lett 54(4):325–329

Notation

Symbolism can serve three purposes. It can communicate ideas

effectively; it can conceal ideas; and it can conceal the absence

of ideas.

M. Kline, Why Johnny Can’t Add: The Failure of the New Math

Sets of numbers

R the set of real numbers
Z, Z+ the sets of integers and positive integers (natural numbers)

Norms and extreme eigen/singular values

‖x‖= ‖x‖2, x ∈ R
n vector 2-norm

‖w‖, w ∈ (Rq)T signal 2-norm
‖A‖, A ∈ Rm×n matrix induced 2-norm
‖A‖F, A ∈ R

m×n matrix Frobenius norm
‖A‖W , W ≥ 0 matrix weighted norm
‖A‖∗ nuclear norm
λ (A), A ∈ Rm×m spectrum (set of eigenvalues)
λmin(A), λmax(A) minimum, maximum eigenvalue of a symmetric matrix
σmin(A), σmax(A) minimum, maximum singular value of a matrix

Matrix operations

A+, A⊤ pseudoinverse, transpose
vec(A) column-wise vectorization
vec−1 operator reconstructing the matrix A back from vec(A)
col(a,b) the column vector [a

b]
coldim(A) the number of block columns of A

rowdim(A) the number of block rows of A

image(A) the span of the columns of A (the image or range of A)
ker(A) the null space of A (kernel of the function defined by A)
diag(v), v ∈ R

n the diagonal matrix diag(v1, . . . ,vn)
⊗ Kronecker product A⊗B := [ai jB]
⊙ element-wise (Hadamard) product A⊙B := [ai jbi j]

263

264 Notation

Expectation, covariance, and normal distribution

E, cov expectation, covariance operator
x ∼ N(m,V) x is normally distributed with mean m and covariance V

Fixed symbols

B, M model, model class
S structure specification
Hi(w) Hankel matrix with i block rows, see (Hi) on page 10
Ti(c) upper triangular Toeplitz matrix with i block rows, see (T) on page 88
R(p,q) Sylvester matrix for the pair of polynomials p and q, see (R) on page 11
Oi(A,C) extended observability matrix with i block-rows, see (O) on page 52
Ci(A,B) extended controllability matrix with i block-columns, see (C) on page 52

Linear time-invariant model class

m(B), p(B) number of inputs, outputs of B
l(B), n(B) lag, order of B
w|[1,T], B|[1,T] restriction of w, B to the interval [1,T], see (B|[1,T]) on page 53

L q,n
m,l := {B ⊂ (Rq)Z | B is linear time-invariant with

m(B)≤ m, l(B)≤ l, and n(B)≤ n}

If m, l, or n are not specified, the corresponding invariants are not bounded.

Miscellaneous

:= / =: left (right) hand side is defined by the right (left) hand side
: ⇐⇒ left-hand side is defined by the right-hand side
⇐⇒ : right-hand side is defined by the left-hand side
σ τ the shift operator (σ τ f)(t) = f (t + τ)
i imaginary unit
δ Kronecker delta, δ0 = 1 and δt = 0 for all t 6= 0

1n =

[
1
...
1

]
vector with n elements that are all ones

W ≻ 0 W is positive definite
⌈a⌉ rounding to the nearest integer greater than or equal to a

With some abuse of notation, the discrete-time signal, vector, and polynomial
(
w(1), . . . ,w(T)

)
↔ col(w(1), . . . ,w(T)

)
↔ z1w(1)+ · · ·+ zT w(T)

are all denoted by w. The intended meaning is understood from the context.

List of code chunks

〈(S0,S, p̂) 7→ D̂ = S (p̂) 85a〉
〈(S0,S, p̂) 7→ D̂ = S (p̂) 84〉
〈ū := G−1G′1m, where G′ :=

dcgain(B′) 208c〉
〈Ĥ 7→ B̂ 112a〉
〈 p̂ 7→ Ĥ 111c〉
〈S 7→ S 85d〉
〈S 7→ (m,n,np) 85b〉
〈S 7→ S 85c〉
〈π 7→ Π 39a〉
〈P 7→ R 91b〉
〈P 7→ (TF) 90d〉
〈R 7→ (TF) 91a〉
〈R 7→ P 90f〉
〈2-norm optimal approximate realiza-

tion 111a〉
〈(R,Π) 7→ X 43b〉
〈(X ,Π) 7→ P 41b〉
〈(X ,Π) 7→ R 41a〉
〈dist(D ,B) (weighted low-rank approx-

imation) 144c〉
〈dist(wd,B) 89〉
〈Γ ,∆) 7→ (A,B,C) 77a〉
〈Θ 7→ RΘ 195c〉
〈H 7→ Bi/s/o(A,B,C,D) 79a〉
〈P 7→ R 42b〉
〈R 7→ minimal R 43a〉
〈R 7→ P 42a〉
〈R 7→ Π 44c〉
〈w 7→ H 82b〉

〈(TF) 7→ P 90e〉
〈(TF) 7→ R 91c〉
〈Algorithm for sensor speedup based

on reduction to autonomous system

identification 211a〉
〈Algorithm for sensor speedup based

on reduction to step response system

identification 208a〉
〈Algorithm for sensor speedup in the

case of known dynamics 205a〉
〈alternating projections method 143a〉
〈approximate realization structure 111b〉
〈autonomous system identification:

∆y 7→ ∆B 211c〉
〈Bias corrected low-rank approxima-

tion 190a〉
〈bisection on γ 101a〉
〈call cls1-4 165b〉
〈call optimization solver 87b〉
〈check n< min

(
pi−1,m j

)
78a〉

〈check exit condition 143d〉
〈Compare h2ss and h2ss_opt 112d〉
〈Compare ident_siso and

ident_eiv 91h〉
〈Compare w2h2ss and

ident_eiv 118e〉
〈Complex least squares, solution by

(SOL1 x̂, SOL1 φ̂) 162a〉
〈Complex least squares, solution by Al-

gorithm 5 163b〉

265

266 List of code chunks

〈Complex least squares, solution by

generalized eigenvalue decomposi-

tion 162b〉
〈Complex least squares, solution by gen-

eralized singular value decomposi-

tion 163a〉
〈computation of ū by solv-

ing (SYS AUT) 211d〉
〈computation of ū by solv-

ing (SYS DD) 213〉
〈Computation time for cls1-4 164a〉
〈compute L, given P 143b〉
〈compute P, given L 143c〉
〈construct ψc,i j 191〉
〈construct the corrected matrix Ψc 192a〉
〈cooling process 216b〉
〈Curve fitting examples 195d〉
〈data compression 139c〉
〈data driven computation of the impulse

response 82a〉
〈Data-driven algorithm for sensor

speedup 212〉
〈default s0 85e〉
〈default initial approximation 87d〉
〈default input/output partition 39b〉
〈default parameters 194b〉
〈default parameters opt 142b〉
〈default tolerance tol 40b〉
〈default weight matrix 85f〉
〈define ∆ and Γ 78d〉
〈define Hp, Hf,u, and Hf,y 81〉
〈define C, D, and n 162c〉
〈define the gravitational constant 220a〉
〈define the Hermite polynomials 190b〉
〈dimension of the Hankel matrix 77c〉
〈Errors-in-variables finite impulse re-

sponse identification 122a〉
〈Errors-in-variables identification 118a〉
〈errors-in-variables identification struc-

ture 118b〉
〈estimate σ 2 and θ 192c〉
〈exact identification: ŵ 7→ B̂ 118c〉
〈Example of finite impulse response

identification 123c〉
〈Example of harmonic retrieval 117〉

〈Example of output error identifica-

tion 121a〉
〈Finite impulse response identification

structure 122b〉
〈Finite time H2 model reduction 113〉
〈fit data 194e〉
〈form G(R) and h(R) 86a〉
〈generate data 194c〉
〈Hankel matrix constructor 25b〉
〈Harmonic retrieval 115〉
〈harmonic retrieval structure 116a〉
〈impulse response realization 7→ au-

tonomous system realization 114b〉
〈initialization 225c〉
〈initialize the random number genera-

tor 91d〉
〈inverse permutation 40a〉
〈low-rank approximation 66〉
〈low-rank approximation 7→ total least

squares solution 231b〉
〈low-rank approximation with missing

data 139a〉
〈matrix approximation 139b〉
〈matrix valued trajectory w 26c〉
〈misfit minimization 90b〉
〈Missing data experiment 1: small spar-

sity, exact data 147b〉
〈Missing data experiment 2: small spar-

sity, noisy data 147c〉
〈Missing data experiment 3: bigger

sparsity, noisy data 148〉
〈model augmentation: B 7→ Baut 205b〉
〈Monomials constructor 187a〉
〈Most powerful unfalsified model in

L q,n
m 82c〉

〈nonlinear optimization over R 87c〉
〈optional number of (block)

columns 26a〉
〈order selection 78c〉
〈Output error finite impulse response

identification 121b〉
〈Output error identification 119a〉
〈output error identification struc-

ture 119b〉
〈Output only identification 114a〉

List of code chunks 267

〈parameters of the bisection algo-

rithm 101b〉
〈plot cls results 165c〉
〈plot results 195a〉
〈Plot the model 195b〉
〈Polynomially structured low-rank ap-

proximation 193a〉
〈preprocessing by finite difference filter

∆y := (1−σ−1)y 211b〉
〈Print a figure 25a〉
〈print progress information 144a〉
〈Recursive least squares 225a〉
〈Regularized nuclear norm minimiza-

tion 99a〉
〈reshape H and define m, p, T 79b〉
〈reshape w and define q, T 26e〉
〈Sensor speedup examples 216a〉
〈set optimization solver and options 87a〉
〈Single input single output system iden-

tification 90a〉
〈singular value decomposition of

Hi, j(σH) 78b〉
〈solve Problem SLRA 110〉
〈solve the convex relaxation (RLRA’) for

given γ parameter 100c〉
〈solve the least-norm problem 86b〉
〈state estimation: (y,Baut) 7→ xaut =
(x, ū) 206〉

〈Structured low-rank approxima-

tion 87e〉
〈Structured low-rank approximation

misfit 86c〉
〈Structured low-rank approximation us-

ing the nuclear norm 100b〉
〈suboptimal approximate single in-

put single output system identifica-

tion 90c〉
〈system identification: (1ms,y) 7→

B′ 208b〉
〈temperature-pressure process 218a〉
〈Test h2ss_opt 112b〉
〈Test harmonic_retrieval 116b〉
〈Test ident_eiv 118d〉
〈Test ident_fir 123a〉
〈Test ident_oe 120〉
〈Test ident_siso 91e〉

〈Test r2io 45c〉
〈Test slra_nn 102a〉
〈Test slra_nn on Hankel structured

problem 103c〉
〈Test slra_nn on small problem with

missing data 106b〉
〈Test slra_nn on unstructured prob-

lem 103b〉
〈Test curve fitting 194a〉
〈Test missing data 105a〉
〈Test missing data 2 145a〉
〈Test model reduction 127a〉
〈Test model transitions 46a〉
〈Test sensor speedup 214a〉
〈Test sensor speedup methods on mea-

sured data 223a〉
〈Test structured low-rank approxima-

tion methods on a model reduction

problem 128〉
〈Test structured low-rank approximation

methods on system identification 129g〉
〈Test system identification 129a〉
〈Time-varying Kalman filter for au-

tonomous output error model 224a〉
〈Toeplitz matrix constructor 88〉
〈Total least squares 231a〉
〈trade-off curve 103a〉
〈variable projections method 144b〉
〈vector valued trajectory w 26f〉
〈Weighted low-rank approximation 142a〉
〈Weighted low-rank approximation cor-

rection matrix 144d〉
〈Weighted total least squares 232〉
〈weighting process 220b〉
〈R 7→ P (never defined)〉
〈test_flutter 258d〉
〈wn2r_approx 258c〉
〈Alternating least squares algorithm for

low rank approximation 256a〉
〈Approximate common divisor 259〉
〈reshape w and define q, T (never defined)〉
〈Sylvester matrix constructor 258e〉
〈test lra_als 256b〉
〈w2r 258b〉
〈wn2r 258a〉

Functions and scripts index

Here is a list of the defined functions and where they appear. Underlined entries
indicate the place of definition. This index is generated automatically by noweb.

bclra: 190a, 194e
blkhank: 25b, 78b, 81, 90c, 111b,

116a, 118b, 119b, 122b, 127b, 129b,
213

blktoep: 88, 89
cls1: 162a, 165b
cls2: 162b, 165b
cls3: 163a, 165b
cls4: 163b, 165b
examples_curve_fitting: 196b
examples_sensor_speedup:

216a
h2ss: 79a, 83, 102e, 103a, 112a, 112c,

115, 127c
h2ss_opt: 111a, 112c, 113, 114a
harmonic_retrieval: 115, 116b
ident_aut: 114a, 211c
ident_eiv: 91g, 118a, 118d
ident_fir_eiv: 122a, 123b
ident_fir_oe: 121b, 123b
ident_oe: 119a, 120, 208b
ident_siso: 90a, 91f, 129d
lra: 66, 87d, 90c, 102f, 103a, 193b,

194e, 231a
lra_md: 139a, 142b, 146b
minr: 43a, 44a, 45b
misfit_siso: 89, 90b, 118d, 120,

129c

misfit_slra: 86c, 87c, 87e
mod_red: 113, 127d
monomials: 187a, 192a, 194e
mwlra: 144b, 144c
mwlra2: 144b, 144d
nucnrm: 99a, 100c, 105d, 105e
p2r: 42b, 46b
plot_model: 194c, 195a, 195b
print_fig: 25a, 103a, 116b, 128,

129g, 165c, 195a, 215a, 215b, 223c
pslra: 193a, 194e
r2io: 44c, 45c
r2p: 42a, 46a, 46b
rio2x: 43b, 45b, 46b, 46c, 122a
rls: 213, 225a
slra: 87e, 102e, 110
slra_nn: 100b, 102d, 103a, 127b,

129b
stepid_as: 211a
stepid_dd: 212, 214c, 215b, 223a
stepid_kf: 205a, 214c, 215b, 223b
stepid_si: 208a
test_cls: 164a
test_curve_fitting: 194a,

195d, 196a, 196b, 196c, 197a, 197b,
197c

test_h2ss_opt: 112b, 112d

269

270 Functions and scripts index

test_harmonic_retrieval:
116b, 117

test_ident_eiv: 118d, 118e
test_ident_fir: 123a, 123c
test_ident_oe: 120, 121a
test_ident_siso: 91e, 91h
test_lego: 223a
test_missing_data: 105a, 106b
test_missing_data2: 145a,

147b, 147c, 148
test_mod_red: 127a, 128
test_sensor: 214a, 217a, 217b,

218b, 219, 220c, 221a, 221b, 222

test_slra_nn: 102a, 103b, 103c
test_sysid: 129a, 129g
th2poly: 195a, 195c
tls: 231a
tvkf_oe: 206, 224a
w2h: 82b, 83
w2h2ss: 82c, 118c, 118d, 120
wlra: 142a, 146b, 232
wtls: 232
xio2p: 41b, 46b
xio2r: 41a, 46b
lra_als: 256a, 256b

Index

(Rq)Z 47
2U 55
B⊥ 38
Bi/o(X ,Π) 37
Bmpum(D) 56
Hi, j(w) 25
TT (P) 88
C j(A,B) 52
L q

m,0 38
Oi(A,C) 52
R(p,q) 10, 11
dist(D ,B) 57
image(P) 37
n(B) 48
ker(R) 37
λ (A) 29
Bi/s/o(A,B,C,D,Π) 49
‖ ·‖∗ 98
‖ ·‖W 62
⊗ 66
σ τ w 47
c(B) 55
∧ 52

adaptive
beamforming 11, 28
filter 226

adjusted least squares 189
affine model 150, 242
affine variety 183
algebraic curve 184
algebraic fitting 181
algorithm

bisection 101
Kung 78, 79, 130
Levenberg–Marquardt see Levenberg–

Marquardt

variable projections see variable
projections

alternating projections 23, 139, 155, 169,
177, 244

convergence 169
analysis problem 2, 39
analytic solution 63, 69, 154, 243
annihilator 38
antipalindromic 115
approximate

common divisor 11
deconvolution 123
model 55
rank revealing factorization 78
realization 8, 79

array signal processing 11
autocorrelation 9
autonomous model 49

balanced
approximation 78
model reduction 75

bias correction 189
bilinear constraint 84
biotechnology 202
bisection 101

calibration 203
causal dependence 6
centering 150
chemometrics 13, 167, 177
Cholesky factorization 84
circulant matrix 23, 69
cissoid 196
classification vi, 166
compensated least squares 189
complex valued data 159

271

272 Index

complexity–accuracy trade-off 60
computational complexity 84, 94, 162, 206,

213
computer algebra vi, 28
condition number 29
conditioning of numerical problem 2
conic section 184
conic section fitting 18
controllability

gramian 78
matrix 52

controllable system 49
convex optimization 16, 99
convex relaxation 23, 75, 146
convolution 50
coordinate metrology 181
curve fitting 59
CVX 99

Data clustering 28
data fusion 218
data modeling

behavioral paradigm 1
classical paradigm 1

data-driven methods 80, 202
dead-beat observer 205
deterministic identification 9
dimensionality reduction vi
Diophantine equation 126
direction of arrival 11, 28
distance

algebraic 57
geometric 57
horizontal 3
orthogonal 4
problem 28
to uncontrollability 92, 124
vertical 3

dynamic
measurement 225
weighing 202, 219

Eckart–Young–Mirsky theorem 23
Emacs vii
epipolar constraint 20
errors-in-variables 29, 59, 117
ESPRIT 75
exact identification 9
exact model 55
expectation maximization 24
explicit representation 182

factor analysis 13
feature map 18

fitting
algebraic 181
criterion 3
geometric 20, 181

folium of Descartes 196
forgetting factor 202, 222
forward-backward linear prediction 211
Fourier transform 23, 69, 94
Frobenius norm 5
fundamental matrix 20

Gauss-Markov 60
generalized eigenvalue decomposition 161
generator 38
geometric fitting 20, 181
Grassman manifold 177
greatest common divisor 10

Hadamard product 61
Halmos, P. 14
Hankel matrix 9
Hankel structured low-rank approximation

see low-rank approximation
harmonic retrieval 114
Hermite polynomials 190
horizontal distance 3

identifiability 56
identification 27, 128

autonomous system 113
errors-in-variables 117
finite impulse response 121
output error 119
output only 113

ill-posed problem 2
image mining 178
image representation 2
implicialization problem 199
implicit representation 182
infinite Hankel matrix 8
information retrieval vi
input/output partition 1
intercept 151
inverse system 226

Kalman filter 205
Kalman smoothing 89
kernel methods 18
kernel principal component analysis 198
kernel representation 2
Kronecker product 66
Kullback–Leibler divergence 178
Kung’s algorithm 78, 79, 130

Index 273

Lagrangian 152
latency 59, 198
latent semantic analysis 14
least squares

recursive 225
regularized 1
robust 1

least squares methods 230
Lego NXT mindstorms 222
level set method 198
Levenberg–Marquardt 106
lexicographic ordering 55, 183
limacon of Pascal 197
line fitting 3, 243
linear prediction 113
literate programming 24
loadings 13
localization 17
low-rank approximation

circulant structured 23
generalized 23, 64
Hankel structured 8
nonnegative 178
restricted 23
Sylvester structured 11
two-sided weighted 67
weighted 62, 64

machine learning vi, 14, 28
manifold learning 198
Markov chains 178
Markov parameter 52
matrix

Hurwitz 29
observability 211
Schur 29

maximum likelihood 68, 71
measurement errors 29
metrology 225
microarray data analysis 18, 28
MINPACK 106
misfit 59, 198
missing data 15, 105, 138
mixed least squares total least squares 214
model

approximate 55
autonomous 49
class 55
exact 55
finite dimensional 48
finite impulse response 121
invariants 38
linear dynamic 47
linear static 37

complexity 47
linear time-invariant

complexity 53
most powerful unfalsified 56
representation 21
shift-invariant 47
static

affine 150
stochastic 9
structure 18
sum-of-damped exponentials 113, 199,

210
trajectory 47

model reduction 8, 113, 127
model-free 202
most powerful unfalsified model 56
MovieLens data set 148
multidimensional scaling 17
multivariate calibration 13
MUSIC 75

norm
Frobenius 5
nuclear 16
unitarily invariant 65
weighted 61, 62

noweb vii, 25
nuclear norm 16, 98
numerical rank 101, 103, 166

observability
gramian 78
matrix 52

Occam’s razor 47
occlusions 138
Optimization Toolbox 144, 193
order selection 127, 208
orthogonal regression 29
orthogonality principle 249, 250

palindromic 115
Pareto optimal solutions 62
persistency of excitation 10, 212
pole placement 124
polynomial eigenvalue problem 192
positive rank 178
power set 55, 182
pre-processing 150
prediction error 119
principal component analysis vi, 28, 72

kernel 28
principal curves 198
Procrustes problem 232
projection 57

274 Index

Prony’s method 211
proper orthogonal decomposition 130
pseudo spectra 29
psychometrics 13

rank
estimation 165
minimization 16, 61, 62, 76
numerical 78
revealing factorization 8

rank one 12, 243
realizability 52
realization

approximate 8, 110
Ho-Kalman’s algorithm 130
Kung’s algorithm 130
theory 50–53

recommender system 15, 148
recursive least squares 225, 229
reflection 57
regression 59, 182
regression model 60
regularization 1, 6, 229
representation

convolution 50
explicit 182
image 2

minimal 38
implicit 19, 182
kernel 2

minimal 38
problem 9

reproducible research 24
residual 58
Riccati equation 29, 59
Riccati recursion 89
rigid transformation 17, 57, 190
robust least squares 1
rotation 57

Schur algorithm 89, 94
semidefinite optimization 98
separable least squares 174
shape from motion 28
shift

operator 47
structure 76

singular problem 138
singular value decompositions

generalized 23
restricted 23

singular value thresholding 146, 177
SLICOT library 89, 106
smoothing 59
stability radius 29
stereo vision 20
stochastic system 9
stopping criteria 176
structure

bilinear 21
polynomial 182
quadratic 20
shift 76

structured linear algebra 29
structured total least norm 233
subspace

identification 7
methods 23, 75

sum-of-damped exponentials 113, 199, 203,
210

sum-of-exponentials modeling 114
Sylvester matrix 10
system

lag 48
order 48

system identification see identification
approximate 10

system realization see realization
stochastic 9

time-varying system 221
total least squares 4, 242

element-wise weighted 232
generalized 231
regularized 232
restricted 231
structured 232
weighted 232
with exact columns 214

trade-off curve 102
trajectory 47
translation 57

Vandermonde matrix 199
variable projections 23, 83, 140, 156

Yule-Walker’s method 211

