
Ivan Markovsky

Low-Rank Approximation

Algorithms, Implementation, Applications

January 19, 2018

Springer

Preface

Simple linear models are commonly used in engineering despite of the fact that
the real world is often nonlinear. At the same time as being simple, however, the
models have to be accurate. Mathematical models are obtained from first princi-
ples (natural laws, interconnection, etc.) and experimental data. Modeling from first
principles aims at exact models. This approach is the default one in natural sciences.
Modeling from data, on the other hand, allows us to tune complexity vs accuracy.
This approach is common in engineering, where experimental data is available and
a simple approximate model is preferred to a complicated exact one. For example,
optimal control of a complex (high-order, nonlinear, time-varying) system is cur-
rently intractable, however, using simple (low-order, linear, time-invariant) approxi-
mate models and robust control methods may achieve sufficiently high performance.
The topic of the book is data modeling by reduced complexity mathematical models.

A unifying theme of the book is low-rank approximation: a prototypical data
modeling problem. The rank of a matrix constructed from the data corresponds to
the complexity of a linear model that fits the data exactly. The data matrix being full
rank implies that there is no exact low complexity linear model for that data. In this
case, the aim is to find an approximate model. The approximate modeling approach
considered in the book is to find small (in some specified sense) modification of
the data that renders the modified data exact. The exact model for the modified
data is an optimal (in the specified sense) approximate model for the original data.
The corresponding computational problem is low-rank approximation of the data
matrix. The rank of the approximation allows us to trade-off accuracy vs complexity.

Apart from the choice of the rank, the book covers two other user choices: the
approximation criterion and the matrix structure. These choices correspond to prior
knowledge about the accuracy of the data and the model class, respectively. An ex-
ample of a matrix structure, called Hankel structure, corresponds to the linear time-
invariant model class. The book presents local optimization, subspace and convex
relaxation-based heuristic methods for a Hankel structured low-rank approximation.

v

vi Preface

Low-rank approximation is a core problem in applications. Generic examples
in systems and control are model reduction and system identification. Low-rank
approximation is equivalent to the principal component analysis method in machine
learning. Indeed, dimensionality reduction, classification, and information retrieval
problems can be posed and solved as particular low-rank approximation problems.
Sylvester structured low-rank approximation has applications in computer algebra
for the decoupling, factorization, and common divisor computation of polynomials.

The book covers two complementary aspects of data modeling: stochastic esti-
mation and deterministic approximation. The former aims to find from noisy data
that is generated by a low-complexity system an estimate of that data generating
system. The latter aims to find from exact data that is generated by a high com-
plexity system a low-complexity approximation of the data generating system. In
applications, both the stochastic estimation and deterministic approximation aspects
are present: the data is imprecise due to measurement errors and is possibly gener-
ated by a complicated phenomenon that is not exactly representable by a model in
the considered model class. The development of data modeling methods in system
identification and signal processing, however, has been dominated by the stochastic
estimation point of view. The approximation error is represented in the mainstream
data modeling literature as a random process. However, the approximation error is
deterministic, so that it is not natural to treat it as a random process. Moreover, the
approximation error does not satisfy stochastic regularity conditions such as station-
arity, ergodicity, and Gaussianity. These aspects complicate the stochastic approach.

An exception to the stochastic paradigm in data modeling is the behavioral ap-
proach, initiated by J. C. Willems in the mid 80’s. Although the behavioral approach
is motivated by the deterministic approximation aspect of data modeling, it does not
exclude the stochastic estimation approach. This book uses the behavioral approach
as a unifying language in defining modeling problems and presenting their solutions.

The theory and methods developed in the book lead to algorithms, which are im-
plemented in software. The algorithms clarify the ideas and vice verse the software
implementation clarifies the algorithms. Indeed, the software is the ultimate un-
ambiguous description of how the theory and methods are applied in practice. The
software allows the reader to reproduce and to modify the examples in the book. The
exposition reflects the sequence: theory 7→ algorithms 7→ implementation. Corre-
spondingly, the text is interwoven with code that generates the numerical examples
being discussed. The reader can try out these methods on their own problems and
data. Experimenting with the methods and working on the exercises would lead you
to a deeper understanding of the theory and hands-on experience with the methods.

Leuven, Ivan Markovsky

January 19, 2018

Contents

1 Introduction . 1
1.1 Classical and behavioral paradigms for data modeling 1
1.2 Motivating example for low-rank approximation 3
1.3 Overview of applications . 7
1.4 Overview of algorithms . 23
1.5 Notes and references . 27

Part I Linear modeling problems

2 From data to models . 37
2.1 Static model representations . 38
2.2 Dynamic model representations . 46
2.3 Stochastic model representation . 54
2.4 Exact and approximate data modeling . 59
2.5 Notes and references . 66

3 Exact modeling . 71
3.1 Kung’s realization method . 72
3.2 Impulse response computation . 76
3.3 Stochastic system identification . 79
3.4 Missing data recovery . 86
3.5 Notes and references . 94

4 Approximate modeling . 99
4.1 Unstructured low-rank approximation . 100
4.2 Structured low-rank approximation . 109
4.3 Nuclear norm heuristic . 119
4.4 Missing data estimation . 125
4.5 Notes and references . 130

vii

viii Contents

Part II Applications and generalizations

5 Applications . 137
5.1 Model reduction . 138
5.2 System identification . 144
5.3 Approximate common factor of two polynomials 149
5.4 Pole placement by a low-order controller . 154
5.5 Notes and references . 156

6 Data-driven filtering and control . 161
6.1 Model-based vs data-driven paradigms . 162
6.2 Missing data approach . 163
6.3 Estimation and control examples . 164
6.4 Solution via matrix completion . 166
6.5 Notes and references . 170

7 Nonlinear modeling problems . 173
7.1 A framework for nonlinear data modeling . 174
7.2 Nonlinear low-rank approximation . 178
7.3 Computational algorithms . 182
7.4 Identification of polynomial time-invariant systems 190
7.5 Notes and references . 195

8 Dealing with prior knowledge . 199
8.1 Data preprocessing . 200
8.2 Approximate low-rank factorization . 206
8.3 Complex least squares with constrained phase 211
8.4 Blind identification with deterministic input model 217
8.5 Notes and references . 221

A Total least squares . 225

B Solutions to the exercises . 233

C Proofs . 259

Notation . 269

Index . 271

Chapter 1

Introduction

Most linear resistors let us treat current as a function of voltage

or voltage as a function of current, since [the resistance] R is

neither zero nor infinite. But in the two limiting cases—the short

circuit and the open circuit—that’s not true. To fit these cases

neatly in a unified framework, we shouldn’t think of the relation

between current and voltage as defining a function.

Baez (2010)

The classical paradigm for data modeling invariably assumes that an input/output
partitioning of the data is a priori given. For linear models, this paradigm leads to
computational problems of solving approximately overdetermined systems of lin-
ear equations. Examples of most simple data fitting problems, however, suggest that
the a priori fixed input/output partitioning of the data may be inadequate: 1) the
fitting criteria often depend implicitly on the choice of the input and output vari-
ables, which may be arbitrary, and 2) the resulting computational problems are ill-
conditioned in certain cases. An alternative paradigm for data modeling, sometimes
refered to as the behavioral paradigm, does not assume a priori fixed input/output
partitioning of the data. The corresponding computational problems involve approx-
imation of a matrix constructed from the data by another matrix of lower rank.
The chapter proceeds with review of applications in systems and control, signal
processing, computer algebra, chemometrics, psychometrics, machine learning, and
computer vision that lead to low-rank approximation problems. Finally, classes of
generic solution methods for solving low-rank approximation problems are outlined.

1.1 Classical and behavioral paradigms for data modeling

Fitting linear models to data can be achieved, both conceptually and algorithmically,
by solving a approximately an overdetermined system of linear equations AX ≈ B,
where the matrices A and B are constructed from the given data and the matrix X

parametrizes the to-be-found model. In this classical paradigm, the main tools are
the ordinary linear least squares method and its numerous variations—regularized
least squares, total least squares, robust least squares, and others. The least squares
method and its variations are motivated by their applications for data fitting, but they
invariably consider solving approximately an overdetermined system of equations.

The underlying premise in the classical paradigm is that existence of an exact
linear model for the data is equivalent to existence of solution X to a system AX =B.
Such a model is a linear function: the variables corresponding to the A matrix are

1

2 1 Introduction

inputs (or causes) and the variables corresponding to the B matrix are outputs (or
consequences) in the sense that they are uniquely determined by the inputs and the
model. Note that in the classical paradigm the input/output partition of the variables
is postulated a priori. Unless the model is required to have the a priori specified
input/output partition, imposing such a structure in advance is ad hoc and leads to
undesirable theoretical and numerical features of the modeling methods derived.

An alternative to the classical paradigm that does not impose an a priori fixed
input/output partition is the behavioral paradigm. In the behavioral paradigm, fitting
linear models to data is equivalent to the problem of approximating a matrix D,
constructed from the data, by a matrix D̂ of lower rank. Indeed, existence of an
exact linear model for D is equivalent to D being rank deficient. Moreover, the rank
of D is related to the complexity of the model. This fact is the tenet of the book and
is revisited in the following chapters in the context of applications from systems
and control, signal processing, computer algebra, and machine learning. Also its
implication to the development of numerical algorithms for data fitting is explored.

Existence of a low-complexity exact linear model is equivalent to rank deficiency
of the matrix D =

[
d1 · · · dN

]
, where d1 j, . . . ,dq j are the observed variables in the

jth outcome d j. Assume that there are at least as many observations as variables,
i.e., q≤ N. A linear model for D postulates linear relations among the variables

r⊤k d j = 0, for j = 1, . . . ,N.

Let p be the number of linearly independent relations. Then D has rank less than
or equal to m := q− p. Equivalently, the observations d j belong to at most m-
dimensional subspace B of Rq. The model for D, defined by the linear relations
r1, . . . ,rp ∈ R

q, is the set B ⊂ R
q. Once a model is obtained from the data, all pos-

sible input/output partitions can be enumerated. This is an analysis problem for the
identified model. Therefore, the choice of an input/output partition in the behavioral
paradigm to data modeling can be incorporated, if desired, in the modeling problem
and thus need not be hypothesized as necessarily done in the classical paradigm.

The classical and behavioral paradigms for data modeling are related but not
equivalent. Although existence of solution of the system AX =B implies that the ma-
trix
[
A B

]
is low rank, it is not true that

[
A B

]
having a sufficiently low rank implies

that the system AX = B is solvable. This lack of equivalence causes ill-posed (or
numerically ill-conditioned) data fitting problems in the classical paradigm, which
have no solution (or are numerically difficult to solve). In terms of the data fit-
ting problem, ill-conditioning of the problem AX ≈ B means that the a priori fixed
input/output partition of the variables is not corroborated by the data. In the be-
havioral setting without the a priori fixed input/output partition of the variables,
ill-conditioning of the data matrix D implies that the data approximately satisfies
linear relations, so that nearly rank deficiency is a good feature of the data.

The classical paradigm is less general than the behavioral paradigm. Indeed, ap-
proximate solution of an overdetermined system of equations AX ≈B is one possible
approach to achieve low-rank approximation. Alternative approaches are approxi-
mation of the data matrix by a matrix that has at least p-dimensional null space, or

1.2 Motivating example for low-rank approximation 3

at most m-dimensional column space. Parametrizing the null space and the column
space by sets of basis vectors, the alternative approaches are:

1. kernel representation there is a full row rank matrix R ∈ R
p×q, such that

RD = 0,

2. image representation there are matrices P ∈ R
q×m and L ∈ R

m×N , such that

D = PL.

The approaches using kernel and image representations are equivalent to the orig-
inal low-rank approximation problem. Next, the use of AX = B, kernel, and image
representations is illustrated on the most simple data fitting problem—line fitting.

1.2 Motivating example for low-rank approximation

Given a set of points {d1, . . . ,dN } ⊂ R
2 in the plane, the aim of the line fitting

problem is to find a line passing through the origin that “best” matches the given
points. The classical approach for line fitting is to define

[
a j

b j

]
:= d j

(“:=” stands for “by definition”, see page 269 for a list of notation) and solve ap-
proximately the overdetermined system

col(a1, . . . ,aN)x = col(b1, . . . ,bN) (lse)

(the notation “col” stands for “column vector”) by the least squares method. Let xls
be the least squares solution to (lse). Then the least squares fitting line is

Bls := {d = [a
b] ∈ R

2 | axls = b}.

Geometrically, Bls minimizes the sum of the squared vertical distances from the
data points to the fitting line.

The left plot in Figure 1.1 shows a particular example with N = 10 data points.
(The data d1, . . . ,d10 are the circles, the fit Bls is the solid line, and the fitting errors
e := axls −b are the dashed lines.) Visually one expects the best fit to be the vertical
axis, so minimizing vertical distances does not seem appropriate in this example.

Note that by solving (lse), a (the first components of the d) is treated differently
from b (the second components): b is assumed to be a function of a. This is an
arbitrary choice; the data can be fitted also by solving approximately the system

col(a1, . . . ,aN) = col(b1, . . . ,bN)x, (lse′)

4 1 Introduction

in which case a is assumed to be a function of b. Let x′ls be the least squares solution
to (lse′). It gives the fitting line

B′
ls := {d = [a

b] ∈ R
2 | a = bx′ls },

which minimizes the sum of the squared horizontal distances (see the right plot in
Figure 1.1). The line B′

ls happens to achieve the desired fit in the example.

In the classical approach for data fitting, i.e., solving approximately a system
of linear equations in the least squares sense, the choice of the model repre-
sentation affects the fitting criterion.

This feature of the classical approach is undesirable: it is more natural to specify a
desired fitting criterion independently of how the model happens to be parametrized.
In many data modeling methods, however, a model representation is a priori fixed
and it implicitly corresponds to a particular fitting criterion.

−2 0 2

−6

−4

−2

0

2

4

6

a

b

axls = b fit

−2 0 2

−6

−4

−2

0

2

4

6

a

b

a = bx′ls fit

Fig. 1.1: Different partitions of the variables into inputs and outputs may lead to dif-
ferent approximation criteria and also different optimal approximate models. For the
example shown in the figure, choosing a as an input, i.e., solving axls = b approx-
imately in the least squares sense, leads to minimization of the sum of squares of
the vertical distances, which yields a horizontal line as an optimal model (left plot).
On the other hand, choosing b as an input, i.e., solving a = bx′ls in the least squares
sense leads to minimization of the sum of squares of the horizontal distances, which
yields a vertical line as an optimal model (right plot).

The total least squares method is an alternative to least squares method for solv-
ing approximately an overdetermined system of linear equations. In terms of data
fitting, the total least squares method minimizes the sum of the squared orthogonal

1.2 Motivating example for low-rank approximation 5

distances from the data points to the fitting line. Using the system of equations (lse),
line fitting by the total least squares method leads to the problem

minimize over x ∈ R,




â1
...

âN


 ∈ R

N , and




b̂1
...

b̂N


 ∈ R

N
N

∑
j=1

∥∥∥∥d j −
[

â j

b̂ j

]∥∥∥∥
2

2

subject to â jx = b̂ j, for j = 1, . . . ,N.

(tls)

However, for the data in Figure 1.1 the total least squares problem has no solution.
Informally, xtls = ∞, which corresponds to a fit by a vertical line. Formally,

problem (tls) may have no solution and therefore may fail to give a model.

The use of (lse) in the definition of the total least squares line fitting problem
restricts the fitting line to be a graph of a function ax = b for some x ∈ R. Thus,
the vertical line is a priori excluded as a possible solution. In the example, the line
minimizing the sum of the squared orthogonal distances happens to be the vertical
line. For this reason, xtls does not exist.

Any line B passing through the origin can be represented as an image and a
kernel, i.e., there exist matrices P ∈ R

2×1 and R ∈ R
1×2, such that

B = image(P) := {d = Pℓ ∈ R
2 | ℓ ∈ R}

and
B = ker(R) := {d ∈ R

2 | Rd = 0}.
Using the image representation of the model, the line fitting problem of minimizing
the sum of the squared orthogonal distances is

minimize over P ∈ R
2×1 and

[
ℓ1 · · · ℓN

]
∈ R

1×N
N

∑
j=1

‖d j − d̂ j‖2
2

subject to d̂ j = Pℓ j, for j = 1, . . . ,N.

(lra′P)

With
D :=

[
d1 · · · dN

]
, D̂ :=

[
d̂1 · · · d̂N

]
,

and ‖ · ‖F the Frobenius norm,

‖E‖F :=
∥∥vec(E)

∥∥
2 =

∥∥∥
[
e11 · · · eq1 · · · e1N · · · eqN

]⊤∥∥∥
2
, for all E ∈ R

q×N

(lra′P) is more compactly written as

minimize over P ∈ R
2×1 and L ∈ R

1×N ‖D− D̂‖2
F

subject to D̂ = PL.
(lraP)

6 1 Introduction

Similarly, using a kernel representation, the line fitting problem, minimizing the sum
of squares of the orthogonal distances is

minimize over R ∈ R
1×2, R 6= 0, and D̂ ∈ R

2×N ‖D− D̂‖2
F

subject to RD̂ = 0.
(lraR)

Contrary to the total least squares problem (tls), problems (lraP) and (lraR) always
have (nonunique) solutions. In the example, solutions are, e.g., P∗ =

[
0
1

]
and R∗ =[

1 0
]
, which describe the vertical line

B∗ := image(P∗) = ker(R∗).

The constraints

D̂ = PL, with P ∈ R
2×1, L ∈ R

1×N and RD̂ = 0, with R ∈ R
1×2, R 6= 0

are equivalent to the constraint rank(D̂)≤ 1, which shows that the points d̂1, . . . , d̂N

being fitted exactly by a line passing through the origin is equivalent to

rank
(
[d̂1 · · · d̂N]

)
≤ 1.

Thus, (lraP) and (lraR) are instances of one and the same

abstract problem: approximate the data matrix D by a low-rank matrix D̂.

The observations made in the line fitting example are generalized to modeling of
q-dimensional data in in the following chapters. The underlying goal is:

Given a set of points in R
q (the data), find a subspace of Rq of bounded di-

mension (a model) that has the least (2-norm) distance to the data points.

Such a subspace is a (2-norm) optimal fitting model. The model can always be repre-

sented as a kernel or an image of a matrix. The classical least squares and total least
squares formulations of the data modeling problem use instead the input/output rep-
resents AX = B and A = BX ′ of the model that exclude some candidate models. This
leads to the theoretical and numerical issues of lack of solution and ill-conditioning.
Data modeling using the kernel and image representations is free of these issues.
Therefore, they are the preferred choices in data modeling.

The equations AX =B and A=BX ′ were introduced from an algorithmic point of
view—by using them, the data fitting problem is turned into the standard problem of
solving approximately an overdetermined system of linear equations. An interpreta-
tion of these equations in the data modeling context is that in the model represented

1.3 Overview of applications 7

by the equation AX = B, the variable A is an input and the variable B is an output.
Similarly, in the model represented by the equation A = BX ′, A is an output and B is
an input. The input/output interpretation has an intuitive appeal because it implies a
causal dependence of the variables: the input is causing the output.

Representing the model by an equation AX = B and A = BX ′, as done in the
classical approach, one a priori assumes that the optimal fitting model has a certain
input/output structure. The consequences are:

• existence of exceptional (nongeneric) cases, which complicate the theory,
• ill-conditioning caused by “nearly” exceptional cases, which leads to lack of nu-

merical robustness of the algorithms, and
• need of regularization, which leads to a change of the specified fitting criterion.

These aspects of the classical approach are generally considered as inherent to the
data modeling problem. By choosing the alternative image and kernel model rep-
resentations, the problem of solving approximately an overdetermined system of
equations becomes a low-rank approximation problem, where the nongeneric cases
(and the related issues of ill-conditioning and need of regularization) are avoided.

1.3 Overview of applications

The motto of the book is:

At the core of every data modeling problem is a low-rank approximation sub-
problem. Finding this subproblem allows us to use existing theory, methods,
and algorithms for the solution of the original data modeling problem.

This section illustrates the link between data modeling problems and low-rank
approximation on examples from systems and control, signal processing, computer
algebra, chemometrics, psychometrics, machine learning, and computer vision. The
fact that a matrix constructed from exact data is low rank and the approximate mod-
eling problem is low-rank approximation is sometimes well known (e.g., in real-
ization theory, model reduction, and approximate polynomial common factor). In
other cases (e.g., natural language processing and conic section fitting), the link to
low-rank approximation is not well known and is not exploited.

8 1 Introduction

1.3.1 Exact, approximate, deterministic, and stochastic modeling

As we have seen in the example of line fitting in Section 1.2, the model imposes rela-
tions on the data, which render a matrix constructed from exact data rank deficient.
Although an exact data matrix is low rank, a matrix constructed from real mea-
surements is generically full rank due to measurement noise, unaccounted effects,
and assumptions about the data generating system that are not satisfied in practice.
Therefore, generically, the observed data does not have an exact low-complexity
model. This leads to the problem of approximate modeling.

The approximate modeling problem can be formulated as a low-rank approxima-
tion problem as follows: we aim to modify the data as little as possible, so that the
matrix constructed from the modified data has a specified low rank. The modified
data matrix being low rank implies that there is an exact model for the modified data.
This model is by definition an approximate model for the given data. The transition
from exact to approximate modeling is an important step in building a coherent
theory for data modeling and is emphasized in this book.

In all applications, the exact modeling problem is discussed before the practically
more relevant approximate modeling problem. This is done because 1) exact mod-
eling is simpler than approximate modeling, so that it is the right starting place, and
2) exact modeling is a part of optimal approximate modeling and suggests ways of
solving such problems suboptimally. Indeed, small modifications of exact modeling
algorithms lead to effective approximate modeling algorithms. Well known exam-
ples of the transition from exact to approximate modeling in systems theory are
the progressions from realization theory to model reduction and from deterministic
subspace identification to approximate and stochastic subspace identification.

A consistent estimator in the stochastic estimation setting of the data modeling
problem achieves an exact model. Indeed, the true data generating system is asymp-
totically recovered from the observed data. Estimation with finite sample size, how-
ever, necessarily involves approximation. Thus in stochastic estimation theory there
is also a step of transition from exact to approximate, see Figure 1.2.

exact deterministic → approximate deterministic
↓ ↓

exact stochastic → approximate stochastic

Fig. 1.2: In data modeling, as in any other area, the progression is from simpler to
more complex problems, i.e., from exact to approximate and from deterministic to
stochastic.

The following subsections can be read in any order.

1.3 Overview of applications 9

1.3.2 Applications in systems and control

A major application area of structured low-rank approximation is systems and con-
trol. Hankel structured rank-deficient matrices feature prominently in Kalman’s re-
alization theory. Also the stochastic version of the realization problem, where the
given data is the output correlation function instead of the impulse response leads
to a rank constraint on a Hankel matrix constructed from the given data. In both
cases—deterministic and stochastic realization—the rank constraint has a physical
meaning—it is the order of the system. Hankel structured rank deficient matrices
appear also in system identification, where the data is a general trajectory of the
unknown system. In this more general case, the rank constraint is a function of the
number of inputs as well as the order of the system.

Deterministic system realization and model reduction

Realization theory addresses the problem of finding a state representation of a linear
time-invariant dynamical system defined by a transfer function or impulse response
representation. The key result in realization theory is that an infinite sequence

H =
(
H(0),H(1), . . . ,H(t), . . .

)

is an impulse response of a discrete-time linear time-invariant system of order n if
and only if the two sided infinite Hankel matrix

H (H) :=




H(1) H(2) H(3) · · ·
H(2) H(3) . .

.

H(3) . .
.

...



,

constructed from the data H has rank equal to n, i.e.,

rank
(
H (H)

)
= order of a minimal realization of H.

Therefore, existence of a finite dimensional realization of H, which is an exact low
complexity linear time-invariant model for H is equivalent to rank deficiency of a
Hankel matrix constructed from the data. Moreover, a minimal state representation
of the model can be obtained from a rank revealing factorization of H (H).

When there is no exact finite dimensional realization of the data or the exact
realization is of high order, one may want to find an approximate realization of a
specified low order n. These, respectively, approximate realization and model re-
duction problems naturally lead to Hankel structured low-rank approximation.

The deterministic system realization and model reduction problems are further
considered in Sections 2.2.2, 3.1, and 5.1.

10 1 Introduction

Stochastic system realization

Let y be the output of an nth order linear time-invariant system, driven by white
noise (a stochastic system) and let E be the expectation operator. The sequence

Ryy =
(
Ryy(0),Ryy(1), . . . ,Ryy(t), . . .

)

defined by
Ryy(τ) := E

(
y(t)y⊤(t − τ)

)

is called the correlation function of y. Stochastic realization theory is concerned
with the problem of finding a state representation of a stochastic system that could
have generated the observed output y, i.e., a linear time-invariant system driven by
white noise, whose output correlation function is equal to Ryy.

An important result in stochastic realization theory is that Ryy is the output cor-
relation function of an nth order linear time-invariant stochastic system if and only
if the Hankel matrix H (Ryy) constructed from Ryy has rank n, i.e.,

rank
(
H (Ryy)

)
= order of a minimal stochastic realization of Ryy.

Therefore, stochastic realization of a random process y is equivalent to deterministic
realization of its correlation function Ryy. A finite dimensional stochastic realization
can be obtained from a rank revealing factorization of the Hankel matrix H (Ryy).

In practice, the correlation function is estimated from a finite number of output
samples. With an estimate R̂yy of Ryy, H (R̂yy) is generically full rank, so that that a
finite dimensional stochastic realization can not be found. In this case, the problem
of finding an approximate stochastic realization occurs. This problem is equivalent
to the one in the deterministic case—Hankel structured low-rank approximation.

System identification

Realization theory considers a system representation problem: pass from one repre-
sentation of a system to another. Alternatively, it can be viewed as a special exact
identification problem: find from impulse response data (a special trajectory of the
system) a state space representation of the data generating system. The exact identi-
fication problem (also called deterministic identification problem) is to find from a
general trajectory of a system, a representation of that system. Let

w = [u
y] , where u =

(
u(1), . . . ,u(T)

)
and y =

(
y(1), . . . ,y(T)

)

be an input/output trajectory of a discrete-time linear time-invariant system of or-
der n with m inputs and p outputs and let nmax be a given upper bound on the order n.
Then the Hankel matrix

1.3 Overview of applications 11

Hnmax+1(w) :=




w(1) w(2) · · · w(T −nmax)
w(2) w(3) · · · w(T −nmax +1)
...

...
...

w(nmax +1) w(nmax +1) · · · w(T)


 (Hi)

with nmax +1 block rows, constructed from the trajectory w, is rank deficient:

rank
(
Hnmax+1(w)

)
≤ rank

(
Hnmax+1(u)

)
+order of the system. (SYSID)

Conversely, if the Hankel matrix Hnmax+1(w) has rank (nmax +1)m+n and the ma-
trix H2nmax+1(u) is full row rank (persistency of excitation of u), then w is a tra-
jectory of a controllable linear time-invariant system of order n. Under the above
assumptions, the data generating system can be identified from a rank revealing
factorization of the matrix Hnmax+1(w).

When there are measurement errors or the data generating system is not a low
complexity linear time-invariant system, the data matrix Hnmax+1(w) is generically
full rank. In such cases, the problem of finding an approximate low-complexity
linear time-invariant model for w is Hankel structured low-rank approximation.

System identification is a main topic of the book and appears frequently in the
following chapters. Similarly, to the analogy between deterministic and stochastic
system realization, there is an analogy between deterministic and stochastic system
identification. In a stochastic setting, we consider both errors-in-variables and Auto-
Regressive Moving-Average eXogenous (ARMAX) identification problems.

1.3.3 Application for polynomial common factor computation

The greatest common divisor of two polynomials

p(z) = p0 + p1z+ · · ·+ pnzn and q(z) = q0 +q1z+ · · ·+qmzm

is a polynomial c of maximal degree that divides p and q, i.e., there are polynomials
r and s, such that p = rc and q = sc. Define the Sylvester matrix of p and q

R(p,q) :=




p0 q0

p1 p0 q1 q0
... p1

. . .
... q1

. . .

pn

...
. . . p0 qm

...
. . . q0

pn p1 qm q1
. . .

...
. . .

...
pn qm




∈ R
(n+m)×(n+m). (R)

12 1 Introduction

(By convention, in this book, all missing entries in a matrix are assumed to be zeros.)
A well known fact in algebra is that the degree of the greatest common divisor of p

and q is equal to the rank deficiency (co-rank) of R(p,q), i.e.,

degree(c) = n+m− rank
(
R(p,q)

)
. (GCD)

Suppose that p and q have a greatest common divisor of known degree d > 0,
but the coefficients of the polynomials p and q are imprecise. The perturbed poly-
nomials pd and qd are generically co-prime, i.e., they have no common factor, or
equivalently, the matrix R(pd,qd) is full rank.

The problem of finding an approximate common factor of pd and qd with de-
gree d, can be formulated as follows. Modify the coefficients of pd and qd, as little
as possible, so that the resulting polynomials, say, p̂ and q̂ have a greatest common
divisor of degree d. This problem is a Sylvester structured low-rank approximation
problem. The approximate common factor ĉ for the perturbed polynomials pd and qd
is the exact greatest common divisor of p̂ and q̂.

The problem of computing approximate common factor of two polynomials is
considered in Section 5.3.

1.3.4 Applications for antenna array signal processing

An array of antennas or sensors is used for direction of arrival estimation and adap-
tive beamforming. Consider q antennas in a fixed configuration and a wave propa-
gating from distant sources, see Figure 1.3.

ℓ1•

· · ·

ℓm•

w1
· · ·

wq

Fig. 1.3: In array signal processing, q antenna receive the superposition of m waves
emitted from distant sources.

Consider, first, the case of a single source. The source intensity ℓ1 (the signal) is
a function of time. Let w(t) ∈R

q be the response of the array at time t (wi being the
response of the ith antenna). Assuming that the source is far from the array (relative
to the array’s length), the array’s response is proportional to the source intensity

w(t) = p1ℓ1(t − τ1),

1.3 Overview of applications 13

where τ1 is the time needed for the wave to travel from the source to the array
and p1 ∈ R

q is the array’s response to the source emitting at a unit intensity. The
vector p1 depends only on the array geometry and the source location, so that it is
constant in time. Measurements of the antenna at time t = 1, . . . ,T give a data matrix

D :=
[
w(1) · · · w(T)

]
= p1

[
ℓ1(1− τ) · · · ℓ1(T − τ)

]
︸ ︷︷ ︸

ℓ1

= p1ℓ1,

which has rank equals to one.
Consider now m < q distant sources emitting with intensities ℓ1, . . . , ℓm. Let pk

be the response of the array to the kth source emitting alone with unit intensity.
Assuming that the array responds linearly to a mixture of sources,

D =
[
w(1) · · · w(T)

]
=

m

∑
k=1

pk

[
ℓk(1− τk) · · · ℓk(T − τk)

]
︸ ︷︷ ︸

ℓk

= PL,

where P :=
[
p1 · · · pm

]
, L := col(ℓ1, . . . , ℓm), and τk is the delay of the wave coming

from the kth source. This shows that the rank of D is less than or equal to the number
of sources m. If there are enough antennas and observed samples (q > m and T > m)
and, in addition, the source signals are linearly independent,

rank(D) = the number of sources transmitting to the array.

Moreover, the factors P and L in a rank revealing factorization PL of D carry infor-
mation about the source locations.

With noisy observations, the matrix D is generically a full rank matrix. Then,
assuming that the array’s geometry is known, low-rank approximation can be used
to estimate the number of sources and their locations.

1.3.5 Applications in chemometrics for multivariate calibration

A basic problem in chemometrics, called multivariate calibration, is identification
of the number and type of chemical components from spectral measurements of
mixtures of these components. Let pk ∈ R

q be the spectrum of the kth component
at q predefined frequencies. Under a linearity assumption, the spectrum of a mixture
of m components with concentrations ℓ1, . . . , ℓm is d = Pℓ, where P :=

[
p1 · · · pm

]

and ℓ = col(ℓ1, . . . , ℓm). Given N mixtures of the components with vectors of con-
centrations ℓ(1), . . . , ℓ(N), the matrix of the corresponding spectra d1, . . . ,dN is

D :=
[
d1 · · · dN

]
=

m

∑
k=1

pk

[
ℓ
(1)
k · · · ℓ

(N)
k

]

︸ ︷︷ ︸
ℓk

= PL. (RRF)

14 1 Introduction

Therefore, the rank of D is at most equal to the number of components m. Assuming
that q > m, N > m, the spectral responses p1, . . . , pm of the components are linearly
independent, and the concentration vectors ℓ1, . . . , ℓm are linearly independent,

rank(D) = the number of chemical components in the mixtures.

The factors P and L in a rank revealing factorization PL of D carry information about
the components’ spectra and the concentrations of the components in the mixtures.
With noisy observations D is full rank, so that low-rank approximation can be used
to estimate the number, concentrations, and spectra of the chemical components.

1.3.6 Applications in psychometrics for factor analysis

The psychometric data is test scores and biometrics of a group of people. The test
scores can be organized in a data matrix D, whose rows correspond to the scores and
the columns correspond to the group members. Factor analysis is a popular method
that explains the data as a linear combination of a small number of abilities of the
group members. These abilities are called factors and the weights by which they
are combined in order to reproduce the data are called loadings. Factor analysis
is based on the assumption that the exact data matrix is low rank with rank being
equal to the number of factors. Indeed, the factor model can be written as D = PL,
where the columns of P correspond to the factors and the rows of L correspond to
the loadings. In practice, the data matrix is full rank because the factor model is an
idealization of the way in which the test data is generated. Despite of the fact that
the factor model is a simplification of the reality, it can be used as an approximation
of the way humans perform on tests. Low-rank approximation then is a method for
deriving optimal in a specified sense approximate psychometric factor models.

The factor model, explained above, is used to assess candidates at universities.
An important element of the acceptance decision in US universities for undergrad-
uate study is the Scholastic Aptitude Test, and for postgraduate study, the Graduate
Record Examination. These tests report three independent scores: writing, mathe-
matics, and critical reading for the Scholastic Aptitude Test; and verbal, quantita-
tive, and analytical for the Graduate Record Examination. The three scores assess
what are believed to be the three major factors for, respectively, undergraduate and
postgraduate academic performance. In other words, the premise on which the tests
are based is that the ability of a prospective student to do undergraduate and post-
graduate study is predicted well by a combination of the three factors. Of course, in
different areas of study, the weights by which the factors are taken into consideration
are different. Even in “pure subjects”, however, all scores are important.

Many graduate-school advisors have noted that an applicant for a mathematics fellowship
with a high score on the verbal part of the Graduate Record Examination is a better bet as a
Ph.D. candidate than one who did well on the quantitative part but badly on the verbal.

Halmos (1985, page 5)

1.3 Overview of applications 15

1.3.7 Applications in machine learning

Low-rank approximation is a core problem in machine learning. Applications con-
sidered next are natural language processing, recommender systems, multidimen-
sional scaling, and microarray data analysis. Each of these applications imposes
specific constraints on the data besides the low-rank structure. In natural language
processing, the data consists of frequencies of words in a document, so that the
data matrix is element-wise nonnegative. In recommender systems, the data is or-
dinal and the goal is to estimate missing values. In multidimensional scaling, the
data matrix is a nonlinear (bilinear) transformation of the original measurements. In
microarray data analysis, data matrix D is approximated by a low-rank matrix PL,
where P has known zero elements and the rows of L are nonnegative, smooth, and
periodic as a function of the index.

Natural language processing

Latent semantic analysis is a method in natural language processing for document
classification, search by keywords, synonymy and polysemy detection, etc. Latent
semantic analysis is based on low-rank approximation and fits into the pattern of the
other applications reviewed here:

1. An exact data matrix is rank deficient with rank related to the complexity of the
data generating model.

2. A noisy data matrix is full rank and, for the purpose of approximate modeling, it
is approximated by a low-rank matrix.

Consider N documents, involving q terms and m concepts. If a document belongs
to the kth concept only, it contains the ith term with frequency pik, resulting in
the term frequencies vector pk := col(p1k, . . . , pqk), related to the kth concept. The
latent semantic analysis model assumes that if a document involves a mixture of the
concepts with weights ℓ1, . . . , ℓm (ℓk indicates the relevance of the kth concept to the
document), then the vector of term frequencies for that document is

d = Pℓ, where P :=
[
p1 · · · pm

]
and ℓ= col(ℓ1, . . . , ℓm).

Let d j be the vector of term frequencies, related to the jth document and let ℓ(j)
k

be the relevance of the kth concept to the jth document. The latent semantic analysis
model is the low-rank representation (RRF) of the term–document frequencies ma-
trix D. The rank of the data matrix is less than or equal to the number of concepts m.
Assuming that m is smaller than the number of terms q, m is smaller than the number
of documents N, the term frequencies p1, . . . , pm are linearly independent, and the
relevance of concepts ℓ1, . . . , ℓm are linearly independent,

rank(D) = the number of concepts related to the documents.

16 1 Introduction

The factors P and L of a rank revealing factorization PL of D carry information about
the relevance of the concepts to the documents and the concepts’ term frequencies.

The latent semantic analysis model is not satisfied exactly in practice because
the notion of (small number of) concepts related to (many) documents is an ideal-
ization. Also the linearity assumption is not likely to hold in practice. In reality the
term–document frequencies matrix D is full rank indicating that the number of con-
cepts is equal to either the number of terms or the number of documents. Low-rank
approximation, however, can be used to find a small number of concepts that explain
approximately the term–documents frequencies via the model (RRF). Subsequently,
similarity of documents can be evaluated in the concepts space, which is a low di-
mensional vector space. For example, the j1th and j2th documents are related if they
have close relevance ℓ

(j1)
k and ℓ

(j2)
k to all concepts k = 1, . . . ,m. This gives a way to

classify the documents. Similarly, terms can be clustered in the concepts space by
looking at the rows of the P matrix. Nearby rows of P correspond to terms that are
related to the same concepts. (Such terms are likely to be synonymous.) Finally, a
search for documents by keywords can be done by first translating the keywords to
a vector in the concepts space and then finding a nearby cluster of documents to this
vector. For example, if there is a single keyword, which is the ith term, then the ith
row of the P matrix shows the relevant combination of concepts for this search.

Recommender system

The main issue underlying the abstract low-rank approximation problem and the
applications reviewed up to now is data approximation. In the recommender system
problem, the main issue is the one of missing data: Given ratings of some items by
some users, infer the missing ratings. Unique recovery of the missing data is impos-
sible without additional assumptions. The underlying assumption in many recom-
mender system problems is that the complete matrix of the ratings is of low rank.

Consider q items and N users and let di j be the rating of the ith item by the jth
user. As in the psychometrics example, it is assumed that there is a “small” num-
ber m of “typical” (or characteristic, or factor) users, such that all user ratings can be
obtained as linear combinations of the ratings of the typical users. This implies that
the complete matrix D =

[
di j

]
of the ratings has rank m, i.e.,

rank(D) = number of “typical” users.

Exploiting the prior knowledge that the number of “typical” users is small, the miss-
ing data recovery problem can be posed as the matrix completion problem

minimize over D̂ rank(D̂)

subject to D̂i j = Di j for all (i, j), where Di j is given.
(MC)

This gives a procedure for solving the exact modelling problem (the given elements
of D are assumed to be exact). The corresponding solution method can be viewed as

1.3 Overview of applications 17

the equivalent of the rank revealing factorization problem in exact modeling prob-
lems, for the case of complete data.

Of course, the rank minimization problem (MC) is much harder to solve than the
rank revealing factorization problem. Moreover, theoretical justification and addi-
tional assumptions (about the number and distribution of the given elements of D)
are needed for a solution D̂ of (MC) to be unique and to coincide with the com-
plete true matrix D. It turns out, however, that under certain specified assumptions
exact recovery is possible by solving the convex optimization problem obtained by
replacing rank(D̂) in (MC) with the nuclear norm

‖D̂‖∗ := sum of the singular values of D̂.

The importance of the result is that under the specified assumptions the hard prob-
lem (MC) can be solved efficiently and reliably by convex optimization methods.

In real-life application of recommender systems, however, the additional problem
of data approximation occurs. In this case the constraint D̂i j = Di j of (MC) has to
be relaxed, e.g., replacing it by

D̂i j = Di j +∆Di j,

where ∆Di j are corrections, accounting for the data uncertainty. The corrections are
additional optimization variables. Taking into account the prior knowledge that the
corrections are small, a term λ‖∆D‖F is added in the cost function. The resulting
matrix approximation problem is

minimize over D̂ and ∆D rank(D̂)+λ‖∆D‖F

subject to D̂i j = Di j +∆Di j for all (i, j), where Di j is given.
(AMC)

In a stochastic setting the term λ‖∆D‖F corresponds to the assumption that the true
data is perturbed with zero mean, independent, equal variance, Gaussian noise.

Again the problem can be relaxed to a convex optimization problem by replac-
ing rank with nuclear norm. The choice of the λ parameter reflects the trade-off
between complexity (number of identified “typical” users) and accuracy (size of the
correction ∆D) and depends in the stochastic setting on the noise variance.

Nuclear norm and low-rank approximation methods for estimation of missing
values are developed in Sections 3.4 and 4.4.

Multidimensional scaling

Consider a set of N points in the plane

X := {x1, . . . ,xN } ⊂ R
2

and let di j be the squared distance from xi to x j, i.e.,

18 1 Introduction

di j := ‖xi − x j‖2
2.

The N ×N matrix D =
[
di j

]
of the pair-wise distances, called in what follows the

distance matrix (for the set of points X), has rank at most 4. Indeed,

di j = (xi − x j)
⊤(xi − x j) = x⊤i xi −2x⊤i x j + x⊤j x j,

so that

D =




1
...
1



[
x⊤1 x1 · · · x⊤N xN

]

︸ ︷︷ ︸
rank ≤1

−2




x⊤1
...

x⊤N



[
x1 · · · xN

]

︸ ︷︷ ︸
rank ≤2

+




x⊤1 x1
...

x⊤N xN



[
1 · · · 1

]

︸ ︷︷ ︸
rank ≤1

. (∗)

The localization problem from pair-wise distances is: Given the distance matrix D,
find the locations {x1, . . . ,xN } of the points up to a rigid transformation, i.e., up
to translation, rotation, and reflection of the points. Note that rigid transformations
preserve the pair-wise distances, so that the distance matrix D alone is not sufficient
to locate the points uniquely.

With exact data, the problem can be posed and solved as a rank revealing factor-
ization problem (∗). With noisy measurements, the matrix D is generically full rank.
In this case, the relative (up to rigid transformation) point locations can be estimated

by approximating D by a rank-4 matrix D̂. In order to be a valid distance matrix,
however, D̂ must have the structure

D̂ =




1
...
1



[
x̂⊤1 x̂1 · · · x̂⊤N x̂N

]
−2X̂⊤X̂ +




x̂⊤1 x̂1
...

x̂⊤N x̂N



[
1 · · · 1

]
. (MDS)

Therefore, the problem is a bilinearly structured low-rank approximation.

Microarray data analysis

The measurements of a microarray are collected in a q×N matrix D—rows corre-
spond to genes and columns correspond to time instances. The element di j is the
expression level of the ith gene at the jth moment of time. The rank of D is equal to
the number of transcription factors that regulate the gene expression levels

rank(D) = number of transcription factors.

In a rank revealing factorization D=PL, the jth column of L is a vector of intensities
of the transcription factors at time j, and the ith row of P is a vector of sensitivities
of the ith gene to the transcription factors. For example, pi j equal to zero means that
the jth transcription factor does not regulate the ith gene.

1.3 Overview of applications 19

An important problem in bioinformatics is to discover what transcription fac-
tors regulate a particular gene and what their time evaluations are. This problem
amounts to computing an (approximate) factorization PL of the matrix D. The need
of approximation comes from:

1. inability to account for all relevant transcription factors (therefore accounting
only for a few dominant ones), and

2. measurement errors occurring in the collection of the data.

Often it is known a priori that certain transcription factors do not regulate certain
genes. This implies that certain elements of the sensitivity matrix P are known to be
zeros. In addition, the transcription factor activities are modeled to be nonnegative,
smooth, and periodic functions of time. Where transcription factors down regulate
a gene, the elements of P have to be negative to account for this. In Section 8.2, this
prior knowledge is formalized as constraints in a low-rank matrix approximation
problem and optimization methods for solving the problem are developed.

1.3.8 Applications in computer vision

The data in computer vision problems has a hidden low-rank structure. The data
matrix, however, depends nonlinearly on the data. This makes the resulting struc-
tured low-rank approximation problems challenging to solve. In this section, we
show examples of conic section fitting and fundamental matrix estimation, where
the structure of the data matrix is quadratic and bilinear.

Conic section fitting

In the applications reviewed so far, the low-rank approximation was applied to lin-

ear data modeling problem. Nonlinear data modeling, however, can also be solved
by low-rank approximation methods. The key step—“linearizing” the problem—
involves preprocessing the data by a nonlinear function defining the model struc-
ture. In the machine learning literature, where nonlinear data modeling is a common
practice, the nonlinear function is called the feature map and the resulting modeling
methods are referred to as kernel methods.

As a specific example, consider the problem of fitting data by a conic section,
i.e., given a set of points in the plane

{d1, . . . ,dN } ⊂ R
2, where d j =

[
x j

y j

]
,

find a conic section

B(A,b,c) := {d ∈ R
2 | d⊤Ad +b⊤d + c = 0}. (B(A,b,c))

20 1 Introduction

that fits them. Here A is a 2× 2 symmetric matrix, b is a 2× 1 vector, and c is a
scalar. A, b, and c are parameters defining the conic section. In order to avoid a
trivial case B = R

2, it is assumed that at least one of the parameters A, b, or c is
nonzero. The representation (B(A,b,c)) is called implicit representation, because it
imposes a relation (implicit function) on the elements x and y of d.

Defining the parameter vector

θ :=
[
a11 2a12 b1 a22 b2 c

]
,

and the extended data vector

dext :=
[
x2 xy x y2 y 1

]⊤
, (dext)

then
d ∈ B(θ) = B(A,b,c) ⇐⇒ θdext = 0.

(The map d 7→ dext, defined by (dext), is called the feature map.) Consequently, all
data points d1, . . . ,dN are fitted by the model if

θ
[
dext,1 · · · dext,N

]
︸ ︷︷ ︸

Dext

= 0 ⇐⇒ rank(Dext)≤ 5. (CSF)

Therefore, for N > 5 data points, exact fitting is equivalent to rank deficiency of
the extended data matrix Dext. For N < 5 data points, there is nonunique exact fit
independently of the data. For N = 5 different points, the exact fitting conic section
is unique, see Figure 1.4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 1.4: Fitting a conic section to N = 4 points (left plot) leads to nonunique solu-
tion. Two exact fitting conic sections are shown in the figure with solid and dashed
lines, respectively. With N = 5 different points (right plot) the solution is unique.

With N > 5 noisy data points, the extended data matrix Dext is generically full
rank, so that an exact fit does not exists. A problem called geometric fitting is to

1.3 Overview of applications 21

minimize the sum of squared distances from the data points to the conic section.
The problem is equivalent to quadratically structured low-rank approximation.

Generalization of the conic section fitting problem to algebraic curve fitting and
solution methods for the latter are presented in Chapter 7.

Fundamental matrix estimation

A scene is captured by two cameras (stereo vision) and N matching pairs of points

{u1, . . . ,uN } ⊂ R
2 and {v1, . . . ,vN } ⊂ R

2

are located in the resulting images. Corresponding points u and v of the two images
satisfy what is called an epipolar constraint

[
v⊤ 1

]
F

[
u

1

]
= 0, for some F ∈ R

3×3, with rank(F) = 2. (EPI)

The matrix F , called fundamental matrix, characterizes the relative position and
orientation of the cameras and does not depend on the pairs of points (ui,vi). Esti-
mation of F from data is a calibration step in computer vision methods.

The epipolar constraint (EPI) is linear in F . Indeed, defining

dext :=
[
uxvx uxvy ux uyvx uyvy uy vx vy 1

]⊤ ∈ R
9, (d′

ext)

where u =
[ux

uy

]
and v =

[vx
vy

]
, (EPI) can be written as

vec⊤(F)dext = 0.

Note that, as in the application for conic section fitting, the original data (u,v) is
mapped to an extended data vector dext via a nonlinear function (a feature map). In
this case, however, the function is bilinear.

The epipolar constraints for all data points, lead to the matrix equation

vec⊤(F)Dext = 0, where Dext :=
[
dext,1 · · · dext,N

]
. (FME)

The rank constraint imposed on F implies that F is a nonzero matrix. Therefore,
by (FME), for N ≥ 8 data points, the extended data matrix Dext is rank deficient.
Moreover, the fundamental matrix F can be reconstructed up to a scaling factor
from a vector in the left kernel of Dext.

Noisy data with N ≥ 8 data points generically gives rise to a full rank extended
data matrix Dext. The estimation problem is a bilinearly structured low-rank approx-

imation problem with an additional constraint that rank(F) = 2.

22 1 Introduction

Summary of applications

The applications reviewed in Section 1.3 lead to a structured low-rank approxima-
tion problem. In this sense, they are related. The differences are in the type of the
given data, the structure of the data matrix that is constructed from the given data,
and the rank constraint, which has different interpretation in the different applica-
tions. Table 1.1 summarized this information, allowing an easy comparison. More
applications are cited in the notes and references section on page 28.

Table 1.1: The rank of the data matrix has physical meaning in the applications.

application data data matrix structure rank = ref.

approximate
realization

impulse
response H

H (H) Hankel system’s order
Sec. 2.2.2
Sec. 3.1
Sec. 5.1

stochastic
realization

correlation
function R

H (R) Hankel system’s order Sec. 2.3

system
identification

trajectory w

of the system
Hnmax+1(w) Hankel (SYSID) Sec. 5.2

approximate
GCD

polynomials
pd and qd

R(pd,qd) Sylvester (GCD) Sec. 5.3

array
processing

array response(
w(1), . . . ,w(T)

) [
w(1) · · · w(T)

]
unstructured

of signal
sources

—

multivariate
calibration

spectral responses
{d1, . . . ,dN } ⊂ R

q

[
d1 · · · dN

]
unstructured

of chemical
components

—

factor
analysis

test scores di j

[
di j

]
unstructured # of factors —

language
processing

term–document
frequencies di j

[
di j

]
unstructured # of concepts —

recommender
system

some
ratings di j

[
di j

] unstructured
missing data

of tastes
Sec. 4.1.4
Sec. 4.4

multidim.
scaling

pair-wise
distances di j

[
di j

]
(MDS) dim(x)+2 —

microarray
data analysis

gene expression
levels di j

[di j] unstructured
of transcript.

factors
Sec. 8.2

conic section
fitting

points
{d1, . . . ,dN } ⊂ R

2 (dext), (CSF) quadratic 5 Ch. 7

fundamental
matrix

estimation
points u j,v j ∈ R

2 (d′
ext), (FME) bilinear 6 —

1.4 Overview of algorithms 23

1.4 Overview of algorithms

The rank constraint in the low-rank approximation problem corresponds to the con-
straint in the data modeling problem that the data is fitted exactly by a linear model
of bounded complexity. Therefore, the question of representing the rank constraint
in the low-rank approximation problem corresponds to the question of choosing the
model representation in the data fitting problem. Different representations lead to

• optimization problems, the relation among which may not be obvious;
• algorithms, which may have different convergence properties and efficiency; and
• numerical software, which may have different numerical robustness.

The virtues of the abstract, representation free, low-rank approximation problem
formulation, are both conceptual: it clarifies the equivalence among different pa-
rameter optimization problems, and practical: it shows various ways of formulat-
ing one and the same high level data modeling problem as parameter optimization
problems. On the conceptual level, the low-rank approximation problem formula-
tion shows what one aims to achieve without a reference to implementation details.
In particular, the model representation is such a detail, which is not needed for a
high level formulation of data modeling problems. The representations, however,
are unavoidable when one solves the problem analytically or numerically.

On the practical level, the low-rank problem formulation allows one to translate
the abstract data modeling problem to different concrete parametrized problems by
choosing the model representation. Different representations naturally lend them-
selves to different analytical and numerical methods. For example, a controllable
linear time-invariant system can be represented by a transfer function, state space,
convolution, etc. representations. The analysis tools related to these representations
are rather different and, consequently, the obtained solutions differ despite of the
fact that they solve the same abstract problem. Moreover, the parameter optimiza-
tion problems, resulting from different model representations, lead to algorithms
and numerical implementations, whose robustness properties and computational ef-
ficiency differ. Although, often in practice, there is no universally “best” algorithm
or software implementation, having a wider set of available options is an advantage.

Independent of the choice of the rank representation only a few special low-rank
approximation problems have analytic solutions. So far, the most important special
case with an analytic solution is the unstructured low-rank approximation in the
Frobenius norm. The solution in this case can be obtained from the singular value
decomposition of the data matrix (Eckart–Young–Mirsky theorem). Extensions of
this basic solution are problems known as generalized and restricted low-rank ap-
proximation, where some columns or, more generally submatrices of the approxima-
tion, are constrained to be equal to given matrices. The solutions to these problems
are given by, respectively, the generalized and restricted singular value decomposi-
tions. Another example of low-rank approximation problem with analytic solution
is the circulant structured low-rank approximation, where the solution is expressed
in terms of the discrete Fourier transform of the data.

24 1 Introduction

In general, low-rank approximation problems are NP-hard. There are three fun-
damentally different solution approaches for low-rank approximation:

• heuristic methods based on convex relaxations,
• local optimization methods, and
• global optimization methods.

From the class of heuristic methods the most popular ones are the subspace meth-
ods. The approach used in the subspace type methods is to relax the difficult low-
rank approximation problem to a problem with an analytic solution in terms of the
singular value decomposition, e.g., ignore the structure constraint of a structured
low-rank approximation problem. The subspace methods are found to be very ef-
fective in model reduction, system identification, and signal processing. The class
of the subspace system identification methods is based on the unstructured low-rank
approximation in the Frobenius norm (i.e., singular value decomposition) while the
original problems are Hankel structured low-rank approximation.

The methods based on local optimization split into two main categories:

• alternating projections and
• variable projection

type algorithms. Both alternating projections and variable projection exploit the bi-
linear structure of the low-rank approximation problems.

In order to explain the ideas underlining the alternating projections and variable
projection methods, consider the optimization problem

minimize over P ∈ R
q×m and L ∈ R

m×N ‖D−PL‖2
F (LRAP)

corresponding to low-rank approximation with an image representation of the rank
constraint. The term PL is bilinear in the optimization variables P and L, so that
for a fixed P, (LRAP) becomes a linear least squares problem in L and vice verse,
for a fixed L, (LRAP) becomes a linear least squares problem in P. This suggests
an iterative algorithm starting from an initial guess for P and L and alternatively
solves the problem with one of the variables fixed. Since each step is a projection
operation the method has the name alternating projections. It is globally convergent
to a locally optimal solution of (LRAP) with a linear convergence rate.

The analytic solution of (LRAP) with respect to L for a fixed P gives us an equiv-
alent cost function with P as an optimization variable. The original problem can then
be solved by minimizing the equivalent cost function over P. The latter problem is
unconstrained nonlinear optimization, for which standard optimization methods can
be used. The elimination of L from the problem has the advantage of reducing the
number of optimization variables. Evaluation of the cost function for a given P is a
projection operation. In the course of the nonlinear minimization over P this variable
changes, thus the name of the method—variable projection.

In the statistical literature, the alternating projections algorithm is given the in-
terpretation of expectation maximization. The problem of computing the optimal
approximation D̂ = PL, given P is the expectation step and the problem of comput-
ing P, given L is the maximization step of the expectation maximization procedure.

1.4 Overview of algorithms 25

Literate programming

At first, I thought programming was primarily analogous to musical composition—to the
creation of intricate patterns, which are meant to be performed. But lately I have come to
realize that a far better analogy is available: Programming is best regarded as the process of
creating works of literature, which are meant to be read.

Knuth (1992, page ix)

The ideas presented in the book are best expressed as algorithms for solving
data modeling problems. The algorithms, in turn, are practically useful when imple-
mented in ready-to-use software. The gap between the theoretical discussion of data
modeling methods and the practical implementation of these methods is bridged by
using a literate programming style. The software implementation (MATLAB code)
is interwoven in the text, so that the full implementation details are available in a
human readable format and they come in the appropriate context of the presentation.

A literate program is composed of interleaved code segments, called chunks,
and text. The program can be split into chunks in any way and the chunks can be
presented in any order, deemed helpful for the understanding of the program. This
allows us to focus on the logical structure of the program rather than the way a
computer executes it. The actual computer executable code is tangled from a web

of the code chunks by skipping the text and putting the chunks in the right order. In
addition, literate programming allows us to use a powerful typesetting system such
as LATEX (rather than plain text) for the documentation of the code.

The noweb system for literate programming is used. Its main advantage over
alternative systems is independence of the programming language being used.

Typographic conventions

The code is typeset in small true type font and consists of a number of code
chunks. The code chunks begin with tags enclosed in angle brackets (e.g., 〈code tag〉)
and are sequentially numbered by the page number and a letter identifying them
on the page. Thus the chunk’s identification number (given to the left of the tag) is
also used to locate the chunk in the text. For example, in order to make the results
reproducible, in the simulation examples involving randomness, we first initialize
the random number generator:

25 〈initialize the random number generator 25〉≡ (123b 139c 143b 146a 147b 186a 216a)
randn(’seed’, 0); rand(’seed’, 0);

has identification number 25, locating the code as being on page 25.
If a chunk is included in, is a continuation of, or is continued by other chunk(s),

its definition has references to the related chunk(s). The syntax convention for doing
this is best explained by an example.

26 1 Introduction

Example: Hankel matrix constructor

Consider the implementation of the (block) Hankel matrix constructor

Hi, j(w) :=




w(1) w(2) · · · w(j)
w(2) w(3) · · · w(j+1)
...

...
...

w(i) w(i+1) · · · w(j+ i−1)


 , (Hi, j)

where w =
(
w(1), . . . ,w(T)

)
, with w(t) ∈ R

q×N . The definition of the function,
showing its input and output arguments, is

26a 〈Hankel matrix constructor 26a〉≡ 26c⊲
function H = blkhank(w, i, j)

Defines:
blkhank, used in chunks 73c, 77, 118c, 138b, 143a, 145b, 147a, 149, 239a, 245b, and 250a.

(The reference to the right of the identification tag shows that the definition is contin-
ued in chunk number 26c.) The third input argument of blkhank—the number of
block columns j is optional. Its default value is maximal number of block columns

j = T − i+1.

26b 〈optional number of (block) columns 26b〉≡ (26d 27b)
if nargin < 3 | isempty(j), j = T - i + 1; end

if j <= 0, error(’Not enough data.’), end

(References on the right of the identification tag now shows that this chunk is in-
cluded in other chunks—the ones identified by the reference.)

Two cases are distinguished, depending on whether w is a vector (N = 1) or
matrix (N > 1) valued trajectory.

26c 〈Hankel matrix constructor 26a〉+≡ ⊳26a
if length(size(w)) == 3

〈matrix valued trajectory w 26d〉
else

〈vector valued trajectory w 27b〉
end

(The reference to the right of the identification tag shows that this chunk is a con-
tinuation of chunk 26a and is not followed by other chunks.)

• If w is a matrix valued trajectory, the input argument w should be a 3 dimensional
tensor, constructed as follows w(:, :, t) = w(t).

26d 〈matrix valued trajectory w 26d〉≡ (26c) 26e⊲
[q, N, T] = size(w);

〈optional number of (block) columns 26b〉
(This chunk is both included and followed by other chunks.) In this case, the con-
struction of the Hankel matrix Hi, j(w) is done explicitly by a double loop:

26e 〈matrix valued trajectory w 26d〉+≡ (26c) ⊳26d
H = zeros(i * q, j * N);

for ii = 1:i

1.5 Notes and references 27

for jj = 1:j

H(((ii - 1) * q + 1):(ii * q), ...

((jj - 1) * N + 1):(jj * N)) = w(: ,:, ii + jj - 1);

end

end

• If w is a vector valued trajectory , the input argument w should be a matrix formed
as follows w(:, t) = w(t), however, since T must be greater than or equal to the
number of variables q := dim

(
w(t)

)
, when w has more rows than columns, the

input is treated as w(t, :) = w⊤(t).
27a 〈reshape w and define q, T 27a〉≡ (27b 78 117b 145a 146c 148 245b)

[q, T] = size(w); if T < q, w = w’; [q, T] = size(w); end

27b 〈vector valued trajectory w 27b〉≡ (26c) 27c⊲
〈reshape w and define q, T 27a〉
〈optional number of (block) columns 26b〉

The reason to consider the case of a vector valued w separately is that in this case
the construction of the Hankel matrix Hi, j(w) can be done with a single loop.

27c 〈vector valued trajectory w 27b〉+≡ (26c) ⊳27b
H = zeros(i * q, j);

for ii = 1:i

H(((ii - 1) * q + 1):(ii * q), :) = w(:, ii:(ii + j - 1));

end

We use blkhank is system identification problems, where i ≪ j. MATLAB, being
an interpreted language, executes for loops slowly, so that the reduction to a single
for loop on the block rows of the matrix leads to decrease of the execution time
compared to an implementation with two nested for loops.

1.5 Notes and references

Classical and behavioral paradigms for data modeling

Methods for solving overdetermined systems of linear equations (i.e., data modeling
methods using the classical input/output paradigm) are reviewed in Appendix A.
The behavioral paradigm for data modeling was developed by J. C. Willems in the
early 80’s from “a need to put a clear and rational foundation under the problem
of obtaining models from time series” (Willems, 1986, page 561). It became firmly
established with the publication of the three-part paper (Willems, 1986, 1987). Other
landmark publications on the behavioral paradigm are (Willems, 1989, 1991, 2007).

The numerical linear algebra problem of low-rank approximation is a computa-
tional tool for data modeling, which fits the behavioral paradigm as “a hand fits a
glove”. Historically the low-rank approximation problem is closely related to the
singular value decomposition, which is a computational method for low-rank ap-
proximations and is used in algorithms for data modeling. A historical account of
the development of the singular value decomposition is given in (Stewart, 1993).
The Eckart–Young–Mirsky theorem is proven in (Eckart and Young, 1936).

28 1 Introduction

Applications

Realization and system identification problems are presented in Sections 2.2.2, 3.1,
and 5.2. Direction of arrival and adaptive beamforming problems are discussed
in (Krim and Viberg, 1996; Kumaresan and Tufts, 1983). Low-rank approxima-
tion methods for estimation of concentrations in chemometrics are presented in
(Wentzell, 2014; Wentzell et al, 1997). An early reference on the polynomial ap-
proximate common factor problem is (Karmarkar and Lakshman, 1998). Other com-
puter algebra problems that reduce to structured low-rank approximation are dis-
cussed in (Botting, 2004; Usevich, 2014).

Many problems for information retrieval in machine learning, see, e.g., (Bishop,
2006; Fierro and Jiang, 2005; Shawe-Taylor and Cristianini, 2004), are low-rank
approximation problems and corresponding solution techniques developed by the
machine learning community are methods for low-rank approximation. For exam-
ple, clustering problems have been related to low-rank approximation problems in
(Cohen et al, 2015; Ding and He, 2004; Kiers, 2002; Vichia and Saporta, 2009).

Machine learning problems, however, are often posed in a stochastic estimation
setting which obscures their deterministic approximation interpretation. For exam-
ple, principal component analysis (Jackson, 2003; Jolliffe, 2002; Vidal et al, 2016)
and unstructured low-rank approximation with Frobenius norm are equivalent op-
timization problems, however, the former is defined in a statistical setting while
the latter is defined as an optimization problem. From the numerical linear algebra
perspective, principal component analysis provides a statistical interpretation of the
low-rank approximation problem. From a statistical estimation perspective low-rank
approximation provides computational methods for principal component analysis.

The conic section fitting problem has extensive literature, see Chapter 7 and the
tutorial paper (Zhang, 1997). The kernel principal component analysis method is
developed in the machine learning and statistics literature (Schölkopf et al, 1999).
Despite of the close relation between kernel principal component analysis and conic
section fitting, the corresponding literature are disjoint.

Closely related to the estimation of the fundamental matrix problem in two-view
computer vision is the shape from motion problem (Ma et al, 2004; Tomasi and
Kanade, 1993). Other problems in computer vision are related or use low-rank ap-
proximation methods, see (Vidal et al, 2005) and the edited book (Fu, 2014).

Matrix factorization techniques are used in microarray data analysis in (Alter
and Golub, 2006; Kim and Park, 2007). Alter and Golub (2006) propose a principal
component projection to visualize high dimensional gene expression data and show
that known biological aspects of the data are visible in the two dimensional subspace
defined by the first two principal components. Since 2012, low-rank approximation
and matrix completion methods became the state-of-the-art approach in medical
imaging (Bydder et al, 2017; Dong et al, 2014; Haldar, 2014; Nguyen et al, 2013).

1.5 Notes and references 29

Distance problems

The low-rank approximation problem aims at finding the “smallest” correction of a
given matrix that makes the corrected matrix rank deficient. This is a special case of
a distance problems: find the “nearest” matrix with a specified property to a given
matrix. For an overview of distance problems, see (Higham, 1989). In (Byers, 1988),
an algorithm for computing the distance of a stable matrix (Hurwitz matrix in the
case of continuous-time and Schur matrix in the case of discrete-time linear time-
invariant dynamical system) to the set of unstable matrices is presented. Stability
radius for structured perturbations and its relation to the algebraic Riccati equation
is presented in (Hinrichsen and Pritchard, 1986).

Structured linear algebra

Related to the topic of distance problems is the grand idea that the whole linear alge-
bra (solution of systems of equations, matrix factorization, etc.) can be generalized
to uncertain data. The uncertainty is described as structured perturbation on the data
and a solution of the problem is obtained by correcting the data with a correction
of the smallest size that renders the problem solvable for the corrected data. Some
early references on the topic of structured linear algebra are (Calafiore and Ghaoui,
2014; Chandrasekaran et al, 1998; El Ghaoui and Lebret, 1997).

Structured pseudospectra

Let λ (A) be the set of eigenvalues of A∈C
n×n and M be a set of structured matrices

M := {S (p) | p ∈ R
np },

with a given structure specification S . The ε-structured pseudospectrum (Graillat,
2006; Trefethen and Embree, 1999) of A is defined as the set

λε(A) := {z ∈ C | z ∈ λ (Â), Â ∈ M , and ‖A− Â‖2 ≤ ε }.

Using the structured pseudospectra, one can determine the structured distance of A

to singularity as the minimum of the following optimization problem:

minimize over Â ‖A− Â‖2 subject to Â is singular and Â ∈ M .

This is a special structured low-rank approximation problem for squared data matrix
and rank reduction by one. Related to structured pseudospectra is the structured
condition number problem for a system of linear equations, see (Rump, 2003).

30 1 Introduction

Statistical properties

Related to low-rank approximation are the orthogonal regression (Gander et al,
1994), errors-in-variables (Gleser, 1981), and measurement errors methods in the
statistical literature (Carroll et al, 1995; Cheng and Van Ness, 1999). Classic pa-
pers on the univariate errors-in-variables problem are (Adcock, 1877, 1878; Koop-
mans, 1937; Madansky, 1959; Pearson, 1901; York, 1966). Closely related to the
errors-in-variables framework for low-rank approximation is the probabilistic prin-
cipal component analysis framework of (Tipping and Bishop, 1999). For a detailed
presentation of the probabilistic principal component analysis and its connection to
low-rank approximation, see (Vidal et al, 2016).

Reproducible research

An article about computational science in a scientific publication is not the scholarship
itself, it is merely advertising of the scholarship. The actual scholarship is the complete
software development environment and the complete set of instructions which generated
the figures. Buckheit and Donoho (1995)

The reproducible research concept is at the core of all sciences. In applied fields
such as data modeling, however, algorithms’ implementation, availability of data,
and reproducibility of the results obtained by the algorithms on data are often ne-
glected. This leads to a situation, described in (Buckheit and Donoho, 1995) as a
scandal. See also (Kovacevic, 2007).

A quick and easy way of making computational results obtained in MATLAB

reproducible is to use the function publish. Better still, the code and the obtained
results can be presented in a literate programming style.

Literate programming

The creation of the literate programming is a byproduct of the TEX project, see
(Knuth, 1984, 1992). The original system, called web is used for documentation
of the TEX program (Knuth, 1986) and is for the Pascal language. Later a version
cweb for the C language was developed. The web and cweb systems are followed
by many other systems for literate programming that target specific languages. Un-
fortunately this leads to numerous literate programming dialects.

The noweb system for literate programming created by N. Ramsey is not re-
stricted to a specific programming language and text processing system. A tutorial
introduction is given in (Ramsey, 1994). The noweb syntax is also adopted in the
org-mode of Emacs (Dominik, 2010)—a package for keeping structured notes that
includes support for organization and automatic evaluation of computer code.

1.5 Notes and references 31

Exercises

Actively doing problems takes so much more time than passively reading the text, that it is
always tempting to assume that exercises tucked away at the end of the chapter are a kind
of optional appendix. . . . Nothing could be further from the truth.

(Gardiner, 1982, Page viii)

1.1 (Geometric interpretation of rank-1 approximation). Show that the rank-1
approximation problems (lraP) and (lraR) on page 5 minimize the sum of the squared
orthogonal distances from the data points d1, . . . ,dN to the fitting line B = ker(R) =
image(P) over all lines passing through the origin.

1.2 (Quadratically constrained problem, equivalent to rank-1 approximation).

Show that (lraP) is equivalent to the quadratically constrained optimization problem

minimize M(P) subject to P⊤P = 1, (lra′P)

where
M(P) = trace

(
D⊤(I2 −PP⊤)D

)
.

1.3 (Line fitting by rank-1 approximation). Plot the cost function M(P) for

d1 =

[
−2
1

]
, d2 =

[
−1
4

]
, d3 =

[
0
6

]
, d4 =

[
1
4

]
, d5 =

[
2
1

]
,

d6 =

[
2
−1

]
, d7 =

[
1
−4

]
, d8 =

[
0
−6

]
, d9 =

[
−1
−4

]
, d10 =

[
−2
−1

]
.

over all P on the unit circle P⊤P = 1. Find the minimum points of M.

1.4 (Analytic solution of a rank-1 approximation problem). Show that for the
data in Problem 1.3,

M(P) = P⊤
[

140 0
0 20

]
P.

Argue that the minimum of M for a P on the unit circle is 20 and is achieved for
P∗,1 =

[
0
1

]
and P∗,2 =

[
0
−1

]
. Compare with the approach of Problem 1.3.

1.5 (Litterate program for Sylvester matrix construction).

1. Download and install noweb from www.cs.tufts.edu/~nr/noweb/.
2. Using noweb, write a literate program in MATLAB for construction of the

Sylvester matrix R(p,q), defined in (R) on page 11. Test the program by finding
the degree d of the greatest common divisor of the polynomials

p(z) = 1+3z+5z2 +3z3 and q(z) = 3+5z+3z2 + z3.

32 1 Introduction

References

Adcock R (1877) Note on the method of least squares. The Analyst 4:183–184
Adcock R (1878) A problem in least squares. The Analyst 5:53–54
Alter O, Golub GH (2006) Singular value decomposition of genome-scale mRNA

lengths distribution reveals asymmetry in RNA gel electrophoresis band broad-
ening. Proc Nat Academy of Sci 103:11,828–11,833

Baez J (2010) This week’s finds in mathematical physics. http://math.ucr.
edu/home/baez/week294.html

Bishop C (2006) Pattern recognition and machine learning. Springer
Botting B (2004) Structured total least squares for approximate polynomial opera-

tions. Master’s thesis, School of Computer Science, University of Waterloo
Buckheit J, Donoho D (1995) Wavelets and statistics, Springer-Verlag, chap Wave-

lab and reproducible research
Bydder M, Rapacchi S, Girard O, Guye M, Ranjeva JP (2017) Trimmed autocali-

brating K-space estimation based on structured matrix completion. Magnetic Res-
onance Imaging 43:88–94

Byers R (1988) A bisection method for measuring the distance of a stable matrix to
the unstable matrices. SIAM J Sci Stat Comput 9(5):875–881

Calafiore G, Ghaoui LE (2014) Optimization models. Cambridge University Press
Carroll R, Ruppert D, Stefanski L (1995) Measurement Error in Nonlinear Models.

Chapman & Hall/CRC, London
Chandrasekaran S, Golub G, Gu M, Sayed A (1998) Parameter estimation in the

presence of bounded data uncertainties. SIAM J Matrix Anal Appl 19:235–252
Cheng C, Van Ness JW (1999) Statistical regression with measurement error. Lon-

don: Arnold
Cohen M, Elder S, Musco C, Musco C, Persu M (2015) Dimensionality reduction

for k-means clustering and low rank approximation. In: Proc. 47th Annual ACM
Symposium on Theory of Computing, ACM, pp 163–172

Ding C, He X (2004) K-means clustering via principal component analysis. In: Proc.
Int. Conf. Machine Learning, pp 225–232

Dominik C (2010) The org mode 7 reference manual. Network theory ltd, URL
http://orgmode.org/

Dong W, Shi G, Li X, Ma Y, Huang F (2014) Compressive sensing via nonlocal
low-rank regularization. IEEE Trans on Image Processing 23(8):3618–3632

Eckart G, Young G (1936) The approximation of one matrix by another of lower
rank. Psychometrika 1:211–218

El Ghaoui L, Lebret H (1997) Robust solutions to least-squares problems with un-
certain data. SIAM J Matrix Anal Appl 18:1035–1064

Fierro R, Jiang E (2005) Lanczos and the Riemannian SVD in information retrieval
applications. Numer Linear Algebra Appl 12:355–372

Fu Y (ed) (2014) Low-Rank and Sparse Modeling for Visual Analysis. Springer
Gander W, Golub G, Strebel R (1994) Fitting of circles and ellipses: Least squares

solution. BIT 34:558–578
Gardiner A (1982) Infinite Processes: Background to Analysis. Springer-Verlag

www.cs.tufts.edu/~nr/noweb/
http://math.ucr.edu/home/baez/week294.html
http://math.ucr.edu/home/baez/week294.html
http://orgmode.org/

References 33

Gleser L (1981) Estimation in a multivariate errors-in-variables regression model:
Large sample results. The Annals of Statistics 9(1):24–44

Graillat S (2006) A note on structured pseudospectra. J Comput Appl Math 191:68–
76

Haldar J (2014) Low-rank modeling of local k-space neighborhoods for constrained
MRI. IEEE Trans on Medical Imaging 33(3):668–681

Halmos P (1985) I want to be a mathematician: An automathography. Springer
Higham N (1989) Matrix nearness problems and applications. In: Gover M, Barnett

S (eds) Applications of Matrix Theory, Oxford University Press, pp 1–27
Hinrichsen D, Pritchard AJ (1986) Stability radius for structured perturbations and

the algebraic Riccati equation. Control Lett 8:105–113
Jackson J (2003) A User’s Guide to Principal Components. Wiley
Jolliffe I (2002) Principal component analysis. Springer-Verlag
Karmarkar N, Lakshman Y (1998) On approximate GCDs of univariate polynomi-

als. In: Watt S, Stetter H (eds) J. Symbolic Comput., vol 26, pp 653–666
Kiers H (2002) Setting up alternating least squares and iterative majorization algo-

rithms for solving various matrix optimization problems. Comput Stat Data Anal
41:157–170

Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics
23:1495–1502

Knuth D (1984) Literate programming. Comput J 27(2):97–111
Knuth D (1986) Computers & Typesetting, Volume B: TeX: The Program. Addison-

Wesley
Knuth D (1992) Literate programming. Cambridge University Press
Koopmans T (1937) Linear regression analysis of economic time series, vol 20.

DeErven F. Bohn
Kovacevic J (2007) How to encourage and publish reproducible research. In: Proc.

IEEE Int. Conf. Acoustics, Speech Signal Proc., pp 1273–1276
Krim H, Viberg M (1996) Two decades of array signal processing research. IEEE

Signal Proc Magazine 13:67–94
Kumaresan R, Tufts D (1983) Estimating the angles of arrival of multiple plane

waves. IEEE Trans Aerospace Electronic Systems 19(1):134–139
Ma Y, Soatto S, Kosecká J, Sastry S (2004) An Invitation to 3-D Vision, Interdisci-

plinary Applied Mathematics, vol 26. Springer
Madansky A (1959) The fitting of straight lines when both variables are subject to

error. J Amer Statist Assoc 54:173–205
Markovsky I (2008) Structured low-rank approximation and its applications. Auto-

matica 44(4):891–909
Markovsky I (2014) Recent progress on variable projection methods for structured

low-rank approximation. Signal Processing 96PB:406–419
Markovsky I, Van Huffel S (2007) Overview of total least squares methods. Signal

Processing 87:2283–2302
Markovsky I, Willems JC, Van Huffel S, De Moor B (2006) Exact and Approximate

Modeling of Linear Systems: A Behavioral Approach. SIAM

34 1 Introduction

Nguyen H, Peng X, Do M, Liang Z (2013) Denoising MR spectroscopic imaging
data with low-rank approximations. IEEE Trans Biomed Eng 60(1):78–89

Pearson K (1901) On lines and planes of closest fit to points in space. Philos Mag
2:559–572

Ramsey N (1994) Literate programming simplified. IEEE Software 11:97–105
Rump S (2003) Structured perturbations part I: Normwise distances. SIAM J Matrix

Anal Appl 25:1–30
Schölkopf B, Smola A, Müller K (1999) Kernel principal component analysis., MIT

Press, Cambridge, MA, pp 327–352
Shawe-Taylor J, Cristianini N (2004) Kernel Methods for Pattern Analysis. Cam-

bridge University Press
Stewart GW (1993) On the early history of the singular value decomposition. SIAM

Review 35(4):551–566
Tipping M, Bishop C (1999) Probabilistic principal component analysis. J R Stat

Soc B 61(3):611–622
Tomasi C, Kanade T (1993) Shape and motion from image streames: A factorization

method. Proc Natl Adadem Sci USA 90:9795–9802
Trefethen LN, Embree M (1999) Spectra and pseudospectra: The behavior of non-

normal matrices and operators. Princeton University Press
Usevich K (2014) Decomposing multivariate polynomials with structured low-rank

matrix completion. In: Proceedings of the 21th International Symposium on
Mathematical Theory of Networks and Systems (MTNS 2014)

Vichia M, Saporta G (2009) Clustering and disjoint principal component analysis.
Comput Stat Data Anal 53:3194–3208

Vidal R, Ma Y, Sastry S (2005) Generalized principal component analysis (gpca).
IEEE Trans Pattern Anal Machine Intelligence 27(12):1945–1959

Vidal R, Ma Y, Sastry S (2016) Generalized Principal Component Analysis.
Springer

Wentzell P (2014) Measurement errors in multivariate chemical data. Journal of the
Brazilian Chemical Society 25(2):183–196

Wentzell P, Andrews D, Hamilton D, Faber K, Kowalski B (1997) Maximum likeli-
hood principal component analysis. J Chemometrics 11:339–366

Willems JC (1986) From time series to linear system—Part I. Finite dimensional
linear time invariant systems. Automatica 22(5):561–580

Willems JC (1986, 1987) From time series to linear system—Part I. Finite dimen-
sional linear time invariant systems, Part II. Exact modelling, Part III. Approxi-
mate modelling. Automatica 22, 23:561–580, 675–694, 87–115

Willems JC (1989) Models for dynamics. Dynamics reported 2:171–269
Willems JC (1991) Paradigms and puzzles in the theory of dynamical systems. IEEE

Trans Automat Control 36(3):259–294
Willems JC (2007) The behavioral approach to open and interconnected systems:

Modeling by tearing, zooming, and linking. Control Systems Magazine 27:46–99
York D (1966) Least squares fitting of a straight line. Can J Physics 44:1079–1086
Zhang Z (1997) Parameter estimation techniques: A tutorial with application to

conic fitting. Image Vision Comp J 15(1):59–76

Part I

Linear modeling problems

Chapter 2

From data to models

. . . whenever we have two different representations of the same

thing we can learn a great deal by comparing representations

and translating descriptions from one representation into the

other. Shifting descriptions back and forth between

representations can often lead to insights that are not inherent

in either of the representations alone.

Abelson and diSessa (1986, page 105)

Section 1.2 presented as a motivating example an equivalence between line fitting
and rank-one approximation. Section 1.3 listed examples from different applica-
tions, where the problems reduce to low-rank approximation. This lead us to claim
that “Behind every data modeling problem there is a (hidden) low-rank approxima-
tion problem.” In the rest of the book, we pose and solve multivariable linear static,
dynamic linear time-invariant, and nonlinear data modeling problems in the low-
rank setting. The advantage of this approach is that, one algorithm (and software
implementation) can be used to solve a variety of practical data modeling problems.

In order to state the general data modeling problem considered in the book, we
need the notions of a model, model complexity, and lack of fit between the data
and a model. Therefore, first, we define rigorously the basic notion of a mathe-
matical model. Important questions considered are: “How to represent a model by
equations?” and “How to convert one representation into another one?”. When two
models fit the data equally well, we prefer the simpler model. For this purpose, we
define the notion of model complexity. Two principles—misfit and latency—used to
quantify the lack of fit between the data and a model are introduced. In a stochastic
setting, the misfit principle leads to the errors-in-variables modeling problems and
the latency principle leads to the static regression and dynamic ARMAX problems.

In defining the notions of model, representation, and model complexity, first are
considered linear static models, in which case the representation is an algebraic
equation. Then, the results are extended to linear time-invariant models, in which
case the model representation is a differential or difference equation. Finally, the
ideas are applied to stochastic systems, i.e., systems driven by stochastic processes.

37

38 2 From data to models

2.1 Static model representations

First, we define the notions of a linear static model as well as kernel, image, and
input/output representations of a model. Then, we show the transitions among the
three representations. The computational details of the various transitions from one
representation to another are presented in a literate programming style, using the
MATLAB language. Finally, we define the notion of a model complexity.

2.1.1 Kernel, image, and input/output representations

A linear static model with q variables is a subspace of the q-dimensional space R
q.

We denote the set of linear static models with q variables by L q

0 . Three basic repre-
sentations of a linear static model B ⊆ R

q are the kernel, image, and input/output:

• kernel representation with parameter R ∈ R
g×q

B = ker(R) := {d ∈ R
q | Rd = 0}, (KER0)

• image representation with parameter P ∈ R
q×s

B = image(P) := {d = Pℓ ∈ R
q | ℓ ∈ R

s }, (IMAGE0)

• input/output representation with parameters X ∈ R
m×p and a permutation Π

Bi/o(X ,Π) := {d = Π [u
y] ∈ R

q | u ∈ R
m, y = X⊤u}. (I/O0)

If the parameter Π in an input/output representation is not specified, then by default
it is assumed to be the identity matrix Π = Iq, i.e., the first m variables are assumed
to be inputs and the other p := q−m variables assumed to be are outputs.

In the representation (IMAGE0), the columns of P are generators of the model B,
i.e., they span the model. In the representation (KER0), the rows of R are annihila-

tors of B, i.e., they are orthogonal to B. The parameters R and P are not unique.

1. Linearly dependent generators and annihilators can be added, respectively, to an
existing set of annihilators and generators of B, keeping the model the same.

2. A change of basis transformation can be applied to the generators or annihilators

ker(R) = ker(UR), for all U ∈ R
g×g, such that det(U) 6= 0,

image(P) = image(PV), for all V ∈ R
s×s, such that det(V) 6= 0.

The smallest possible number of generators, i.e., coldim(P), such that (IMAGE0)
holds is invariant of the representation and is equal to m := dim(B)—the dimension
of B. Integers, such as m and p := q− m that are invariant of the representation,
characterize properties of the model and are called model invariants. The integers m
and p have data modeling interpretation as number of inputs and number of outputs,

2.1 Static model representations 39

respectively. Indeed, m variables are free (unassigned by the model) and the other p
variables are determined by the model and the inputs. The number of inputs and
outputs of the model B are denoted by m(B) and p(B), respectively.

The model class of linear static models with q variables, at most m of which
are inputs is denoted by L q

m,0. With coldim(P) = m, the columns of P form a basis
for B. The smallest possible rowdim(R), such that ker(R) = B is invariant of the
representation and is equal to the number of outputs of B. With rowdim(R) = p, the
rows of R form a basis for the orthogonal complement B⊥ of B. Therefore, without
loss of generality we can assume that P ∈ R

q×m and R ∈ R
p×q.

In general, many input/output partitions of the variables d are possible. Let
ker(R) and image(P) be minimal representations of model B ∈ L p+m

m,0 . Choosing
an input/output partition amounts to choosing a full rank p×p submatrix of R or a
full rank m×m submatrix of P. In some data modeling problems, there is no a priori
reason to prefer one partition of the variables over another. For such problems, the
classical setting posing the problem as an overdetermined system of linear equations
AX ≈ B is not a natural starting point.

2.1.2 Transition among input/output, kernel, and image

representations

The transition from one model representation to another gives insight into the prop-
erties of the model. These analysis problems need to be solved before the more com-
plicated modeling problems are considered. The latter can be viewed as synthesis

problems since the model is created or synthesised from data and prior knowledge.
If the parameters R, P, and (X ,Π) describe the same system B, then they are

related. We show the relations that the parameters must satisfy as well as code that
does the transition from one representation to another. Before we describe the transi-
tions among the parameters, however, we need an efficient way to store and multiply
by permutation matrices and a tolerance for computing rank numerically.

Input/output partition of the variables

In the input/output representation Bi/o(X ,Π), the partitioning of the variables d ∈
R
q into inputs u ∈ R

m and outputs y ∈ R
p is specified by a permutation matrix Π ,

d
Π−1=Π⊤

//

Π
oo

[
u

y

]
, d = Π

[
u

y

]
,

[
u

y

]
= Π⊤d.

In the software implementation, however, it is more convenient (as well as more
memory and computation efficient) to specify the partitioning by a vector

π := Π col(1, . . . ,q) ∈ {1, . . . ,q}q.

40 2 From data to models

The vector π contains the same information as the matrix Π . We can reconstruct
Π from π by permutation of the rows of the identity matrix. (In the code io is the
variable corresponding to the vector π and Pi is the variable corresponding to Π .)

40a 〈π 7→ Π 40a〉≡ (40c)
Pi = eye(length(io)); Pi = Pi(io,:);

Permuting the elements of a vector is done more efficiently by direct reordering of
the elements, instead of a matrix-vector multiplication. If d is a variable correspond-
ing to a vector d, then d(io) corresponds to the vector Πd.

The default value for Π is the identity matrix I, corresponding to first m variables
of d being inputs and the remaining p variables outputs, i.e., d = [u

y].
40b 〈default input/output partition 40b〉≡ (42 43b)

if ~exist(’io’) || isempty(io), io = 1:q; end

In case the inverse permutation Π−1 = Π⊤ is needed, it can be found from

π ′ = Π⊤ col(1, . . . ,q) ∈ {1, . . . ,q}q.

In the code inv_io is the variable corresponding to the vector π ′ and the transition
from the original variables d to the partitioned variables uy = [u; y] via io
and inv_io is done by the following indexing operations:

d
io_inv //

uy
io

oo , d = uy(io), uy = d(io_inv).

40c 〈inverse permutation 40c〉≡ (44a)
〈π 7→ Π 40a〉, inv_io = (1:length(io)) * Pi;

Tolerance for rank computation

In the computation of an input/output representation from a given kernel or image
representation of a model (as well as in the computation of the models’ complexity),
we need to compute rank of a matrix. Numerically this is an ill-posed problem. Arbi-
trary small perturbations of the matrix’s elements may (generically will) change the
rank. A solution to this problem is to replace rank with “numerical rank” defined as

numrank(A,ε) := number of singular values of A greater than ε, (numrank)

where ε ∈ R+ is a user defined tolerance. Note that

numrank(A,0) = rank(A),

i.e., by taking the tolerance to be equal to zero, the numerical rank reduces to the
theoretical rank. A nonzero tolerance ε makes the numerical rank robust to pertur-
bations of size (measured in the induced 2-norm) less than ε . Therefore, ε reflects
the size of the expected errors in the matrix. The default tolerance is set to a small

2.1 Static model representations 41

value, which corresponds to numerical errors due to a double precision arithmetic.
(In the code tol is the variable corresponding to ε .)

41 〈default tolerance tol 41〉≡ (43 44c 74a)
if ~exist(’tol’) || isempty(tol), tol = 1e-12; end

Note 2.1. The numerical rank definition (numrank) is the solution of an unstructured
rank minimization problem: find a matrix Â of minimal rank, such that ‖A−Â‖2 < ε .

From input/output representation to kernel or image representations

Consider a linear static model B ∈ L q

m,0, defined by an input/output representation

Bi/o(X ,Π). From y = X⊤u, we have

[
X⊤ −I

][u

y

]
= 0

or since d = Π [u
y],

[
X⊤ −I

]
Π⊤

︸ ︷︷ ︸
R

Π

[
u

y

]

︸ ︷︷ ︸
d

= 0.

Therefore, the matrix
R =

[
X⊤ −I

]
Π⊤ ((X ,Π) 7→ R)

is a parameter of a kernel representations of B, i.e.,

Bi/o(X ,Π) = ker
([

X⊤ −I
]

Π⊤
)
= B.

Moreover, the representation is minimal because R has full row rank.
Similarly, a minimal image representation is derived from the input/output rep-

resentation as follows. From y = X⊤u,
[

u

y

]
=

[
I

X⊤

]
u,

so that, using d = Π [u
y],

d = Π

[
u

y

]
= Π

[
Im

X⊤

]
u =: Pu.

Therefore, the matrix

P = Π

[
I

X⊤

]
((X ,Π) 7→ P)

is a parameter of an image representations of B, i.e.,

42 2 From data to models

Bi/o(X ,Π) = image
(

Π

[
Im

X⊤

])
= B.

The representation is minimal because P has full column rank.
Formulae ((X ,Π) 7→ R) and ((X ,Π) 7→ P) give us a way to transform a given

input/output representation to minimal kernel and minimal image representations.
42a 〈(X ,Π) 7→ R 42a〉≡

function r = xio2r(x, io)

r = [x’, -eye(size(x, 2))]; q = size(r, 2);

〈default input/output partition 40b〉, r = r(:, io);

42b 〈(X ,Π) 7→ P 42b〉≡
function p = xio2p(x, io)

p = [eye(size(x, 1)); x’]; q = size(p, 1);

〈default input/output partition 40b〉, p = p(io, :);

From image to kernel and from kernel to image representation

The relation

ker(R) = image(P) = B ∈ L q

m,0 =⇒ RP = 0 (R ↔ P)

gives us a link between the parameters P and R. In particular, a minimal image
representation image(P) = B can be obtained from a given kernel representation
ker(R) = B by computing a basis for the null space of R. Conversely, a minimal
kernel representation ker(R)=B can be obtained from a given image representation
image(P) = B by computing a basis for the left null space of P.

42c 〈R 7→ P 42c〉≡
function p = r2p(r), p = null(r);

42d 〈P 7→ R 42d〉≡
function r = p2r(p), r = null(p’)’;

Converting an image or kernel representation to a minimal one

The kernel and image representations obtained from xio2r, xio2p, p2r, and r2p
are minimal. In general, a given kernel or image representations is not minimal,
i.e., R has redundant rows and P has redundant columns. The kernel representation,
defined by R, is minimal if and only if R has full row rank. Similarly, the image
representation, defined by P, is minimal if and only if P has full column rank.

The problems of converting kernel and image representations to minimal ones
are equivalent to the problem of finding a full rank matrix that has the same kernel
or image as a given matrix. A numerically reliable way to solve this problem is to
use the singular value decomposition.

2.1 Static model representations 43

Consider a model B ∈ L q

m,0 with parameters R ∈ R
g×q and P ∈ R

q×s of re-

spectively kernel and image representations. Let R = UΣV⊤ be the singular value
decomposition of R and let p be the rank of R. With the partitioning,

V =:
[
V1 V2

]
, where V1 ∈ R

q×p,

we have that
image(R⊤) = image(V1).

Therefore,
ker(R) = ker(V⊤

1) and V1 has full rank,

so that V⊤
1 is a parameter of a minimal kernel representation of B.

Let P =UΣV⊤ be the singular value decomposition of P. With the partitioning,

U =:
[
U1 U2

]
, where U1 ∈ R

q×m,

we have that
image(P) = image(U1).

Since U1 has full rank, it is a parameter of a minimal image representation of B.
In the numerical implementation, the rank is replaced by the numerical rank with

respect to a user defined tolerance tol.
43a 〈R 7→ minimal R 43a〉≡

function r = minr(r, tol)

[p, q] = size(r); 〈default tolerance tol 41〉
[u, s, v] = svd(r, ’econ’); pmin = sum(diag(s) > tol);

if pmin < p, r = v(:, 1:pmin)’; end

Defines:
minr, used in chunks 44a and 45b.

From kernel or image to input/output representation

The transformations from kernel to input/output and from image to input/output rep-
resentations are closely related. They have as a sub-problem partitioning of the vari-
ables into inputs and outputs. Assume first that the input/output partition is given.
This amounts to knowing the permutation matrix Π ∈ R

q×q in (I/O0).
43b 〈(R,Π) 7→ X 43b〉≡ 44a⊲

function x = rio2x(r, io, tol)

q = size(r, 2); 〈default input/output partition 40b〉, 〈default tolerance tol 41〉
Defines:
rio2x, used in chunks 45b and 148b.

Consider a given parameter R ∈R
p×q of a minimal kernel representation and define

RΠ =:
[
Ru Ry

]
, where Ry ∈ R

p×p.

44 2 From data to models

44a 〈(R,Π) 7→ X 43b〉+≡ ⊳43b 44b⊲
r = minr(r, tol); p = size(r, 1); m = q - p;

〈inverse permutation 40c〉, rpi = r(:, inv_io);

ru = rpi(:, 1:m); ry = rpi(:, (m + 1):end);

Uses minr 43a.

Similarly, for a parameter P ∈ R
q×m of minimal image representation, define

Π⊤P =:
[

Pu

Py

]
, where Pu ∈ R

m×m.

If Ry and Pu are non-singular, it follows from ((X ,Π) 7→ R) and ((X ,Π) 7→ P) that

X =−(R−1
y Ru)

⊤ ((R,Π) 7→ X)

and
X = (PyP−1

u)⊤ ((P,Π) 7→ X)

is the parameter of the input/output representation Bi/o(X ,Π), i.e.,

ker
(m p[

Ru Ry

]
Π⊤

︸ ︷︷ ︸
R

)
= Bi/o

(
− (R−1

y Ru)
⊤,Π

)

and

image

(
Π

[
Pu

Py

]

︸ ︷︷ ︸
P

m

p

)
= Bi/o

(
(PyP−1

u)⊤,Π
)
.

44b 〈(R,Π) 7→ X 43b〉+≡ ⊳44a
[u, s, v] = svd(ry); s = diag(s);

if s(end) < tol

warning(’Computation of X is ill conditioned.’); x = NaN;

else

x = -(v * diag(1 ./ s) * u’ * ru)’;

end

Singularity of the blocks Ry and Pu implies that the input/output representation with
a permutation matrix Π is not possible. In such cases, the function rio2x issues a
warning message and returns NaN value for X .

The function r2io uses rio2x in order to find all possible input/output parti-
tions for a model specified by a kernel representation.

44c 〈R 7→ Π 44c〉≡ 45a⊲
function IO = r2io(r, tol)

q = size(r, 2); 〈default tolerance tol 41〉

2.1 Static model representations 45

The search is exhaustive over all input/output partitionings of the variables (i.e., all
choices of m elements of the set of variable indexes {1, . . . ,q}), so that the compu-
tation is feasible only for a small number of variables (say, less than 6).

45a 〈R 7→ Π 44c〉+≡ ⊳44c 45b⊲
IO = perms(1:q); nio = size(IO, 1);

The parameter X for each candidate partition is computed. If the computation of X

is ill-conditioned, the corresponding partition is discarded.
45b 〈R 7→ Π 44c〉+≡ ⊳45a

not_possible = []; warning_state = warning(’off’);

r = minr(r, tol);

for i = 1:nio

x = rio2x(r, IO(i, :), tol);

if isnan(x), not_possible = [not_possible, i]; end

end

warning(warning_state); IO(not_possible, :) = [];

Uses minr 43a and rio2x 43b.

Summary of transitions among representations

Figure 2.1 summarizes the links among the parameters R, P, and (X ,Π) of a linear
static model B and the functions that implement the transitions.

B = ker(R) oo RP=0 //

X=−(R−1
o Ri)

⊤

##❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋

B = image(P)

X=(PoP−1
i)⊤

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

B = Bi/o(X ,Π)

R=[X⊤ −I]Π⊤

cc❋❋❋❋❋❋❋❋❋❋❋❋❋❋
P⊤=[I X]Π⊤

;;✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇

B = ker(R)
r2p //

r2io,rio2x

##❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋

B = image(P)
p2r

oo

p2io,pio2x

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

B = Bi/o(X ,Π)

xio2r

cc❋❋❋❋❋❋❋❋❋❋❋❋❋❋
xio2p

;;✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇

Fig. 2.1: Going from one model representation to another means converting the
parameters of a given representation into the parameters of another representation
of the same model. The upper diagram summarizes the formulas for the transi-
tions among the kernel, image, and input/output representations. The lower diagram
shows the corresponding MATLAB functions that implement these transitions.

46 2 From data to models

2.1.3 Linear static model complexity

A linear static model is a finite dimensional subspace. The dimension m of the sub-
space is equal to the number of inputs and is invariant of the model representation.
The integer constant m quantifies the model complexity: the model is more complex
when it has more inputs. The rationale for this definition of model complexity is
that inputs are “unexplained” variables by the model, so the more inputs the model
has, the less it “explains” the modeled phenomenon. In data modeling the aim is to
obtain low-complexity models, a principle generally refered to as Occam’s razor.

Note 2.2 (Rank estimation problems in computation of model complexity). Finding
the model’s complexity from given exact data, nonminimal kernel, or nonminimal
image representation is a rank estimation problem.

2.2 Dynamic model representations

The concepts of model, representation, and complexity, presented in Section 2.1 for
linear static systems are generalized next to linear time-invariant systems. The lin-
ear time-invariant model class is a proper generalization of the linear static model
class. There is a richer variety of possible representations and they involve differ-
ential, in continuous-time, and difference, in discrete-time, equations. This leads
to more transitions among representations and increased complexity in comparison
with Section 2.1, where linear algebraic equations were used.

First, we define formally a dynamical model as a set of functions—the trajec-
tories of the model. Properties of the model, such as linearity and time-invariance
are also defined on the level of the model trajectories. Then, a plethora of possible
representations—kernel, input/output, state space, image, convolution, and transfer
function—are introduced. The links among them are summarized in Figure 2.3. The
transition, called realization problem, from impulse response to a state space rep-
resentation is described in details because of its importance for subspace system
identification. Finally, the notion of model complexity that we have introduced for
the static linear model class is generalized to the linear time-invariant model class.

2.2.1 Kernel, input/output, state space, image, convolution, and

transfer function representations

An observation d j of a static model is a vector of variables. In the dynamic case,
the observations depend on time, so that apart from the multivariable aspect, there is
also a time evaluation aspect. In the dynamic case, an observation is refered to as a
trajectory, i.e., it is a vector valued function of a scalar argument. The time variable

2.2 Dynamic model representations 47

takes its values in the set of integers Z (discrete-time model) or in the set of real
numbers R (continuous-time model). We denote the time axis by the symbol T .

A dynamic model B with q variables is a subset of the trajectory space (Rq)T

— the set of all functions from the time axis T to the variable space R
q.

Next, we consider the class of finite dimensional linear time-invariant dynam-
ical models. By definition, a model B is linear if it is a subspace of the data
space (Rq)T . In order to define the time-invariance property, we introduce the shift

operator σ τ . Acting on a signal w, σ τ produces a signal σ τ w, which is the back-
wards shifted version of w by τ time units, i.e.,

(σ τ w)(t) := w(t + τ), for all t ∈ T .

Acting on a set of trajectories, σ τ shifts all trajectories in the set, i.e.,

σ τB := {σ τ w | w ∈ B }.

A model B is shift-invariant if it is invariant under any shift in time, i.e.,

σ τB = B, for all τ ∈ T .

The model B is finite dimensional if it is a closed subset (in the topology of point-
wise convergence). Finite dimensionality is equivalent to the property that at any
time t the future behavior of the model is deterministically independent of the past
behavior, given a finite dimensional vector, called a state of the model. Intuitively,
the state is the information (or memory) of the past that is needed in order to predict
the future. The smallest state dimension is an invariant of the system, called the
order. We denote the set of finite dimensional linear time-invariant models with q

variables and order at most n by L q,n and the order of B by n(B).
A finite dimensional linear time-invariant model B ∈ L q,n admits a representa-

tion by a difference or differential equation

R0w+R1λw+ · · ·+Rℓλ
ℓw = (R0 +R1λ + · · ·+Rℓλ

ℓ

︸ ︷︷ ︸
R(λ)

)w

= R(λ)w = 0,

(DE)

where λ is the unit shift operator σ in the discrete-time case and the differential
operator d

dt
in the continuous-time case. Therefore, the model B is the kernel

B := ker
(
R(λ)

)
= {w | (DE) holds}, (KER)

of the operator R(λ). The smallest degree ℓ of a polynomial matrix

R(z) := R0 +R1z+ · · ·+Rℓz
ℓ ∈ R

g×q[z],

48 2 From data to models

that defines a kernel representation (KER) of the system B is invariant of the repre-
sentation and is called the lag ℓ(B) of the system B.

The order of the system is the total degree (sum of the row degrees) of the poly-
nomial matrix R in a kernel representation of the system. Therefore, we have the
following link between the order and the lag of a linear time-invariant model:

n(B)≤ p(B)ℓ(B).

As in the static case, the smallest possible number of rows g of the polyno-
mial matrix R in a kernel representation (KER) of a finite dimensional linear time-
invariant system B is the number of outputs p(B) of B. Finding an input/output
partitioning for a model specified by a kernel representation amounts to selection of
a nonsingular p×p submatrix of R. The resulting input/output representation is:

B = Bi/o(P,Q,Π) := {w = Π [u
y] | Q(σ)u = P(σ)y} (I/O)

with parameters the polynomial matrices Q ∈ R
p×m[z] and P ∈ R

p×p[z], such that
det(P) 6= 0, and the permutation matrix Π .

In general, the representation (I/O) involves higher order shifts or derivatives.
A first order representation

B = Bi/s/o(A,B,C,D,Π) := {w = Π [u
y] | there is x, such that

λx = Ax+Bu and y =Cx+Du}, (I/S/O)

with an auxiliary variable x, however, is always possible. The representation (I/S/O)
displays not only the input/output structure of the model but also its state structure
and is refered to as an input/state/output representation of the model. The parameters
of an input/state/output representation are the matrices A ∈ R

n×n, B ∈ R
n×m, C ∈

R
p×n, D∈R

p×m, and a permutation matrix Π . The parameters are non unique due to

• nonuniqueness in the choice of the input/output partition,
• existence of redundant states (nonminimality of the representation), and
• change of state space basis

Bi/s/o(A,B,C,D) = Bi/s/o(T
−1AT,T−1B,CT,D),

for any nonsingular matrix T ∈ R
n×n. (CB)

An input/state/output representation Bi/s/o(A,B,C,D) is called minimal when the
state dimension n is as small as possible. The minimal state dimension is an invariant
of the system and is equal to the order n(B) of the system.

A system B is autonomous if the “past”
(
. . . ,w(−2),w(−1)

)
of a trajectory

w ∈ B completely determines the “future”
(
w(0),w(1), . . .

)
. It can be shown that

a system B is autonomous if and only if it has no inputs. An autonomous finite
dimensional linear time-invariant system is parametrized by the pair of matrices A

and C via the state space representation

2.2 Dynamic model representations 49

B(A,C) := {w = y | there is x, such that σx = Ax and y =Cx}.

The dimension dim(B) of a linear autonomous B is equal to its order n(B).
In a certain sense the opposite of an autonomous model is a controllable system.

The model B is controllable if for any wp,wf ∈ B, there is τ > 0 and w ∈ B, such
that w(t) =wp(t), for all t < 0, and w(t) =wf(t), for all t ≥ τ . In words, it is possible
to steer the “past” trajectory wp to the “future” trajectory wf over a “control” interval
[0,τ], see Figure 2.2. The subset of controllable systems of the set of linear time-
invariant systems L q is denoted by L q

ctrb.

t

w

wp

wc
wf

0 τ

control

Fig. 2.2: A system is controllable if any “past” trajectory wp can be concatenated
with any “future” trajectory wf via a suitable control wc over an interval [0,τ].

A summary of properties of a dynamical system is given in Table 2.1.

Table 2.1: Summary of commonly used model properties.

property definition
linearity — w,v ∈ B =⇒ αw+βv ∈ B, for all α ,β ∈ R

time-invariance — σ τB = B, for all τ ∈ T
finite dimensionality — B is a closed set; equivalently n(B)< ∞
autonomy — the past of any trajectory completely determines its future;

equivalently m(B) = 0
controllability — the past of any trajectory can be concatenated to the future of any

other trajectory by a third trajectory if a transition period is allowed

Apart from the kernel, input/output, and input/state/output representations, a con-
trollable finite dimensional linear time-invariant model admits an image, convolu-
tion, and transfer function representations.

50 2 From data to models

• Image representation with parameter the polynomial matrix P(z) ∈ R
q×g[z] is

B = image
(
P(λ)

)
:= {w | w = P(λ)ℓ, for some ℓ}. (IMAGE)

• Convolution representation with parameters the signal H : T →R
p×m and a per-

mutation matrix Π is

B = Bi/o
(
H,Π

)
:= {w = Π [u

y] | y = H ⋆u}, (CONV)

where ⋆ is the convolution operator

y(t) = (H ⋆u)(t) :=
∞

∑
τ=0

H(τ)u(t − τ), in discrete-time, or

y(t) = (H ⋆u)(t) :=
∫ ∞

0
H(τ)u(t − τ)dτ, in continuous-time.

• Transfer function representation with parameters the rational matrix H ∈R
p×m(z)

and a permutation matrix Π is

B = Bi/o
(
H,Π

)
:= {w = Π [u

y] | F (y) = H(z)F (u)}, (TF)

where F is the Z-transform in discrete-time and the Laplace transform in
continuous-time.

Transitions among the parameters H, H(z), and (A,B,C,D) are classical prob-
lems, see Figure 2.3. Next, we review the transition from impulse response H to
parameters (A,B,C,D) of an input/state/output representation, which plays an im-
portant role in deriving methods for Hankel structured low-rank approximation.

2.2.2 The realization problem

The problem of passing from a convolution representation to an input/state/output
representation is called impulse response realization.

Definition 2.3 (Impulse response realization). A linear time-invariant system B
with m inputs and p outputs and an input/output partition, specified by a permutation
matrix Π , is a realization of (or realizes) an impulse response H : T → R

p×m if B
has a convolution representation B = Bi/o(H,Π). A realization B of H is minimal

if its order n(B) is the smallest over all realizations of H.

In what follows, we fix the input/output partition Π to the default one w = [u
y].

The impulse response realization problem is a special system identification prob-
lem. To see this, define

H :=
[
h1 · · · hm

]
Im :=

[
e1 · · · em

]
,

2.2 Dynamic model representations 51

data identification //
model

Bi/s/o(A,B,C,D)

11

tt
7

��

1

��
w = (u,y) ∈ B

12

44

10 --

6

&&

Bi/o
(
H(z)

)
9

mm

4

��

2

KK

Bi/o(H)

8

dd

5

ff

3

KK

re
al

iz
at

io
n

OO
?> =<89 :;

GF ED@A BC

?> =<89 :;

?> =<89 :;

1. H(z) =C(Iz−A)−1B+D

2. realization of a transfer function
3. Z or Laplace transform of H(t)

4. inverse transform of H(z)

5. convolution yd = H ⋆ud

6. exact identification

7. H(0) = D, H(t) =CAt−1B (discrete-time),
H(t) =CeAt B (continuous-time), for t > 0

8. realization of an impulse response
9. simulation with input ud and x(0) = 0

10. exact identification
11. simulation with input ud and x(0) = xini
12. exact identification

Fig. 2.3: Similar to the static case, shown in Figure 2.1, the parameters of one repre-
sentation of a linear time-invariant dynamic system can be converted to parameters
of a different representation of the same system. In addition to the input/state/output,
transfer function, and impulse response representations, exact trajectory w of the
system, may completely specify the system. The transitions upwards from impulse
response and transfer function to state space are known as the realization problem.
The transitions from data to a representation are system identification problems.

let δ be the delta function and let ∧ be the concatenation map (at time 0)

w = wp ∧wf, w(t) :=

{
wp(t), if t < 0

wf(t), if t ≥ 0.

The system B realizes H if and only if

wi :=
[

eiδ
0∧hi

]
∈ B, for i = 1, . . . ,m,

i.e., B is an exact model for the signals w1, . . . ,wN . Finding B from w1, . . . ,wN

is an exact system identification problem. Note that the data consists of multiple

52 2 From data to models

experiments, however, these experiments are carried out under special conditions:
pulse inputs along one of the input channels of the system and zero initial conditions.

Note 2.4 (Discrete-time vs continuous-time system realization). There are some dif-
ferences between the discrete and continuous-time realization theory. Next, we con-
sider the discrete-time case. It turns out, however, that the discrete-time algorithms
can be used for realization of continuous-time systems by applying them on the
sequence of the Markov parameter

(
H(0), d

d t
H(0), . . .

)
of the system.

The sequence

H =
(
H(0),H(1),H(2), . . . ,H(t), . . .

)
, where H(t) ∈ R

p×m

is a one sided infinite matrix-values time series. Acting on H, the shift operator σ ,
removes the first sample, i.e.,

σH =
(
H(1),H(2), . . . ,H(t), . . .

)
.

A sequence H might not be realizable by a finite dimensional linear time-
invariant system, but if it is realizable, a minimal realization is unique.

Theorem 2.5 (Test for realizability). The sequence H :Z+→R
p×m is realizable by

a finite dimensional linear time-invariant system if and only if the (infinite) Hankel

matrix H (σH) has a finite rank. Moreover, the order of a minimal realization is

equal to rank
(
H (σH)

)
and there is a unique system B in L q,n

m that realizes H.

Proof. (=⇒) Let H be realizable by a system B ∈ L q,n
m with a minimal in-

put/state/output representation B = Bi/s/o(A,B,C,D). Then

H(0) = D and H(t) =CAt−1B, for t > 0.

The (i, j)th block element of the Hankel matrix H (σH) is

H(i+ j−1) =CAi+ j−2B =CAi−1A j−1B.

Let
Ot(A,C) := col(C,CA, . . . ,CAt−1) (O)

be the extended observability matrix of the pair (A,C) and

Ct(A,B) :=
[
B AB · · · At−1B

]
(C)

be the extended controllability matrix of the pair (A,B). With O(A,C) and C (A,B)
being the infinite observability and controllability matrices, we have

H (σH) = O(A,C)C (A,B) (OC)

Since the representation Bi/s/o(A,B,C,D) is assumed to be minimal, C (A,B) has
full row rank and O(A,C) has full column rank. Therefore, (OC) is a rank revealing
factorization of H (σH) and

2.2 Dynamic model representations 53

rank
(
H (σH)

)
= n(B).

(⇐=) In this direction, the proof is constructive and results in an algorithm for
computation of the minimal realization of H in L q,n

m , where n = rank
(
H (σH)

)
.

A realization algorithm is presented in Section 3.1.

Theorem 2.5 shows that

rank
(
Hi, j(σH)

)
= n(B), for all i and j, such that pi ≥ n(B) and m j ≥ n(B).

This suggests a method to find the order n(B) of the minimal realization of H: check
the rank deficiency of Hi, j(σH) for growing values of i and j. Alternatively, if an
an upper bound nmax of the order is a priori known, compute the rank of the finite

Hankel matrix Hi, j(σH) ensuring that both dimensions are bigger than nmax (i ≥
⌈nmax/p⌉ and j ≥ ⌈nmax/m⌉). Algorithms for computing the order and parameters
of the minimal realization are presented in Section 3.1.

2.2.3 Linear time-invariant model complexity

Associate with a linear time-invariant dynamical system B, we have defined the
following system invariants:

m(B) — number of inputs, n(B) — order,
p(B) — number of outputs, ℓ(B) — lag.

The complexity of a linear static model B is the number of inputs m(B) of B
or, equivalently, the dimension dim(B) of B. Except for the class of autonomous
systems, however, the dimension of a dynamical model is infinite. We define the
restriction B|T of B to the interval [1,T],

B|T := {w ∈ R
T | there exist wp and wf, such that (wp,w,wf) ∈ B }. (B|T)

For a linear time-invariant model B and for T > n(B),

dim(B|T) = m(B)T +n(B)≤ m(B)T + ℓ(B)p(B), (dim B)

which shows that the pairs of natural numbers
(
m(B),n(B)

)
and

(
m(B), ℓ(B)

)

characterize the model’s complexity. The elements of the model class L q

m,ℓ are linear
time-invariant systems of complexity bounded by the pair (m, ℓ) and, similarly, the
elements of the model class L q,n

m are linear time-invariant systems of complexity
bounded by the pair (m,n). A static model is a special case of a dynamic model when
the lag (or the order) is zero. Note that the linear static model class Lm,0 corresponds
to the linear time-invariant model class Lm,ℓ with ℓ= 0.

In the autonomous case, i.e., with m(B) = 0, B is finite dimensional, dim(B) =
n. The dimension of the system corresponds to the number of degrees of freedom
in selecting a trajectory w ∈ B. In the case of an autonomous system, the trajectory

54 2 From data to models

depends only on the initial condition (an n(B) dimensional vector). In the presence
of inputs, the number of degrees of freedom is increased on each time step by m—
the number of inputs. Asymptotically as T → ∞, the term mT in (dim B) dominates
the term n. Therefore, in comparing the complexity of linear time-invariant systems,
by convention, a system with more inputs is more complex than a system with less
inputs, irrespective of their state dimensions.

2.3 Stochastic model representation

A deterministic dynamical system is a collection of trajectories. In analogy, a
stochastic dynamical system is a collection of stochastic processes. This section
reviews, first, the basic notions of correlation function, spectral density, and white
process. Then, the class of stochastic systems, called ARMA system, is defined as
a deterministic linear time-invariant system with an input that is a white noise pro-
cess. An ARMA system is the stochastic equivalent of a deterministic autonomous
system. The stochastic equivalent of an input/output system is an ARMAX system,
which has a deterministic input in addition to the stochastic input. The main result
of the section is a theorem that gives five representations of an ARMA system.

He y

G

H

+

e

u

y

Fig. 2.4: An ARMA system (left) is a deterministic linear time-invariant system with
white stochastic process e as an input. An ARMAX system (right) has, in addition,
a deterministic input u. The channel e 7→ y is the “stochastic part” and e 7→ y is the
“deterministic part” of the ARMAX system.

Stochastic processes and correlation functions

We consider real valued, jointly Gaussian, zero mean, stationary, ergodic processes.
Let w be a stochastic process on Z with q-variables. The correlation function of w

corr(w) = Rww :=
(
. . . ,Rww(0), . . . ,Rww(t), . . .

)

is defined as
Rww(t) := E

(
w(t)w⊤(0)

)
∈ R

q×q,

where E is the expectation operator.
An observed realization of w is denoted by wd (“d” stands for “data”). Due to the

ergodicity assumption, Rww can be expressed in terms of an infinite realization wd as

2.3 Stochastic model representation 55

Rww(t) = lim
T→∞

1
T

T

∑
τ=1

wd(t + τ)w⊤
d (τ).

If the realization wd is over a finite interval

wd =
(
wd(1), . . . ,wd(T)

)
,

only a finite sample estimate can be computed, e.g., the standard biased estimator

R̂ww(t) :=
1
T

T−t

∑
τ=1

wd(t + τ)w⊤
d (τ) and R̂ww(−t) = R̂⊤

ww(t),

for t = 0, . . . ,T −1. (R̂ww)

Alternative methods for computing R̂ww from wd are described in (Stoica and Moses,
2005, Chapter 2) in the context of the nonparameteric spectral estimation.

Due to the symmetry property Rww(t) = R⊤
ww(−t) of the correlation function, it is

sufficient to specify a correlation function Rww ∈ (Rq×q)Z on the half line Z+. The
covariance matrix of the vector col

(
w(1), . . . ,w(t)

)
has Toeplitz structure




Rww(0) Rww(−1) Rww(−2) · · · Rww(−t +1)

Rww(1) Rww(0) Rww(−1)
. . .

...

Rww(2) Rww(1) Rww(0)
. . . Rww(−2)

...
. . .

. . .
. . . Rww(−1)

Rww(t −1) · · · Rww(2) Rww(1) Rww(0)




.

The spectral density of w is defined as the Z-transform of the correlation function

Sww := Z (Rww).

Independence of two random vectors or processes is denoted by ⊥. A process ε is
called white if ε(t1)⊥ ε(t2) for all t1 6= t2, and normalized if E

(
ε(0)ε⊤(0)

)
= I.

Auto Regressive Moving Average (ARMA) systems

The set B ⊆ (Rp)Z is a behavior of an ARMA system if

B = {y ∈ (Rp)Z | there is e, corr(e) = δ Ie,

such that A(σ)w = M(σ)e}. (ARMA)

We refer to the behavior B of an ARMA system as the system itself. The polyno-
mial matrices A ∈ R

g×p[z] and M ∈ R
g×e[z] in (ARMA) are the parameters of what

is called ARMA representation of the system B. Note that, contrary to the determin-
istic case, we define a stochastic system via a particular representation. A behavioral

56 2 From data to models

characterization of static stochastic systems is given in (Willems, 2013). A behav-
ioral characterization of a dynamic stochastic system is still an open problem.

In addition to polynomials (A,M), an ARMA system can be represented via a
correlation function, spectral density, and state space representation.

Theorem 2.6 (Representations of ARMA systems). The following are equivalent:

1. (ARMA representation) B is an ARMA system, i.e., there are A ∈ R
g×p[z]

and M ∈ R
g×e[z], such that (ARMA) holds,

2. (correlation function representation) there is a sequence Ryy ∈ (Rp×p)Z, the

correlation function of B, such that rank
(
H (Ryy)

)
< ∞ and

B = {y ∈ (Rp)Z | corr(y) = Ryy };

3. (spectral density representation) there is a sequence S ∈ (Cp×p)Z, the spectral

density function of B, that is rational and

B = {y ∈ (Rp)Z | Z
(
corr(y)

)
= S};

4. (state space representation) there are A ∈ R
n×n, B ∈ R

n×e, C ∈ R
p×n, and D ∈

R
p×e, such that

B = {y ∈ (Rp)Z | there are e and x, with corr(e) = δ Ie,

such that σx = Ax+Be, y =Cx+De};

5. (innovation representation) there are A ∈ R
n×n, B ∈ R

n×p, K ∈ R
p×n, and Ve ∈

R
p×p, such that

B = {y ∈ (Rp)Z | there are e and x, with corr(e) = δVe,

such that σx = Ax+Be, y = Kx+ e}.

As in the case of deterministic linear time-invariant systems, the transitions from one
representation of the stochastic system to another representation of the same system
are the pillars of the stochastic system theory. Next, we outline transitions among
ARMA representations and mention the corresponding computational problems.

The transition from a state space representation to an innovation representation is
the Kalman filter problem. The Kalman filter problem involves solution of a Riccati
difference equation, see (Anderson and Moore, 1979; Kailath et al, 2000).

The transition from a state space representation to the correlation function

Ryy(0) =CVxC
⊤+DD⊤, Ryy(t) =CAt−1(AVxC

⊤+BD⊤), for all t > 0,
((A,B,C,D) 7→ Ryy)

requires solution of the Lyapunov equation for the state covariance

Vx := E
(
x(0)x⊤(0)

)
, Vx = AVxA⊤+BB⊤.

2.3 Stochastic model representation 57

Ryy

Y
ul

e-
W

al
ke

r

eq
ua

tio
n

��

S = Z (Ryy)
11

stochastic
realization

++

S

��

sp
ec

tra
l

fac
toriz

ati
on

��

Ryy = Z −1(S)qq

(A,M)

RR

((A,M) 7→ (A,B,C,D)) 00

HH

(A,B,C,D)/(A,B,K,Ve)
A−1(z)M(z) = H(z)qq

S
=

H
(z
)H

∗ (
z)

RR

((A,B,C,D) 7→
R

yy)

mm

Fig. 2.5: The computational problems related to the transitions from one representa-
tion of an ARMA system to another one are the pillars of the stochastic system’s
theory. Among these pillars are the stochastic realization, spectral factorization,
Yule-Walker equation, and Kalman filter.

The inverse transition Ryy 7→ (A,B,C,D) is the stochastic realization problem
(Picci, 1991). Similarly to the deterministic realization problem (see Sections 2.2.2
and 3.1), it can be solved by rank revealing factorization of a Hankel matrix and
solution of a system of linear equations, see Algorithm 1.

Algorithm 1 Stochastic realization

Input: Correlation function Ryy, such that H (Ryy) has finite rank.
1: Factor H (σRyy) = OC into full column rank O and full row rank C .
2: Let G be the first block entry of C , C the first block entry of O , and A := (σ−1O)+(σO),

where σ−1O removes the first block-element and σO removes the last block-element of O .
3: Solve for Vx,

Vx = AVxA⊤+(G−AVxC
⊤)
(
Ryy(0)−CVxC

⊤)(G−AVxC
⊤)⊤.

4: Define B and D so that
[

Vx G

G⊤ Ryy(0)

]
−
[

A

C

]
Vx

[
A⊤ C⊤]=

[
B

D

][
B⊤ D⊤] .

Output: State space realization’s parameters (A,B,C,D) of the system defined by Ryy.

58 2 From data to models

The transition from the spectral density S to the ARMA representation (A,M) is
the spectral factorization problem (Kucera, 1991):

S(z) = H(z)H∗(z), with H(z) = A−1(z)M(z) stable.

The transformation from (A,M) to a state space representation is

A =




0 I 0 · · · 0

0 0 I
. . .

...
...

. . .
. . . 0

0 0 · · · 0 I

−A0 −A1 · · · · · · −Aℓ−1



, B =




0
0
...
I


 ,

C =
[
C0 C1 · · · Cℓ−1

]
, D = Mℓ,

((A,M) 7→ (A,B,C,D))

where C0,C1, . . . ,Cn−1 are the coefficients of M(z)−MℓA(z).

Auto Regressive Moving Average eXogenous (ARMAX) systems

The set B ⊆ (Rq)Z is a behavior of an ARMAX system if there are polynomial
matrices Y , U , and E, with Y square and nonsingular, such that B is the set of
processes w := [u

y] satisfying the difference equation

Y (σ)y+U(σ)u = E(σ)ε, (ARMAX)

with ε white, normalized, independent of u process. Under generic conditions, u is
an input and y is an output, i.e., for all u there are y and ε ⊥ u satisfying (ARMAX).

The polynomial matrix R is left prime if any factorization R = FR′ with F square
implies that F is unimodular, i.e., det(F) is a nonzero constant. Equivalently, R is left
prime if R(λ) has full row rank for all λ ∈ C. A full row rank polynomial matrix R,
can be factored as R = FR′, with F square and R′ left prime. Using this factorization
we can refine the representation (ARMAX) as follows:

A(σ)
(
P(σ)y+Q(σ)u

)
= M(σ)ε, (ARMAX’)

where A and P are square and nonsingular, A is Schur, and R :=
[
P Q

]
is left prime.

The polynomial matrix

• A represents the AR (autoregressive)-part,
• M the MA (moving average)-part, and
• R =

[
P Q

]
the X (exogenous)-part of the ARMAX system.

The rational function G := P−1Q is the transfer function of the deterministic X-part.
We do not require G to be proper, i.e., we do not impose causality.

2.4 Exact and approximate data modeling 59

2.4 Exact and approximate data modeling

This section defines formally the problem considered in the book. In order to treat
static as well as dynamic, linear as well as nonlinear, and deterministic as well as
stochastic modeling problems using unified terminology and notation, we need an
abstract setting that is general enough to accommodate all envisaged applications.
First, we define such a setting using the notions of a model as a set and model
complexity as a “size” of the model. Then, we discuss the simplest data modeling
situation, when the model is required to fit the data exactly. In this case the problem,
called exact modeling, is to minimize the model complexity subject to the constraint
that the data is fitted exactly. The solution of this problem is called the most powerful

unfalsified model. In the more general case of approximate modeling, the problem
is biobjective: minimization of the fitting error as well as the model complexity.
We define two fundamentally different ways of quantifying the fitting error, called
misfit and latency. The misfit between a given model and the data is the size of
the minimal perturbation on the data that renders the data exact. The latency is the
size of the minimal latent input that makes the data consistent with the model. In a
stochastic estimation setting, misfit and latency correspond to, respectively, errors-
in-variables and ARMAX modeling.

2.4.1 General setting for data modeling

The data D and a model B for the data are subsets of a universal set U of pos-
sible observations. In static modeling problems, U is a real q-dimensional vector
space R

q, i.e., the observations are real valued vectors. In dynamic modeling prob-
lems, U is a function space (Rq)T , with T being Z in the discrete-time case and R

in the continuous-time case.

Note 2.7 (Categorical data and finite automata). In modeling problems with cate-
gorical data and finite automata, the universal set U is discrete and may be finite.

We consider data sets D consisting of a finite number of observations

D = {wd,1, . . . ,wd,N } ⊂ U .

In dynamic modeling problems, the wd, j’s are trajectories, i.e.,

wd, j =
(
wd, j(1), . . . ,wd, j(Tj)

)
, with wd, j(t) ∈ R

q for all t.

In static modeling problems, an observation wd, j is a vector wd, j ∈R
q and the alter-

native notation d j = wd, j is used in order to emphasise the fact that the observations
do not depend on time. In dynamic problems, the data D often consists of a single
trajectory wd,1, in which case the index 1 is skipped and D is identified with wd.

60 2 From data to models

Note 2.8 (Given data vs general trajectory). In order to distinguish a general tra-
jectory w of the system from the given data wd (a specific trajectory) we use the
subscript “d” in the notation of the given data.

A model class M is a set of sets of U , i.e., M is an element of the power set 2U

of U (i.e., the set of all sets). We consider the generic model classes of

• linear static models L0,
• linear time-invariant models L , and
• polynomial static models P (see Chapter 7).

In some cases, however, subclasses of the generic classes above are of interest. For
examples, the controllable and finite impulse response model subclasses of the class
of linear time-invariant models, and the ellipsoids subclass of the class of second
order polynomial models (conic sections).

The complexity c of a model B is a vector of positive integers

c(B) :=





m(B) = dim(B), if B ∈ L0,(
m(B), ℓ(B)

)
or
(
m(B),n(B)

)
, if B ∈ L ,(

m(B),deg(R)
)
, where B = ker(R), if B ∈ P.

(c(B))

Complexities are compared in this book by the lexicographic ordering, i.e., two com-
plexities are compared by comparing their corresponding elements in the increasing
order of the indexes. The first time an index is larger, the corresponding complexity
is declared larger. For linear time-invariant dynamic models, this convention and
the ordering of the elements in c(B) imply that a model with more inputs is always
more complex than a model with less inputs irrespective of their orders.

The complexity c of a model class M is the largest complexity of a model in
the model class. Of interest is the restriction of the generic model classes M to
subclasses Mcmax of models with bounded complexity, e.g., L q

m,ℓmax
, with m< q.

2.4.2 Exact data modeling

A model B is an exact model for the data D if the data is constrained in the model,
D ⊂ B. Otherwise, it is an approximate model. An exact model for the data may
not exist in a model class Mcmax of bounded complexity. This is generically the case
when the data is noisy and the data set D is large enough (relative to the model
complexity). A practical data modeling problem must involve approximation. Our
starting point, however, is the simpler problem of exact data modeling.

Problem 2.9 (Exact data modeling). Given data D ⊂ U and a model class
Mcmax ∈ 2U , find a model B̂ in Mcmax that contains the data and has minimal (in the
lexicographic ordering) complexity or assert that such a model does not exist, i.e.,

minimize over B ∈ Mcmax c(B) subject to D ⊂ B (EM)

2.4 Exact and approximate data modeling 61

The following question about existence of exact model occurs.

(Representability) Under what conditions on the data D and the model
class Mcmax does a solution to problem (EM) exist?

If a solution exists, it is unique. This unique solution is called the most power-

ful unfalsified model for the data D in the model class Mcmax and is denoted
by Bmpum(D). (The model class Mcmax is not a part of the notation Bmpum(D)
and is understood from the context.)

Suppose that the data D is generated by a model B̄ in the model class Mcmax , i.e.,

D ⊂ B̄ ∈ Mcmax .

Then, the exact modeling problem has a solution in the model class Mcmax , however,
the solution Bmpum(D) may not be equal to the data generating model B̄.

(Identifiability) Under what conditions on the data D , the data generat-
ing model B̄, and the model class Mcmax , the most powerful unfalsified
model Bmpum(D) in Mcmax coincides with the data generating model B̄?

Example 2.10 (Representability in L0,m). Existence of a linear static model B̂ of
bounded complexity m for the data D is equivalent to rank deficiency of the matrix

Φ(D) :=
[
d1 · · · dN

]
∈ R

q×N ,

composed of the data. Moreover, the rank of the matrix Φ(D) is equal to the minimal

dimension of an exact model for D

existence of B̂ ∈ L q

m,0, such that D ⊂ B̂ ⇐⇒ rank
(
Φ(D)

)
≤ m. (∗)

The exact model
B̂ = image

(
Φ(D)

)
(∗∗)

of minimal dimension
c(B) = rank

(
Φ(D)

)

always exists and is unique.
The equivalence (∗) between data modeling and the concept of rank is the basis

for application of linear algebra and matrix computations to linear data modeling.
Indeed, (∗∗) provides an algorithm for exact linear static data modeling. As shown
next, exact data modeling has also direct relevance to approximate data modeling.

62 2 From data to models

2.4.3 Approximate data modeling

When an exact model does not exist in the considered model class, an approximate
model that is “close” to the data is aimed at instead. Closeness is measured by a
suitably defined criterion. This leads to the following data modeling problem.

Problem 2.11 (Approximate data modeling). Given data D ⊂ U , a model class
Mcmax ∈ 2U , and a measure error(D ,B) for the lack of fit of the data D by a
model B, find a model B̂ in Mcmax that minimizes the lack of fit, i.e.,

minimize over B ∈ Mcmax error(D ,B). (AM)

Since an observation w is a point in and the model B is a subset of the data
space U , a natural measure for the lack of fit error(w,B) between w and B is the
geometric distance defined by the orthogonal projection of w on B

dist(w,B) := min
ŵ∈B

∥∥w− ŵ
∥∥

2. (dist(w,B))

The auxiliary variable ŵ is the best approximation of w in B.
For the set of observations D , we define the distance from D to B as

dist(D ,B) := min
ŵ1,...,ŵN∈B

√
∑N

j=1

∥∥wd, j − ŵ j

∥∥2
2. (dist)

The set of points D̂ = { ŵ1, . . . , ŵN } in the definition of (dist) is an approximation
of the data D in the model B. Note that problem (dist) is separable, i.e., it decouples
into N independent problems (dist(w,B)).

Algorithms for computing the geometric distance are discussed in Section 4.2.3,
in the case of linear models, and in Chapter 7, in the case of polynomial models.

Example 2.12 (Geometric distance for linear and quadratic models). The two plots
in Figure 2.6 illustrate the geometric distance (dist) from a set of eight data points
d1 = [x1

y1] , . . . ,d8 = [x8
y8] in the plane to, respectively, linear B1 and quadratic B2

models. In order to compute the geometric distance, we project the data points on the
models. This is a simple task (linear least squares problem) for linear models but a
nontrivial task (nonconvex optimization problem) for nonlinear models. In contrast,
the algebraic “distance” (not visualised in the figure) has no simple geometrical
interpretation but is easy to compute for linear and nonlinear models alike.

An alternative distance measure, called algebraic distance, is based on a kernel
representation B = ker(R) of the model B. Since R is a mapping from U to R

g,
such that w ∈ B if and only if R(w) = 0, we have that ‖R(w)‖F > 0 if and only if
w 6∈ B. The algebraic “distance” measures the lack of fit between w and B by the
“size” ‖R(w)‖F of the residual R(w). For a data set D , we define

dist′(D ,B) :=
√

∑N
j=1

∥∥R
(
wd, j

)∥∥2
F, (dist′)

2.4 Exact and approximate data modeling 63

−4 −2 0 2 4 6 8 10
−2

0

2

4

6

8

x

y

(0,0)
d j

B1
d̂ j

d j − d̂ j

−4 −2 0 2 4 6 8 10

0

2

4

6

8

x

y

d j

B2 d̂ j

Fig. 2.6: The geometric distance dist(D ,B) from the data D to a model B is com-
puted by projecting all data points d1, . . . ,dN on the model B. In the linear case (left
plot), the projection is a linear operation (multiplication by a projection matrix). In
the nonlinear case, the projection is defined by a nonconvex optimization problem,
which, in general, has no closed form solution.

The algebraic distance depends on the choice of the parameter R in a kernel rep-
resentation of the model, while the geometric distance is representation invariant. In
addition, the algebraic distance is not invariant to a rigid transformation. However,
a modification of the algebraic distance that is invariant to a rigid transformation is
presented in Section 7.3.

Note 2.13 (Approximate modeling in the case of exact data). If an exact model B
exists in the model class Mcmax , then B is a global optimum point of the approxi-
mate modeling problem (AM) (irrespective of the approximation criterion f being
used). Indeed,

D ⊂ B ⇐⇒ dist(D ,B) = dist′(D ,B) = 0.

An optimal approximate model, i.e., a solution of (AM), however, need not be
unique. In contrast, the most powerful unfalsified model is unique. This is due to the
fact that (AM) imposes an upper bound but does not minimize the model complexity,
while (EM) minimizes the model complexity. As a result, when c

(
Bmpum(D)

)
<

cmax, (AM) has a nonunique solution. In the next section, we present a more general
approximate data modeling problem formulation that minimizes simultaneously the
complexity as well as the fitting error.

The terms “geometric” and “algebraic” distance comes from the computer vision
application of the methods for fitting curves and surfaces to data. In the system iden-
tification community, the geometric fitting method is related to the misfit approach
and the algebraic fitting criterion is related to the latency approach. Misfit and la-
tency computation are data smoothing operations. For linear time-invariant systems,
the misfit and latency can be computed efficiently by Riccati type recursions.

64 2 From data to models

2.4.4 Stochastic data modeling

In the statistics literature, the geometric fitting is related to errors-in-variable (EIV)

estimation and the algebraic fitting is related to the classical regression and the
ARMAX modeling (Ljung, 1999; Söderström and Stoica, 1989), see Table 2.2.

Table 2.2: The computer vision, system identification, and statistics communities
use different terms for the misfit and latency approximate fitting principles. From
a mathematical point of view, the essential difference of the fitting principles is in
using a relation or a function.

computer vision system identification statistics mathematics
misfit geometric fitting dynamic EIV static EIV relation

latency algebraic fitting ARMAX regression function

Example 2.14 (Geometric fit and errors-in-variables modeling). From a statistical
point of view, the approximate data modeling problem (AM) with the geometric
fitting criterion (dist) yields a maximum likelihood estimator for the true model B̄
in the errors-in-variables setup

wd, j = w̄ j + w̃ j, (EIV)

where
D := { w̄1, . . . , w̄N } ⊂ B̄

is the true data and D̃ := { w̃1, . . . , w̃N } is the measurement noise, which is assumed
to be zero mean, independent, Gaussian, with covariance matrix σ2I.

Example 2.15 (Algebraic fit by a linear static model and regression). A linear model
class, defined by the input/output representation Bi/o(X) and algebraic fitting crite-
rion (dist′), where

w := [u
y] and R(w) := X⊤u− y

lead to the ordinary linear least squares problem

minimize over X ∈ R
m×p ∥∥X⊤ [ud,1 · · · ud,N

]
−
[
yd,1 · · · yd,1

]∥∥
F. (LS)

The statistical setting for the least squares approximation problem (LS) is the classi-
cal regression model R(wd, j) = e j, where e1, . . . ,eN are zero mean independent and
identically distributed random variables. The least squares approximate solution is
the best linear unbiased estimator for the regression model.

2.4 Exact and approximate data modeling 65

2.4.5 Complexity–accuracy trade-off

Data modeling is a map from the data D to a model B in the model class M :

data set D ⊂ U
data modeling problem−−−−−−−−−−−−−→ model B ∈ M ∈ 2U .

A data modeling problem is defined by specifying the model class M and one or
more modeling criteria. Basic criteria in any data modeling problem are:

• “simple” model, measured by the model complexity c(B), and
• “good” fit of the data by the model, measured by cost function error(D ,B).

Small complexity c(B) and small error(D ,B), however, are contradicting objec-
tives, so that a core issue throughout data modeling is the complexity–accuracy
trade-off. A generic data modeling problem is: Given a data set D ∈ U and a mea-
sure error for the fitting error, solve the multi-objective optimization problem:

minimize over B ∈ M

[
c(B)

error(D ,B)

]
. (DM)

Two possible scalarizations: low-rank approximation and rank minimization

The data set D , can be parametrized by a real vector p ∈R
np . (Think of the vector p

as a representation of the data in the computer memory.) For a linear static and
autonomous linear time-invariant model B and exact data D , there is a relation
between the model complexity and the rank of a data matrix S (p):

c
(
Bmpum(D)

)
= rank

(
S (p)

)
. (∗)

The mapping S : Rnp → R
m×n from the data parameter vector p to the data ma-

trix S (p) depends on the application. For example, S (p) =
[
d1 · · · dN

]
is un-

structured in the case of linear static modeling (see Example 2.10) and S (p) =
Hℓ+1(wd) is Hankel structured in the case of autonomous linear time-invariant dy-
namic model identification,

Let p be the parameter vector for the data D and p̂ be the parameter vector for
the data approximation D̂ . The geometric distance dist(D ,B) can be expressed in
terms of the parameter vectors p and p̂ as

minimize over p̂ ‖p− p̂‖2 subject to D̂ ⊂ B.

Moreover, the norm in the parameter space R
np can be chosen as weighted 1-, 2-,

and ∞-(semi)norms:

66 2 From data to models

‖p̃‖ν ,1 := ‖ν ⊙ p̃‖1 := ∑
np

i=1 |νi p̃i|,

‖p̃‖ν ,2 := ‖ν ⊙ p̃‖2 :=
√

∑
np

i=1(νi p̃)
2,

‖p̃‖ν ,∞ := ‖ν ⊙ p̃‖∞ := max
i=1,...,np

|νi p̃i|,
(‖ · ‖ν)

where w is a vector with nonnegative elements, specifying the weights, and ⊙ is the
element-wise (Hadamard) product.

Using the data parametrization (∗) and one of the distance measures (‖ · ‖ν),
the data modeling problem (DM) in the case of geometric distance becomes the
biobjective matrix approximation problem:

minimize over p̂

[
rank

(
S (p̂)

)

‖p− p̂‖

]
. (DM’)

Two possible ways to scalarize the biobjective problem (DM’) are:

1. misfit minimization subject to a bound r on the model complexity

minimize over p̂ ‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r. (SLRA)

2. model complexity minimization subject to a bound ε on the fitting error

minimize over p̂ rank
(
S (p̂)

)
subject to ‖p− p̂‖ ≤ ε. (RM)

Problem (SLRA) is a structured low-rank approximation problem and problem (RM)
is a rank minimization problem.

By varying the parameters r and ε from zero to infinity, both problems sweep
the trade-off curve (set of Pareto optimal solutions) of (DM’). Note, however, that r

ranges over the natural numbers and only small values are of practical interest. In
addition, in applications often a “suitable” value for r can be chosen a priori or is
even a part of the problem specification. In contrast, ε is a positive real number
and is data dependent, so that a “suitable” value is not readily available. These con-
siderations, suggest that the structured low-rank approximation problem is a more
convenient scalarization of (DM’) for solving practical data modeling problems.

Convex relaxation algorithms for solving (DM’) are presented in Section 4.3.

2.5 Notes and references

Deterministic linear time-invariant systems

Linear time-invariant system theory is the basis for signal processing, communica-
tion, and control. Consequently, there are many excellent books covering system
theory on different levels. A popular undergraduate level textbook is (Oppenheim
and Willsky, 1996). Graduate level classics are (Brockett, 1970; Kailath, 1981;

2.5 Notes and references 67

Zadhe and Desoer, 1963). More modern graduate level texts are (Antsaklis and
Michel, 1997; Sontag, 1998). (Åström and Murray, 2008; Luenberger, 1979) have
unique presentation style with an outlook to applications. The behavioral approach
to system theory is covered in the book (Polderman and Willems, 1998).

Impulse response realization: The impulse response realization problem was
first solved in (Ho and Kalman, 1966). See also (Kalman, 1979; Kalman et al, 1969).
The classic papers of what we call Kung’s method are (Kung, 1978; Zeiger and
McEwen, 1974). Although the impulse response realization is an important part of
system theory, it is missing from most undergraduate level and some graduate level
textbooks. An exposition is given in (Sontag, 1998, Sections 6.5–8).

Powerful unfalsified model: The concept of the most powerful unfalsified
model is introduced in the behavioral setting (Willems, 1986b, Definition 4). See
also (Antoulas and Willems, 1993; Kuijper, 1997; Kuijper and Willems, 1997;
Willems, 1997). Methods for the computation of the most powerful unfalsified
model are developed in the context of exact (deterministic) system identification,
see, (Van Overschee and De Moor, 1996) and (Markovsky et al, 2006, Chapter 7).

Stochastic linear time-invariant systems

A classic reference on stochastic processes is (Papoulis, 1991). Introductory text on
stochastic systems is (Åström, 1970). Stochastic systems are used in the formulation
of classic estimation and control problems, such as the Kalman filter and the linear
quadratic Gaussian (LQG) control. Later on it is shown, however, that these prob-
lems admit purely deterministic formulation (H2 estimation and control) (Fagnani
and Willems, 1997; Willems, 2004; Zhou et al, 1996), see also (Willems, 2010).

Parametric and non-parametric estimation of the correlation sequence is a part of
the spectral analysis of stochastic signals (Kay, 1988; Stoica and Moses, 2005). The
stochastic realization problem is treated in (Akaike, 1974). Behavioral definition of
a static stochastic system is given in (Willems, 2013). The generalization of these
results to dynamical systems is still missing.

Misfit and latency

The terminology misfit and latency for the evaluation of the discrepancy between
the data and the model comes from (Willems, 1987). See also (Lemmerling and
De Moor, 2001), where an identification problem combining the two criteria is pro-
posed. The computation of the misfit is treated in the context of errors-in-variables
Kalman filtering in (Markovsky et al, 2002) for continuous-time systems and in
(Markovsky and De Moor, 2005) for discrete-time systems.

68 2 From data to models

Exercises

2.1 (Relations among rank(P), rank(R), and dim(B), for a linear static model B).

Prove that for a linear static model B ∈ L q

0 with image representation B =
image(P) and kernel representation B = ker(R),

1. rank(P) = dim(B),
2. rank(R) = q−dim(B).

2.2 (B1
?
= B2). Explain how to check whether two linear static models, specified

by kernel or image representations, are equivalent. Implement the methods.

2.3 (Input/output partitions that are not possible). Give an example of a linear
static model B ∈ L 3

1,0, for which neither w2 nor w3 can be selected as an input in
an input/output partitioning of the variables. Form a conjecture of when a subset of
the variables of a linear static model B ∈ L q

m,0 can not be chosen as inputs.

2.4 (Initial conditions specification by a trajectory). Consider a minimal in-
put/state/output representation B = Bi/s/o(A,B,C,D) of a system Lm,ℓ.

1. Show that wp :=
(
w(−ℓ+1), . . . ,w(0)

)
∈ B|ℓ uniquely determines x(0).

2. Explain how to choose wp in order to "set" a given initial condition x(0).
3. Implement the transitions wp ↔ x(0) in functions wp2x0 and x02wp.

2.5 (w
?∈ B = ker

(
R(σ)

)
).

1. Given a finite sequence w and a polynomial matrix R, propose a method for
checking numerically whether wd is a trajectory of the system B = ker

(
R(σ)

)
.

2. Implement the method in a function w_in_ker(w, r).
3. Test the function on the trajectory

([
0
1

]
,
[

0
1

]
,
[

0
1

]
,
[

0
1

])
and the system

B = ker
(
R(σ)

)
, with R(z) =

[
1 −1

]
+
[
−1 1

]
z.

2.6 (ker
(
R(σ)

)
↔ Bi/o(p,q)). Consider a controllable single-input single-output

linear time-invariant system B. Explain how to transform a given kernel representa-
tion B = ker

(
R(σ)

)
into an input/output representation B =Bi/o(p,q). Vice versa,

explain how to transform B =Bi/o(p,q) into B = ker
(
R(σ)). Write MATLAB code

that implements the transitions R 7→ (p,q) and (p,q) 7→ R.

2.7 (image
(
P(σ)

)
↔Bi/o(p,q)). Consider a controllable single-input single-output

linear time-invariant system B. Explain how to transform a given image repre-
sentation B = image

(
P(σ)

)
into an input/output representation B = Bi/o(p,q).

Vice versa, explain how to transform B =Bi/o(p,q) into B = image
(
P(σ)). Write

MATLAB code that implements the transitions P 7→ (p,q) and (p,q) 7→ P.

References 69

References

Abelson H, diSessa A (1986) Turtle Geometry. MIT Press
Akaike H (1974) Stochastic theory of minimal realization. IEEE Trans Automat

Contr 19:667–674
Anderson BDO, Moore JB (1979) Optimal Filtering. Prentice Hall
Antoulas A, Willems JC (1993) A behavioral approach to linear exact modeling.

IEEE Trans Automat Contr 38(12):1776–1802
Antsaklis PJ, Michel A (1997) Linear Systems. McGraw-Hill
Åström K, Murray R (2008) Feedback systems: An introduction for scientists and

engineers. Princeton University Press
Åström KJ (1970) Introduction to Stochastic Control Theory. Academic Press
Brockett R (1970) Finite Dimensional Linear Systems. John Wiley, New York
Fagnani F, Willems JC (1997) Deterministic Kalman filtering in a behavioral frame-

work. Control Lett 32:301–312
Ho BL, Kalman RE (1966) Effective construction of linear state-variable models

from input/output functions. Regelungstechnik 14(12):545–592
Kailath T (1981) Linear Systems. Prentice Hall
Kailath T, Sayed AH, Hassibi B (2000) Linear Estimation. Prentice Hall
Kalman RE (1979) On partial realizations, transfer functions, and canonical forms.

Acta Polytechnica Scandinavica 31:9–32
Kalman RE, Falb PL, Arbib MA (1969) Topics in Mathematical System Theory.

McGraw-Hill
Kay S (1988) Modern spectral estimation: Theory and applications. Prentice-Hall
Kucera V (1991) Factorization of rational spectral matrices: a survey of methods.

In: International Conference on Control, IET, pp 1074–1078
Kuijper M (1997) An algorithm for constructing a minimal partial realization in the

multivariable case. Control Lett 31(4):225–233
Kuijper M, Willems JC (1997) On constructing a shortest linear recurrence relation.

IEEE Trans Automat Contr 42(11):1554–1558
Kung S (1978) A new identification method and model reduction algorithm via

singular value decomposition. In: Proc. 12th Asilomar Conf. Circuits, Systems,
Computers, Pacific Grove, pp 705–714

Lemmerling P, De Moor B (2001) Misfit versus latency. Automatica 37:2057–2067
Ljung L (1999) System Identification: Theory for the User. Prentice-Hall
Luenberger DG (1979) Introduction to Dynamical Systems: Theory, Models and

Applications. John Wiley
Markovsky I, De Moor B (2005) Linear dynamic filtering with noisy input and

output. Automatica 41(1):167–171
Markovsky I, Willems JC, De Moor B (2002) Continuous-time errors-in-variables

filtering. In: Proc. of the 41st Conf. on Decision and Control, Las Vegas, NV, pp
2576–2581

Markovsky I, Willems JC, Van Huffel S, De Moor B (2006) Exact and Approximate
Modeling of Linear Systems: A Behavioral Approach. SIAM

Oppenheim A, Willsky A (1996) Signals and Systems. Prentice Hall

70 2 From data to models

Papoulis A (1991) Probability, random variables, and stochastic processes.
McGraw-Hill

Picci G (1991) Stochastic Realization Theory, Springer, pp 213–229
Polderman J, Willems JC (1998) Introduction to Mathematical Systems Theory.

Springer-Verlag, New York
Rapisarda P, Willems JC (1997) State maps for linear systems. SIAM J Control

Optim 35(3):1053–1091
Söderström T, Stoica P (1989) System Identification. Prentice Hall
Sontag ED (1998) Mathematical control theory: Deterministic finite dimensional

systems. Springer-Verlag
Stoica P, Moses R (2005) Spectral Analysis of Signals. Prentice Hall
Van Overschee P, De Moor B (1996) Subspace identification for linear systems:

Theory, implementation, applications. Kluwer, Boston
Willems JC (1986a) From time series to linear system—Part I. Finite dimensional

linear time invariant systems. Automatica 22(5):561–580
Willems JC (1986b) From time series to linear system—Part II. Exact modelling.

Automatica 22(6):675–694
Willems JC (1987) From time series to linear system—Part III. Approximate mod-

elling. Automatica 23(1):87–115
Willems JC (1989) Models for dynamics. Dynamics reported 2:171–269
Willems JC (1991) Paradigms and puzzles in the theory of dynamical systems. IEEE

Trans Automat Control 36(3):259–294
Willems JC (1996) Fitting data sequences to linear systems. In: Byrnes C, Datta

B, Gilliam D, Martin C (eds) Progress in Systems and Control, Birkhäuser, pp
405–416

Willems JC (1997) On interconnections, control, and feedback. IEEE Trans Au-
tomat Contr 42:326–339

Willems JC (2004) Deterministic least squares filtering. J Econometrics 118:341–
373

Willems JC (2006) Control of Uncertain Systems: Modelling, Approximation, and
Design, vol 329, Springer, chap Thoughts on system identification, pp 389–416

Willems JC (2007) The behavioral approach to open and interconnected systems:
Modeling by tearing, zooming, and linking. Control Systems Magazine 27:46–99

Willems JC (2010) Probability in control? European Journal on Control 16:436–440
Willems JC (2013) Open stochastic systems. IEEE Trans Automat Control

58(2):406–421
Zadhe LA, Desoer CA (1963) Linear System Theory : The State Space Approach.

Prentice Hall
Zeiger H, McEwen A (1974) Approximate linear realizations of given dimension

via Ho’s algorithm. IEEE Trans Automat Contr 19:153–153
Zhou K, Doyle J, Glover K (1996) Robust and Optimal Control. Prentice Hall

Chapter 3

Exact modeling

A given phenomenon can be described by many models. A well

known example is the Ptolemaic and the Copernican models of

the solar system. Both described the observed plant movements

up to the accuracy of the instruments of the 15th century.

A reasonable scientific attitude to a model to be used is that it

has so far not been falsified. That is to say that the model is not

in apparent contradiction to measurements and observations.

. . .

Another valid scientific attitude is that among all the (so far)
unfalsified possible models we should use the simplest one. This

statement is a variant of Occam’s razor. It obviously leaves

room for subjective aesthetic and pragmatic interpretations of

what “simplest” should mean. It should be stressed that all

unfalsified models are legitimate, and that any discussion on

which one of these is the “true” one is bound to be futile.

K. Lindgren

This chapter develops methods for computing the most powerful unfalsified model
for the data in the model class of linear time-invariant systems. The first problem
considered is a realization of an impulse response. This is a special system identifi-
cation problem when the given data is an impulse response. The method presented,
known as Kung’s method, is the basis for more general exact identification methods
known as subspace methods.

The second problem considered is computation of the impulse response from
a general trajectory of the system. We derive an algorithm that is conceptually
simple—it requires only a solution of a system of linear equations. The main idea of
computing a special trajectory of the system from a given general one is used also
in data-driven simulation and control problems (Chapter 6).

The next topic is identification of stochastic systems. We show that the prob-
lem of ARMAX identification splits into three subproblems: 1) identification of the
deterministic part, 2) identification of the AR-part, and 3) identification of the MA-
part. Subproblems 1 and 2 are equivalent to deterministic identification problem.

The last topic considered in the chapter is computation of the most powerful
unfalsified model from a trajectory with missing values. This problem can be viewed
as Hankel matrix completion or, equivalently, computation of the kernel of a Hankel
matrix with missing values. Methods based on matrix completion using the nuclear
norm heuristic and ideas from subspace identification are presented.

71

72 3 Exact modeling

3.1 Kung’s realization method

The aim of the impulse response realization problem is to compute a state space
representation Bi/s/o(A,B,C,D) of the most powerful unfalsified model Bmpum(H),
see Section 2.2. Finding the model parameters A,B,C,D can be done by computing
a rank revealing factorization of a Hankel matrix constructed from the data. Let

Hn+1,n+1(σH) = Γ ∆ , where Γ ∈ R
p(n+1)×n and ∆ ∈ R

n×m(n+1)

be a rank revealing factorization of the Hankel matrix Hn+1,n+1(σH). The Han-
kel structure implies that the factors Γ and ∆ are observability and controllability
matrices, i.e., there are matrices A ∈ R

n×n, C ∈ R
p×n, and B ∈ R

n×m, such that

Γ = On+1(A,C) and ∆ = Cn+1(A,B).

Then, Bi/s/o(A,B,C,D) is the minimal realization of H.
A rank revealing factorization is not unique. For any n×n nonsingular matrix T ,

a new factorization

Hn+1,n+1(σH) = Γ ∆ = Γ T︸︷︷︸
Γ ′

T−1∆︸ ︷︷ ︸
∆ ′

is obtained with the same inner dimension. The nonuniqueness of the factoriza-
tion corresponds to the nonuniqueness of the input/state/output representation of
the minimal realization due to a change of the state space bases:

Bi/s/o(A,B,C,D) = Bi/s/o(T
−1AT,T−1B,CT,D).

The observability/controllability matrix structure is referred to as the shift structure.
The parameters B and C of an input/state/output representation of the realization can
be obtained directly from the first block elements of Γ and ∆ , respectively.

72a 〈Γ ,∆) 7→ (A,B,C) 72a〉≡ (74c) 72b⊲
b = C(:, 1:m); c = O(1:p, :);

The parameter A is computed from the overdetermined system of linear equations

σ−1Γ A = σΓ . (SE1)

(Acting on block matrices, σ / σ−1 remove, the first / last block element.)
72b 〈Γ ,∆) 7→ (A,B,C) 72a〉+≡ (74c) ⊳72a

a = O(1:end - p, :) \ O((p + 1):end, :);

Note 3.1 (Solution of the shift equation). When a unique solution exists, the code in
chunk 72b computes the exact solution. When a solution A of (SE1) does not exist,
the same code computes a least squares approximate solution.

Equivalently (in the case of exact data), A can be computed from the ∆ factor

3.1 Kung’s realization method 73

Aσ−1∆ = σ∆ . (SE2)

In the case of noisy data (approximate realization problem) or data from a high
order system (model reduction problem), (SE1) and (SE2) generically have no exact
solutions and their least squares approximate solutions are different.

Implementation

As square as possible Hankel matrix Hi, j(σH) is formed, using all data points, i.e.,

i =
⌈ Tm

m+p

⌉
and j = T − i. (i, j)

73a 〈dimension of the Hankel matrix 73a〉≡ (74c 78e)
if ~exist(’i’, ’var’) | ~isreal(i) | isempty(i)

i = ceil(T * m / (m + p));

end

if ~exist(’j’, ’var’) | ~isreal(j) | isempty(j)

j = T - i;

elseif j > T - i

error(’Not enough data.’)

end

The choice (i, j) for the dimension of the Hankel matrix maximazes the order of the
realization that can be computed. Indeed, a realization of order n can be computed
from the block-Hankel matrix Hi, j(σH) provided that

n≤ nmax := min(pi−1,m j).

73b 〈check n< min
(
pi−1,m j

)
73b〉≡ (74c)

if n > min(i * p - 1, j * m), error(’Not enough data’), end

The minimal number of samples T of the impulse response that allows identification
of a system of order n is

Tmin :=
⌈
n

p

⌉
+
⌈
n

m

⌉
+1. (Tmin)

The key computational step of the realization algorithm is the factorization of the
Hankel matrix. In particular, this step involves rank determination. In finite preci-
sion arithmetic, however, rank determination is a nontrivial problem. A numerically
reliable way of computing rank is the singular value decomposition

Hi, j(σH) =UΣV⊤.

73c 〈singular value decomposition of Hi, j(σH) 73c〉≡ (74c)
[U, S, V] = svd(blkhank(h(:, :, 2:end), i, j), 0); s = diag(S);

Uses blkhank 26a.

The order n of the realization is theoretically equal to the rank of the Hankel matrix,
which is equal to the number of nonzero singular values σ1, . . . ,σmin(i, j). In practice,

74 3 Exact modeling

the system’s order is estimated as the numerical rank of the Hankel matrix, i.e., the
number of singular values greater than a user specified tolerance.

74a 〈order selection 74a〉≡ (74c)
〈default tolerance tol 41〉, n = sum(s > tol);

Defining the partitioning

U =:
n[

U1 U2
]
, Σ =:

n[
Σ1 0
0 Σ2

]
n
, and V =:

n[
V1 V2

]
,

the factors Γ and ∆ of the rank revealing factorization are chosen as follows

Γ :=U1

√
Σ1 and ∆ :=

√
Σ1V⊤

1 . (Γ ,∆)

74b 〈define ∆ and Γ 74b〉≡ (74c)
sqrt_s = sqrt(s(1:n))’;

O = sqrt_s(ones(size(U, 1), 1), :) .* U(:, 1:n);

C = (sqrt_s(ones(size(V, 1), 1), :) .* V(:, 1:n))’;

This choice leads to a finite-time balanced realization of Bi/s/o(A,B,C,D), i.e., the
finite time controllability and observability Gramians

O⊤
i (A,C)Oi(A,C) = Γ ⊤Γ and C j(A,B)C

⊤
j (A,B) = ∆∆⊤

are equal,
Γ ⊤Γ = ∆∆⊤ = Σ .

The combination of the described realization algorithm with the singular value
decomposition based rank revealing factorization (Γ ,∆), i.e., unstructured low-rank
approximation, is referred to as Kung’s algorithm.

74c 〈H 7→ Bi/s/o(A,B,C,D) 74c〉≡
function [sys, hh] = h2ss(h, n, tol, i ,j)

〈reshape H and define m, p, T 75〉
〈dimension of the Hankel matrix 73a〉
〈singular value decomposition of Hi, j(σH) 73c〉
if ~exist(’n’, ’var’) | isempty(n)

〈order selection 74a〉
else

〈check n< min
(
pi−1,m j

)
73b〉

end

〈define ∆ and Γ 74b〉
〈Γ ,∆) 7→ (A,B,C) 72a〉, sys = ss(a, b, c, h(:, :, 1), -1);

if nargout > 1, hh = shiftdim(impulse(sys, T), 1); end

Defines:
h2ss, used in chunks 78e, 124a, 139b, 140a, 142, and 255.

Following the convention for representing vector and matrix valued trajectories in
MATLAB (see, page 26), the impulse response H is stored as an

• p×T matrix in the single-input case, and
• p×m×T tensor h(:, :, t) = H(t), in the multi-output case.

3.1 Kung’s realization method 75

75 〈reshape H and define m, p, T 75〉≡ (74c 138a)
if length(size(h)) == 2

[p, T] = size(h); if p > T, h = h’; [p, T] = size(h); end

h = reshape(h, p, 1, T);

end

[p, m, T] = size(h);

Note 3.2 (Approximate realization by Kung’s algorithm). When H is not realizable
by a linear time-invariant system of order less than or equal to nmax, i.e., when
Hi, j(σH) is full rank, h2ss computes an approximate realization Bi/s/o(A,B,C,D)
of order n≤ nmax. The link between the realization problem and Hankel structured
low-rank approximation implies that

Kung’s algorithm, implemented in the function h2ss, is a method for Hankel
structured low-rank approximation: Hi, j(σH) is approximated by Hi, j(σĤ),
where Ĥ is the impulse response of the Bi/s/o(A,B,C,D).

Note 3.3 (Suboptimality of Kung’s algorithm). Used as a method for Hankel struc-
tured low-rank approximation, Kung’s algorithm is suboptimal. The reason for this
is that the factorization Hi, j(σH) ≈ Γ ∆ , performed by the singular value decom-
position is an unstructured low-rank approximation and unless the data is exact, Γ
and ∆ are not extended observability and controllability matrices, respectively. As a
result, the shift equations (SE1) and (SE2) do not have solutions. Kung’s algorithm
computes an approximate solution in the least squares sense.

Note 3.4 (Structure enforcing methods). The two approximation steps.

1. unstructured low rank approximation of the Hankel matrix Hi, j(σH), and
2. approximate solution of (SE1) and (SE2).

are common to the subspace methods. In contrast, methods based on Hankel struc-
tured low-rank approximation do not involve approximation on a second step. The
approximation computed on the first step guarantees existence of an exact solution
on the second step.

Note 3.5 (Connection between Kung’s algorithm and balanced model reduction).

Kung’s algorithm computes a realization in a finite time min(i, j) balanced bases.
In the case of noisy data or data obtained from a high order model, the computed
realization is obtain by truncation of the realization. Therefore, Kung’s algorithm
can be viewed as a data-driven method for finite-time balanced model reduction.
The term data-driven refers to the fact that a state space model of the full order
system is not constructed. Instead the model reduction is done directly from data
from the full order system. The link between Kung’s algorithm and model reduction
further justifies the choice (i, j) on page 73 for the shape of the Hankel matrix —
the choice (i, j) maximizes the horizon for the finite-time balanced realization.

76 3 Exact modeling

3.2 Impulse response computation

In the realization problem the given data is a special trajectory—the impulse re-
sponse of the model. Therefore, the realization problem is a special exact identifica-
tion problem. This section solves the general exact identification problem:

wd

exact
identification

−−−−−−−−−→ Bmpum(wd)

by reducing it to the realization problem:

wd

impulse response
computation (w2h)

−−−−−−−−−−−−→ Hmpum
realization (h2ss)

−−−−−−−−−−−−→ Bmpum(wd). (wd 7→ H 7→ B̂)

First, the impulse response Hmpum of the most powerful unfalsified model Bmpum(wd)
(see Section 2.4.2) is computed from the given general trajectory wd. Then, an in-
put/state/output representation of Bmpum(wd) is computed from Hmpum by a realiza-
tion algorithm, e.g., Kung’s algorithm.

The key observation in finding an algorithm for the computation of the impulse
response is that the image of the Hankel matrix Hi, j(wd), with j > qi, constructed
from the data wd is included in the restriction Bmpum(wd)|i of the most powerful
unfalsified model on the interval [1, i], i.e.,

span
(
Hi(wd)

)
⊆ Bmpum(wd)|i. (∗)

The question occurs: under what conditions on the data wd and the data, (∗) holds
with equality? This question is important because if equality holds, any i-samples
long trajectories w of Bmpum(wd) can be constructed as a linear combination of the
columns of the Hankel matrix, i.e., there is g such that

w = Hi(wd)g.

In particular, we can use this equation to compute the first i samples of the impulse
response. As in the realization problem, in what follows, the default input/output
partitioning w = [u

y] is assumed.
It turns out that a necessary condition for equality in (∗) is persistency of excita-

tion of the input component ud of the given data.

Definition 3.6 (Persistency of excitation). The time series ud =
(
ud(1), . . . ,ud(T)

)

is persistently exciting of order L if the Hankel matrix HL(ud) is of full row rank.

Lemma 3.7 (Fundamental lemma (Willems et al, 2005)). Let

1. wd = (ud,yd) be a T samples long trajectory of the LTI system B, i.e.,

wd =

[
ud
yd

]
=

([
ud(1)
yd(1)

]
, . . . ,

[
ud(T)
yd(T)

])
∈ B|T ;

3.2 Impulse response computation 77

2. the system B be controllable; and

3. the input sequence ud be persistently exciting of order L+n(B).

Then any L samples long trajectory w= [u
y] of B can be written as a linear combina-

tion of the columns of HL(wd) and any linear combination HL(wd)g, g ∈ R
T−L+1,

is a trajectory of B, i.e., span
(
HL(wd)

)
= B|[1,L].

Let ek be the kth column of the m× m identity matrix and δ be the unit pulse
function. The impulse response is a matrix valued trajectory, the columns of which
are the m trajectories corresponding to zero initial conditions and inputs e1δ , . . . ,
emδ . Therefore, the problem of computing the impulse response is reduced to the
problem of finding a vector gk, such that Hi(wd)gk is of the form (ekδ ,hk), where
hk(τ) = 0, for all τ < 0. The identically zero input/output trajectory for negative
time (in the past) implies that the response from time zero on (in the future) is the
impulse response.

Let ℓ be the lag of the most powerful unfalsified model Bmpum(wd). In order to
describe the construction of a vector gk that achieves the impulse response hk, define
the “past” Hankel matrix

Hp := Hℓ, j(wd), where j := T − (ℓ+ i)

and the “future” input and output Hankel matrices

Hf,u := Hi, j(σ
ℓud) and Hf,y := Hi, j(σ

ℓyd).

77 〈define Hp, Hf,u, and Hf,y 77〉≡ (78b)
j = T - (l + i);

Hp = blkhank(w, l, j);

Hfu = blkhank(u(:, (l + 1):end), i, j);

Hfy = blkhank(y(:, (l + 1):end), i, j);

Uses blkhank 26a.

With these definitions, a vector gk that achieves the impulse response hk must satisfy
the system of linear equations

[
Hp

Hf,u

]
gk =

[
0qℓ×1[

ek
0(t−1)m×1

]
]
. (∗)

By construction, any solution gk of (∗) is such that

Hf,ygk = hk.

Choosing the least norm solution as a particular solution and using matrix notation,
the first i samples of the impulse response are given by

H = Hf,y

[
Hp

Hf,u

]+[0qℓ×m[
Im

0(i−1)m×m

]
]
,

78 3 Exact modeling

where A+ is the pseudo-inverse of A.
78a 〈data driven computation of the impulse response 78a〉≡ (78b)

wini_uf = [zeros(l * q, m); eye(m); zeros((i - 1) * m, m)];

h_ = Hfy * pinv([Hp; Hfu]) * wini_uf;

We have the following function for computation of the impulse response of the
most powerful unfalsified model from data:

78b 〈w 7→ H 78b〉≡
function h = w2h(w, m, n, i)

〈reshape w and define q, T 27a〉, p = q - m; l = ceil(n / p);

u = w(1:m, :); y = w((m + 1):q, :);

〈define Hp, Hf,u, and Hf,y 77〉
〈data driven computation of the impulse response 78a〉
for ii = 1:i

h(:, :, ii) = h_(((ii - 1) * p + 1):(ii * p), :);

end

Defines:
w2h, used in chunk 78e.

As in the case of the realization problem, when the data is noisy or generated by a
high order model (higher than the specified order n), w2h computes a (suboptimal)
approximation.

Using the functions w2h and h2ss, we obtain a method for exact identifica-
tion (wd 7→ H 7→ B̂)

78c 〈Most powerful unfalsified model in L q,n
m 78c〉≡ 78d⊲

function sys = w2h2ss(w, m, n, Th, i, j)

〈reshape w and define q, T 27a〉, p = q - m;

Defines:
w2h2ss, used in chunks 145–47.

The optional parameter Th specifies the number of samples of the impulse response,
to be computed on the first step wd 7→ H. The default value is the minimum num-
ber (Tmin), defined on page 73.

78d 〈Most powerful unfalsified model in L q,n
m 78c〉+≡ ⊳78c 78e⊲

if ~exist(’Th’) | isempty(Th)

Th = ceil(n / p) + ceil(n / m) + 1;

end

The dimensions i and j of the Hankel matrix Hi, j(σH), to be used at the realiza-
tion step wd 7→ H, are also optional input parameters. With exact data, their values
are irrelevant as long as the Hankel matrix has the minimum number n of rows and
columns. However, with noisy data, the values of Th, i, and j affect the approxima-
tion. Empirical results suggest that the default choice (i, j) gives best approximation.

78e 〈Most powerful unfalsified model in L q,n
m 78c〉+≡ ⊳78d

T = Th; 〈dimension of the Hankel matrix 73a〉
sys = h2ss(w2h(w, m, n, Th), n, [], i, j);

Uses h2ss 74c and w2h 78b.

Note 3.8 (Using prior knowledge). In case of inexact data, the accuracy of the im-
pulse response computation can be improved by using prior knowledge about the
model, e.g., steady-state gain, settling time, and dominant time constant. Such prior

3.3 Stochastic system identification 79

knowledge can be expressed as linear equality and inequality constraints EH = F

and E ′H ≤ F ′. Then, the computation of H taking into account the prior knowledge
leads to a convex quadratic programming problem. For the solution of this problem
there are fast and efficient methods (Gill et al, 1999). In the case of prior knowledge
expressed as equality constraints only, the problem is a constrained least squares.
This problem admits a closed form solution (Markovsky and Mercère, 2017).

3.3 Stochastic system identification

This section considers ARMAX system representations and identification problems.
Identifiability conditions in terms of the correlation function are given. One of the
conditions is persistency of excitation of an input component of the process and
another one is a rank condition for a pair of block-Hankel matrices.

First, we study the linear combinations of the process and its shifts that produce
a process independent of the input. The set of all such linear combinations, called
the orthogonalizers, has a module structure. Under identifiability conditions, it com-
pletely specifies the deterministic part of the ARMAX system. Computing a module
basis for the orthogonalizers is a deterministic identification problem.

The proposed ARMAX identification method has three steps: 1) compute the de-
terministic part of the system via the orthogonalizers, 2) the AR part, which also has
a module structure, and 3) the MA part. The method is developed first for the case of
infinite data, in which case the ARMAX system is identified exactly. In the practical
case of finite data the identification method necessarily involves approximation.

3.3.1 ARMAX representability, identifiability, and estimation

Given an observed infinite realization wd of a process w, or equivalently given its
correlation function Rww, the following questions arise.

Representability: Is there an ARMAX system B, such that w ∈ B?
Identifiability: If w is representable, is a system B, such that w ∈B, unique?
Identification: If w is identifiable, obtain a representation of B from wd.

In a more practical situation when the given realization is finite

wd =
(
wd(1), . . . ,wd(T)

)
,

the exact stochastic identification problem, stated above, becomes an approximate

stochastic identification problem (see Figure 1.2). Assuming that w is identifiable,
the following estimation problem and related question are of interest.

80 3 Exact modeling

Estimation: Assuming that the system B is identifiable from the data wd, find
a representation of an estimate B̂ of B.
Consistency: Study the asymptotic behavior of the estimate B̂, as T → ∞.

Recall from Section 2.3 that an ARMAX system admits a representation by a
stochastic difference equation

A(σ)
(
P(σ)y+Q(σ)u

)
= M(σ)ε, (ARMAX)

with parameters the polynomial matrices A,P,Q,M and with ε white normalized
process that is independent of u. We approach the ARMAX identification and es-
timation problems by first computing the deterministic (X-part) of the ARMAX
system, then the AR-part, and finally the MA-part, i.e., we consider algorithms that
decompose the original problem

wd
ARMAX system identification−−−−−−−−−−−−−−−−−→ (P,Q,A,M)

into three sequential subproblems as follows:

wd =

[
ud
yd

]
find the X-part−−−−−−−−−→ (P,Q)

find the AR-part−−−−−−−−−−→ A
find the MA-part−−−−−−−−−−→ M.

First, we consider the case when wd is infinite and then propose a modification for
the more difficult estimation problem when wd is finite.

The basic idea is that the finite linear combinations of the rows of the Hankel
matrix composed of wd

W :=




wd(1) wd(2) wd(3) · · · wd(t) · · ·
wd(2) wd(3) wd(4) · · · wd(t +1) · · ·
wd(3) wd(4) wd(5) · · · wd(t +2) · · ·

...
...

...
...


 (3.1)

that are orthogonal to the rows of the Hankel matrix composed of inputs ud

U :=




ud(1) ud(2) ud(3) · · · ud(t) · · ·
ud(2) ud(3) ud(4) · · · ud(t +1) · · ·
ud(3) ud(4) ud(5) · · · ud(t +2) · · ·
...

...
...

...


 (3.2)

determine R=
[
P Q

]
. However, there are infinite number of such “orthogonalizing”

linear combinations. The questions occur: What structure do they have in order to
be generated by a finite number of them—the rows of R? What algorithms can be
used for computing an estimate of R from a finite realization wd?

3.3 Stochastic system identification 81

3.3.2 Conditions for representability and identifiability

In this section, we study the following problems.

Problem 3.9 (ARMAX representability). Given a process w with a correlation Rww,
determine under what conditions w ∈ B, where B is an ARMAX system.

The ARMAX representability problem is to find under what conditions w = [u
y] is a

solution of (ARMAX) with ε a white normalized process, ε ⊥ u, and A Schur.

Problem 3.10 (ARMAX identifiability). Given a process w with a correlation
function Rww, determine under what conditions on the data and the data generat-
ing system, an ARMAX representation B of w is unique.

Define the partitioning of of the correlation function as

Rww =

m p[
Ruu Ruy

Ryu Ryy

]
m

p
.

A key condition for ARMAX representability is the notion of a rank increment of a
Hankel matrix composed of Ruu with respect to a Hankel matrix composed of Ryu.

Definition 3.11 (Rank increment). The rank increment of A with respect to B,
where A and B have the same number of columns, is

rankinc(A,B) := rank
(

col(A,B)
)
− rank(B).

The notion of rank increment is well defined for infinite matrices as well. Let Ak,q

denotes the submatrix of A formed of the first k block rows and the first q block
columns. The rank increment of the (two sided) infinite matrix A with respect to the
(two sided) infinite matrix B is limk,q→∞

(
rank

(
col(Akq,Bkq)

)
− rank(Akq)

)
.

Theorem 3.12 (ARMAX representability (Markovsky et al, 2006a)). A pro-

cess w = [u
y] with a correlation function Rww is ARMAX representable if and only if

rankinc







Ruu(1) Ruu(2) · · ·
Ruu(2) Ruu(3) · · ·

...
...


 ,




Ryu(1) Ryu(2) · · ·
Ryu(2) Ryu(3) · · ·

...
...





< ∞.

For identifiability we need, in addition, the assumption that the input u is persis-
tently exciting of a sufficiently high order.

Theorem 3.13 (ARMAX identifiability (Markovsky et al, 2006a)). A process

w = [u
y] with a correlation function Rww is ARMAX identifiable if the condition of

Theorem 3.12 holds and if, in addition, u is persistently exciting of any order.

As in the deterministic case, see Lemma 3.7 and (Willems et al, 2005), if an upper
bounds n and ℓ for the order and the lag of the deterministic part of the ARMAX
system are a priori given, the persistency of excitation assumption of Theorem 3.13
can be relaxed to “u is persistently exciting of order n+ ℓ”.

82 3 Exact modeling

3.3.3 The module of orthogonalizers

The set R[z]n of n-dimensional vector polynomials with real coefficients in the in-
determinate z has the structure of a module over the ring R[z]. A submodule of R[z]n

is a subset of R[z]n that is also a module, e.g., the submodule p1v1 + · · ·+ pkvk gen-
erated by v1, . . . ,vk ∈ R[z]n, where v1, . . . ,vk ∈ R[z]. Every submodule of R[z]n is
of this (finitely generated) form. The minimal number of generators is by definition
the dimension of the module. A submodule is called slim if it does not contain an-
other submodule of the same dimension. This is equivalent to the set of generators
V :=

[
v1 · · · vk

]
of the submodule being right prime.

The importance of modules in systems theory stems from the fact that submod-
ules are in a one-to-one relation with linear time-invariant systems and slim sub-
modules are in a one-to-one relation with controllable linear time-invariant systems.

Lemma 3.14. The left kernel of a Hankel matrix H (w) has a module structure.

Proof. Consider the matrix W in (3.1) and let A denote its left kernel. We need to
show that if u,v ∈ A then

1. u+ v ∈ A , and
2. αu ∈ A , for all α ∈ R[z].

Item 1 is trivial and item 2 follows from σ tu ∈ A , for all t ∈ Z+, which is a simple
consequence of the Hankel structure.

An element of the left kernel of W (defined in (3.1)) is called an annihilator of wd.
Consider a process w with a partition w = [u

y]. An orthogonalizer of w with respect
to u is a polynomial n ∈ R

q[z] that makes the process n(σ)w independent of u.

Example 3.15. The rows of R =
[
P Q

]
are orthogonalizers of the ARMAX pro-

cess w with parameters (P,Q,A,M). To see this, note that

A(σ)
(
P(σ)y+Q(σ)u

)
= M(σ)ε =⇒ P(σ)y+Q(σ)u =

∞

∑
t=−∞

H(t)σ tε,

where the elements of H are the Markov parameters of the system A(σ)a = M(σ)ε ,
viewed as a system with input ε and output a. Now, since ε ⊥ u, this implies that

(
P(σ)y+Q(σ)u

)
⊥ u.

Moreover, every element of the module generated by the rows of R is an orthogo-
nalizer of w. As shown in the following theorem, these are all orthogonalizers.

Theorem 3.16 ((Markovsky et al, 2006a)). Consider an identifiable ARMAX pro-

cess w = [u
y] with parameters (P,Q,A,M). The module of the orthogonalizers of w

with respect to u is generated by the rows of R =
[
P Q

]
.

3.3 Stochastic system identification 83

3.3.4 Identification algorithm: infinite-time case

Theorem 3.16 suggests an algorithm for the computation of the deterministic part
of the ARMAX system, i.e., an algorithm that realizes the mapping wd 7→ R. We
need to compute the module of the orthogonalizers of wd. This turns out to be a
deterministic identification problem. In this section, we consider the infinite-time
case. In the following section, we adapt the algorithm for the finite-time case.

X-part: wd 7→ (P,Q)

We aim to find a module basis for the linear combinations of W (see (3.1)) that are
orthogonal to U (see (3.2)). This question is equivalent to the question of computing
a module basis for the left kernel of WU⊤. Observe that

WU⊤ =




Rwu(0) R⊤
wu(1) R⊤

wu(2) · · · R⊤
wu(t) · · ·

Rwu(1) Rwu(0) R⊤
wu(1) · · · R⊤

wu(t −1) · · ·
Rwu(2) Rwu(1) Rwu(0) · · · R⊤

wu(t −2) · · ·
...

...
...

...


 .

Computing a module basis for the left kern of a Hankel or Toeplitz matrix is a deter-
ministic identification problem, see (Markovsky et al, 2006b, Section 8.5), so that
computing the orthogonalizers is a deterministic identification problem for the cor-
relation function Rwu. There are many algorithms developed for solving this prob-
lem, e.g., subspace algorithms based on state construction (Van Overschee and De
Moor, 1996a) or an observability matrix (Verhaegen and Dewilde, 1992).

How many correlation coefficients are needed in order to compute a set of gener-
ators of the left kernel of WU⊤, i.e., can we limit the number of rows and columns of
WU⊤? Let n and ℓ be given upper bounds for the order and the lag of the ARMAX
system’s deterministic part. Using the result of (Willems et al, 2005), we have that
if u is persistently exciting of order n+ ℓ, then the left kernel of the Hankel matrix




Rwu(−ℓ−n) · · · Rwu(0) · · · Rwu(n)
Rwu(−ℓ−n+1) · · · Rwu(1) · · · Rwu(n+1)

...
...

...
Rwu(n) · · · Rwu(ℓ) · · · Rwu(ℓ+n)


 (3.3)

determines all orthogonalizing polynomials of degree at most ℓ and is therefore
equal to the module generated by R. Hence it determines R uniquely. Exploiting
symmetry, this means that T = n+ ℓ+1 correlation coefficients are sufficient.

84 3 Exact modeling

AR-part:
(
wd,(P,Q)

)
7→ A

Once R is determined, we consider the ARMA identification problem

A(σ)a = M(σ)ε, where a := R(σ)w,

with a realization ad := R(σ)wd. Let Raa be the correlation function of a. The set
of annihilators of Raa is the module generated by the rows of A. Therefore, we can
determine the AR-part of the ARMAX system by computing a module basis of
the left kernel of the two sided infinite Hankel matrix composed of Raa. As in the
previous subsection, however, knowing an upper bound ℓ for the degree of A, we
can consider a finite Hankel matrix




Raa(1) Raa(2) · · · Raa(ℓ+1)
Raa(2) Raa(3) · · · Raa(ℓ+2)

...
...

...
Raa(ℓ+1) Raa(ℓ+2) · · · Raa(2ℓ+1)


 . (3.4)

This is also a deterministic identification problem that can be solved by standard
algorithms (Markovsky et al, 2006b, Chapter 8).

MA-part: (wd,P,Q,A) 7→ M

Once A is determined, we consider the MA identification problem

m = M(σ)ε, where m := A(σ)a,

with a realization md := A(σ)ad. There are efficient MA system identification meth-
ods proposed in the literature, see, e.g., (Stoica and Moses, 2005, Section 3.6). A
summary of the complete method for ARMAX system identification in the infinite-
time case is given in Algorithm 2.

Algorithm 2 ARMAX identification: infinite-time case.

Input: Time series wd = (ud,yd) and upper bound ℓ for the degrees of the X and AR parts.
1: Compute the first ℓ+n+1 correlation coefficients of wd.
2: Compute a module basis R̂ for the left kernel of (3.3).
3: Let ad := R̂(σ)wd.
4: Compute the first 2ℓ+1 correlation coefficients of ad.
5: Compute a module basis Â for the left kernel of (3.4).
6: Let md := Â(σ)ad.
7: Compute the parameter M̂ of an MA system for md.

Output: ARMAX system B̂ defined by the parameters (P̂, Q̂, Â,M̂), where
[
P̂ Q̂

]
:= R̂.

3.3 Stochastic system identification 85

3.3.5 Identification algorithm: finite-time case

In the infinite time case, under the identifiability assumption, we can recover the
true data generating system exactly. Of course, this is no longer possible in the
finite-time case. The question of main interest, considered in the literature, is the
consistency property of the estimate produced by an algorithm: Does the finite-time
estimate converge to the true system as the time horizon goes to infinity? For a fixed
time horizon, however, the identification problem necessarily involves approxima-
tion. Estimators that achieve statistically optimal approximation are called efficient.
Another point of view of finite-time ARMAX identification problem is the bias–

variance decomposition of the approximation error.
In this section, we are not aiming at an optimal finite-time approximation, i.e.,

the proposed algorithm is not efficient. We are looking instead at a heuristic adapta-
tion of the exact (in the infinite-time case) Algorithm 2 for the finite-time case. This
is similar to the application of exact deterministic subspace algorithms for approxi-
mate deterministic and/or stochastic identification problems.

A straightforward finite-time version of Algorithm 2 is obtained by replacing

• the true correlation coefficients on steps 1 and 4 by the standard biased estimates,
• a module basis of an exact left kernel on steps 2 and 5 by a module basis of an

approximate left kernel, computed, e.g., by the singular value decomposition,
• the exact MA model on step 7 by an approximate MA model, computed, e.g., by

the algorithms of (Stoica et al, 2000) or (Alkire and Vandenberghe, 2002).

The quality of the correlation estimates affects the accuracy of the parameter esti-
mates. Which estimates R̂ww, R̂aa yield optimal efficiency is an open problem.

The matrices W and U , defined for the infinite-time case in in (3.1) and (3.2), are
redefined for a finite realization wd as follows

W :=




wd(n+1) wd(n+2) · · · wd(T − ℓ−n)
wd(n+2) wd(n+3) · · · wd(T − ℓ−n+1)

...
...

...
wd(n+ ℓ+1) wd(n+ ℓ+2) · · · wd(T − ℓ+1)




and

U :=




ud(1) ud(2) · · · ud(T − ℓ−2n)
ud(2) ud(3) · · ·
...

...
...

ud(ℓ+2n+1) ud(ℓ+2n+2) · · · ud(T)


 ,

Our experience is that on step 2 it is better to compute the left kernel of the matrix
WU⊤ instead of the Hankel matrix composed of the standard biased correlation
estimates R̂wu. A possible explanation for the superior results obtained from WU⊤

is that the standard biased estimator (R̂ww) implicitly extends wd with zeros, which
changes the data. For small sample size, the change of the data due to the extension
gives inferior estimates compared to the computation from WU⊤, where the data is

86 3 Exact modeling

not extended. For example, in deterministic identification problem, i.e., var(ε) = 0,
the left kernel of WU⊤ gives exact result, while the approach using (R̂ww) gives
biased result. The same observation is made in (Stoica and Moses, 2005, pages 98–
99) and is supported by a statistical argument (bias vs variance trade-off).

Similarly on step 5, we replace the Hankel matrix formed from the standard
biased correlation estimates R̂aa (see (3.4)) by the matrix obtained from the product




ad(ℓ+1) ad(ℓ+2) ··· ad(T−ℓ−1)
...

...
...

ad(2) ad(3) ··· ad(T−2ℓ+2)
ad(1) ad(2) ··· ad(T−2ℓ+1)






ad(ℓ+2) ad(ℓ+3) ··· ad(2ℓ+2)
ad(ℓ+3) ad(ℓ+4) ··· ad(2ℓ+3)

...
...

...
ad(T−ℓ) ad(T−ℓ+1) ··· ad(T)


 , (3.5)

which corresponds for estimation of Raa without extending the data with zeros.

Algorithm 3 ARMAX identification: finite-time case.

Input: Time series wd = (ud,yd), upper bound ℓ for the degrees of the X and AR parts.
1: Compute a module basis R̂ for an approximate left kernel of WU⊤, using the SVD.
2: Let ad := R̂(σ)wd.
3: Compute a module basis Â for the approximate left kernel of (3.5), using the SVD.
4: Let md := Â(σ)ad.
5: Compute the parameter M̂ of an approximate MA system for md, using the method of (Stoica

et al, 2000).
Output: ARMAX system B̂ defined by the parameters (P̂, Q̂, Â,M̂), where

[
P̂ Q̂

]
:= R̂.

Proposition 3.17 (Consistency (Markovsky et al, 2006a)) If wd ∈ (Rq)T is a re-

alization of an identifiable ARMAX process w ∈ B, where the deterministic and

autoregressive parts of B have lags less than or equal to ℓ, Algorithm 3 with inputs

wd and ℓ yields a consistent estimator for the true data generating system B.

3.4 Missing data recovery

This section studies the problem of computing an exact linear time-invariant model
from data with missing values. We do not make assumptions about the nature or
pattern of the missing values apart from the basic one that they are a part of a trajec-
tory of a linear time-invariant system. Identification with missing data is equivalent
to Hankel structured low-rank matrix completion. Two methods for solving the ma-
trix completion problem are presented. The first one is based on the nuclear norm
relaxation and leads to the solution of a convex optimization problem. The second
method generalizes subspace identification methods to missing data. As a matrix
completion problem, the nuclear norm heuristic is more general but less efficient
(because it does not exploit the Hankel structure) than the subspace method.

3.4 Missing data recovery 87

3.4.1 Problem formulation

The problem considered is defined informally as follows: complete a given sequence
without knowledge of the data generating system, apart from the fact that it is linear
time-invariant and has bounded lag. In order to state the problem formally, next, we
introduce notation for missing values in a time series and vector/matrix indexing.

Missing data values are denoted by the symbol NaN (“not a number”). The ex-
tended set of real numbers Re is the union of the set of the real numbers R and NaN:

Re := R∪NaN.

The data for the considered problem is a q-variate sequence

wd =
(
wd(1), . . . ,wd(T)

)
, where wd(t) ∈ R

q
e .

The data sequence wd is parameterized by the Tq×1-dimensional vector

vec(wd) := col
(
wd(1), . . . ,wd(T)

)
.

The subvector of a vector a with indexes in the set I is denoted by aI . Similarly,
for a matrix A, AI is the submatrix formed by the rows with indexes in the set I ,
and AI ,J is the submatrix of A with elements ai j, such that i ∈ I and j ∈ J .
The set of integers from i to j is denoted by i : j. The set of the indexes of the
missing elements of the data vector vec(wd) is denoted by Im and the set of the
indexes of the given elements is denoted by Ig. The set indexing notation is used
to select a complete submatrix/subvector of a matrix/vector with missing values. A
submatrix/subvector is called complete if it has no missing values.

Problem 3.18 (Exact system identification from trajectory with missing values).

Given a sequence with missing values wd ∈ (R
q
e)

T and a natural number m< q,

minimize over B̂ ∈ Lm and ŵ ∈ (Rq)T ℓ(B̂)

subject to ŵIg = wd,Ig and ŵ ∈ B̂|T .
(MPUM)

Without missing values, (MPUM) coincides with the definition of of the most
powerful unfalsified model Bmpum(wd) for the data wd. With missing values, the
constraint ŵ ∈ B̂ requires completion of the missing values. If a completion exists
for a given model B̂, then this model is a feasible solution of problem (MPUM).
The aim is to find the least complicated feasible model. This is a generalization of
the notion of the most powerful unfalsified model for data with missing values.

88 3 Exact modeling

3.4.2 Nuclear norm heuristic for missing data recovery

The method presented in this section computes a completion ŵ of the given tra-
jectory with missing elements wd. Once ŵ is computed, the problem of finding
mpum(wd) reduces to the problem of finding mpum(ŵ), i.e., finding the MPUM
without missing values. The latter is a well studied problem, for which many so-
lutions exist (see, the notes and references section). In this sense, the completion
method in this section solves the system identification problem with missing data.

Link to rank deficient Hankel matrices

Both the nuclear norm minimization method and the subspace method of the follow-
ing section are based on a representation of a trajectory w of a linear time-invariant
systems with bounded complexity as a rank deficiency of a Hankel matrix HL(w).

Lemma 3.19. There is B ∈ Lm,ℓ, such that w ∈ B if and only if

rank
(
HL(w)

)
≤ mL+pℓ, for any L ≥ ℓ+1.

Using Lemma 3.19, we rewrite Problem 3.18 as a matrix completion problem:

minimize over ŵ ∈ (Rq)T rank
(
HL(ŵ)

)
subject to ŵIg = wd,Ig . (HMC)

Due to the rank constraint, (HMC) is a nonconvex problem. A convex relaxation ap-
proach (Fazel, 2002; Liu and Vandenberghe, 2009), called the nuclear norm heuris-
tic, is to replace the rank by the nuclear norm ‖ · ‖∗ (sum of the singular values):

minimize over ŵ ∈ (Rq)T
∥∥HL(ŵ)

∥∥
∗ subject to ŵIg = wd,Ig . (NN)

Problem (NN) is shown to be the tightest convex relaxation of the rank constraint
minimization problem (HMC). Its advantage over alternative heuristic methods is
the guaranteed convergence to a global minimum. In (Usevich and Comon, 2015),
it is shown that certain (HMC) problems can be solved exactly by the nuclear norm
minimization heuristic (NN), however, at present there are no general results about
the relation of the solutions of (HMC) and (NN).

Problem (NN) is equivalent to the following semidefinite programming problem

minimize over ŵ, U , and V trace(U)+ trace(V)

subject to
[

U HL(ŵ)
⊤

HL(ŵ) V

]
� 0 and ŵIg = wd,Ig .

It can be solved globally and efficiently by existing methods and software (Boyd and
Vandenberghe, 2001). Using general purpose semidefinite programming solvers,
however, the computational cost is at least cubic in the length T of the sequence.

3.4 Missing data recovery 89

Efficient solvers that exploit the Hankel structure as well as efficient first order opti-
mization methods are developed in (Fazel et al, 2013; Liu and Vandenberghe, 2009).

Example 3.20 (Completing the sequence of the Fibonacci numbers). Consider the
sequence of the first 8 Fibonacci numbers with missing 3rd and 6th element:

wd = (1,1,NaN,3,5,NaN,13,21) . (wd)

The complete sequence is w̄ ∈ B̄|8 ∈ L0,ℓ, where

B̄ = ker
(
R̄(σ)

)
, where R̄(z) = 1+ z− z2.

Therefore, the Hankel matrix HL(w̄) has rank at most 2. The nuclear norm mini-
mization problem (NN) for the example is

minimize over ŵ(3) and ŵ(6)

∥∥∥∥∥∥∥∥




1 1 ŵ(3) 3 5
1 ŵ(3) 3 5 ŵ(6)

ŵ(3) 3 5 ŵ(6) 13
3 5 ŵ(6) 13 21




∥∥∥∥∥∥∥∥
∗

.

We solve it with CVX (Grant and Boyd, 2017):
89 〈Completing the sequence of the Fibonacci numbers using nuclear norm optimization 89〉≡

cvx_begin sdp;

variables wh3 wh6;

minimize(norm_nuc([1 1 wh3 3 5 ;

1 wh3 3 5 wh6 ;

wh3 3 5 wh6 13 ;

3 5 wh6 13 21]));

cvx_end

The solution ŵ(3) = 2 and ŵ(6) = 8 is found by the SDPT3 solver in 10 iterations.

Example 3.21 (Lightly damped mechanical system). As a realistic engineering ex-
ample, consider a lightly damped autonomous mechanical system, with one output
and poles at

z1,2 = 0.8889± i0.4402, z3,4 = 0.4500± i0.8801, z5,6 = 0.6368± i0.7673.

The identification data wd is a T = 200 samples long trajectory, of which 86 samples
are missing in a periodic pattern. Using SDPT3 to solve the nuclear norm minimiza-
tion problem (NN) for this data takes 96 seconds on a computer with 2.60GHz Intel
i7 processor and 8G RAM. The solution is correct up to the default convergence
tolerance of the optimization method.

3.4.3 Subspace method for identification with missing data

The method presented in this section is based on ideas from subspace identification.
It derives a nonminimal kernel representation from the data with missing values and

90 3 Exact modeling

reduces it to a minimal one. The derivation of the nonminimal representation is done
by finding completely specified submatrices of the incomplete Hankel matrix of the
data and computing their kernels. The resulting algorithm uses only standard linear
algebra operations and does not require iterative nonlinear optimization. First, we
illustrate the method on two examples. Then, we present the general algorithm.

Example: autonomous system

Consider again the example of completing the sequence of the Fibonacci num-
bers (wd). By grouping together the columns of the incomplete Hankel matrix

H4(wd) =




1 1 NaN 3 5
1 NaN 3 5 NaN

NaN 3 5 NaN 13
3 5 NaN 13 21




that have missing elements in the same rows, we obtain the following submatrices

H̃1 =




1 3
1 5

NaN NaN

3 13


 and H̃2 =




1 5
NaN NaN

3 13
5 21


 .

Skipping the missing rows, we obtain complete submatrices of H4(wd)

H1 =




1 3
1 5
3 13


 and H2 =




1 5
3 13
5 21


 .

Since rank
(
H4(w̄)

)
= 2 and H1,H2 ∈R

3×2, H1 and H2 have nontrivial left kernels.
Indeed, [

1 2 −1
]

H1 = 0 and
[
1 −2 1

]
H2 = 0.

With the convention 0×NaN= 0, we extend the vectors in the left kernel of H1 and
H2 to vectors in the left kernel of H4(wd) by inserting zeros for the missing values

[
1 2 0 −1
1 0 −2 1

]

︸ ︷︷ ︸
R̃

H4(wd) = 0.

This shows that, the polynomial matrix

R̃(z) =

[
R̃1(z)

R̃2(z)

]
=

[
1z0 +2z1 +0z2 −1z3

1z0 +0z1 −2z2 +1z3

]

3.4 Missing data recovery 91

obtained from the leftker
(
H4(wd)

)
defines a kernel representation of Bmpum(wd).

Indeed the greatest common divisor of R1(z) and R2(z):

R̂(z) := GCD(1+2z− z3,1−2z2 + z3) = 1+ z− z2

is a minimal kernel representation of the data generating system B̄.

Example: open system

Consider the sequence with periodic missing values in the first variable

wd =

([
1
0

]
,

[
NaN

1

]
,

[
2
1

]
,

[
NaN

3

]
,

[
3
2

]
,

[
NaN

5

]
,

[
4
10

]
,

[
NaN

14

]
,

[
5
9

])

that is generated by the following linear time-invariant system

B̄ = {w |
[
1 1

]
︸ ︷︷ ︸

R̄0

w(t)+
[
0 −1

]
︸ ︷︷ ︸

R̄1

w(t +1) = 0, }

with m= 1 input and lag ℓ= 1. The unknown complete sequence is

w̄ =

([
1
0

]
,

[
0
1

]
,

[
2
1

]
,

[
−1
3

]
,

[
3
2

]
,

[
5
5

]
,

[
4

10

]
,

[
−5
14

]
,

[
5
9

])
∈ B̄|T

Our goal is to find B̄ from the data wd.
First, we revise the classical approach of finding B̄ from a complete trajec-

tory w̄. The parameter vector R̄ =
[
R̄0 R̄1

]
=
[
1 1 0 −1

]
of a kernel represen-

tation ker
(
R̄(σ)

)
of the data generating system B̄ satisfies the equation

R̄H2(w̄) = 0.

Provided that the left kernel of H2(w̄) is one dimensional (persistency of excitation
assumption (Willems et al, 2005), satisfied by w̄), the kernel parameter R̄ can be
found up to a scaling factor from w̄ by computing a basis for the left kernel of
H2(w̄). The Hankel matrix H2(wd) of the given data

H2(wd) =




1 NaN 2 NaN 3 NaN 4 NaN

0 1 1 3 2 5 10 14
NaN 2 NaN 3 NaN 4 NaN 5

1 1 3 2 5 10 14 9


 ,

however, has unspecified entries in every column, so that its left kernel can not be
computed. Therefore, the classical method is not applicable.

The idea behind the subspace method for exact identification with missing data
is to consider the extended Hankel matrix

92 3 Exact modeling

H3(wd) =




1 NaN 2 NaN 3 NaN 4
0 1 1 3 2 5 10

NaN 2 NaN 3 NaN 4 NaN

1 1 3 2 5 10 14
2 NaN 3 NaN 4 NaN 5
1 3 2 5 10 14 9




and select the two submatrices of H3(wd)

H̃1 =




1 2 3 4
0 1 2 10

NaN NaN NaN NaN

1 3 5 14
2 3 4 5
1 2 10 9




and H̃2 =




NaN NaN NaN

1 3 5
2 3 4
1 2 10

NaN NaN NaN

3 5 14



,

that have missing values in the same rows. The matrices H1 and H2, obtained from
H̃1 and H̃2, respectively, by removing the missing rows have nontrivial left kernels

[
−1 −1 1 0 0

]
︸ ︷︷ ︸

R̃1




1 2 3 4
0 1 2 10
1 3 5 14
2 3 4 5
1 2 10 9



= 0 and

[
0 −1 −1 1

]
︸ ︷︷ ︸

R̃2




1 3 5
2 3 4
1 2 10
3 5 14


= 0.

Inserting zeros in the R1 and R2 at the location of the missing values, we obtain
vectors R̃1 and R̃2 in the left kernels of H̃1 and H̃2

[
−1 −1 0 1 0 0

]
︸ ︷︷ ︸

R̃1

H̃1 = 0 and
[
0 0 −1 −1 0 1

]
︸ ︷︷ ︸

R̃2

H̃2 = 0.

By construction
[

R̃1

R̃2

]
H3(w̄) = 0, so that, the polynomial matrix

R̃(z) =

[
R̃1(z)

R̃2(z)

]
=

[[
−1 −1

]
z0 +

[
0 1

]
z1 +

[
0 0

]
z2

[
0 0

]
z0 +

[
−1 −1

]
z1 +

[
0 1

]
z2

]

is a (nonminimal) kernel representation of B̂. In the example, R̃2(z) = zR̃1(z), so
that a minimal kernel representation is

R̂(z) =
[
1 1

]
+
[
0 −1

]
z = R̄(z).

3.4 Missing data recovery 93

The subspace algorithm

The method illustrated in the examples leads to Algorithm 4. The selection of
complete submatrices H i of the Hankel matrix constructed from the data wd is
specified in Algorithm 5. The number k of the submatrices selected by the algo-
rithm depends in a complicated way on the number and the pattern of the miss-
ing elements of wd. For recovery of Bmpum(wd), the total number of annihilators
g := g1+ · · ·+gk computed, i.e., the sum of the dimensions of the left kernels of the
submatrices H i is of interest. A necessary condition for recovery of an MPUM with
lag ℓ is g ≥ p∑k

i=1(Li − ℓ), i.e., existence of a sufficient number of annihilators to
specify a kernel representation of Bmpum(wd).

Algorithm 4 Subspace algorithm for linear time-invariant system identification with
missing data.

Input: A sequence wd ∈ (R
q
e)

T and natural numbers m.
1: Let HT (wext) be the Hankel matrix of the extended data sequence with T NaN’s

wext = (wd,NaN, . . . ,NaN︸ ︷︷ ︸
T

).

2: Using Algorithm 5, select real valued submatrices H1, . . . ,Hk of HT (wext).
3: for i = 1 : k do

4: Compute bases Ri for the left kernels of H i, i.e., full row rank matrices Ri ∈ R
gi×mi of

maximum row dimension gi, such that RiH i = 0.
5: Extend Ri ∈ R

gi×mi to R̃i ∈ R
gi×T q by inserting zero columns at the location of the rows

removed from HT (wext) in the selection of H i.
6: end for

7: Compute a minimal kernel representation R̂(z) for the system B̂ := ker

([
R̃1

...
R̃k

]
(σ)

)
.

8: Convert R̂(z) to an input/state/otuput representation and compute the completion ŵ of wd (see
Exercise 6.1).

Output: Minimal kernel representation R̂(z) of the data generating system and ŵ.

Example 3.22 (Lightly damped mechanical system). Solving the identification prob-
lem of Example 3.21 on the same computer, the exact system is recovered up to nu-
merical precision errors, in 0.27 seconds. This result demonstrates the lower compu-
tation cost of Algorithm 4 in comparison to the nuclear norm minimization method.

94 3 Exact modeling

Algorithm 5 Selection of complete submatrices of HT (wext).

Input: Hankel matrix H.
1: Let k := 0.
2: for Lk = 1 : T/2 do

3: for j = 1 : T −Lk do

4: if the missing values pattern of H(1 : Lk, j) has not been found before then

5: Let k = k+1.
6: Let Hk := H(1 : Lk, j). {Start a new matrix Hk with the missing values pattern of

H(1 : Lk, j).}
7: else

8: Let i := index of the matrix H i with missing values pattern as the one of H(1 : Lk, j).
9: Let H i :=

[
H i H(1 : Lk, j)

]
. {Augment H i with the newly found column.}

10: end if

11: end for

12: end for

13: Remove the submatrices H i ∈ R
mi×ni , for which mi < ni +1 and redefine k.

Output: Submatrices H1, . . . ,Hk of H.

3.5 Notes and references

The most powerful unfalsified model

One of the key ideas that came out from the original work Willems (1986a,b, 1987)
of Jan Willems on the behavioral approach to systems and control is the notion of the
most powerful unfalsified model, or MPUM for short. The MPUM is “unfalsified” in
the sense that it is an exact model for the given data and “most powerful” in the sense
that it is the least complicated exact model. Thus, the MPUM is an optimal exact
model for the data. The notion of the MPUM plays a key role in system identification
and since its introduction in the mid 80’s, many methods have been developed for
its numerical computation. Most of the currently used methods for computing the
MPUM assume an a priori given input/output partitioning of the variables and fall
into the class of the (deterministic) subspace identification methods.

Subspace identification

“Subspace methods” refer to a wide spectrum of methods, which common feature
is noniterative application of classical linear algebra operations, such as the singular
value decomposition and the approximate solution of a system of linear equations
in the least squares sense. The singular value decomposition is a computation tool
for unstructured low-rank approximation. The key idea of the subspace methods
is to relax the underlying structured low-rank approximation problem by ignoring
the structure. After finding the unstructured low-rank approximation, in a second
step, the subspace methods estimate the model parameters by solving a least squares
approximation problem. The overall two-step procedure, however, is suboptimal
with respect to the original optimization problem.

3.5 Notes and references 95

Subspace identification has its origin in realization theory. The motivation for
the development of the first subspace methods (Budin, 1971; Gopinath, 1969) is
generalization of Kung’s method. This initial work considers exact (deterministic)
identification problem. The idea of finding a state sequence from a general trajec-
tory of the system is due to (Willems, 1986b). This idea is effectively used by Van
Overschee and De Moor (1996b) in what is known as the N4SID method. An al-
ternative approach, known as the MOESP method, based on finding an observabil-
ity matrix instead of a state sequence is developed at the same time by Verhaegen
and Dewilde (1992). The steps of state estimation and observability matrix estima-
tion in the N4SID and MOESP methods are special cases of data driven simulation
(Markovsky et al, 2006b, Chapter 7).

The class of the subspace methods was generalized to identification

• of dissipative (Goethals et al, 2003; Rapisarda and Trentelman, 2011) systems,
• in the ARMAX (Van Overschee and De Moor, 1996b; Verhaegen and Dewilde,

1992) and errors-in-variables (Chou and Verhaegen, 1997) settings, and
• of closed-loop (Chiuso, 2006) and nonlinear (Noël and Kerschen, 2013) systems.

Subspace identification with prior knowledge

Prior knowledge about stability and passivity of the model is considered in (Goethals
et al, 2003; Maciejowski, 1995). The approach used in (Goethals et al, 2003; Ma-
ciejowski, 1995) consists in including a regularization term in the least squares cost
function for the estimation of the model parameters. The main result is that, for suf-
ficiently large values of the regularization parameter, the identified model is stable
and passive. More recently subspace identification with prior knowledge was con-
sidered in (Alenany et al, 2010; Trnka and Havlena, 2009). In (Alenany et al, 2010),
prior knowledge about the steady-state gain of the system is taken into account by
a modified PO-MOESP algorithm, where a constrained least squares problem is
solved. The approach of Trnka and Havlena (2009) generalizes the regularization
approach of Goethals et al (2003); Maciejowski (1995) to a Bayesian framework
for including prior knowledge about the parameter vector. The method however in-
volves a solution of a nonconvex optimization problem, which makes it comparable
to the prediction error methods.

Missing data estimation

Most of the current literature on identification with missing data addresses special
cases, such as particular patterns of occurrence of the missing data, or uses heuris-
tics for estimation of the missing data, such as interpolation methods, followed by
classical identification from the completed data. Three important special cases are:

• partial realization problem,
• missing input and output values in a single block, and

96 3 Exact modeling

• missing values in the output only.

The partial realization problem, i.e., finding a state space representation from the
first few samples of the impulse response, can be viewed as a special missing data
estimation problem. Indeed, finding a representation for the model is equivalent to
completing the partial data of the impulse response. This solution based on realiza-
tion theory, however, does not generalize to other patterns of missing data.

Another special identification problem with missing data considered in (Schoukens
et al, 2012) is the problem when missing are in a block of ℓ(B) or more sequential
values of all variables. In this case, the identification problem with missing data is
equivalent to identification from two independent data sets—the samples before and
the samples after the block of missing values. This result also does not generalize to
other patterns of missing values.

The special case when the missing data is restricted to the output variables only
can be handled by the classical prediction error identification methods (Ljung, 1999;
Söderström and Stoica, 1989). The predictor is used to estimate the missing output
values from the inputs, the current guess of the model, and the initial conditions.

The general identification problem with missing data can be approached by
choosing a representation of the model and optimizing the complexity over the
model parameters and the missing values, subject to the constraint that the com-
pleted data is a trajectory of the system. This leads to a nonconvex optimization
problem. Three classes of methods that use this approach are:

• modification of the classical prediction error methods,
• methods developed in the structure low-rank approximation setting, and
• convex relaxation methods based on the nuclear norm heuristic.

All these methods are designed for estimation from noisy as well as missing data.

Exercises

3.1 (The most powerful unfalsified model in L0). Explain how to find Bmpum(D)
for the data D = {d1, . . . ,dN } ⊂ R

q in the model class of linear static models L q

0 .

3.2 (The most powerful unfalsified model in L 1
0,ℓ). Find conditions for existence

of an exact autonomous linear time-invariant model with lag at most ℓ for a scalar
given data sequence yd =

(
yd(1), . . . ,yd(T)

)
, yd(t) ∈ R.

3.3 (yd 7→ Bmpum(yd) = ker
(

p(σ)
)
). Propose a method for computing the model

parameter p(z) of a kernel representation of the most powerful unfalsified model
Bmpum(yd) in the model class L 1

0,ℓ. If the lag ℓ is not given, explain how to find it
from the data yd. Implement the methods and test it on the data

wd = (1,2,4,7,13,24,44,81). (∗)

References 97

3.4 (yd 7→ Bmpum(yd) = B(A,c)
)
). Propose a method for computing the model pa-

rameters (A,c) of a state space representation of the most powerful unfalsified model
Bmpum(yd) in the model class L 1

0,ℓ. If the order n = ℓ is not given, explain how to
find it from the data yd. Implement the method and test it on the data (∗).

3.5 (Data-driven step response estimation). Propose a method for computing the
step response of Bmpum(yd) directly from the data yd. Implement the method and
test it on an example.

References

Alenany A, Shang H, Soliman M, Ziedan I (2010) Subspace identification with
prior steady-state information. In: Proceedings of the International Conference
on Computer Engineering and Systems, Cairo, Egypt

Alkire B, Vandenberghe L (2002) Convex optimization problems involving finite
autocorrelation sequences. Mathematical Programming, Series A 93(3):331–359

Boyd S, Vandenberghe L (2001) Convex Optimization
Budin MA (1971) Minimal realization of discrete linear systems from input-output

observations. IEEE Trans Automat Contr 16(5):395–401
Chiuso A (2006) Asymptotic variance of closed-loop subspace identification meth-

ods. IEEE Transactions on Automatic Control 51(8):1299–1314
Chou C, Verhaegen M (1997) Subspace algorithms for the identification of multi-

variate errors-in-variables models. Automatica 33(10):1857–1869
Fazel M (2002) Matrix rank minimization with applications. PhD thesis, Elec. Eng.

Dept., Stanford University
Fazel M, Pong TK, Sun D, Tseng P (2013) Hankel matrix rank minimization with

applications in system identification and realization. SIAM J Matrix Anal Appl
34(3):946–977

Gill PE, Murray M, Wright MH (1999) Practical Optimization. Academic Press
Goethals I, Van Gestel T, Suykens J, Van Dooren P, De Moor B (2003) Identification

of positive real models in subspace identification by using regularization. IEEE
Trans Automat Contr 48:1843–1847

Gopinath B (1969) On the identification of linear time-invariant systems from input-
output data. The Bell System Technical J 48(5):1101–1113

Grant M, Boyd S (2017) CVX: Matlab software for disciplined convex program-
ming. stanford.edu/~boyd/cvx

Heij C (1989) Deterministic identification of dynamical systems, Lecture notes in
control and information sciences, vol 127. Springer

Liu Z, Vandenberghe L (2009) Interior-point method for nuclear norm approx-
imation with application to system identification. SIAM J Matrix Anal Appl
31(3):1235–1256

Ljung L (1999) System Identification: Theory for the User. Prentice-Hall
Maciejowski J (1995) Guaranteed stability with subspace methods. Control Lett

26:153–156

98 3 Exact modeling

Markovsky I, Mercère G (2017) Subspace identification with constraints on the im-
pulse response. Int J Contr pp 1728–1735

Markovsky I, Willems JC, De Moor B (2006a) The module structure of ARMAX
systems. In: Proc. of the 41st Conf. on Decision and Control, San Diego, USA,
pp 811–816

Markovsky I, Willems JC, Van Huffel S, De Moor B (2006b) Exact and Approxi-
mate Modeling of Linear Systems: A Behavioral Approach. SIAM

Moonen M, De Moor B, Vandenberghe L, Vandewalle J (1989) On- and off-line
identification of linear state-space models. Int J Control 49:219–232

Noël JP, Kerschen G (2013) Frequency-domain subspace identification for nonlinear
mechanical systems. Mechanical Systems and Signal Processing 40(2):701–717

Rapisarda P, Trentelman H (2011) Identification and data-driven model reduction
of state-space representations of lossless and dissipative systems from noise-free
data. Automatica 47(8):1721–1728

Schoukens J, Vandersteen G, Rolain Y, Pintelon R (2012) Frequency response func-
tion measurements using concatenated subrecords with arbitrary length. IEEE
Trans on Instr and Measurement 61(10):2682–2688

Söderström T, Stoica P (1989) System Identification. Prentice Hall
Stoica P, Moses R (2005) Spectral Analysis of Signals. Prentice Hall
Stoica P, McKelvey T, Mari J (2000) MA estimation in polynomial time. IEEE Trans

Signal Proc 48(7):1999–2012
Trnka P, Havlena V (2009) Subspace like identification incorporating prior informa-

tion. Automatica 45:1086–1091
Usevich K, Comon P (2015) Quasi-Hankel low-rank matrix completion: a convex

relaxation. ArXiv: 1505.07766
Van Overschee P, De Moor B (1996a) Subspace Identification for Linear Systems:

Theory, Implementation, Applications. Kluwer, Boston
Van Overschee P, De Moor B (1996b) Subspace identification for linear systems:

Theory, implementation, applications. Kluwer, Boston
Verhaegen M, Dewilde P (1992) Subspace model identification, Part 1: The output-

error state-space model identification class of algorithms. Int J Control 56:1187–
1210

Viberg M (1995) Subspace-based methods for the identification of linear time-
invariant systems. Automatica 31(12):1835–1851

Willems JC (1986a) From time series to linear system—Part I. Finite dimensional
linear time invariant systems. Automatica 22(5):561–580

Willems JC (1986b) From time series to linear system—Part II. Exact modelling.
Automatica 22(6):675–694

Willems JC (1987) From time series to linear system—Part III. Approximate mod-
elling. Automatica 23(1):87–115

Willems JC, Rapisarda P, Markovsky I, De Moor B (2005) A note on persistency of
excitation. Systems & Control Lett 54(4):325–329

stanford.edu/~boyd/cvx

Chapter 4

Approximate modeling

In general no simple relationships are satisfied exactly by the

data. This discrepancy between observed data and simple

relationships is often modelled by introducing stochastics.

However, instead of stochastic uncertainty it is in our opinion

primarily the complexity of reality which often prevents

existence of simple exact models. In this case model errors do

not reflect chance, but arise because a simple model can only

give an approximate representation of complex systems.

Heij (1989)

Data modeling using a linear static model class leads to an unstructured low-rank
approximation problem. When the approximation criterion is the Frobenius norm,
the problem can be solved by the singular value decomposition. In general, however,
unstructured low-rank approximation is a difficult nonconvex optimization problem.
Section 4.1 presents a local optimization algorithm, based on alternating projections.
An advantage of the alternating projections algorithm is that it is easily generalizable
to missing data, nonnegativity, and other constraints on the data.

In the case of nonlinear or dynamical model classes, the optimal approximate
modeling problem leads to structured low-rank approximation. Section 4.2 presents
a variable projection algorithm for affine structured low-rank approximation. This
method is well suited for problems where one dimension of the matrix is small and
the other one is large. This is the case in system identification, where the small
dimension is determined by the model’s complexity and the large dimension is de-
termined by the number of samples.

The alternating projections and variable projection algorithms perform local opti-
mization. An alternative approach for structured low-rank approximation is to solve
a convex relaxation of the problem. A convex relaxation based on replacement of
the rank constraint by a constraint on the nuclear norm is shown in Section 4.3.
The nuclear norm heuristic is also applicable for matrix completion (missing data
estimation). Section 4.4 generalize the variable projection method to solve low-rank
matrix completion and approximation problems.

99

100 4 Approximate modeling

4.1 Unstructured low-rank approximation

As shown in Section 1.1, line fitting leads to rank-1 approximation. Line fitting is
a special case of data modeling with a linear static model. This section shows that
in the general case of optimal approximate data modeling with a linear static model
class the equivalent computational problem is unstructured low-rank approximation.

Problem 4.1 (Unstructured low-rank approximation). Given a matrix D∈R
q×N ,

with q≤ N, a matrix norm ‖ · ‖, and an integer m, 0 < m< q, find a matrix

D̂∗ := argmin
D̂

‖D− D̂‖ subject to rank(D̂)≤ m. (LRA)

Section 4.1.1 makes the link between data modeling and low-rank approximation
rigorous by introducing a data generating model. When the data is generated in the
errors-in-variables setting and the approximation criterion is “properly” chosen with
respect to the distribution of the measurement noise, (LRA) yields a statistically
optimal (maximum likelihood) estimate for the true data generating system.

In the case of zero mean measurement noise with Gaussian distribution, the
“proper” choice of the approximation criterion is the weighted 2-norm

‖∆D‖W :=
√

vec⊤(∆D)W vec(∆D), for all ∆D, (‖ · ‖W)

specified by an qN × qN positive semidefinite matrix W . In the errors-in-variables
setting, W should be chosen as the inverse of the noise covariance matrix.

Section 4.1.2 presents a hierarchical classification of low-rank approximation
problems (LRA) with approximation criterion (‖ · ‖W) (weighted low-rank approxi-

mation problems) according to the structure of the weight matrix. In a special case,
presented in Section 4.1.3, the problem admits analytic solution in terms of the sin-
gular value decomposition. In general, however, analytic solution is not known and
the problem is solved by local optimization methods. Section 4.1.4 presents an al-
gorithm based on the alternating projections, which has the additional advantage of
being able to handle missing data (or, equivalently, singular weight matrix W).

4.1.1 Linear static data modeling

Consider the approximate modeling problem (AM) for the model class of linear
static models, i.e., Mcmax = Lm,0, and the orthogonal distance approximation crite-
rion, i.e., error(D ,B) = dist(D ,B).

Problem 4.2 (Static data modeling). Given N, q-variable observations

D = {d1, . . . ,dN } ⊂ R
q,

4.1 Unstructured low-rank approximation 101

a matrix norm ‖ · ‖, and model complexity m, 0 < m< q,

minimize over B̂ and D̂ ‖D− D̂‖
subject to image(D̂)⊆ B̂ and B̂ ∈ Lm,0,

(AM Lm,0)

where D ∈ R
q×N is the matrix D :=

[
d1 · · · dN

]
, constructed from the data.

Proposition 4.3. The approximate linear static data modeling problem (AM Lm,0)

is equivalent to the unstructured low-rank approximation problem (LRA).

A solution B̂∗ to (AM Lm,0) is an optimal approximate model for the data D with
complexity bounded by m. Of course, B̂∗ depends on the approximation criterion,
specified by the given norm ‖ · ‖. A justification for the choice of the norm ‖ · ‖ is
provided in the errors-in-variables setting (see Example 2.14 on page 64), i.e., the
data matrix D is assumed to be a noisy measurement of a true matrix D̄

D = D̄+ D̃, where image(D̄)⊆ B̄ ∈ Lm,0

and vec(D̃)∼ N(0,s2V), with V ≻ 0. (EIV0)

In (EIV0), D̃ is the measurement error. It is assumed to be a random matrix with
zero mean and normal distribution. The true data matrix D̄ is generated by a true
model B̄ in the model class Lm,0. The model B̄ is the object to be estimated in the
errors-in-variables setting. The estimation is possible due to the prior knowledge of
the matrix V and the true model’s complexity m. Note that the true noise distribution
is not fully specified because s2 is unknown.

The following proposition shows that the problem of computing the maximum
likelihood estimator in the errors-in-variables setting (EIV0) is equivalent to un-
structured low-rank approximation (Problem 4.1) with the weighted norm ‖ · ‖V−1 .

Proposition 4.4 (Maximum likelihood property of optimal static model B̂∗).

Assuming that the data is generated in the errors-in-variables setting (EIV0), with

known matrix V , a solution B̂∗ to Problem 4.2 with approximation criterion (‖·‖W)

and weight W =V−1 is a maximum likelihood estimator for the true model B̄.

4.1.2 A hierarchy of weighted low-rank approximation problems

In (‖ · ‖W), we vectorized the ∆D matrix column-wise. In addition to, the “column-
wise weight matrix” W we use in this section the “row-wise weight matrix” W̄ ,

‖∆D‖W = ‖∆D⊤‖W̄ , for all ∆D ∈ R
q×N .

i.e., W̄ defines the approximation criterion by the row-wise vectorization of ∆D.

102 4 Approximate modeling

Special cases of the weighted low-rank approximation problem are obtained
when the weight matrices W and W̄ have block diagonal structure with the same
or repeated blocks on the diagonal.

• Column-wise weighting: W = diag(W1, . . . ,WN), where Wj ∈ R
q×q, Wj ≥ 0.

• Column-wise weighting with equal weight matrix for all columns:

W = diag(Wl, . . . ,Wl︸ ︷︷ ︸
N

), where Wl ∈ R
q×q, Wl ≥ 0.

• Row-wise weighting: W̄ = diag(W1, . . . ,Wq), where Wi ∈ R
N×N , Wi ≥ 0.

• Row-wise weighting with equal weight matrix for all rows:

W̄ = diag(Wr, . . . ,Wr︸ ︷︷ ︸
q

), where Wr ∈ R
N×N , Wr ≥ 0.

• Element-wise weighting: W = diag(w1, . . . ,wqN), where col(w1, . . . ,wqN)︸ ︷︷ ︸
=: w

≥ 0.

In the case of element-wise weights, the cost function can be written using the
Hadamard product ⊙ as

‖D− D̂‖Σ := ‖Σ ⊙ (D− D̂)‖F =

√√√√
q

∑
i=1

N

∑
j=1

σi j(di j − d̂i j), (‖ · ‖Σ)

where Σ ∈R
q×N is such that vec(Σ) =

√
w. Note that for a zero weight, e.g., σi j = 0,

the corresponding element di j of D is not taken into account in the approximation
criterion and it is therefore treated as a missing value.

As shown in the next section, column/row-wise weighting with equal matrix for
all columns/rows corresponds to approximation criteria ‖√Wl∆D‖F and ‖∆D

√
Wr‖F.

The (AM Lm,0) problem with criterion ‖√Wl∆D
√

Wr‖F is called two-sided weighted,
also known as the generalized low-rank approximation problem. This latter problem
allows analytic solution in terms of the singular value decomposition.

Figure 4.1 shows the hierarchy of weighted low-rank approximation problems.

4.1.3 Special cases with known analytic solutions

An extreme special case of the weighted low-rank approximation problem is the
“unweighted” case, i.e., weight matrix a multiple of the identity. Then, ‖ · ‖W is pro-
portional to the Frobenius norm ‖ · ‖F and the low-rank approximation problem has
an analytic solution in terms of the singular value decomposition of D. The results is
known as the Eckart–Young–Mirsky theorem or the matrix approximation lemma.
In view of its importance, we refer to this case as the basic low-rank approximation.

4.1 Unstructured low-rank approximation 103

WLRA

W ≥ 0

||③③
③③
③③
③③
③③
③③
③③
③

!!❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

Row-wise WLRA

W̄ = diag(W1, . . . ,Wq)

��
 ❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇

Column-wise WLRA

W = diag(W1, . . . ,WN)

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

��
Row-wise GLRA

W̄ = diag(Wr, . . . ,Wr︸ ︷︷ ︸
q

)

��

EWLRA

W = diag(w)

��⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

Column-wise GLRA

W = diag(Wl, . . . ,Wl︸ ︷︷ ︸
N

)

��
Row-wise scaled LRA

W̄ = diag
(

col(wr, . . . ,wr)︸ ︷︷ ︸
q

)

 ❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇

Column-wise scaled LRA

W = diag
(

col(wl, . . . ,wl︸ ︷︷ ︸
N

)
)

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥

LRA

W = v−1I

WV UTPQ RS

WV UTPQ RS WV UTPQ RS

WV UT
PQ RS WV UTPQ RS WV UT

PQ RS

WV UT
PQ RS

WV UT
PQ RS

WV UTPQ RS
LRA — low-rank approximation GLRA — generalized low-rank approximation
WLRA — weighted low-rank approximation EWLRA — element-wise weighted LRA

Fig. 4.1: Weighted low-rank approximation problems can be classified according to
the structure of the weight matrix W in a hierarchy, starting on the top with the most
general problem of positive semi-definite weight matrix and coming at the bottom
with the most restrictive problem (unweighted low-rank approximation) of weight
matrix which is a multiple of the identity. On the left-hand side are weighted low-
rank approximation problems with row-wise weighting and on the right-hand side
are weighted low-rank approximation problems with column-wise weighting.

104 4 Approximate modeling

Theorem 4.5 (Eckart–Young–Mirsky). Let D = UΣV⊤ be the singular value de-

composition of D and block-partition U, Σ =: diag(σ1, . . . ,σq), and V as follows:

U =:
m q−m[
U1 U2

]
q , Σ =:

m q−m[
Σ1 0
0 Σ2

]
m

q−m
and V =:

m q−m[
V1 V2

]
N ,

Then the rank-m matrix, obtained from the truncated singular value decomposition

D̂∗ =U1Σ1V⊤
1 ,

is a solution to (LRA) with the Frobenius norm. The approximation error is

‖D− D̂∗‖F = min
rank(D̂)≤m

‖D− D̂‖F =
√

σ2
m+1 + · · ·+σ2

q .

The minimizer D̂∗ is unique if and only if σm+1 6= σm.

Note 4.6 (Unitarily invariant norms). Theorem 4.5 holds for any norm ‖ · ‖ that is
invariant under orthogonal transformations, i.e., satisfying the relation

‖U∆DV‖= ‖∆D‖, for any ∆D and for any orthogonal matrices U and V .

Note 4.7 (Approximation in the spectral norm). For a matrix ∆D, let ‖∆D‖2 be the
spectral (2-norm induced) matrix norm ‖∆D‖2 = σmax(∆D). Then

min
rank(D̂)=m

‖D− D̂‖2 = σm+1,

i.e., the optimal rank-m spectral norm approximation error is equal to the first ne-
glected singular value. The truncated singular value decomposition yields an opti-
mal approximation with respect to the spectral norm, however, in this case a mini-
mizer is not unique even when the singular values σm and σm+1 are different.

As defined, the low-rank approximation problem aims at a matrix D̂ that is a
solution to the optimization problem (LRA). In data modeling problems, however,
of primary interest is the optimal model D̂, i.e., the most powerful unfalsified model
for D̂∗. Theorem 4.5 gives the optimal approximating matrix D̂∗ in terms of the
singular value decomposition of the data matrix D. Minimal parameters of kernel
and image representations of the corresponding optimal model are directly available
from the factors of the singular value decomposition of D.

Corollary 4.8 (Optimal data model). An optimal in the Frobenius norm approxi-

mate model in the model class Lm,0, i.e., B̂∗ := Bmpum(D̂
∗) is unique if and only if

the singular values σm and σm+1 of D are different, in which case

B̂∗ = ker(U⊤
2) = image(U1). (R∗,P∗)

4.1 Unstructured low-rank approximation 105

105a 〈low-rank approximation 105a〉≡
function [R, P, dh] = lra(d, r)

[u, s, v] = svd(d); R = u(:, (r + 1):end)’; P = u(:, 1:r);

if nargout > 2, dh = u(:, 1:r) * s(1:r, 1:r) * v(:, 1:r)’; end

Defines:
lra, used in chunks 116b, 118c, 124b, 185d, 187a, 227a, 245, and 253c.

Corollary 4.9 (Nested approximations). The optimal in the Frobenius norm ap-

proximate models B̂∗
m in the model classes Lm,0, m= 1, . . . ,q are nested, i.e.,

B̂q ⊆ B̂q−1 ⊆ ·· · ⊆ B̂1.

Note 4.10 (Efficient computation using QR factorization when N ≫ q). Note from
(R∗,P∗) that an optimal model B̂∗ for D depends only on the left singular vectors
of D. Since post multiplication of D by an orthogonal matrix Q does not change
the left singular vectors, B̂∗ is an optimal model for the data matrix DQ. For N ≫
q, computing the QR factorization D⊤ = Q⊤ [R1

0

]
, followed by the singular value

decomposition of R1 is an efficient way for finding B̂.
105b 〈data compression 105b〉≡ (107a)

d = triu(qr(d’))’; d = d(:, 1:q);

Note 4.11 (Efficient computation avoiding the full singular value decomposition).

The fact that the parameters R∗ and P∗ of a kernel and image representations of the
optimal model B∗ depend only on some of the left singular vectors (see (R∗,P∗))
shows that the full singular value decomposition of the data matrix D is in fact not
needed. Indeed, a representation of the optimal model can be obtained only from
the first m or the last p := q−m left singular vectors. There are methods that allow
efficient computation of a few leading or trailing singular values and corresponding
singular vectors. Depending on the complexity of the model, it is computationally
cheaper to obtain R∗ (p< m) or P∗ (m< p).

Similar analytic solution to the one in Theorem 4.5 is not known for the gen-
eral weighted low-rank approximation problem (LRA) with (‖ · ‖W). Presently, the
largest class of weighted low-rank approximation problems with analytic solution
are those with a weight matrix W of the form

W =Wr ⊗Wl, where Wl ∈ R
q×q and Wr ∈ R

N×N (Wr ⊗Wl)

are positive definite matrices and ⊗ is the Kronecker product.
Using the identities

vec(AXB) = (B⊤⊗A)vec(X)

and
(A1 ⊗B1)(A2 ⊗B2) = (A1A2)⊗ (B1B2),

we have

106 4 Approximate modeling

‖D− D̂‖Wr⊗Wl =
√

vec⊤(∆D)
(
Wr ⊗Wl

)
vec(∆D)

=
∥∥(
√

Wr ⊗
√

Wl)vec(∆D)
∥∥

2

=
∥∥vec(

√
Wl∆D

√
Wr)
∥∥

2

= ‖
√

Wl∆D
√

Wr‖F.

Therefore, the low-rank approximation problem (LRA) with norm (‖ · ‖W) and
weight matrix (Wr ⊗Wl) is equivalent to the two-sided weighted problem

minimize over D̂ ‖
√

Wl(D− D̂)
√

Wr‖F

subject to rank(D̂)≤ m.
(WLRA2)

As shown next, (WLRA2) has an analytic solution.

Theorem 4.12 (Two-sided weighted low-rank approximation). Define the mod-

ified data matrix

Dm :=
√

WlD
√

Wr,

and let D̂∗
m be the optimal (unweighted) low-rank approximation of Dm. Then

D̂∗ :=
(√

Wl
)−1

D̂∗
m

(√
Wr
)−1

,

is a solution of the following two-sided weighted low-rank approximation prob-

lem (WLRA2). A solution always exists. It is unique if and only if D̂∗
m is unique.

The proof is left as an exercise (Exercise 4.3).
For a diagonal W , i.e., element-wise weighting(‖ ·‖Σ), the special case (Wr ⊗Wl)

with analytical solution corresponds to a rank-1 matrix Σ of element-wise weights.

4.1.4 Alternating projections algorithm

In this section, we consider the low-rank approximation problem (LRA) with an
element-wise weighted cost function (‖ ·‖Σ). The solution method is based on local
optimization and uses the alternating projections algorithm. The first step in the
derivation of the method is to use the image representation of the rank constraint

rank(D̂)≤ m ⇐⇒ there are P ∈ R
q×m and L ∈ R

m×N , such that D̂ = PL (IM)

in order to obtain an equivalent parameter optimization problem

minimize over P ∈ R
q×m and L ∈ R

m×N ‖D−PL‖Σ . (LRA-IM)

The alternating projections method exploits the fact that problem (LRA-IM) is bilin-
ear, i.e., it is a linear least squares problem in either P or L. The algorithm alternates
between solving the two linear least squares problems:

4.1 Unstructured low-rank approximation 107

minimize over P ∈ R
q×m ‖D−PL‖Σ , (LRA-IMP)

and
minimize over L ∈ R

m×N ‖D−PL‖Σ . (LRA-IML)

Problems (LRA-IMP) and (LRA-IML) are separable. Indeed, (LRA-IML) decou-
ples into N independent least squares problems for the columns l1, . . . , lN of L,

minimize over li ∈ R
m ‖di −Pli‖Σ:,i , for i = 1, . . . ,N. (LRA-IMli)

Similarly, (LRA-IMP) decouples into q independent least squares problems. The
separability property allows more efficient implementation.

With a small modification, the alternating projections method can deal with miss-
ing values in D. Let Ig be the set of indeces of the given elements in di. Using the
matrix/vector indexing notation, introduced in Section 3.4.1, (LRA-IMli) becomes

minimize over li ∈ R
m ‖DIg,i −PIg,:li‖ΣIg ,i

.

The resulting alternating projections method for element-wise weighted low-rank
approximation with missing values is summarized in Algorithm 6.

As a function of the iteration step, the cost function value is non-increasing. It can
be shown that the iteration converges to a locally optimal solution of (LRA-IM) and
that the local convergence rate is linear. The quantity e(k), computed on step 9 of the
algorithm is the squared approximation error e(k) = ‖D− D̂(k)‖2

Σ on the kth iteration
step. Convergence of the iteration is judged on the basis of the relative decrease of
the error e(k) after an update step. This corresponds to choosing a tolerance ε on
the relative decrease of the cost function value. More expensive alternatives are to
check the convergence of the approximation D̂(k) or the size of the gradient of the
cost function with respect to the model parameters.

Initial approximation

The initial approximation for the iterative optimization method, see step 1 of Algo-
rithm 6, is obtained by solving unweighted low-rank approximation problem where
all missing elements (encoded as NaN’s) are filled in with zeros.

107a 〈low-rank approximation with missing data 107a〉≡
function [p, l] = lra_md(d, m)

d(isnan(d)) = 0; [q, N] = size(d);

if nargout == 1, 〈data compression 105b〉, end

〈matrix approximation 107b〉
The problem is solved using the singular value decomposition, however, in view

of the large scale of the data the function svds which computes selected singular
values and corresponding singular vectors is used instead of the function svd.

107b 〈matrix approximation 107b〉≡ (107a)
[u, s, v] = svds(d, m); p = u(:, 1:m); l = p’ * d;

108 4 Approximate modeling

Algorithm 6 Alternating projections for weighted low-rank approximation.

Input: Data matrix D ∈ R
q×N , rank constraint m, elementwise nonnegative weight matrix Σ ∈

R
q×N , and relative convergence tolerance ε .

1: Initial approximation: P(0) := lra_md(D,m) {Frobenius norm low-rank approximation}
2: Let k := 0.
3: repeat

4: Let e(k) := 0.
5: for i = 1, . . . ,N do

6: Let Ig be the set of indexes of the given elements in D:,i.
7: Define

c := diag(ΣIg,i)DIg,i = ΣIg,i ⊙DIg,i

P := diag(ΣIg,i)P
(k)
Ig,:

= (ΣIg,i1
⊤
m)⊙P

(k)
Ig,:

8: Compute

ℓ
(k)
i :=

(
P⊤P

)−1
P⊤c.

9: Let
e(k) := e(k)+‖c−Pℓ

(k)
i ‖2.

10: end for

11: Define
L(k) =

[
ℓ
(k)
1 · · · ℓ

(k)
N

]
.

12: Let e(k+1) := 0.
13: for i = 1, . . . ,q do

14: Let Ig be the set of indexes of the given elements in the ith row Di,:.
15: Define

r := Di,Ig diag(Σi,Ig) = Di,Ig ⊙Σi,Ig

L := L
(k)
:,Ig

diag(Σi,Ig) = L
(k)
:,Ig

⊙ (1mΣi,Ig).

16: Compute

p
(k+1)
i := rL⊤(LL⊤)−1

.

17: Let
e(k+1) := e(k+1)+‖r− p

(k+1)
i L‖2.

18: end for

19: Define

P(k+1) =




p
(k+1)
1
...

p
(k+1)
q


 .

20: k = k+1.
21: until |e(k)− e(k−1)|/e(k) < ε .
Output: Locally optimal solution D̂ = D̂(k) := P(k)L(k) of (LRA-IM).

4.2 Structured low-rank approximation 109

Note 4.13 (Large scale, sparse data). In an application of (LRA-IM) to building
recommender systems, the data matrix D is large but only a small fraction of the
elements are given. Such problems can be handled efficiently by encoding D and Σ
as sparse matrices. The convention in this case is that missing di j’s are zeros.

4.2 Structured low-rank approximation

In this section, we generalize the low-rank approximation Problem 4.1 to problems
that involves matrix structure, i.e., the data matrix is structured (depends on pa-
rameters) and this structure should be preserved by the approximation. First, we
show the relevance of Hankel structured low-rank approximation for modeling of
autonomous linear time-invariant systems. Then, we present a special case of circu-
lar structure that has an analytic solution. Finally, we present a variable projection
method for affine structured low-rank approximation. The method is specialized for
the application of system identification, in which case the matrix structure is Hankel.

4.2.1 Autonomous linear time-invariant data modeling

As a motivation for structured low-rank approximation consider an example from
system theory: the data matrix D being low-rank and Hankel structured is equivalent
to the data being generated by a bounded complexity linear time-invariant system.
To show this, consider first the special case of a scalar Hankel structure

Hℓ+1(p) :=




p1 p2 . . . pnp−ℓ

p2 p3 . . . pnp−ℓ+1
...

...
...

pℓ+1 pℓ+2 · · · pnp


 .

The approximation matrix D̂ = Hℓ+1(p̂) being rank deficient implies that there is a
nonzero vector R =

[
R0 R1 · · · Rℓ

]
, such that

RHℓ+1(p̂) = 0.

Due to the Hankel structure, this system of equations can be written as

R0 p̂t +R1 p̂t+1 + · · ·+Rℓ p̂t+ℓ = 0, for t = 1, . . . ,np − ℓ,

i.e., a homogeneous constant coefficients difference equation. Therefore, p̂ is a tra-
jectory of an autonomous linear time-invariant system B, defined by (KER). More
generally, recall that for a multivariable autonomous system B,

110 4 Approximate modeling

dim(B|T) = n(B), for T ≥ ℓ(B),

where n(B) and ℓ(B) are, respectively, the order and the lag of the system B.
The Hankel low-rank approximation problem is equivalent to the following mod-

eling problem: Given signal yd ∈ (Rp)T , norm ‖ · ‖, and a model complexity ℓ,

minimize over B̂ and ŷ ‖yd − ŷ‖
subject to ŷ ∈ B̂|T and B̂ ∈ L0,ℓ.

(AM L0,ℓ)

A solution B̂∗ is an optimal approximate model for wd in the model class L0,ℓ.
In the general case when the model has inputs, the parameters Ri of a kernel

representation are p× q matrices. The Hankel structured low-rank approximation
problem is equivalent then to the approximate linear time-invariant modeling prob-
lem (AM) with model class Mcmax = Lm,ℓ and orthogonal distance fitting criterion.

Problem 4.14 (Linear time-invariant dynamic modeling). Given T –samples, q–
variate, vector signal wd ∈ (Rq)T , signal norm ‖ · ‖, and complexity bound (m, ℓ),

minimize over B̂ and ŵ ‖wd − ŵ‖
subject to ŵ ∈ B̂|T and B̂ ∈ L q

m,ℓ.
(AM Lm,ℓ)

The solution B̂∗ of (AM Lm,ℓ) is an optimal approximate model for the signal wd
with complexity bounded by (m, ℓ). Note that problem (AM Lm,ℓ) reduces to

• (AM L0,ℓ) when m= 0, i.e., when the model is autonomous, and
• (AM Lm,0) when ℓ= 0, i.e., when the model is static.

Therefore, (AM Lm,ℓ) is a proper generalization of linear static and dynamic au-
tonomous data modeling problems.

As shown in Section 5.2, the approximate linear time-invariant modeling problem
(AM Lm,ℓ) is equivalent to a structured low-rank approximation problem (SLRA).

Problem SLRA (Structured low-rank approximation). Given a structure specifi-
cation S :Rnp →R

m×n, with m≤ n, a parameter vector p∈R
np , a vector norm ‖·‖,

and an integer r, 0 < r < min(m,n),

minimize over p̂ ‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r. (SLRA)

The matrix D̂∗ := S (p̂∗) is an optimal approximation of the matrix D := S (p)
with rank at most r within the class of matrices with structure S .

Computing the optimal approximate model B̂∗ from the solution p̂∗ of Prob-
lem SLRA is an exact identification problem.

Similarly to the static modeling problem, the dynamic modeling problem has a
maximum likelihood interpretation in the errors-in-variables setting.

4.2 Structured low-rank approximation 111

Proposition 4.15 (Maximum likelihood property of an optimal dynamic model).

Assume that the data wd is generated in the errors-in-variables setting

wd = w+ w̃, where w ∈ B̄|T∈ L q

m,ℓ and w̃ ∼ N(0,s2I). (EIV)

Then an optimal approximate model B̂∗, solving (AM Lm,ℓ) with ‖ · ‖ = ‖ · ‖2, is a

maximum likelihood estimator for the true model B̄.

4.2.2 Special cases with known analytic solutions

We showed in Section 4.1.3 that weighted unstructured low-rank approximation
problems with rank-1 weight matrix have analytic solution in terms of the singu-
lar value decomposition of a modified data matrix. Similar result exists for circu-
lant structured low-rank approximation. If the approximation criterion is a unitarily
invariant matrix norm, the unstructured low-rank approximation (obtained for ex-
ample from the truncated singular value decomposition) is unique. In the case of a
circulant structure, it turns out that this unique minimizer also has circulant struc-
ture, so that the structure constraint is satisfied without explicitly enforcing it in the
approximation problem (Beck and Ben-Tal, 2006; Chu and Plemmons, 2003).

An efficient computational method for obtaining the circulant structured low-
rank approximation is the fast Fourier transform. Consider the scalar case and let

Pk := ∑
np

j=1 p je
−i 2π

np
k j

be the discrete Fourier transform of p. Denote with K the subset of {1, . . . ,np }
consisting of the indexes of the m largest elements of {|P1|, . . . , |Pnp |}. Assuming
that K is uniquely defined by the above condition, i.e., assuming that

k ∈ K and k′ 6∈ K =⇒ |Pk|> |Pk′ |,

the solution p̂∗ of the structured low-rank approximation problem (SLRA) with S

a circulant matrix is unique and is given by p̂∗ = 1
np

∑k∈K Pke
i 2π

np
k j
.

4.2.3 Variable projection algorithm

Next, we consider local optimization methods for affine structured low-rank approx-
imation. First, we convert the rank constraint into an equivalent bilinear equality
constraint using the kernel representation. Then, we describe in a literate program-
ming style a method based on the variable projection. Finally, we specialize the
method for single-input single-output linear time-invariant system identification, in
which case the matrix is Hankel structured and efficient algorithms exist.

112 4 Approximate modeling

Parameterization of rank constraint via kernel representation

Consider the structured low-rank approximation problem (SLRA) with a weighted
2-norm ‖∆ p‖W := ∆ p⊤W∆ p. Different methods for solving the problem can be ob-
tained by choosing different combinations of rank representation and optimization
method. In this section, we choose the kernel representation of the rank constraint

rank
(
S (p̂)

)
≤ r ⇐⇒ there is R ∈ R

(m−r)×m, such that

RS (p̂) = 0 and RR⊤ = Im−r, (rankR)

and the variable projection approach (in combination with standard nonlinear opti-
mization methods) for solving the resulting parameter optimization problem.

The developed method is applicable for the general affinely structured and
weighted low-rank approximation problem (SLRA). The price paid for the
generality, however, is lack of efficiency compared to specialized methods
exploiting the structure of the data matrix S (p) and the weight matrix W .

Representing the constraint of (SLRA) in the kernel form (rankR), leads to the
double minimization problem

minimize over R ∈ R
(m−r)×m M(R) subject to RR⊤ = Im−r, (SLRAR)

where
M(R) := min

p̂
‖p− p̂‖W subject to RS (p̂) = 0. (M)

The computation of M(R), called “inner” minimization, is over the estimate p̂ of p.
The minimization over the kernel parameter R ∈ R

(m−r)×m is called “outer”. The
inner minimization problem is a projection of the columns of S (p) onto the model
B := ker(R). Note that, the projection depends on the parameter R, which is the
variable in the outer minimization problem. Thus, the name “variable projection”.

For affine structures S , the constraint RS (p̂) = 0 is bilinear in the variables
R and p̂. Then, the evaluation of the cost function M for the outer minimization
problem is a linear least norm problem. Direct solution has cubic computational
complexity in the number of structure parameters. Exploiting the structure of the
problem (inherited from S), results in computational methods with quadratic or
linear complexity, depending on the type of structure. For a class of structures, called
mosaic Hankel, which includes Hankel, Toeplitz, and Sylvester, the complexity for
the cost function and Jacobian evaluation is linear (Usevich and Markovsky, 2014).

4.2 Structured low-rank approximation 113

A variable projection method for affinely structured problems

Next, we present a literate program for solution of problem (SLRAR), using the
variable projection principle. First, we explain how the matrix structure S is repre-
sented in the code. Then, we consider the subproblem of minimization with respect
to the parameter correction p̂. This problem is a linear least norm problem and has
a closed form solution. Finally, we present the solution of the remaining problem
of minimization with respect to the parameter R. This is a nonlinear least squares
problem and is solved by standard local optimization methods.

Structure specification

The general affine structure

S : Rnp → R
m×n, S (p̂) = S0 +

np

∑
k=1

Sk p̂k (S (p̂))

is specified by the np matrices S0,S1, . . . ,Snp ∈ R
m×n. This data is represented in

the MATLAB implementation by an m×n matrix variable s0, corresponding to the
matrix S0, and an mn×np matrix variable bfs, corresponding to the matrix

S :=
[
vec(S1) · · · vec(Snp)

]
∈ R

mn×np .

The evaluation of (S (p̂)) is then implemented as a matrix–vector product:

vec
(
S (p̂)

)
= vec(S0)+S p̂, or S (p̂) = S0 +vec−1(S p̂). (S)

113 〈(S0,S, p̂) 7→ D̂ = S (p̂) 113〉≡
dh = s0 + reshape(bfs * ph, m, n);

Note 4.16 (Sparsity of S0 and S). In many applications the matrices Sk are sparse, so
that, for efficiency, they can be stored and manipulated as sparse matrices.

A commonly encountered special case of an affine structure is when each element
of the structured matrix S (p) depends on one structure parameter.

[
S (p̂)

]
i j
=

{
S0,i j, if Si j = 0

S0,i j + p̂Si j
otherwise

where Si j ∈ {0,1, . . . ,np }m×n, (S)

or, defining the extended structure parameter vector p̂ext :=
[

0
p̂

]

[
S (p̂)

]
i j
= S0,i j + p̂ext,Si j

.

114 4 Approximate modeling

In (S), the structure is specified by the matrices S0 and S. Although (S) is a special
case of the affine structure (S (p̂)), it covers all linear modeling problems consid-
ered in the book and will be used in the implementation of the solution method.

In the implementation of the algorithm, the matrix S corresponds to a vari-
able tts and the extended parameter vector pext corresponds to a variable pext.
Since in MATLAB indeces are positive integers (zero index is not allowed), in all
indexing operations of pext, the index is incremented by one. Given the matrices
S0 and S and a structure parameter vector p̂, the matrix S (p̂) is constructed by

114a 〈(S0,S, p̂) 7→ D̂ = S (p̂) 114a〉≡ (116b 121b)
phext = [0; ph(:)]; dh = s0 + phext(tts + 1);

The matrix dimensions m, n, and the number of parameters np are obtained from S

114b 〈S 7→ (m,n,np) 114b〉≡ (115c 116c 121)
[m, n] = size(tts); np = max(max(tts));

The transition from the specification of (S) to the specification (S (p̂)) is
114c 〈S 7→ S 114c〉≡ (115c 116c 121d)

vec_tts = tts(:); NP = 1:np;

bfs = vec_tts(:, ones(1, np)) == NP(ones(m * n, 1), :);

Conversely, for affine structure of the type (S), defined by S, m, and n, the matrix S

is constructed by
114d 〈S 7→ S 114d〉≡

tts = reshape(bfs * (1:np)’, m, n);

In most applications that we consider, the structure S is linear, so that s0 is an
optional input argument to the solvers with default value being the zero matrix.

114e 〈default s0 114e〉≡ (115c 116c 121)
if ~exist(’s0’, ’var’) | isempty(s0), s0 = zeros(m, n); end

The default weight matrix W in the approximation criterion is the identity matrix.
114f 〈default weight matrix 114f〉≡ (115c 116c 121d)

if ~exist(’w’, ’var’) | isempty(w), w = eye(np); end

Minimization over p̂

In order to solve the optimization problem (SLRA), we change variables

p̂ 7→ ∆ p = p− p̂.

Then, the constraint is written as a system of linear equations with unknown ∆ p:

RS (p̂) = 0 ⇐⇒ RS (p−∆ p) = 0

⇐⇒ RS (p)−RS (∆ p)+RS0 = 0

⇐⇒ vec
(
RS (∆ p)

)
= vec

(
RS (p)

)
+vec(RS0)

⇐⇒
[
vec(RS1) · · · vec(RSnp)

]
︸ ︷︷ ︸

G(R)

∆ p = G(R)p+vec(RS0)︸ ︷︷ ︸
h(R)

⇐⇒ G(R)∆ p = h(R).

4.2 Structured low-rank approximation 115

115a 〈form G(R) and h(R) 115a〉≡ (115c)
g = reshape(R * reshape(bfs, m, n * np), size(R, 1) * n, np);

h = g * p + vec(R * s0);

Assuming that
np ≤ (m− r)n (A)

the inner minimimization in (SLRAR) with respect to the new variable ∆ p is a linear
least norm problem

M(R) = min
∆ p

‖∆ p‖W subject to G(R)∆ p = h(R) (LNP)

and has the analytic solution

∆ p∗(R) =W−1G⊤(R)
(
G(R)W−1G⊤(R)

)−1
h(R),

M(R) = ‖∆ p∗(R)‖W =
√

∆ p∗⊤(R)W∆ p∗(R).

115b 〈solve the least norm problem 115b〉≡ (115c)
dp = inv_w * g’ * (pinv(g * inv_w * g’) * h);

The function M corresponds to the data–model misfit function in data modeling
problems and will be refered to as the structured low-rank approximation misfit.

115c 〈Structured low-rank approximation misfit 115c〉≡
function [M, ph] = misfit_slra(R, tts, p, w, s0, bfs, inv_w)

〈S 7→ (m,n,np) 114b〉
〈default s0 114e〉, 〈default weight matrix 114f〉
if ~exist(’bfs’) | isempty(bfs), 〈S 7→ S 114c〉, end

〈form G(R) and h(R) 115a〉
if ~exist(’inv_w’) | isempty(inv_w), inv_w = inv(w); end

〈solve the least norm problem 115b〉
M = sqrt(dp’ * w * dp); ph = p - dp;

Defines:
misfit_slra, used in chunk 116.

Minimization over R

General purpose constrained optimization methods are used for the outer minimiza-
tion problem in (SLRAR), i.e., the minimization of M over R, subject to the con-
straint that R is full row rank. This is a nonconvex optimization problem, so that
there is no guarantee that a globally optimal solution is found.

115d 〈set optimization solver and options 115d〉≡ (116a 185f)
prob = optimset();

prob.solver = ’fmincon’;

prob.options = optimset(’disp’, ’off’);

115e 〈call optimization solver 115e〉≡ (116a 185f)
[x, fval, flag, info] = fmincon(prob); info.M = fval;

116 4 Approximate modeling

116a 〈nonlinear optimization over R 116a〉≡ (116c)
〈set optimization solver and options 115d〉
prob.x0 = Rini; inv_w = inv(w);

prob.objective = ...

@(R) misfit_slra(R, tts, p, w, s0, bfs, inv_w);

prob.nonlcon = @(R) deal([], [R * R’ - eye(size(R, 1))]);

〈call optimization solver 115e〉, R = x;

Uses misfit_slra 115c.

If not specified, the initial approximation is computed from a heuristic that ignores
the structure and replaces the weighted norm by the Frobenius norm, so that the re-
sulting problem can be solved by the singular value decomposition (function lra).

116b 〈default initial approximation 116b〉≡ (116c)
if ~exist(’Rini’) | isempty(Rini)

ph = p; 〈(S0,S, p̂) 7→ D̂ = S (p̂) 114a〉, Rini = lra(dh, r);

end

Uses lra 105a.

The resulting function for affine structured low-rank approximation is:
116c 〈Structured low-rank approximation 116c〉≡

function [R, ph, info] = slra(tts, p, r, w, s0, Rini)

〈S 7→ (m,n,np) 114b〉, 〈S 7→ S 114c〉
〈default s0 114e〉, 〈default weight matrix 114f〉
〈default initial approximation 116b〉
〈nonlinear optimization over R 116a〉
if nargout > 1,

[M, ph] = misfit_slra(R, tts, p, w, s0, bfs, inv_w);

end

Defines:
slra, used in chunks 124a, 137, 247b, and 255.

Uses misfit_slra 115c.

Algorithms for linear time-invariant system identification

Approximate linear time-invariant system identification problems lead to equiva-
lent Hankel structured low-rank approximation problems. Therefore, the function
slra, implemented in the previous section can be used in this case. The function
slra, however, is designed for general affine structured problems and does not ex-
ploit the Hankel structure in the case of linear time-invariant system identification.
This section shows an efficient implementation of the variable projection method
for structured low-rank approximation in the case of single-input single-output sys-
tem identification. The structure is exploited by fast methods for factorization of
structured matrices. An alternative approach is to use methods for Kalman filtering.

4.2 Structured low-rank approximation 117

Misfit computation

Consider the misfit between the data wd and a model B, defined as

dist(wd,B) := min
ŵ

‖wd − ŵ‖2 subject to ŵ ∈ B. (misfit Lm,ℓ)

Geometrically, dist(wd,B) is the orthogonal projection of wd on B. Assuming
that B is controllable, B has an image representation B = image

(
P(σ)

)
. Then,

the constraint ŵ ∈ B becomes ŵ = P(σ)v, for some latent variable v. Using a ma-
trix representation of the polynomial operator P(σ), we have ŵ = TT (P)v, where
TT (P) is the block banded Toeplitz matrix (see Exercise 5.1)

TT (P) :=




P0 P1 · · · Pℓ
P0 P1 · · · Pℓ

. . .
. . .

. . .

P0 P1 · · · Pℓ


 ∈ R

qT×(T+ℓ). (T)

117a 〈Toeplitz matrix constructor 117a〉≡
function TP = blktoep(P, T)

[q, l1] = size(P); l = l1 - 1; TP = zeros(T * q, T + l);

ind = 1 + (0:T - 1) * q * (T + 1);

for i = 1:q

for j = 1:l1

TP(ind + (i - 1) + (j - 1) * (T * q)) = P(i, j);

end

end

Defines:
blktoep, used in chunks 117b, 151, 247d, and 255.

The misfit computation problem (misfit Lm,ℓ) is then equivalent to the standard
linear least squares problem

M(P) := dist
(
wd, image

(
P(σ)

))
= min

v
‖wd −TT (P)v‖2. (misfitP)

The solution of (misfitP), implemented in the functions misfit_siso, is

ŵ = TT (P)
(
T ⊤

T (P)TT (P)
)−1

T ⊤
T (P)wd.

117b 〈dist(wd,B) 117b〉≡
function [M, wh] = misfit_siso(w, P)

try, [M, wh] = misfit_siso_efficient(w, P);

catch

〈reshape w and define q, T 27a〉
TP = blktoep(P, T);

wh = reshape(TP * (TP \ w(:)), 2, T);

M = norm(w - wh, ’fro’);

end

Defines:
misfit_siso, used in chunks 118b, 119, 146a, and 147b.

118 4 Approximate modeling

Uses blktoep 117a.

Solving the least squares problem (misfitP) by the QR or Cholesky factoriza-
tion without taking into account the structure of TT (P) results in a cubic in T

computational cost. It turns out that by properly exploiting the structure, algo-
rithms with computational cost that is linear in T can be achieved. One approach
is based on of structured linear algebra computational methods (Kailath and Sayed,
1995, 1999), implemented in the SLICOT library (Benner et al, 1999). The func-
tion misfit_siso_efficient is based on a SLICOT subroutine for Cholesky
factorization of positive definite banded Toeplitz matrix. An alternative approach,
which also results in methods with linear in T cost are based on the system theoretic
interpretation of the problem: equivalence between misfit computation and Kalman
smoothing. In this approach, the computation is done by a Riccati type recursion.

Misfit minimization

Consider now the misfit minimization problem

B̂∗ := argmin
B̂

dist(wd,B̂) subject to B̂ ∈ L 2
1,ℓ. (SISO-SYSID)

Using the representation B = image
(
P(σ)

)
, (SISO-SYSID) is equivalent to

minimize over P ∈ R
q(ℓ+1)×1 dist

(
wd, image

(
P(σ)

))
(SYSIDP)

which is a constrained nonlinear least squares problem.
118a 〈Single input single output system identification 118a〉≡

function [sysh, wh, info] = ident_siso(w, n, sys)

if ~exist(’sys’, ’var’)

〈suboptimal approximate single input single output system identification 118c〉
else

〈(TF) 7→ P(z) 240c〉
end

〈misfit minimization 118b〉
The Optimization Toolbox is used for performing the misfit minimization.

118b 〈misfit minimization 118b〉≡ (118a) 119⊲
prob = optimset();

prob.solver = ’fminunc’; prob.x0 = P;

prob.options = optimset(’disp’, ’off’);

prob.objective = @(P) misfit_siso(w, P);

[x, fval, flag, info] = fminunc(prob); info.M = fval; P = x;

Uses misfit_siso 117b.

The initial approximation is computed from a relaxation ignoring the structure:
118c 〈suboptimal approximate single input single output system identification 118c〉≡ (118a)

R = lra(blkhank(w, n + 1), 2 * n + 1); 〈R(z) 7→ P(z) 240e〉
Uses blkhank 26a and lra 105a.

4.3 Nuclear norm heuristic 119

The solution obtained by the optimization solver is an image representation of
a (locally) optimal approximate model B̂∗. The image representation is converted
to a transfer function representation in order to make the obtained model compat-
ible with other software packages for linear time-invariant systems identification,
analysis, and design that accept transfer function representation.

119 〈misfit minimization 118b〉+≡ (118a) ⊳118b
〈P(z) 7→ (TF) 240d〉 sysh = sys;

if nargout > 1, [M, wh] = misfit_siso(w, P); end

Uses misfit_siso 117b.

4.3 Nuclear norm heuristic

Replacing the rank constraint by a constraint on the nuclear norm leads to a convex
optimization problem—a semidefinite program. A semidefinite program, in turn,
can be solved by existing algorithms with provable convergence properties and read-
ily available high quality software implementation. Apart from theoretical justifica-
tion and easy implementation in practice, formulating the problem as a semidefinite
program has the advantage of flexibility. For example, adding affine inequality con-
straints in the data modeling problem preserves the convexity.

A disadvantage of using the nuclear norm heuristic is the fact that the number of
optimization variables in the semidefinite optimization problem depends quadrati-
cally on the number of data points in the data modeling problem. This makes meth-
ods based on the nuclear norm heuristic impractical for problems with more than a
few hundreds of data points, which are “small size” data modeling problems.

This section describes a convex relaxation method for affine structured low-rank
approximation, based on the nuclear norm. An implementation of the method in
a literate programming style is presented. The nuclear norm relaxation method is
compared with alternative methods: the singular value decomposition in case of an
unstructured problem and Kung’s method in case of a Hankel structured problem.

4.3.1 Nuclear norm heuristics for structured low-rank

approximation

First, a semidefinite program equivalent to regularized nuclear norm minimization
is shown. Then, the result is applied to structured low-rank approximation problem,
by relaxing the rank constraint to a constraint on the nuclear norm.

120 4 Approximate modeling

Regularized nuclear norm minimization

The nuclear norm of a matrix is the sum of the matrix’s singular values

‖M‖∗ = sum of the singular values of M. (NN)

Consider the mapping S from a structure parameter space R
np to the set of matri-

ces Rm×n (see (S (p̂)), on page 113). Regularized nuclear norm minimization

minimize over p̂ ‖S (p̂)‖∗+ γ‖p− p̂‖2

subject to Gp̂ ≤ h
(NNM)

is a convex optimization problem and can be solved globally and efficiently. Since,

‖D̂‖∗ < µ ⇐⇒ 1
2

(
trace(U)+ trace(V)

)
< µ and

[
U D̂⊤

D̂ V

]
� 0,

we obtain an equivalent semidefinite programming problem

minimize over p̂, U , V , and ν
1
2

(
trace(U)+ trace(V)

)
+ γν

subject to
[

U S ⊤(p̂)
S (p̂) V

]
� 0, ‖p− p̂‖2 < ν , and Gp̂ ≤ h.

(NNM’)

Structured low-rank approximation

Consider the affine structured low-rank approximation problem (SLRA). Due to
the rank constraint, this problem is non-convex. Replacing the rank constraint by a
constraint on the nuclear norm results in a convex relaxation of (SLRA)

minimize over p̂ ‖p− p̂‖2 subject to ‖S (p̂)‖∗ ≤ µ . (RSLRA)

The motivation for using the nuclear norm heuristic in solving (SLRA) is that choos-
ing an appropriate value for the bound on the nuclear norm µ results in a solution
S (p̂) that satisfies the constraint rank

(
S (p̂)

)
≤ r. Moreover, the nuclear norm has

the theoretical justification as being the tightest relaxation of the rank.
Problem (RSLRA) can also be written in the equivalent unconstrained form

minimize over p̂ ‖S (p̂)‖∗+ γ‖p− p̂‖2, (RSLRA’)

where γ is a regularization parameter. It is related to the parameter µ in (RSLRA).
The formulation (RSLRA’) of the relaxed affine structured low-rank approximation
problem (RSLRA) is a regularized nuclear norm minimization problem (NNM’).

4.3 Nuclear norm heuristic 121

4.3.2 Literate programs

This section presents an implementation of the nuclear norm minimization method
for affine structured low-rank approximation. First, the implementation of the reg-
ularized nuclear norm minimization method is presented. Then, the method is used
for solving the Problem SLRA. A nontrivial subproblem is the automatic selection
of the regularization parameter γ . For this purpose we use a bisection method.

Regularized nuclear norm minimization

The CVX package is used in order to automatically translate problem (NNM’) into a
standard convex optimization problem and solve it by existing optimization solvers.

121a 〈Regularized nuclear norm minimization 121a〉≡ 121b⊲
function [ph, info] = nucnrm(tts, p, gamma, nrm, w, s0, g, h)

〈S 7→ (m,n,np) 114b〉, 〈default s0 114e〉
Defines:
nucnrm, used in chunk 122a.

The code consists of definition of the optimization variables:
121b 〈Regularized nuclear norm minimization 121a〉+≡ ⊳121a 121c⊲

cvx_begin sdp; cvx_quiet(true);

variable U(n, n) symmetric;

variable V(m, m) symmetric;

variables ph(np) nu;

〈(S0,S, p̂) 7→ D̂ = S (p̂) 114a〉
and direct rewriting of the cost function and constraints of (NNM’) in CVX syntax:

121c 〈Regularized nuclear norm minimization 121a〉+≡ ⊳121b
minimize(trace(U) / 2 + trace(V) / 2 + gamma * nu);

subject to

[U dh’; dh V] > 0;

norm(w * (p - ph), nrm) < nu;

if (nargin > 6) & ~isempty(g), g * ph < h; end

cvx_end

The w argument specifies the norm (‖ · ‖ν) and is equal to 1, 2, inf, or (in the case
of a weighted 2-norm) a np × np positive semidefinite matrix. The info output
variable of the function nucnrm is a structure with fields optval (the optimal
value) and status (a string indicating the convergence status).

Structured low-rank approximation

The following function finds suboptimal solution of the structured low-rank approx-
imation problem by solving the relaxation problem (RSLRA’). Affine structures of
the type (S) are considered.

121d 〈Structured low-rank approximation using the nuclear norm 121d〉≡ 122b⊲
function [ph, gamma] = slra_nn(tts, p, r, gamma, nrm, w, s0)

122 4 Approximate modeling

〈S 7→ (m,n,np) 114b〉, 〈S 7→ S 114c〉, 〈default s0 114e〉, 〈default weight matrix 114f〉
if ~exist(’gamma’, ’var’), gamma = []; end % default gamma

if ~exist(’nrm’, ’var’), nrm = 2; end % default norm

Defines:
slra_nn, used in chunk 123e.

If a parameter γ is supplied, the convex relaxation (RSLRA’) is completely specified
and can be solved by a call to nucnrm.

122a 〈solve the convex relaxation (RSLRA’) for given γ parameter 122a〉≡ (122)
ph = nucnrm(tts, p, gamma, nrm, w, s0);

Uses nucnrm 121a.

Large values of γ lead to solutions p̂ with small approximation error ‖p− p̂‖W ,
but high rank. Vice verse, small values of γ lead to solutions p̂ with low-rank, but
high approximation error ‖p− p̂‖W . If not given as an input argument, a value of γ ,
which gives an approximation matrix S (p̂) with numerical rank r is computed by
bisection on an a priori given interval [γmin,γmax].

122b 〈Structured low-rank approximation using the nuclear norm 121d〉+≡ ⊳121d
if ~isempty(gamma) & isscalar(gamma)

〈solve the convex relaxation (RSLRA’) for given γ parameter 122a〉
else

if ~isempty(gamma)

gamma_min = gamma(1); gamma_max = gamma(2);

else

gamma_min = 0; gamma_max = 100;

end

〈parameters of the bisection algorithm 123a〉
〈bisection on γ 122c〉

end

On each iteration of the bisection algorithm, the convex relaxation (RSLRA’) is
solved for γ equal to the mid point (γmin + γmax)/2 of the interval and the numer-
ical rank of the approximation S (p̂) is checked by computing the singular value
decomposition. If the numerical rank is higher than r, γmax is redefined to the mid
point, so that the search continuous on a smaller value of γ (which has the potential
of decreasing the rank). Otherwise, γmin is redefined to be the mid point, so that the
search continuous on a larger value of γ (which has the potential of increasing the
rank). The search continuous till the interval [γmin,γmax] is sufficiently small or a
predefined maximum number of iterations is exceeded.

122c 〈bisection on γ 122c〉≡ (122b)
iter = 0;

while ((gamma_max - gamma_min) / gamma_max > rel_gamma_tol) ...

& (iter < maxiter)

gamma = (gamma_min + gamma_max) / 2;

〈solve the convex relaxation (RSLRA’) for given γ parameter 122a〉
sv = svd(ph(tts));

if (sv(r + 1) / sv(1) > rel_rank_tol) ...

& (sv(1) > abs_rank_tol)

gamma_max = gamma;

else

gamma_min = gamma;

4.3 Nuclear norm heuristic 123

end

iter = iter + 1;

end

The rank test and the interval width test involve a priori set tolerances.
123a 〈parameters of the bisection algorithm 123a〉≡ (122b)

rel_rank_tol = 1e-6; abs_rank_tol = 1e-6;

rel_gamma_tol = 1e-5; maxiter = 20;

Examples

In this section, we test the approximation accuracy of the nuclear norm heuristic,
implemented in the function slra_nn, for solving randomly generated unstruc-
tured and Hankel structured low-rank approximation problems. A rank deficient
“true” data matrix is constructed, where the rank r̄ is a simulation parameter. In
the case of a Hankel structure, the “true” structure parameter vector p̄ is gener-
ated as the impulse response (skipping the first sample) of a discrete-time linear
time-invariant system of order r̄. This ensures that the “true” Hankel structured data
matrix S (p̄) = HL(p̄), L > r̄ has the desired rank r̄.

123b 〈Test slra_nn 123b〉≡ 123c⊲
〈initialize the random number generator 25〉
if strcmp(structure, ’hankel’)

np = m + n - 1; tts = hankel(1:m, m:np);

p0 = impulse(drss(r0), np + 1); p0 = p0(2:end);

Defines:
test_slra_nn, used in chunk 124.

In the unstructured case, the data matrix is generated by multiplication of random
m× r̄ and r̄×n factors of a rank revealing factorization of the data matrix S (p̄).

123c 〈Test slra_nn 123b〉+≡ ⊳123b 123d⊲
else % unstructured

np = m * n; tts = reshape(1:np, m, n);

p0 = rand(m, r0) * rand(r0, n); p0 = p0(:);

end

The data parameter p, passed to the low-rank approximation function, is a noisy
corrupted version of the true data parameter p̄, where the additive noise is zero
mean Gaussian. The noise standard deviation is a simulation parameter.

123d 〈Test slra_nn 123b〉+≡ ⊳123c 123e⊲
e = randn(np, 1); p = p0 + nl * e / norm(e) * norm(p0);

The results obtained by slra_nn
123e 〈Test slra_nn 123b〉+≡ ⊳123d 124a⊲

[ph, gamma] = slra_nn(tts, p, r0);

Uses slra_nn 121d.

124 4 Approximate modeling

are compared with the ones of alternative methods by checking the singular values
of S (p̂), indicating the numerical rank, and the fitting error ‖p− p̂‖2.

In the case of a Hankel structure, the alternative methods, being used, is Kung’s
method (implemented in the function h2ss) and the method based on local opti-
mization (implemented in the function slra).

124a 〈Test slra_nn 123b〉+≡ ⊳123e 124b⊲
if strcmp(structure, ’hankel’)

sysh = h2ss([0; p], r0);

ph2 = impulse(sysh, np + 1); ph2 = ph2(2:end);

tts_ = hankel(1:(r0 + 1), (r0 + 1):np);

[Rh, ph3] = slra(tts_, p, r0);

sv = [svd(p(tts)) svd(ph(tts)) svd(ph2(tts)) svd(ph3(tts))]

cost = [norm(p - p) norm(p - ph) ...

norm(p - ph2) norm(p - ph3)]

Uses h2ss 74c and slra 116c.

In the unstructured case, the alternative method is basic low-rank approximation
(lra), which gives globally optimal result in this setup.

124b 〈Test slra_nn 123b〉+≡ ⊳124a
else % unstructured

[Rh, Ph, dh] = lra(p(tts)’, r0); dh = dh’;

sv = [svd(p(tts)) svd(ph(tts)) svd(dh)]

cost = [norm(p - p) norm(p - ph) norm(p - dh(:))]

end

Uses lra 105a.

The first test example is a 5×5, unstructured matrix, whose true value has rank 3.
124c 〈Test slra_nn on unstructured problem 124c〉≡

m = 5; n = 5; r0 = 3; nl = 1; structure = ’unstructured’;

test_slra_nn

Uses test_slra_nn 123b.

The result shows that the numerical rank (with tolerance 10−5) of both approxi-
mations is equal to the specified rank but the approximation error achieved by the
nuclear norm heuristic is about two times bigger than the approximation error of the
optimal approximation. The corresponding trade-off curve is shown in Figure 4.2.

The second test example is a 5× 5, Hankel structured matrix of rank 3. In this
case, the subspace method h2ss and the local optimization based method slra are
also heuristics for solving the Hankel structured low-rank approximation problem
and give, respectively, suboptimal and locally optimal results.

124d 〈Test slra_nn on Hankel structured problem 124d〉≡
m = 5; n = 5; r0 = 3; nl = 0.05; structure = ’hankel’;

test_slra_nn

Uses test_slra_nn 123b.

The result shows that the approximations have numerical rank matching the specifi-
cation but slra_nn gives about two times bigger approximation error than Kung’s
method. The corresponding trade-off curve is shown in Figure 4.2.

4.4 Missing data estimation 125

0 1 2 3 4
1

1.5

2

2.5

3

3.5

4

‖p− p̂‖2

ra
nk
(S

(p̂
))

Test 1: unstructured matrix

lra

slra_nn

0 0.1 0.2 0.3 0.4
1

1.5

2

2.5

3

3.5

4

‖p− p̂‖2

lra

slra_nn

Test 2: Hankel structured matrix

Fig. 4.2: In experiments with unstructured (left plot) and Hankel structured (right
plot) matrices, the low-rank approximation, computed by the singular value decom-
position, outperforms the nuclear norm heuristic. The set of feasible points in the
accuracy vs complexity plane for the nuclear norm heuristic is included into the
set of feasible points for the singular value decomposition. For unstructured matrix,
the singular value decomposition yields a globally optimal result. In case of a Han-
kel structured matrix, however, the singular value decomposition is like the nuclear
norm a heuristic for solving the structured low-rank approximation problem.

4.4 Missing data estimation

This section generalizes the variable projection method, presented in Section 4.2.3,
to low-rank approximation with missing data. The inner minimization is a singu-
lar linear least norm problem and admits an analytic solution. The outer problem
is an optimization on a manifold. Two approaches are: 1) minimization subject to
quadratic equality constraints and 2) unconstrained minimization of a regularized
cost function. The method is furthermore generalized to weighted cost functions.

4.4.1 Problem formulation

First, we generalize the structured low-rank approximation problem (SLRA) to
structured low-rank matrix approximation and completion. Recall from Section 3.4
the notation NaN for a missing value, Re for the extended set R∪ NaN, Ig for the
indices of the given data elements, and Im for the indices of the missing data ele-
ments. Let also nm and ng be the number of missing and given elements.

The considered low-rank approximation problem is: Given a data vector p∈R
np
e ,

minimize over p̂ ∈ R
np ‖pIg − p̂Ig‖2

2

subject to rank
(
S (p̂)

)
≤ r,

(SLRAC)

126 4 Approximate modeling

where S : Rnp → R
m×n is an affine matrix structure (S (p̂)). Without loss of gen-

erality, assume r < m ≤ n. Using the kernel representation of the rank constraint
(rankR), the following equivalent problem to (SLRAC) is obtained

minimize over p̂ ∈ R
np and R ∈ R

(m−r)×m ‖pIg − p̂Ig‖2
2

subject to RS (p̂) = 0 and R has full row rank,

which is a double minimization over the parameters R and p̂

minimize over R ∈ R
(m−r)×m M(R)

subject to R has full row rank,
(SLRACR)

where
M(R) := min

p̂
‖pIg − p̂Ig‖2

2 subject to RS (p̂) = 0. (M)

The evaluation of the cost function M, i.e., solving (M) for a given value of R, is ref-
ered to as the inner minimization problem. This problem is solved analytically. The
remaining problem of minimizing M over R is refered to as the outer minimization

problem, which is optimization on a manifold and has no analytic solution.

4.4.2 Analytical solution of the inner minimization problem

In this section, we consider the inner minimization problem (M).

Problem 4.17. Given affine structure S , structure parameter vector with missing
values p ∈ R

np
e , and a kernel parameter R ∈ R

(m−r)×m, evaluate the cost func-
tion M(R), defined in (M), and find a vector p̂ ∈ R

np that attains the minimum.

For a given structure S and R ∈ R
(m−r)×m, we define the matrix

G :=
[
vec(RS1) · · · vec(RSnp)

]
∈ R

(m−r)n×np . (G)

Theorem 4.18 (Markovsky and Usevich (2013)). Under the assumptions:

1. G:,Im
is full column rank,

2. 1 ≤ (m− r)n−nm ≤ ng, and

3. Ḡ := G⊥
:,Im

G:,Ig
is full row rank,

Problem 4.17 has a unique global minimum

p̂Ig
= pIg

− Ḡ⊤(ḠḠ⊤)−1
s

p̂Im
=−G+

:,Im
(vec(RS0)+G:,Ig

p̂Ig
),

(p̂)

with objective function value

4.4 Missing data estimation 127

M(R) = s⊤
(
ḠḠ⊤)−1

s, where s := ḠpIg
+G⊥

:,Im
vec(RS0). (M)

Note that Assumption 1 of Theorem 4.18 is stronger (implies) assumption (A),
used on page 115 for the derivation of the variable projection methods in the case of
an affine structured low-rank approximation without missing data.

Lemma 4.19 (Generalized least norm problem). Consider the problem

f = min
x,y

‖x‖2
2 subject to Ax+By = c, (GLN)

with A ∈ R
m×nx , B ∈ R

m×ny , and c ∈ R
m. Under the following assumptions:

1. B is full column rank,

2. 1 ≤ m−ny ≤ nx, and

3. Ā := B⊥A is full row rank,

problem (GLN) has a unique solution

f = c⊤(B⊥)⊤
(
ĀĀ⊤)−1

B⊥c,

x = Ā⊤(ĀĀ⊤)−1
B⊥c and y = B+(c−Ax).

(SOL)

Assumption 1 of Lemma 4.19 is a necessary condition for uniqueness of the
solution. Relaxing assumption 1 implies that any vector in the affine space

Y = B+(c−Ax)+null(B)

is also a solution to the generalized least norm problem (GLN). Assumption 2 of
Lemma 4.19 ensures that (GLN) is a least norm problem and has a nontrivial so-
lution. In the case m = ny, the problem has a trivial solution f = 0. In the case
m − ny > nx, the problem generically has no solution. Assumption 3 is also re-
quired for uniqueness of the solution. It can also be relaxed, making y nonunique.
In the case of unstructured matrix, assumption 2 of Theorem 4.18 reduces to
nm < (m− r)n, cf., assumption (A) on page 115.

The generalized least norm problem (GLN) is related to the following weighted
least norm problem with a singular positive semidefinite weight matrix W

min
z

z⊤Wz subject to Dz = c,

In order to show this, consider the change of variables z̄ = T−1z, where T is a
nonsingular matrix. We obtain the equivalent problem

min
z̄

z̄⊤T⊤WT z̄ subject to DT z̄ = c.

There exists a nonsingular matrix T , such that T⊤WT =
[

Inx
0

]
. Partitioning z̄ and

D̄ := DT−1 conformably as z̄ = [x
y] and D̄ =

[
A B

]
, we obtain problem (GLN).

128 4 Approximate modeling

4.4.3 Outer minimization problem

The outer minimization problem (SLRACR) is a nonlinear least squares problem. In
order to apply standard optimization methods, however, we need to replace first the
constraint “R full row rank” with an equivalent equality constraint, e.g., RR⊤ = Im−r,
cf., (SLRAR) on page 112. This leads to the nonlinear least squares problem with
quadratic equality constraint:

minimize over R ∈ R
(m−r)×m M(R) subject to RR⊤ = Im−r. (SLRAC′

R)

(SLRAC′
R) is optimization on a Stiefel manifold, see (Absil et al, 2008), and can be

solved by the methods implemented in the Manopt package (Boumal et al, 2014).
Next, we consider an alternative penalty method. We reformulation (SLRAC′

R)
as a regularized unconstrained nonlinear least squares problem by adding the regu-
larization term γ‖RR⊤− Im−r‖2

F to the cost function

minimize over R ∈ R
(m−r)×m M(R)+ γ‖RR⊤− Im−r‖2

F. (SLRAC′′
R)

The parameter γ should be chosen “large enough” in order to enforce the constraint
RR⊤ = Im−r. As shown in the following theorem γ = ‖pIg‖2

2 is a “sufficiently large”
value for linearly structured problems.

Theorem 4.20 (Markovsky and Usevich (2013)). Let M : R(m−r)×m → R+ be a

homogeneous function, i.e., M(R) = M(T R), for any R and a nonsingular m×m

matrix T . Assume that γ satisfies γ > min{R | rank(R)=m−r} M(R). Then, the solutions

of problem (SLRAC′′
R) coincide with the solutions of (SLRAC′

R).

The value γ = maxR∈R f
M(R) always satisfies the assumption of Theorem 4.20.

In particular, for a linear structure S , it is sufficient to take γ = ‖pIg‖2
2.

Solving (SLRACR) by local minimization requires an initial approximation for
the parameter R, i.e., a suboptimal solution. Such a solution can be computed from
a heuristic that ignores the data matrix structure S and fills in the missing values
with initial estimates. Rigorous analysis of the missing values imputation question is
done in (Keshavan et al, 2010). Theorem 1.1 of Keshavan et al (2010) gives theoreti-
cal justification for the zero imputation in the case of unstructured S . The resulting
unstructured low-rank approximation problem can then be solved analytically in
terms of the singular value decomposition (lra_md on page 107).

An efficient method for evaluation of the cost function and its derivatives in the
case of mosaic-Hankel matrix structure is presented in (Usevich and Markovsky,
2014). The method for general affine structure (Markovsky and Usevich, 2013) and
the efficient methods of Usevich and Markovsky (2014) are implemented in MAT-
LAB (using Optimization Toolbox) and in C++ (using the Levenberg-Marquardt al-
gorithm (Marquardt, 1963) from the GNU Scientific Library (Galassi et al, 2017)).
Description of the software and overview of its applications is given in (Markovsky
and Usevich, 2014).

4.4 Missing data estimation 129

4.4.4 Weighted approximation

The method for structured low-rank matrix approximation and completion, pre-
sented in Sections 4.4.2 and 4.4.3, is generalized in this section to the following
weighted structured low-rank matrix approximation and completion problem:

minimize over p̂ ∈ R
np (pIg − p̂Ig)

⊤Wg(pIg − p̂Ig)

subject to rank
(
S (p̂)

)
≤ r,

(WSLRAC)

where Wg is a positive definite matrix. To see this, consider the change of variables

p′Ig
=W

1/2
g pIg and p̂′Ig

=W
1/2
g p̂Ig . (p 7→ p′)

It reduces (WSLRAC) to an equivalent unweighted problem (SLRAC). We have

S (p̂) = S0 +vec−1(S p̂), where S :=
[
vec(S1) · · · vec(Snp)

]
∈ R

mn×np . (S)

The structure S ′ of the equivalent problem is defined by the matrices S0 and

S′ =
[
vec(S′1) · · · vec(S′np

)
]
, where

S′
:,Ig

= S:,IgW
−1/2
g and S′

:,Im
= S:,Im . (S 7→ S ′)

Therefore, problem (WSLRAC) is solved by:

1. preprocessing the data p and the structure S , as in (p 7→ p′) and (S 7→ S ′),
2. solving the equivalent unweighted problem with structure parameter vector p′,

structure specification S ′, and rank specification r, and
3. postprocessing the solution p̂′, obtained in step 2, in order to obtain the solution

p̂Ig =W
−1/2
g p̂′Ig

of the original problem.

Using the transformation (p 7→ p′), (S 7→S ′) and the solution (M) of (SLRAC),
we obtain the following explicit expression for the cost function of (WSLRAC)

M(R) =
(
ḠpIg −G⊥

:,Im
vec(RS0)

)⊤
W−1

g Ḡ⊤(ḠW−1
g Ḡ⊤)−1

ḠW−1
g

(
ḠpIg −G⊥

:,Im
vec(RS0)

)
, (MW)

where Ḡ = G⊥
:,Im

G:,Ig and G is defined in (G).
In the case of a diagonal weight matrix, Wg = diag(w1, . . . ,wng), with wi > 0,

an infinite weight w j = ∞ specifies a fixed parameter value p̂ j = p j. A problem
with infinite weights is equivalent to structured low-rank approximation with fixed
parameters assigned to the constant term S0 of the structure specification. Let If be
the set of indices of the fixed structure parameters and I f its complement

If = { j ∈ {1, . . . ,np } | p̂ j = p j } and I f = { j ∈ {1, . . . ,np } | j 6∈ If }.

130 4 Approximate modeling

The equivalent problem has structure, defined by

S ′(p̂′) = S0 + ∑
i∈If

Si pi + ∑
i∈I f

Si p̂i, where p̂′ := p̂|I f
.

The estimate p̂ is recovered from p̂′ by p̂|I f
= p̂′ and p̂|If = p|If .

An interesting observation is that the structured low-rank approximation prob-
lems (SLRAC) can be solved as an equivalent weighted unstructured problem. Con-
sider an instance of problem (SLRAC), refered to as problem P1, with structure
S = S1 and an instance of problem (WSLRAC), refer to as problem P2, with un-
structured correction (S2 = vec−1, np2 = mn) and weight matrix W−1

2 = S1S1
⊤.

It can be verified by inspection that the cost functions (M) and (MW) of problems
P1 and P2, respectively, coincide. However, the mn×mn weight matrix W2 is singu-
lar (rank(W2) is equal to the number of structure parameters of problem P1, which
is less than mn). In the derivation of the cost function (MW), it is assumed that Wg is
positive definite, so that minimization of (MW) is not equivalent to problem P2.

4.5 Notes and references

Equivalence of low-rank approximation and principal component analysis

The principal component analysis method for dimensionality reduction is usually
introduced in a stochastic setting as maximization of the variance of the projected
data on a subspace. Computationally, however, the problem of finding the principal
components and the corresponding principal vectors is an eigenvalue/eigenvector
decomposition problem for the sample covariance matrix

Ψ(D) :=
[
d1 · · · dN

][
d1 · · · dN

]⊤
.

From this algorithmic point of view, the equivalence of principal component anal-
ysis and low-rank approximation problem is a basic linear algebra fact: the space
spanned by the first m principal vectors of the data matrix D coincides with the
model B̂ = span(D̂), where D̂ is a solution of a low-rank approximation problem.

Weighted low-rank approximation

Methods for solving weighted low-rank approximation problems with nonsingular
weight matrix have been considered in the literature under different names:

• Riemannian singular value decomposition (De Moor, 1993),
• maximum likelihood principal component analysis (Wentzell et al, 1997),
• weighted low-rank approximation (Manton et al, 2003), and
• weighted total least squares (Markovsky et al, 2005).

4.5 Notes and references 131

The Riemannian singular value decomposition method of De Moor (1993) re-
sembling the inverse power iteration algorithm. It has no proven convergence prop-
erties. The maximum likelihood principal component analysis methods of Schuer-
mans et al (2005); Wentzell et al (1997) are developed for applications in chemo-
metrics. They are alternating projections algorithms and can solve general weighted
low-rank approximation problems. They are globally convergent with linear conver-
gence rate. The methods may be slow when the r+ 1st and the rth singular values
of the data matrix D are close to each other. In the unweighted case, this situation
corresponds to lack of uniqueness of the solution, cf., Theorem 4.5. The conver-
gence properties of alternating projections algorithms are studied in (Kiers, 2002;
Krijnen, 2006). Manton et al (2003) treat the problem as an optimization over a
Grassman manifold and propose steepest decent and Newton type algorithms. The
least squares nature of the problem is not exploited in this work and the proposed
algorithms are not globally convergent.

Software for mosaic-Hankel structured low-rank approximation

The mosaic-Hankel matrix structure is a generalization of the block-Hankel struc-
ture. It is a block matrix, which blocks are Hankel matrices. In the context of linear
time-invariant system identification, mosaic-Hankel matrices appear when the data
consists of multiple trajectories. If all trajectories have the same number of samples
the problem can be solved via block-Hankel structured low-rank approximation,
however, the general case requires mosaic-Hankel structure.

An efficient local optimization based software package for mosaic Hankel struc-
ture is presented in (Markovsky and Usevich, 2014). In addition, the software allows
specification of a weighted 2-norm approximation criterion, fixed elements in the ap-
proximating matrix, missing elements in the data matrix, and linear constraints on
an approximating matrix’s left kernel basis. The computational method is based on
the variable projection principle and is presented in (Usevich and Markovsky, 2014).

The software is available from: http://slra.github.io/.

Nuclear norm heuristic

The nuclear norm relaxation for solving rank minimization problems (RM) was
proposed in (Fazel, 2002). It is a generalization of the ℓ1-norm heuristic from sparse
vector approximation problems to low-rank matrix approximation problems. The
CVX package is developed and maintained by Grant and Boyd (2017). A Python
version is also available (Dahl and Vandenberghe, 2010). The computational en-
gines of CVX are SDPT3 and SeDuMi. These solvers can deal with a medium-size
structured low-rank approximation problems (np < 100). An efficient interior point
method for solving (NNM), which can deal with up to 500 parameters, is presented
in (Liu and Vandenberghe, 2009). The method is implemented in Python.

132 4 Approximate modeling

System identification with missing data

There are three main approaches for identification with missing data:

• modification of the classical prediction error methods,
• methods developed in the structure low-rank approximation setting, and
• convex relaxation methods based on the nuclear norm heuristic.

The approach using the prediction error setting (Wallin and Hansson, 2014) employs
standard nonlinear local optimization methods. These methods require initial values
for the optimization variables (model parameters and missing values) and the results
depend on their closeness to a “good” locally optimal solution. Similar in spirit but
different in implementation details are the methods developed in the structure low-
rank approximation setting (Markovsky, 2013; Markovsky and Usevich, 2013).

The approach based on relaxation of the problem to a convex one by using the
nuclear norm in lieu of the rank is proposed in (Liu and Vandenberghe, 2009). Sys-
tem identification with missing data is handled by 1) completion of the missing data
using the nuclear norm heuristic (this step requires solution of a convex optimization
problem), and 2) identification of a model parameter from the completed sequence
using classical subspace identification methods. The optimization problem on the
first step involves a trade-off between the model complexity and the model accu-
racy. This trade-off is set by a user defined hyper-parameter.

Exercises

4.1 (Distance from a data point to a linear model). The 2-norm distance from a
point d ∈ R

q to a linear static model B ⊂ R
q is defined as

dist(d,B) := min
d̂∈B

‖d − d̂‖2. (dist)

1. Let image(P) be a minimal representation of B. Explain how to find dist(d,B).
Find dist

([
1
0

]
, image(

[
1
1

]
)
)
.

2. Let ker(R) be a minimal representation of B. Explain how to find dist(d,B).
3. Prove that in the linear static case, a solution d̂∗ of (dist) is always unique.
4. Prove that in the linear static case, the approximation error ∆d∗ := d − d̂∗ is

orthogonal to B. Is the converse true, i.e., is it true that if for some d̂, d − d̂ is
orthogonal to B, then d̂ = d̂∗?

4.2 (Distance from a data point to an affine model). Consider again the distance
dist(d,B) defined in (dist). In this problem, B is an affine static model, i.e., B =
B′+ c, where B′ is a linear static model and c is a fixed vector.

1. Explain how to reduce the problem of computing the distance from a point to an
affine static model to an equivalent problem of computing the distance from a
point to a linear static model (Problem 4.1).

2. Find dist
([

0
0

]
,ker(

[
1 1

]
)+
[

1
2

])
.

http://slra.github.io/

References 133

4.3 (Two-sided weighted low rank approximation).

Prove Theorem 4.12 on page 106. Using the result, write a MATLAB function that
solves the two-sided weighted low-rank approximation problem (WLRA2).

4.4 (A simple method for approximate system identification). Modify the algo-
rithm developed in Problem 3.3, so that it can be used as an approximate linear
time-invariant identification method. Assume that the lag ℓ of the system is given.

4.5 (Misfit computation using state space representation).

Given a finite sequence wd =
(
wd(1), . . . ,wd(T)

)
and an input/state/output rep-

resentation Bi/s/o(A,B,C,D) of a linear time-invariant system B, find the misfit
dist
(
wd,Bi/s/o(A,B,C,D)

))
between wd and B, defined in (misfit Lm,ℓ).

References

Absil PA, Mahony R, Sepulchre R (2008) Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press, Princeton, NJ

Beck A, Ben-Tal A (2006) A global solution for the structured total least squares
problem with block circulant matrices. SIAM J Matrix Anal Appl 27(1):238–255

Benner P, Mehrmann V, Sima V, Van Huffel S, Varga A (1999) SLICOT—a subrou-
tine library in systems and control theory. In: Applied and Computational Control,
Signal and Circuits, vol 1, Birkhauser, chap 10, pp 499–539

Boumal N, Mishra B, Absil PA, Sepulchre R (2014) Manopt, a Matlab toolbox
for optimization on manifolds. Journal of Machine Learning Research 15:1455–
1459, URL http://www.manopt.org

Chu M, Plemmons R (2003) Real-valued, low rank, circulant approximation. SIAM
J Matrix Anal Appl 24(3):645–659

Dahl J, Vandenberghe L (2010) CVXOPT: Python software for convex optimization.
URL abel.ee.ucla.edu/cvxopt

De Moor B (1993) Structured total least squares and L2 approximation problems.
Linear Algebra Appl 188–189:163–207

Fazel M (2002) Matrix rank minimization with applications. PhD thesis, Elec. Eng.
Dept., Stanford University

Fazel M, Pong TK, Sun D, Tseng P (2013) Hankel matrix rank minimization with
applications in system identification and realization. SIAM J Matrix Anal Appl
34(3):946–977

Galassi M, et al (2017) GNU scientific library reference manual. http://www.
gnu.org/software/gsl/

Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs.
In: Blondel V, Boyd S, Kimura H (eds) Recent Advances in Learning and Control,
Springer, stanford.edu/~boyd/graph_dcp.html, pp 95–110

Grant M, Boyd S (2017) CVX: Matlab software for disciplined convex program-
ming. stanford.edu/~boyd/cvx

134 4 Approximate modeling

Heij C (1989) Deterministic identification of dynamical systems, Lecture notes in
control and information sciences, vol 127. Springer

Kailath T, Sayed A (1995) Displacement structure: theory and applications. SIAM
Review 37(3):297–386

Kailath T, Sayed A (1999) Fast reliable algorithms for matrices with structure.
SIAM, Philadelphia

Keshavan R, Montanari A, Oh S (2010) Matrix completion from noisy entries. J
Mach Learn Res 11:2057–2078

Kiers H (2002) Setting up alternating least squares and iterative majorization algo-
rithms for solving various matrix optimization problems. Comput Stat Data Anal
41:157–170

Krijnen W (2006) Convergence of the sequence of parameters generated by alter-
nating least squares algorithms. Comput Stat Data Anal 51:481–489

Liu Z, Vandenberghe L (2009) Interior-point method for nuclear norm approx-
imation with application to system identification. SIAM J Matrix Anal Appl
31(3):1235–1256

Liu Z, Hansson A, Vandenberghe L (2013) Nuclear norm system identification with
missing inputs and outputs. Control Lett 62:605–612

Manton J, Mahony R, Hua Y (2003) The geometry of weighted low-rank approxi-
mations. IEEE Trans Signal Proc 51(2):500–514

Markovsky I (2012) How effective is the nuclear norm heuristic in solving data ap-
proximation problems? In: Proc. of the 16th IFAC Symposium on System Identi-
fication, Brussels, pp 316–321

Markovsky I (2013) A software package for system identification in the behavioral
setting. Control Eng Practice 21(10):1422–1436

Markovsky I, Usevich K (2013) Structured low-rank approximation with missing
data. SIAM J Matrix Anal Appl 34(2):814–830

Markovsky I, Usevich K (2014) Software for weighted structured low-rank approx-
imation. J Comput Appl Math 256:278–292

Markovsky I, Rastello M, Premoli A, Kukush A, Van Huffel S (2005) The element-
wise weighted total least squares problem. Comput Statist Data Anal 50(1):181–
209

Marquardt D (1963) An algorithm for least-squares estimation of nonlinear param-
eters. SIAM J Appl Math 11:431–441

Schuermans M, Markovsky I, Wentzell P, Van Huffel S (2005) On the equivalence
between total least squares and maximum likelihood PCA. Analytica Chimica
Acta 544(1–2):254–267

Usevich K, Markovsky I (2014) Variable projection for affinely structured low-rank
approximation in weighted 2-norms. J Comput Appl Math 272:430–448

Wallin R, Hansson A (2014) Maximum likelihood estimation of linear SISO models
subject to missing output data and missing input data. Int J Control 87(11):2354–
2364

Wentzell P, Andrews D, Hamilton D, Faber K, Kowalski B (1997) Maximum likeli-
hood principal component analysis. J Chemometrics 11:339–366

http://www.manopt.org
abel.ee.ucla.edu/cvxopt
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
stanford.edu/~boyd/graph_dcp.html
stanford.edu/~boyd/cvx

Part II

Applications and generalizations

Chapter 5

Applications

The difficult and interesting problems are defined by the

applications.

S. Wold

For applicable control engineering research, three things need

to be present: a real and pressing set of problems , intuitively

graspable theoretical approaches to design, which can be

underpinned by sound mathematics, and good interactive

software which can be used to turn designs into practical

applications.

MacFarlane (2013)

This chapter reviews applications of structured low-rank approximation for

1. model reduction,
2. approximate realization,
3. output only identification (sum-of-damped-exponentials modeling),
4. harmonic retrieval,
5. errors-in-variables system identification,
6. output error system identification,
7. finite impulse response system identification (deconvolution),
8. approximate common factor, controllability radius computation, and
9. pole placement by a low-order controller.

The problems occurring in these applications are special cases of the SLRA prob-
lem, obtained by choosing specific structure S and rank constraint r. Moreover,
the structure is of the type (S), so that the algorithm and the software, developed in
Section 4.2.3, can be used to solve the problems.

137 〈solve Problem SLRA 137〉≡ (138a 142 145a 146c 148b)
[R, ph, info] = slra(tts, par, r, [], s0);

Uses slra 116c.

In the applications reviewed, the approximation norm ‖ · ‖ is the 2-norm ‖ · ‖2.

137

138 5 Applications

5.1 Model reduction

The model reduction problem considered in this section takes as given data an im-
pulse response of a high order linear time-invariant system and aims at a reduced
order linear time-invariant system that approximates as well as possible the data.
This data-driven model reduction problem can be viewed also as an approximate
version of the realization problem or identification of an autonomous linear time-
invariant system. In the special case of a model without repeated poles, the problem
considered is the sum-of-damped-exponentials modeling problem in signal process-
ing. When the exponents are undamped, i.e., the model is marginally stable, the
problem is called harmonic retrieval.

5.1.1 Approximate realization

Define the 2-norm ‖∆H‖2 of a matrix-valued signal ∆H ∈ (Rp×m)T+1 as

‖∆H‖2 :=
√

∑T
t=0 ‖∆H(t)‖2

F.

Acting on a finite sequence
(
H(0), . . . ,H(T)

)
, the shift operator σ removes H(0).

Problem 5.1 (Approximate realization). Given a matrix valued finite time series
Hd ∈ (Rp×m)T and a complexity specification ℓ, find an optimal approximate model
for Hd of a bounded complexity (m, ℓ), such that

minimize over Ĥ and B̂ ‖Hd − Ĥ‖2

subject to Ĥ is the impulse response of B̂ ∈ L m+p
m,ℓ .

138a 〈2-norm optimal approximate realization 138a〉≡
function [sysh, hh, info] = h2ss_opt(h, ell)

〈reshape H and define m, p, T 75〉
〈approximate realization structure 138b〉
〈solve Problem SLRA 137〉
〈 p̂ 7→ Ĥ 139a〉, 〈Ĥ 7→ B̂ 139b〉

Defines:
h2ss_opt, used in chunks 140 and 141b.

Problem 5.1 is equivalent to Problem SLRA, with

• Hankel structured data matrix S (p) = Hℓ+1(σHd) and
• rank reduction by the number of outputs p.

138b 〈approximate realization structure 138b〉≡ (138a)
par = vec(h(:, :, 2:end)); s0 = []; r = p * ell;

tts = blkhank(reshape(1:length(par), p, m, T - 1), ell + 1);

Uses blkhank 26a.

5.1 Model reduction 139

The statement follows from the basic fact of realization theory (see Theorem 2.5)

Ĥ is the impulse response of B̂ ∈ Lm,ℓ ⇐⇒ rank
(
Hℓ+1(σĤ)

)
≤ pℓ.

The optimal approximate model B̂∗ does not depend on the shape of the Hankel
matrix as long as the number of rows and the number of columns are sufficiently
large: at least p(ℓ+ 1) rows and at least m(ℓ+ 1) columns. The variable projection
method, however, is not applicable for solving low-rank approximation problem
with HL(σHd), with L > ℓ+1 due to violation of assumption A (see page 115).

The mapping p̂ 7→ Ĥ from the solution p̂ of the structured low-rank approxi-
mation problem to the optimal approximation Ĥ of the noisy impulse response H

is reshaping the vector p̂ as a m× p× T tensor hh, representing the sequence
Ĥ(1), . . . , Ĥ(T −1) and setting Ĥ(0) = H(0) (since D̂ = H(0)).

139a 〈 p̂ 7→ Ĥ 139a〉≡ (138a)
hh = zeros(p, m, T); hh(:, :, 1) = h(:, :, 1);

hh(:, :, 2:end) = reshape(ph(:), p, m, T - 1);

The mapping Ĥ 7→ B̂ to the optimal model is the realization problem, i.e., the
2-norm (locally) optimal realization B̂∗ is obtained by exact realization of the ap-
proximation Ĥ, computed by the structured low-rank approximation method.

139b 〈Ĥ 7→ B̂ 139b〉≡ (138a)
sysh = h2ss(hh, l * p);

Uses h2ss 74c.

Due to the rank constraint of the Hankel matrix Hℓ+1(σĤ) in the structured low-
rank approximation problem, by construction, the approximation Ĥ of H has an
exact realization in the model class L m+p

m,ℓ .

Note 5.2 (Using the R̂ parameter of the structured low-rank approximation solver to

obtain the model B̂). In the numerical solution of the structured low-rank approxi-
mation problem, the kernel representation (rankR) of the rank constraint is used (see
page 112). The parameter R, computed by the solver, gives a kernel representation of
the optimal approximate model B̂∗. The kernel representation can subsequently be
converted into a state space representation. This gives an alternative (more efficient)
way of implementing the function h2ss_opt to the one using system realization
(Ĥ 7→ B̂). The same note applies to the other problems, reviewed in the chapter.

Example 5.3. The following script verifies that the local optimization based method
h2ss_opt improves the suboptimal approximation computed by Kung’s method
h2ss. The data is a noisy impulse response of a random stable linear time-invariant
system. The number of inputs m and outputs p, the order n of the system, the number
of data points T, and the noise standard deviation s are simulation parameters.

139c 〈Test h2ss_opt 139c〉≡ 140a⊲
〈initialize the random number generator 25〉
n = p * l; sys0 = drss(n, p, m);

h0 = reshape(shiftdim(impulse(sys0, T), 1), p, m, T);

h = h0 + s * randn(size(h0));

140 5 Applications

Defines:
test_h2ss_opt, used in chunk 140b.

The solutions, obtained by the unstructured and Hankel structured low-rank approx-
imation methods, are computed and the relative approximation errors are printed.

140a 〈Test h2ss_opt 139c〉+≡ ⊳139c
[sysh, hh] = h2ss(h, n); norm(h(:) - hh(:)) / norm(h(:))

[sysh_, hh_] = h2ss_opt(h, l); norm(h(:) - hh_(:)) / norm(h(:))

Uses h2ss 74c and h2ss_opt 138a.

The optimization based method improves the suboptimal results of the singular
value decomposition based method at the price of extra computation, a process ref-
ered to as iterative refinement of the solution.

140b 〈Compare h2ss and h2ss_opt 140b〉≡
m = 2; p = 3; l = 1; T = 25; s = 0.2; test_h2ss_opt

Uses test_h2ss_opt 139c.

 0.6231 for h2ss and 0.5796 for h2ss_opt

5.1.2 Model reduction

The finite time H2 norm ‖∆B‖T of a linear time-invariant system ∆B is defined
as the 2-norm of the sequence of its first T Markov parameters, i.e., if ∆H is the
impulse response of ∆B, ‖∆B‖T := ‖∆H‖2.

Problem 5.4 (Finite time H2 model reduction). Given a linear time-invariant sys-
tem Bd ∈ L q

m,ℓ and a complexity specification ℓred < ℓ, find an optimal approxima-
tion of Bd with bounded complexity (m, ℓred), such that

minimize over B̂ ‖Bd − B̂‖T subject to B̂ ∈ L q

m,ℓred
.

Problem 5.4 is equivalent to Problem SLRA with

• Hankel structured data matrix S (p) = Hℓ+1(σHd), where Hd is the impulse
response of Bd and

• rank reduction by the number of outputs p := q−m,

Therefore, finite time H2 model reduction is equivalent to the approximate real-
ization problem with Hd being the impulse response of Bd. In practice, Bd need
not be linear time-invariant system since in the model reduction problem only the
knowledge of its impulse response Hd is used.

140c 〈Finite time H2 model reduction 140c〉≡
function [sysh, hh, info] = mod_red(sys, T, lred)

[sysh, hh, info] = h2ss_opt(shiftdim(impulse(sys, T), 1), lred);

Uses h2ss_opt 138a.

5.1 Model reduction 141

5.1.3 Output only identification / autonomous system identification

Realization of an impulse response is closely related to exact identification of an
autonomous system. To show this, let Bi/s/o(A,b,C,d) be a realization of y. Then
the response of the autonomous system Bss(A,C) to initial condition x(0) = b is y.

141a 〈impulse response realization 7→ autonomous system realization 141a〉≡ (141b 142)
xinih = sysh.b; sysh = ss(sysh.a, [], sysh.c, [], -1);

This link gives yet another problem that is equivalent to the approximate realization.

Problem 5.5 (Output only identification / autonomous system identification).

Given a signal yd ∈ (Rp)T and a complexity specification ℓ, find an optimal approx-
imate model for yd of bounded complexity (0, ℓ), such that

minimize over B̂ and ŷ ‖yd − ŷ‖2

subject to ŷ ∈ B̂|T and B̂ ∈ L p

0,ℓ.

Problem 5.5 is equivalent to Problem SLRA with

• Hankel structured data matrix S (p) = Hℓ+1(yd) and
• rank reduction by the number of outputs p.

Note 5.6 (Sum-of-damped-exponetials modeling). Excluding the cases of multiple
poles, the model class of autonomous linear time-invariant systems L p

0,ℓ is equiva-
lent to the sum-of-damped-exponentials model class, i.e., signals y

y(t) = ∑ℓ
k=1 αkeβktei(ωkt+φk), (i =

√
−1).

The parameters {αk,βk,ωk,φk }ℓj=1 of the sum-of-damped-exponentials model have
the following meaning: αk are amplitudes, βk damping factors, ωk frequencies, and
φk initial phases of the k-th exponential signal.

141b 〈Output only identification 141b〉≡
function [sysh, yh, xinih, info] = ident_aut(y, l)

[sysh, yh, info] = h2ss_opt(y, l);

〈impulse response realization 7→ autonomous system realization 141a〉
Uses h2ss_opt 138a.

5.1.4 Harmonic retrieval

The aim of the harmonic retrieval problem is to approximate the data by a sum of
sines. From a system identification point of view, harmonic retrieval aims to model
the data by a marginally stable linear time-invariant autonomous system.

142 5 Applications

Problem 5.7 (Harmonic retrieval). Given a signal yd ∈ (Rp)T and a complex-
ity specification ℓ, find an optimal approximate model for yd that is in the model
class L p

0,ℓ and is marginally stable, i.e.,

minimize over B̂ and ŷ ‖yd − ŷ‖2

subject to ŷ ∈ B̂|T , B̂ ∈ L p

0,ℓ, and B̂ is marginally stable.

Due to the stability constraint, Problem 5.7 is not a special case of prob-
lem SLRA. In the univariate case p = 1, however, a necessary condition for an
autonomous model B to be marginally stable is that the parameter R of a kernel
representation ker

(
R(σ)

)
of B is either palindromic,

R(z) :=
ℓ

∑
i=0

ziRi is palindromic : ⇐⇒ Rℓ−i = Ri, for i = 0,1, . . . , ℓ

or antipalindromic (Rℓ−i = −Ri). The antipalindromic case is nongeneric in the
space of the marginally stable systems, so as relaxation of the stability constraint,
we can use the constraint that the kernel representation is palindromic (Markovsky
and Rao, 2008).

Problem 5.8 (Harmonic retrieval, relaxed version, scalar case). Given a signal
yd ∈ (R)T and a complexity specification ℓ, find an optimal approximate model
for yd that is in the model class L 1

0,ℓ and has a palindromic kernel representation,

minimize over B̂ and ŷ ‖yd − ŷ‖2

subject to ŷ ∈ B̂|T , B̂ ∈ L 1
0,ℓ and ker(R̂) = B̂,with R palindromic.

142 〈Harmonic retrieval 142〉≡
function [sysh, yh, xinih, info] = harmonic_retrieval(y, l)

〈harmonic retrieval structure 143a〉
〈solve Problem SLRA 137〉, yh = ph; sysh = h2ss(yh, n);

〈impulse response realization 7→ autonomous system realization 141a〉
Defines:
harmonic_retrieval, used in chunk 143b.

Uses h2ss 74c.

The constraint “R palindromic” can be expressed as a structural constraint on the
data matrix, which reduces the relaxed harmonic retrieval problem to the structured
low-rank approximation problem. Problem 5.8 is equivalent to Problem SLRA with

• structured data matrix composed of a Hankel matrix next to a Toeplitz matrix:

S (p) =
[
Hℓ+1(y) lHℓ+1(y)

]
,

where

5.1 Model reduction 143

lHℓ+1(y) :=




yℓ+1 yℓ+2 · · · yT

...
...

...
y2 y3 . . . yT−ℓ+1
y1 y2 . . . yT−ℓ


 ,

• rank reduction by one.

143a 〈harmonic retrieval structure 143a〉≡ (142)
par = y(:); np = length(par); n = l * 1; r = n; s0 = [];

tts = [blkhank(1:np, n + 1) flipud(blkhank(1:np, n + 1))];

Uses blkhank 26a.

The statement follows from the equivalence

ŷ ∈ B̂|T , B̂ ∈ L 1
0,ℓ and ker(R̂) = B̂ is palindromic

⇐⇒ rank
([

Hℓ+1(ŷ) lHℓ+1(ŷ)
])

≤ ℓ.

In order to show it, let ker(R), with R(z) = ∑ℓ
i=0 ziRi full row rank, be a kernel

representation of B ∈ L 1
0,ℓ. Then ŷ ∈ B̂|T is equivalent to

[
R0 R1 · · · Rℓ

]
Hℓ+1(ŷ) = 0.

If, in addition, R is palindromic, then
[
Rℓ · · · R1 R0

]
Hℓ+1(ŷ) = 0 ⇐⇒

[
R0 R1 · · · Rℓ

]
lHℓ+1(ŷ) = 0.

We have that [
R0 R1 · · · Rℓ

][
Hℓ+1(ŷ) lHℓ+1(ŷ)

]
= 0. (∗)

which is equivalent to

rank
([

Hℓ+1(ŷ) lHℓ+1(ŷ)
])

≤ ℓ.

Conversely, (∗) implies ŷ ∈ B̂|T and R palindromic.

Example 5.9. The data is generated as a sum of random sinusoids with additive
noise. The number hn of sinusoids, the number of samples T, and the noise standard
deviation s are simulation parameters.

143b 〈Test harmonic_retrieval 143b〉≡
〈initialize the random number generator 25〉
t = 1:T; f = 1 * pi * rand(hn, 1); phi = 2 * pi * rand(hn, 1);

y0 = sum(sin(f * t + phi(:, ones(1, T))));

yt = randn(size(y0)); y = y0 + s * norm(y0) * yt / norm(yt);

[sysh, yh, xinih, info] = harmonic_retrieval(y, hn * 2);

Defines:
test_harmonic_retrieval, used in chunk 144.

Uses harmonic_retrieval 142.

144 5 Applications

Figure 5.1 shows the true signal and the estimate obtained with harmonic_retrieval
in the following simulation example:

144 〈Example of harmonic retrieval 144〉≡
clear all, T = 50; hn = 2; s = 0.015; test_harmonic_retrieval

Uses test_harmonic_retrieval 143b.

10 20 30 40 50
−2

−1

0

1

2

t

y d
,ŷ

Fig. 5.1: In a simulation example, imposing only the palindromic constraint results
in a marginally stable model that gives a good approximation of the data (solid black
line — true system’s trajectory y0 and dashed blue line — best approximation ŷ).

5.2 System identification

In Section 5.1, the given data is an impulse or a free response and the link between
the applications and the structured low-rank approximation problem is given by
realization theory. In this section, the data is a general trajectory of the system and
the link to Problem SLRA is given by the following lemma.

Lemma 5.10. The signal w is a trajectory of a linear time-invariant system of com-

plexity bounded by (m, ℓ), i.e.,

w|T−ℓ ∈ B|T−ℓ and B ∈ L q

m,ℓ

if and only if

rank
(
Hℓ+1(w)

)
≤ m(ℓ+1)+(q−m)ℓ.

The problems considered are errors-in-variables system identification, output error
identification, and identification of a finite impulse response system.

5.2 System identification 145

5.2.1 Errors-in-variables identification

In errors-in-variables data modeling problems, the observed variables are a priori
known (or assumed) to be noisy. This prior knowledge is used to correct the data,
so that the corrected data is consistent with a model in the model class and the
correction is as small as possible. The resulting problem is misfit minimization.

Problem 5.11 (Errors-in-variables identification). Given T samples, q variables,
vector signal wd ∈ (Rq)T and a model complexity (m, ℓ),

minimize over B̂ and ŵ ‖wd − ŵ‖2

subject to ŵ ∈ B̂|T and B̂ ∈ L q

m,ℓ.

145a 〈Errors-in-variables identification 145a〉≡
function [sysh, wh, info] = ident_eiv(w, m, l)

〈reshape w and define q, T 27a〉
〈errors-in-variables identification structure 145b〉
〈solve Problem SLRA 137〉, wh = reshape(ph(:), q, T);

〈exact identification: ŵ 7→ B̂ 145c〉
Defines:
ident_eiv, used in chunk 146a.

Problem 5.11 is equivalent to Problem SLRA with

• Hankel structured data matrix S (p) = Hℓ+1(wd) and
• rank reduction with the number of outputs p.

145b 〈errors-in-variables identification structure 145b〉≡ (145a)
par = w(:); np = length(par); n = l * 1;

p = q - m; r = m * (l + 1) + n;

tts = blkhank(reshape(1:np, q, T), l + 1); s0 = [];

Uses blkhank 26a.

The identified system can be recovered from the optimal approximating trajec-
tory ŵ by exact identification.

145c 〈exact identification: ŵ 7→ B̂ 145c〉≡ (145a 146c)
sysh = w2h2ss(wh, m, n);

Uses w2h2ss 78c.

Note 5.12 (Using the R̂ parameter of the structured low-rank approximation solver

to obtain the model B̂). The parameter R̂, computed by the solver, gives a kernel
representation of the optimal approximate model. The kernel representation can sub-
sequently be converted to a state space representation. This gives an alternative way
of implementing the function ident_eiv to the one using exact identification.

Example 5.13. In this example, the approximate model computed by the function
ident_eiv is compared with the model obtained by the function w2h2ss. Al-
though w2h2ss is an exact identification method, it can be used as a heuristic for

146 5 Applications

approximate identification. The data is generated in the errors-in-variables setup.
The true system is a random single-input single-output system.

146a 〈Test ident_eiv 146a〉≡
〈initialize the random number generator 25〉
m = 1; p = 1; n = p * l; sys0 = drss(n, p, m);

xini0 = rand(n, 1); u0 = rand(T, m);

y0 = lsim(sys0, u0, 1:T, xini0);

w = [u0’; y0’] + s * randn(m + p, T);

sys = w2h2ss(w, m, n); 〈(TF) 7→ P(z) 240c〉 misfit_siso(w, P)

[sysh, wh, info] = ident_eiv(w, m, l); info.M

Defines:
test_ident_eiv, used in chunk 146b.

Uses ident_eiv 145a, misfit_siso 117b, and w2h2ss 78c.

In a particular example
146b 〈Compare w2h2ss and ident_eiv 146b〉≡

l = 4; T = 30; s = 0.1; test_ident_eiv

Uses test_ident_eiv 146a.

the obtained results are misfit 1.2113 for w2h2ss and 0.2701 for ident_eiv.

5.2.2 Output error identification

In the errors-in-variables setting, using an input-output partitioning of the variables,
both the input and the output are noisy. In some applications, however, the input is
not measured; it is designed by the user. Then, it is natural to assume that the input
is noise free. This leads to the output error identification problem.

Problem 5.14 (Output error identification). Given a signal yd ∈ (Rp)T with an
input/output partitioning w = [u

y], dim(u) = m, and a complexity specification ℓ, find
an optimal approximate model for wd of a bounded complexity (m, ℓ), such that

minimize over B̂ and ŷ ‖yd − ŷ‖2

subject to (ud, ŷ) ∈ B̂|T and B̂ ∈ L q

m,ℓ.

146c 〈Output error identification 146c〉≡
function [sysh, wh, info] = ident_oe(w, m, l)

〈reshape w and define q, T 27a〉
〈output error identification structure 147a〉
〈solve Problem SLRA 137〉, wh = [w(1:m, :); reshape(ph(:), p, T)];

〈exact identification: ŵ 7→ B̂ 145c〉
Defines:
ident_oe, used in chunk 147b.

Output error identification is a limiting case of errors-in-variables identification
when the noise variance tends to zero. Alternatively, output error identification is a
special case of ARMAX system identification when the noise is not modeled (the
stochastic part H(z), see Section 2.3, is the identity).

5.2 System identification 147

As shown next, Problem 5.14 is equivalent to Problem SLRA with

• data matrix S (p) =
[

Hℓ+1(ud)
Hℓ+1(yd)

]
has a fixed block and a Hankel block,

• rank reduction by the number of outputs p.

147a 〈output error identification structure 147a〉≡ (146c)
par = vec(w((m + 1):end, :)); np = length(par); p = q - m;

j = T - l; n = l * p; r = m * (l + 1) + n;

s0 = [blkhank(w(1:m, :), l + 1); zeros((l + 1) * p, j)];

tts = [zeros((l + 1) * m, j);

blkhank(reshape(1:np, p, T), l + 1)];

Uses blkhank 26a.

The statement is based on a corollary of Lemma 5.10:

[ud
ŷ

]
∈ B̂|T and B̂ ∈ Lm,ℓ ⇐⇒ rank

([
Hℓ+1(ud)
Hℓ+1(ŷ)

])
≤ qℓ+m.

Example 5.15. This example is analogous to the example of the errors-in-variables
identification method. The approximate model obtained with the function w2h2ss
is compared with the approximate model obtained with ident_oe. In this case,
the data is generated in the output error setting, i.e., the input is exact and the out-
put is noisy. In this simulation setup we expect that the optimization based method
ident_oe improves the result obtained with the subspace based method w2h2ss.

147b 〈Test ident_oe 147b〉≡
〈initialize the random number generator 25〉
m = 1; p = 1; n = l * p; sys0 = drss(n, p, m);

xini0 = rand(n, 1);

u0 = rand(T, m); y0 = lsim(sys0, u0, 1:T, xini0);

w = [u0’; y0’] + s * [zeros(m, T); randn(p, T)];

sys = w2h2ss(w, m, n); 〈(TF) 7→ P(z) 240c〉 misfit_siso(w, P)

[sysh, wh, info] = ident_oe(w, m, l); info.M

Defines:
test_ident_oe, used in chunk 147c.

Uses ident_oe 146c, misfit_siso 117b, and w2h2ss 78c.

In the following simulation example
147c 〈Example of output error identification 147c〉≡

l = 4; T = 30; s = 0.1; test_ident_oe

Uses test_ident_oe 147b.

w2h2ss achieves misfit 1.0175 and ident_oe achieves misfit 0.2331.

5.2.3 Finite impulse response system identification

Let FIRm,ℓ be the model class of finite impulse response linear time-invariant sys-
tems with m inputs and lag at most ℓ, i.e.,

FIRm,ℓ := {B ∈ Lm,ℓ | B has a finite impulse response}.

148 5 Applications

Identification of a finite impulse response model in the output error setting leads to
the ordinary linear least squares problem

[
Ĥ(0) Ĥ(1) · · · Ĥ(ℓ)

]
Hℓ+1(ud) =

[
yd(1) · · · yd(T − ℓ)

]
.

148a 〈Output error finite impulse response identification 148a〉≡
function [hh, wh] = ident_fit_oe(w, m, l)

〈reshape w and define q, T 27a〉
〈Finite impulse response identification structure 149〉
D = par(tts);

hh_ = D(((m * (l + 1)) + 1):end, :) / D(1:(m * (l + 1)), :);

hh = reshape(hh_, p, m, l + 1); hh = hh(:, :, end:-1:1);

uh = w(1:m, :); yh = [hh_ * D(1:(m * (l + 1)), :) zeros(p, l)];

wh = [uh; yh];

Defines:
ident_fir_oe, never used.

Next, we define the finite impulse response identification problem in the errors-
in-variables setting.

Problem 5.16 (Errors-in-variables finite impulse response identification). Given
a signal yd ∈ (Rp)T with an input/output partition w = [u

y], with dim(u) = m, and
a complexity specification ℓ, find an optimal approximate finite impulse response
model for wd of bounded complexity (m, ℓ), such that

minimize over B̂ and ŵ ‖wd − ŵ‖2

subject to ŵ ∈ B̂|T and B̂ ∈ FIRm,ℓ.

148b 〈Errors-in-variables finite impulse response identification 148b〉≡
function [hh, wh, info] = ident_fir_eiv(w, m, l)

〈reshape w and define q, T 27a〉
〈Finite impulse response identification structure 149〉
〈solve Problem SLRA 137〉, hh = rio2x(R)’;

hh = reshape(hh, p, m, l + 1);

hh = hh(:, :, end:-1:1);

uh = reshape(ph(1:(T * m)), m, T);

yh = reshape(ph(((T * m) + 1):end), p, T - l);

wh = [uh; [yh zeros(p, l)]];

Defines:
ident_fir_eiv, never used.

Uses rio2x 43b.

Problem 5.16 is equivalent to Problem SLRA with

• data matrix

S (p) =

[
Hℓ+1(ud)[

yd(1) · · · yd(T − ℓ)
]
]
,

composed of a fixed block and a Hankel structured block and
• rank reduction by the number of outputs p.

5.3 Approximate common factor of two polynomials 149

149 〈Finite impulse response identification structure 149〉≡ (148)
p = q - m; r = (l + 1) * m;

par = vec([w(1:m, :), w((m + 1):end, 1:(T - l))]); s0 = [];

tts = [blkhank((1:(T * m)), l + 1);

reshape(T * m + (1:((T - l) * p)), p, T - l)];

Uses blkhank 26a.

The statement follows from the equivalence

ŵ|T−ℓ ∈ B|T−ℓ and B̂ ∈ FIRm,ℓ

⇐⇒ rank
([

Hℓ+1(û)[
ŷ(1) · · · ŷ(T − ℓ)

]
])

≤ m(ℓ+1).

In order to show it, let H =
(
H(0),H(1), . . . ,H(ℓ),0,0, . . .

)
. be the impulse response

of B̂ ∈ FIRm,ℓ. The signal ŵ =
[

û
ŷ

]
is a trajectory of B if and only if

[
H(ℓ) · · · H(1) H(0)

]
Hℓ+1(û) =

[
ŷ(1) · · · ŷ(T − ℓ)

]
.

Equivalently, ŵ =
[

û
ŷ

]
is a trajectory of B if and only if

[
H(ℓ) · · · H(1) H(0) −Ip

][Hℓ+1(û)[
ŷ(1) · · · ŷ(T − ℓ)

]
]
= 0,

which implies that,

rank
([

Hℓ+1(û)[
ŷ(1) · · · ŷ(T − ℓ)

]
])

≤ m(ℓ+1).

For exact data, i.e., assuming that

yd(t) = (H ⋆ud)(t) :=
ℓ

∑
τ=0

H(τ)ud(t − τ)

the finite impulse response identification problem is equivalent to the deconvolution
problem: Given the signals ud and yd := H ⋆ ud, find the signal H. For noisy data,
the finite impulse response identification problem can be viewed as an approximate

deconvolution problem. The approximation is in the sense of finding the nearest
signals û and ŷ to the given ones ud and yd, such that ŷ := Ĥ ⋆ û.

5.3 Approximate common factor of two polynomials

Section 5.3.1 defines the approximate version of the greatest common divisor prob-
lem, when the given polynomials are co-prime and an approximate common factor
of a specified degree d is desired. Section 5.3.2 develops a solution method based

150 5 Applications

on low-rank approximation. An alternative method that optimizes directly over the
common factor is developed in Section 5.3.3. Section 5.3.4 show an application of
the approximate common factor computation problem for computing the distance
of a given linear time-invariant system to the set of uncontrollable systems.

5.3.1 Problem formulation

Since (n+1)-dimensional vectors correspond to degree-n polynomials

col(p0, p1, . . . , pn) ∈ R
n+1 ↔ p(z) = p0 + p1z+ · · ·+ pnzn ∈ R[z],

with some abuse of notation, we refer to p as both the vector and the polynomial.
The polynomials p and p̂ of degree n are “close” to each other if the distance

dist
(

p, p̂
)

:= ‖p− p̂‖2 (dist)

is “small”, i.e., if the norm of the error ∆ p := p− p̂ is small. (dist) may not be an
appropriate distance measure in applications where the polynomial roots rather than
coefficients are of primary interest. Polynomial roots might be sensitive (especially
for high order polynomials) to perturbations in the coefficients, so that closeness of
coefficients does not necessarily imply closeness of the roots. Using (dist), however,
simplifies the solution of the approximate common factor problem defined next.

Problem 5.17 (Approximate common factor). Given polynomials D = { p,q}, of
degree n, and a natural number d, find polynomials D̂ = { p̂, q̂} that have a common
factor c of degree d and minimize the approximation error

dist(D ,D̂) :=
√

dist2(p, p̂)+dist2(q, q̂).

The polynomial c is an optimal approximate common factor of p and q.

Note 5.18 (Connection to data modeling). As in the data modeling problems, we
denote with D the given data (a pair of polynomials) and with D̂ the approximation
of the data. The equivalent of a “model” in Problem 5.17 is the common factor c.
The equivalent of “model complexity”, however, is not the degree d of the common
factor but n−d. Indeed, the trivial case of co-prime polynomials (d= 0) corresponds
to the highest complexity “model”.

Note 5.19 (Common factor certificate). The object of interest in solving Prob-
lem 5.17 is the approximate common factor c. The approximating polynomials p̂

and q̂ are auxiliary variables introduced for the purpose of defining c. They serve,
however, as a certificate that the obtained polynomial c is a common factor of nearby
polynomials to the given polynomials p and q. Indeed, with given p̂ and q̂ the cost
function dist(D ,D̂) can be directly evaluated.

5.3 Approximate common factor of two polynomials 151

5.3.2 Low-rank approximation of the Sylvester matrix

As shown in Section 1.3.3, Problem 5.17 can be restated as an equivalent Sylvester
structured low-rank approximation. Note, however, that the rank reduction is equal
to the degree d of the common factor. Then, for d> 1, the variable projection method
developed in Section 4.2.3 can not be used to solve the Sylvester structured low-rank
approximation problem because assumption (A) (see page 115) is not satisfied. This
problem is circumvented in the following theorem by using a reduced Sylvester

matrix, in which case the necessary rank reduction is one.

Proposition 5.20 The polynomials p and q have a common factor of degree d if and

only if the reduced Sylvester matrix

Rd(p,q) =




p0 q0

p1 p0 q1 q0
... p1

. . .
... q1

. . .

pn
...

. . . p0 qn
...

. . . q0

pn p1 qn q1
. . .

...
. . .

...
pn qn




∈ R
(2n−d+1)×(2n−2d+2) (Rd)

is rank deficient.

151 〈Reduced Sylvester matrix constructor 151〉≡
function S = red_sylv(p, q, d)

n = length(p) - 1;

S = [blktoep(p, n - d + 1)’ blktoep(q, n - d + 1)’];

Defines:
red_sylv, used in chunk 247a.

Uses blktoep 117a.

Proposition 5.20 shows that Problem 5.17 is equivalent to the structured low-rank
approximation problem

minimize over p̂, q̂ ∈ R
n+1

∥∥∥∥
[

p

q

]
−
[

p̂

q̂

]∥∥∥∥
subject to rank

(
Rd(p̂, q̂)

)
= 2n−2d+1

(ACF-Rd)

with rank reduction 1 (rather than d as in case of using the full Sylvester matrix R).

Note 5.21. The approximate common factor c of p and q is not explicitly computed
in (ACF-Rd), however, it can be found from p̂ and q̂ by finding the greatest common
factor of p̂ and q̂. Note that this step does not involve an approximation.

Problem (ACF-Rd) is equivalent to Problem SLRA with

• reduced Sylvester data matrix S (p) = Rd(p,q) and

152 5 Applications

• rank reduction by one.

Using Theorem 5.20, in Exercise 5.2, you will develop a method for approximate
common factor computation that is based on the slra function.

Ignoring the Sylvester structure constraint in (ACF-Rd) results in a suboptimal
solution method, based on unstructured low-rank approximation

minimize over D̂ and z

∥∥∥Rd(p,q)− D̂

∥∥∥
2

F

subject to D̂z = 0 and z⊤z = 1.
(ACF-LRA)

From the proof of Proposition 5.20 (see page 264), we have that

z :=
[

v

−u

]
,

where u and v are such that p̂ = uc and q̂ = vc.
Then, we find c by solving the system of equations (see Exercise 5.1)

[
p

q

]
=

[
T ⊤
d+1(u)

T ⊤
d+1(v)

]
c, ((u,v) 7→ c)

where Tn(c) is the upper triangular Toeplitz matrix (T), defined on page 117. Note,
however, that ((u,v) 7→ c) is an overdetermined system of equations, so that gener-
ically it has no solution. We solve it approximately in the least squares sense. This
gives us the two-step Algorithm 7 for computing a suboptimal initial approxima-
tion. The first step is an unstructured low-rank approximation for the computation
of z and the second step is a least squares approximation for the computation of c.

Algorithm 7 Suboptimal approximate common factor computation.
Input: Polynomials p and q and a positive integer d.
1: Solve the unstructured low-rank approximation problem (ACF-LRA).
2: Let [v

−u] := z, where u,v ∈ R
n−d+1.

3: Solve the least squares problem ((u,v) 7→ c).
Output: The solution c of the least squares problem.

5.3.3 Equivalent optimization problem

By definition, the polynomial c is a common factor of p̂ and q̂ if there are polyno-
mials u and v, such that p̂ = uc and q̂ = vc. Using the auxiliary variables u and v,
Problem 5.17 becomes

5.3 Approximate common factor of two polynomials 153

minimize over p̂, q̂, u, v, c

∥∥∥∥
[

p

q

]
−
[

p̂

q̂

]∥∥∥∥
subject to p̂ = uc and q̂ = vc.

(ACF)

As in problems related to data modeling, the constraint of (ACF) is bilinear in the
optimization variables. Using the bilinear structure, we eliminate the optimization
variables p̂, q̂, u, and v. This gives an equivalent optimization problem over c only.

Theorem 5.22. The optimization problem (ACF) is equivalent to

minimize over c0, . . . ,cd−1 ∈ R M(c), (ACF’)

where

M(c) :=

√
trace

([
p q

]⊤(
I −Tn+1(c)

(
T ⊤
n+1(c)Tn+1(c)

)−1
T ⊤
n+1(c)

)[
p q

])
.

The value of M(c) = dist(D ,D̂) is the approximation errors in taking c as an
approximate common factor of p and q. The equivalent problem (ACF’) is a non-
linear least squares problem and is solved by standard local optimization methods,
see Algorithm 8. Optionally, the “certificate” p̂ and q̂ for c being an approximate
common factor of p and q with approximation error M(c) is computed.

Algorithm 8 Optimal approximate common factor computation.
Input: Polynomials p and q and a positive integer d.
1: Compute an initial approximation cini ∈ R

d+1 using Algorithm 7.
2: Solve (ACF’) using a standard local optimization method.
3: if p̂ and q̂ are required then

4: Solve
[
p q

]
= Tn−d+1(c)

[
u v

]
for u and v. {c 7→ (u,v)}

5: Define p̂ = Td+1(u)c and q̂ = Td+1(v)c. {(u,v) 7→ (p̂, q̂)}
6: end if

Output: The approximate common factor c ∈ R
d+1 and the approximating polynomials p̂ and q̂.

5.3.4 Distance to uncontrollability

As an application of the approximate common factor computation in systems and
control, next, we consider the distance to uncontrollability problem. A state space
representation Bi/s/o(A,B,C,D) of a linear time-invariant system B is state control-

lable if and only if the controllability matrix C (A,B) is full rank. Therefore, the
question of whether a given state space representation is state controllable is a rank
test problem for the structured matrix C (A,B). Arbitrary small perturbations of the
system’s parameters, however, can switch the controllability property. This issue is
addressed by the notion of distance to uncontrollability, which is quantitative rather

154 5 Applications

than qualitative measure of controllability. A quantitative measure for the distance
of C (A,B) to rank deficiency is the size of the smallest (∆A,∆B), such that

C (Â, B̂) := C (A,B)+C (∆A,∆B)

is rank deficient. Paige (1981) defined the distance to uncontrollability as

d′
ctrb(A,B) :=minimize over Â, B̂

∥∥∥
[
A B

]
−
[
Â B̂

]∥∥∥
F

subject to (Â, B̂) is uncontrollable.

The measure d′
ctrb(A,B), however, is not invariant of the state space representa-

tion because it depends on the choice of basis. We resolve this issue in the behavioral
setting, where controllability is defined as a property of the system rather then as a
property of a particular representation.

Recall the definition of controllability in the behavioral setting, given on page 49.
Checking the controllability property in practice is done by performing a numerical
test on the parameters of the system’s representation. In the case of a single-input
single-output system, defined by an input/output representation B = Bi/o

(
p,q
)
, B

is controllable if and only if p and q are co-prime.

Theorem 5.23 (Polderman and Willems (1998), Theorem 5.2.11). Consider the

polynomials p and q and let deg(p)≥ deg(q). The system Bi/o(p,q) is controllable

if and only if p and q are co-prime.

Let Lctrb be the set of uncontrollable linear time-invariant systems and

dist
(
Bi/o(p,q),Bi/o(p̂, q̂)

)
:=

∥∥∥∥
[

q

p

]
−
[

q̂

p̂

]∥∥∥∥ . (dist)

In order to avoid the nonuniqueness of the parameters (p,q) in Bi/o(p,q), without
loss of generality, we assume in the definition of (dist) that p and p̂ are monic.

The distance to uncontrollability in the behavioral setting is defined as follows.

Problem 5.24. Given a controllable system Bi/o(p,q), find

dctrb(B) := min
B̂∈Lctrb

dist(B,B̂).

We refer to dctrb(B) as the controllability radius. The problem of computing
dctrb(B) is a special case of the approximate common factor problem 5.17, when
d= 1. Algorithm 8, then, solves a univariate optimization.

5.4 Pole placement by a low-order controller

Consider the single-input single-output feedback control system:

5.4 Pole placement by a low-order controller 155

Bi/o(p,q)

Bi/o(x,y)

−

The plant Bi/o(p,q) is assumed to be causal and controllable. This implies that
the polynomials p and q specifying the plant are co-prime and satisfy the constraint
deg(q) ≤ deg(p) =: ℓp,. The polynomials x and y parameterize the controller and
are unknowns. The design constraints are that the controller should be causal and
have order bounded by a specified integer ℓx, i.e.,

deg(y)≤ deg(x) =: ℓx < ℓp. (deg)

The pole placement problem is to determine x and y, so that the poles of the
closed-loop system are as close as possible to desired locations, specified by the
roots of a polynomial f , where deg(f) = ℓx + ℓp. We consider a modification of the
pole placement problem that aims to assign exactly the poles of a plant that is as
close to the given plant as possible.

Problem 5.25 (Pole placement by low-order controller). Given

1. the plant Bi/o(p,q)
2. a polynomial f , whose roots are the desired poles of the closed-loop system, and
3. a bound ℓx < deg(p) on the order of the controller,

find a controller Bi/o(x,y), such that

1. the degree constraint (deg) is satisfied and
2. the controller assigns the poles of a system Bi/o(p̂, q̂), which is as close as pos-

sible to Bi/o(p,q) in the sense that (dist) is minimized.

Next, we write down explicitly the considered optimization problem. The closed-
loop system is Bi/o(px+ qy,qx), so that a solution to the pole placement problem
is given by a solution to the Diophantine equation px+qy = f . Written in a matrix
form, it is a Sylvester structured system of equations




p0 q0

p1
. . . q1

. . .
...

. . . p0
...

. . . q0

pℓp
p1 qℓp

q1

. . .
...

. . .
...

pℓp
qℓp




︸ ︷︷ ︸
RℓP−ℓX

(p,q)




x0
...

xℓx

y0
...

yℓx




=




f0
...

fℓp

fℓp+1
...

fℓp+ℓx




︸ ︷︷ ︸
f

.

The system is overdetermined due to the degree constraint (deg). Therefore, the pole
placement by low-order controller problem 5.25 can be written as

156 5 Applications

minimize over p̂, q̂ ∈ R
ℓp+1 and x, y ∈ R

ℓx+1
∥∥∥∥
[

p

q

]
−
[

p̂

q̂

]∥∥∥∥

subject to RℓP−ℓX
(p̂, q̂)

[
x

y

]
= f .

Problem 5.25 is equivalent to Problem SLRA with

• data matrix

S (p) =

[[
f0 f1 · · · fℓp+ℓx

]

R⊤
ℓP−ℓX

(p,q)

]
,

composed of a fixed block and a Sylvester structured block and
• rank reduction by one.

Indeed, RℓP−ℓX
(p̂, q̂) [x

y] = f is equivalent to rank
(
S (p̂)

)
≤ 2ℓx +1.

5.5 Notes and references

System theory

A survey on applications of structured low-rank approximation in system identifi-
cation and signal processing is given in (De Moor, 1993) and (Markovsky, 2008).
Approximate realization is a special identification problem (the input is a pulse and
the initial conditions are zeros). Nevertheless, the exact version of this problem is a
well studied problem. Approximate realization methods, based on the singular value
decomposition, are proposed in (Kung, 1978; Zeiger and McEwen, 1974).

Comprehensive treatment of model reduction methods is given in (Antoulas,
2005). The balanced model reduction method is proposed by Moore (1981) and
error bounds are derived by Glover (1984). Proper orthogonal decomposition is a
popular method for nonlinear model reduction. This method is unstructured low-
rank approximation of a matrix composed of “snapshots” of the state vector of the
system. The method is data-driven in the sense that the method operates on data of
the full order system and a model of that system is not derived.

Errors-in-variables system identification methods are developed in (Aoki and
Yue, 1970; Markovsky et al, 2005; Pintelon et al, 1998). Their consistency prop-
erties are studied in (Kukush et al, 2005; Markovsky and Pintelon, 2015; Pintelon
and Schoukens, 2001). For a survey, see (Söderström, 2007). Most of the work
on the subject is presented in the classical input/output setting, i.e., the proposed
methods are defined in terms of transfer function, matrix fraction description, or
input/state/output representations.

Modeling by the orthogonal distance fitting criterion (misfit approach) is initi-
ated in (Willems, 1987) and further developed in (Markovsky et al, 2005; Roorda,
1995a,b; Roorda and Heij, 1995), where algorithms for solving the problems are de-
veloped. A proposal for combination of misfit and latency for linear time-invariant
system identification is made in (Lemmerling and De Moor, 2001).

5.5 Notes and references 157

Signal processing

Linear prediction methods based on optimization techniques are developed in
(Bresler and Macovski, 1986; Cadzow, 1988). Cadzow (1988) proposed a method
for Hankel structured low-rank approximation that alternates between unstructured
low-rank approximation and structure approximation. This method however does
not converge to a locally optimal solution (De Moor, 1994). Application of struc-
tured low-rank approximation methods for audio processing is described in (Lem-
merling et al, 2003). The shape from moments problem (Golub et al, 1999; Milanfar
et al, 1995) is equivalent to Hankel structured low-rank approximation.

Approximate polynomial common factor

There is a vast amount of literature on the problem of computing approximate com-
mon factors of polynomials, see (Usevich and Markovsky, 2017) for an overview.
Some authors, e.g., (Bini and Boito, 2010; Rupprecht, 1999), considered the what is
called ε-GCD problem: Given polynomials p and q and a tolerance ε > 0,

minimize over p̂ and q̂ deg
(
GCD(p̂, q̂)

)

subject to

∥∥∥∥
[

p

q

]
−
[

p̂

q̂

]∥∥∥∥
2
≤ ε.

The ε-GCD problem is equivalent to Problem 5.17, considered in the book. Both
problem formulations trace the same Pareto-optimal curve in the approximation er-
ror vs GCD degree space by varying the hyper parameters ε and d.

The problem of Section 5.3.4 falls into a broader category of distance problems

(Higham, 1989), such as distance to instability, distance to positive definiteness,
etc. There is a big volume of literature devoted to the computation of the distance
to controllability, see, e.g., (Eising, 1984; Karow and Kressner, 2009; Khare et al,
2012). Other applications of the approximate common factor computation are:

• common dynamics computation (Papy et al, 2006),
• blind finite impulse response system identification (Xu et al, 1995), and
• computation of a minimal kernel representation (Polderman and Willems, 1998).

Exercises

5.1 (Matrix representation of polynomial multiplication). There is a natural cor-
respondence among (m + 1)-dimensional vectors

[
a0 a1 · · · am

]⊤
, m-th order

polynomials a0+a1z+ · · ·+amzm, and (m+1)-taps sequences (a0,a1, . . . ,am). The
same symbol a denotes the vector, the polynomial, and the sequence. For a given
a ∈ R

m+1 and a natural number n, Mn(a) is the (m+n+1)× (n+1) matrix

158 5 Applications

Mn(a) :=




a0

a1
. . .

...
. . . a0

am a1
. . .

...
am




= T ⊤
n+1(a).

1. Show that the product of two polynomials c(z) = a(z)b(z) corresponds to the
matrix-vector product c = Mn(a)b, where n is the degree of b.

2. Show that the convolution c = a ⋆ b of two sequences—a with m+ 1 taps and b

with n+1 taps—defined as ci := ∑m
k=0 akbi−k, for i = 0, . . . ,m+n, where bk = 0

for k < 0 and k > n, corresponds to the matrix-vector product c = Mn(a)b.
3. Show that c = a(σ)b—the action of a difference operator defined by a polyno-

mial a of degree m on a sequence b with n+1 taps—defined by

ci = a0bi +a1bi+1 + · · ·+ambi+m, for i = 0,1, . . . ,n−m,

corresponds to the matrix-vector product c = M⊤
n−m(a)b = Tn−m+1(a)b.

5.2 (Computing approximate common factor with slra).

By Theorem 5.20, the approximate common factor problem 5.17 is equivalent to the
reduced Sylvester structured low-rank approximation problem (ACF-Rd). Use the
slra function in order to solve (ACF-Rd).

5.3 (Approximate common factor numerical example).

Apply the method for computing approximate common factor, based on the slra
function (Exercise 5.2), on an example with d= 2 and polynomials

p(z) = (4+2z+ z2)(5+2z)+0.05+0.03z+0.04z2

q(z) = (4+2z+ z2)(5+ z)+0.04+0.02z+0.01z2

Compare the results obtained by slra with the ones obtained by Algorithm 8.

5.4 (SLRA package).

• Download and install the SLRA package from http://slra.github.io/.
• Study and execute the demo files demo.m and test_m/demo.m.

5.5 (IDENT and AGCD packages). The IDENT and AGCD packages provide rap-
per functions to the SLRA package for the purpose of linear time-invariant sys-
tem identification and approximate polynomial common factor computation. These
packages are installed together with the SLRA package (see the sub-directories
ident and agcd). Study and redo the examples available at

http://slra.github.io/software-ident.html.

http://slra.github.io/
http://slra.github.io/software-ident.html

References 159

References

Antoulas A (2005) Approximation of Large-Scale Dynamical Systems. SIAM
Aoki M, Yue P (1970) On a priori error estimates of some identification methods.

IEEE Trans Automat Contr 15(5):541–548
Bini D, Boito P (2010) A fast algorithm for approximate polynomial GCD based on

structured matrix computations. In: Numerical Methods for Structured Matrices
and Applications, Birkhäuser, pp 155–173

Bresler Y, Macovski A (1986) Exact maximum likelihood parameter estimation of
superimposed exponential signals in noise. IEEE Trans Acust, Speech, Signal
Process 34:1081–1089

Cadzow J (1988) Signal enhancement—A composite property mapping algorithm.
IEEE Trans Signal Proc 36:49–62

De Moor B (1993) Structured total least squares and L2 approximation problems.
Linear Algebra Appl 188–189:163–207

De Moor B (1994) Total least squares for affinely structured matrices and the noisy
realization problem. IEEE Trans Signal Proc 42(11):3104–3113

Eising R (1984) Distance between controllable and uncontrollable. Control Lett
4:263––264

Glover K (1984) All optimal Hankel-norm approximations of linear multivariable
systems and their l∞-error bounds. Int J Control 39(6):1115–1193

Golub G, Milanfar P, Varah J (1999) A stable numerical method for inverting shape
from moments. SIAM J Sci Comput 21:1222–1243

Higham N (1989) Matrix nearness problems and applications. In: Gover M, Barnett
S (eds) Applications of Matrix Theory, Oxford University Press, pp 1–27

Karow M, Kressner D (2009) On the structured distance to uncontrollability. Control
Lett 58:128–132

Khare S, Pillai H, Belur M (2012) Computing the radius of controllability for state
space systems. Control Lett 61:327–333

Kukush A, Markovsky I, Van Huffel S (2005) Consistency of the structured total
least squares estimator in a multivariate errors-in-variables model. J Statist Plann
Inference 133(2):315–358

Kung S (1978) A new identification method and model reduction algorithm via
singular value decomposition. In: Proc. 12th Asilomar Conf. Circuits, Systems,
Computers, Pacific Grove, pp 705–714

Lemmerling P, De Moor B (2001) Misfit versus latency. Automatica 37:2057–2067
Lemmerling P, Mastronardi N, Van Huffel S (2003) Efficient implementation of a

structured total least squares based speech compression method. Linear Algebra
Appl 366:295–315

MacFarlane A (2013) Multivariable feedback: a personal reminiscence. Interna-
tional Journal of Control 86(11):1903–1923

Markovsky I (2008) Structured low-rank approximation and its applications. Auto-
matica 44(4):891–909

Markovsky I, Pintelon R (2015) Identification of linear time-invariant systems from
multiple experiments. IEEE Trans Signal Process 63(13):3549–3554

160 5 Applications

Markovsky I, Rao S (2008) Palindromic polynomials, time-reversible systems, and
conserved quantities. In: 16th Mediterranean Conf. on Control and Automation,
Ajaccio, France, pp 125–130

Markovsky I, Willems JC, Van Huffel S, De Moor B, Pintelon R (2005) Application
of structured total least squares for system identification and model reduction.
IEEE Trans Automat Control 50(10):1490–1500

Milanfar P, Verghese G, Karl W, Willsky A (1995) Reconstructing polygons from
moments with connections to array processing. IEEE Trans Signal Proc 43:432–
443

Moore B (1981) Principal component analysis in linear systems: Controllability,
observability and model reduction. IEEE Trans Automat Contr 26(1):17–31

Paige CC (1981) Properties of numerical algorithms related to computing control-
lability. IEEE Trans Automat Contr 26:130–138

Papy JM, Lathauwer LD, Huffel SV (2006) Common pole estimation in multi-
channel exponential data modeling. Signal Processing 86(4):846–858

Pintelon R, Schoukens J (2001) System Identification: A Frequency Domain Ap-
proach. IEEE Press, Piscataway, NJ

Pintelon R, Guillaume P, Vandersteen G, Rolain Y (1998) Analyses, development,
and applications of TLS algorithms in frequency domain system identification.
SIAM J Matrix Anal Appl 19(4):983–1004

Polderman J, Willems JC (1998) Introduction to Mathematical Systems Theory.
Springer-Verlag, New York

Roorda B (1995a) Algorithms for global total least squares modelling of finite mul-
tivariable time series. Automatica 31(3):391–404

Roorda B (1995b) Global total least squares—a method for the construction of open
approximate models from vector time series. PhD thesis, Tinbergen Institute

Roorda B, Heij C (1995) Global total least squares modeling of multivariate time
series. IEEE Trans Automat Contr 40(1):50–63

Rupprecht D (1999) An algorithm for computing certified approximate GCD of n
univariate polynomials. J Pure Appl Algebra 139(1–3):255–284

Söderström T (2007) Errors-in-variables methods in system identification. Auto-
matica 43:939–958

Usevich K, Markovsky I (2017) Variable projection methods for approximate (great-
est) common divisor computations. Theoretical Computer Science

Willems JC (1987) From time series to linear system—Part III. Approximate mod-
elling. Automatica 23(1):87–115

Xu G, Liu H, Tong L, Kailath T (1995) A least-squares approach to blind channel
identification 43(12):2982–2993

Zeiger H, McEwen A (1974) Approximate linear realizations of given dimension
via Ho’s algorithm. IEEE Trans Automat Contr 19:153–153

Chapter 6

Data-driven filtering and control

If the model of a system is exact, it is optimal for all

applications. However, if the model is only an approximation of

the “true system”, then the quality of the model should be

dependent on the intended application.

Gevers (2004)

The bottleneck in solving real-life data processing problems, such as dynamic mea-
surement in metrology, noise cancellation in acoustics, and ranking papers in scien-
tometrics is obtaining an adequate model for the data generating process. Classical
modeling methods ignore the subsequent usage of the model for design of a predic-
tor, controller, or classifier. This issue is often addressed by trial-and-error human
interaction. The approach presented in this chapter is to merge the data modeling
and model-based design subproblems into one joint problem, called data-driven de-

sign. Its benefits are optimality of the overall design and automation of the design
process, which reduce the cost and increase the overall design reliability.

The chapter is organized as follows. Section 6.1 gives motivation and intro-
duction to data-driven signal processing and control. The main idea—posing data-
driven problems as missing data estimation—is informally presented in Section 6.2.
Specific examples that illustrate the idea are shown in Section 6.3. Section 6.4 de-
scribes the solution approach. First, we establish the equivalence of the data-driven
problem and a weighted structured low-rank matrix approximation and completion
problem. For the solution of the latter problem we use the variable projection method
of Section 4.4. A simulation example of data-driven impulse response simulation il-
lustrate the theoretical properties and compares the method based on the variable
projection with a subspace method as well as a classical model-based method.

161

162 6 Data-driven filtering and control

6.1 Model-based vs data-driven paradigms

State-of-the-art signal processing and control methods are model-based. This means
that, first, a model class is selected using prior knowledge and observed data. Then,
model parameters are estimated using the data. Finally, the signal processing or
control task is solved using the identified model and the problem specification.

The model-based approach splits the original problem into two steps:

1. model identification and
2. model-based design.

data

model

result

1. 2.

data-driven design

The identification step simplifies the design problem but does not always take
into account the design objectives. This leads to suboptimal performance of the

overall design. The suboptimality issue is addressed by repeating steps 1 and 2
with human interaction (ad hoc adjustment of the identification criterion). Although
iterative adjustment of the identification method and redesign is common, it is inef-
ficient, unreliable, or even impossible to use when optimal performance is desired
and the data generating process is a complex multivariable dynamical system.

An alternative to the model-based approach is to solve the filtering or control
problem directly without first identifying a model, see Figure 6.1. From applica-
tions’ point of view, this data-driven approach is closer to the real-life problem than
the model-based approach. Indeed, in practice model parameters are rarely given,
but data may often be observed. From the theoretical point of view, a data-driven
approach opens up the possibility for a new class of solution methods and algo-
rithms not based on an explicit model representation of the data generating process.

data

model
filter or

controller

desired

signal

plant

sy
st

em

id
en

ti
fi

ca
ti

o
n

da
ta

-d
riv

en
de

si
gn

data-driven signal processin
g

design

data collection

Fig. 6.1: Data-driven methods bypass the model identification step. Such method
map plant data to filter/controller or directly to the desired filtered/control signal.

6.2 Missing data approach 163

6.2 Missing data approach

The classical motivation for missing data in signal processing and control problems
is sensor failures, where measurements are accidentally corrupted. More recently,
missing data estimation is used for compressive sensing, where measurements are
intentionally skipped. In this chapter, we use missing data estimation for solving
data-driven estimation and control problems, i.e., the missing data represents the
signal that we aim to find on the first place. Examples are initial state state estima-
tion, prediction/filtering/smoothing, partial realization, and optimal tracking control.

We pose the data-driven design problem as the problem of finding a missing part
of a trajectory of a linear time-invariant system, where other parts of the trajectory
are given and are exact or are approximated. Once the problem is formulated as a
missing data estimation, it is shown to be equivalent to an element-wise weighted
mosaic-Hankel structured low-rank matrix approximation and completion problem.
We use the method based on the variable projection principle, see Section 4.4.

The methodology for design via missing data estimation is illustrated on the ex-
ample of forecasting, see Figure 6.2. The data generating process is second order,
autonomous, discrete-time, linear time-invariant. The data y is collected over a (past)
period of time [1, t] and the goal is to predict y over a (future) period of time, e.g.,
[t + 1,2t]. The classical model-based approach is: 1. using identification methods,
find a state-space representation of the data generating system, 2. using the iden-
tified state-space model, estimate the initial condition, 3. using the model and the
estimated initial condition, simulate the future response. The missing data estima-
tion approach is a Hankel structured rank constrained matrix completion problem:

find y(t +1), . . . ,y(2t) such that rank







y(1) y(2) · · · y(t)

y(2) . .
.

y(t +1)
... . .

.
. .
. ...

y(t) y(t +1) · · · y(2t)







≤ 2.

given data
y(1), . . . ,y(t)

7→ rank ≤ 2

matrix completion problem

7→

prediction
y(t +1), . . . ,y(2t)

Fig. 6.2: The predicted signal is found by completing a Hankel matrix with the
constraint that the matrix has a specified rank. The part of the matrix shown in red
is to be computed, in such a way that the completed matrix has rank at most two.

164 6 Data-driven filtering and control

6.3 Estimation and control examples

First, we state the classical model-based problems. Then, we state the correspond-
ing data-driven problems, where the system B is implicitly specified by data wd.
In both cases the problem is formulated as missing data estimation in terms of a
generic trajectory w =

(
w(1), . . . ,w(T)

)
of the system B, with an input/output par-

tition Πw = [u
y] and past/future partition w = wp ∧wf. The “past” of the trajectory

consists of the first Tp samples and is used for estimation or specification of the
initial conditions for the “future”, which consists of the remaining Tf samples (see
Table 6.1). In data-driven filtering and control, each of the elements up, yp, uf, and yf
of the trajectory w is either exact, inexact, or missing, depending on the particular
problem. (For the specification of initial conditions by a trajectory, see Exercise 2.4.)

Table 6.1: Partitioning of the trajectory w into input u and
output y variables and past “p” and future “f” time horizons.

past future
input up uf

output yp yf

6.3.1 Problem statement with a given model

The classical model-based state estimation problem is defined as follows: Given a
linear time-invariant system B and an exact trajectory wf of the system B,

find wp, such that w = wp ∧wf ∈ B. (SE)

The aim of (SE) is to estimate the “past”, i.e., the first Tp samples of a trajectory
w = wp ∧wf, with the “future”, i.e., the last Tf samples wf known exactly.

If wf is not a trajectory of B, the model-based state estimation problem becomes
the Kalman smoothing problem. The classical Kalman smoother assumes that the
output yf is noisy and the input uf is exact. The approximation problem then is

minimize over ŵp and ŷf ‖yf − ŷf‖2

subject to ŵp ∧ (uf, ŷf) ∈ B.
(OE-KS)

As a byproduct of computing the initial conditions estimate ŵp, (OE-KS) determines
an approximation of the output ŷf (the smoothed output), which is the best estimate
of the noisy output yf, given the model B. Problem (OE-KS) is also a missing data
estimation problem, however, the output yf is approximated rather than fitted exactly.

When both uf and yf are noisy (inexact), the Kalman smoothing problem becomes

minimize over ŵp and ŵf ‖wf − ŵf‖2

subject to ŵp ∧ ŵf ∈ B.
(EIV-KS)

It is refered to as the errors-in-variables Kalman smoother. The solution is given by
a modification of the ordinary Kalman smoother (Markovsky and De Moor, 2005).

6.3 Estimation and control examples 165

6.3.2 Problem statement without a given model

The data-driven version of the state estimation problem is: Given trajectories wd
and wf of a linear time-invariant system B,

find wp, such that w = wp ∧wf ∈ Bmpum(wd). (DD-SE)

Although the problem formulation (DD-SE) involves the most powerful unfalsified
model Bmpum(wd), solution methods need not identify explicitly a representation of
Bmpum(wd) in order to find the quantity of interest wp. For example, the methods
based on the nuclear norm heuristic do not involve in any way a model representa-
tion.

When wd is inexact, prior knowledge about the model is needed in order to make
the design problem well posed. Often, the prior knowledge is the model class Lm,ℓ

to which the unknown data generating system belongs, i.e., the model complexity
(m, ℓ) is a priori specified. With this prior knowledge, the data-driven versions of the
state estimation problems (OE-KS) and (EIV-KS) is well posed and becomes

minimize over ŵd and ŷf ‖yf − ŷf‖2
2︸ ︷︷ ︸

estimation error

+ ‖wd − ŵd‖2
2︸ ︷︷ ︸

identification error

subject to (uf, ŷf) ∈ Bmpum(ŵd) ∈ Lm,ℓ

(DD-OE-KS)

in the output error setting, when the input is exact, and

minimize over ŵd and ŵ ‖wf − ŵf‖2
2︸ ︷︷ ︸

estimation error

+ ‖wd − ŵd‖2
2︸ ︷︷ ︸

identification error

subject to ŵ ∈ Bmpum(ŵd) ∈ Lm,ℓ,

(DD-EIV-KS)

in the errors-invariables setting, when both the inputs and the outputs are noisy.
The classical approach for state estimation involves the two steps.

1. Identification

Given wd and (m, ℓ), compute a representation of the model B = Bmpum(ŵd),
where ŵd is the data wd, when wd is exact or a solution to an optimization problem

minimize over ŷd ‖yd − ŷd‖2

subject to Bmpum
(
(ud, ŷd)

)
∈ Lm,ℓ

(OE-ID)

when ud is exact but yd is noisy (output error setting), or

minimize over ŵd ‖wd − ŵd‖2

subject to Bmpum(ŵd) ∈ Lm,ℓ
(EIV-ID)

when wd is noisy (errors-invariables setting).

166 6 Data-driven filtering and control

2. Model-based design

Solve (SE), (OE-KS), or (EIV-KS), using the representation of B from step 1.

Note that the optimization criterion of the data-driven problem (DD-EIV-KS) in-
volves a mixture of the identification and filtering/control errors, while the identifi-
cation criteria (OE-ID) and (EIV-ID) are agnostic to the design objective.

Other examples that fit the generic approach for data-driven filtering/control,
based on missing data estimation, are simulation, partial realization, and control.

• Simulation: Given initial conditions wp and input uf, the objective is to find the
corresponding output yf of the system, i.e.,

find yf, such that wp ∧ (uf,yf) ∈ B. (SIM)

• Noisy partial realization: given the first T +1 samples H(0),H(1), . . . ,H(T) of
an impulse response, the objective of the partial realization problem is to find the
remaining samples H(T +1),H(T +2), . . .

• 2-norm optimal output tracking: given initial conditions wp, and an output yf, the
objective is to find a control input ûf, such that

minimize over ûf and ŷf ‖yf − ŷf‖2

subject to wini ∧ (ûf, ŷf) ∈ B.
(CTR)

By construction, a solution ûf of (CTR) is 2-norm optimal tracking control signal.

Table 6.2: Different data-
driven design examples fit
into the missing data estima-
tion setting by fixing differ-
ent parts up, yp, uf, yf of the
trajectory w ∈ B as missing
(?), exact (E), or noisy (N).

example reference up yp uf yf

simulation (SIM) E E E ?
partial realization (Kalman, 1979) E E E E/?
state estimation (SE) ? ? E E
classical smoothing (OE-KS) ? ? E N
EIV smoothing (EIV-KS) ? ? N N
noisy realization (De Moor, 1994) E E E N/?
output tracking (CTR) E E ? N

6.4 Solution via matrix completion

In this section, we show the link between data-driven filtering/control and weighted
mosaic-Hankel structured low-rank approximation and completion. The data-driven
problems, considered in Section 6.3, aim to minimize the “size” of the error signal
e := w− ŵ, where w contains given data (exact or noisy) as well as missing values
and ŵ is a trajectory of the system. As in Section 4.1.2, we encode information about
exact, noisy, and missing data by the weights vi(t)≥ 0 of the semi-norm

6.4 Solution via matrix completion 167

‖e‖v :=
√

∑T
t=1 ∑

q

i=1 vi(t)e
2
i (t).

Table 6.3: The information about exact, noisy, and missing data elements wi(t) is
encoded in the weights vi(t) of the semi-norm ‖ · ‖v.

weight used to by
vi(t) = ∞ if wi(t) is exact interpolate wi(t) ei(t) = 0
vi(t) ∈ (0,∞) if wi(t) is noisy approximate wi(t) min ‖ei(t)‖
vi(t) = 0 if wi(t) is missing fill in wi(t) ŵ ∈ B̂

With this notation, the examples of data-driven problems, shown in Table 6.2,
become special cases of the following generic problem

minimize over ŵd and ŵ ‖wd − ŵd‖2
2 +‖w− ŵ‖2

v

subject to ŵ ∈ Bmpum(ŵd) ∈ Lm,ℓ,
(DD-SP)

for a suitable choice of the trajectory w and the weights v.
Note that the constraint of (DD-SP) is equivalent to the constraint

there is B̂ ∈ Lm,ℓ, such that ŵd, ŵ ∈ B̂,

i.e., both ŵd and ŵ should be exact trajectories of a bounded complexity linear time-
invariant system B̂. For the application of structured low-rank approximation in sys-
tem identification (see Section 5.2), we use Lemma 5.10 in order to relate the condi-
tion w ∈ B ∈ Lm,ℓ to a rank constraint of a Hankel matrix constructed from w. The
following lemma generalizes this result to the case of two trajectories w1 and w2.
The equivalent condition turns out to be rank deficiency of a mosaic-Hankel matrix

Hℓ+1(w
1,w2) :=

[
Hℓ+1(w

1) Hℓ+1(w
2)
]
,

i.e., a block matrix, which blocks are Hankel (Heinig, 1995).

Lemma 6.1 (Markovsky (2017)). Let p and ℓ be, respectively, the number of out-

puts and the lag of a linear time-invariant system B. Then,

w1,w2 ∈ B ⇐⇒ rank
(
Hℓ+1(w

1,w2)
)
≤ qℓ+m.

Proof. Let B = ker
(
R(z)

)
be a kernel representation of the system.

wi ∈ B ∈ Lm,ℓ ⇐⇒
[
R0 R1 · · · Rℓ

]
︸ ︷︷ ︸

R

Hℓ+1(w
i) = 0, for i = 1,2.

The p×q(ℓ+1) matrix R is full row-rank. Then

168 6 Data-driven filtering and control

{
R ∈ R

p×q(ℓ+1) full row rank
R
[
Hℓ+1(w

1) Hℓ+1(w
2)
]
= 0

⇐⇒ rank
(
Hℓ+1(w

1,w2)
)
≤ qℓ+m.

Using Lemma 6.1, we obtain an equivalent weighted mosaic-Hankel structured low-
rank approximation and completion problem to the data-driven problem (DD-SP).

Proposition 6.2 (Markovsky (2017)) Problem (DD-SP) is equivalent to the weighted

mosaic-Hankel structured low-rank matrix approximation and completion problem

minimize over ŵd and ŵ ‖wd − ŵd‖2
2 +‖w− ŵ‖2

v

subject to rank
(
Hℓ+1(ŵd, ŵ)

)
≤ qℓ+m.

(WSLRA)

In the next section, we show numerical results obtained with the structured low-rank
approximation and completion method based on the variable projection.

Numerical example: data-driven impulse response simulation

Simulation is a classic problem in system theory and numerical linear algebra, for
which many solutions exist, e.g., for systems with no inputs, the problem is related
to the computation of the matrix exponential. The classical simulation methods re-
quire a representation (state space, transfer function, convolution kernel, etc.) of the
model. The data-driven version of the simulation problem (SIM) is a mosaic-Hankel
structured low-rank matrix completion problem with fixed (exact) and missing data

minimize over ŵd and ŵ ‖wd − ŵd‖2

subject to rank
([

H (ŵd) H
(
ŵ
)])

≤ qℓ+m,

ŵp = wp, and ûf = uf.

(DD SIM)

For the solution of (DD SIM), we use the variable projection method of Section 4.4
implementation in the SLRA package (see Exercises 5.4 and 5.5):

168a 〈Using the SLRA package for solving (DD SIM) 168a〉≡ (169e)
opt.exct = {[], 1}; opt.wini = {[], 0};

[sysh, info, wh] = ident({wd wf}, 1, n, opt); hh = wh{2}(:, 2);

In the simulation example, the data wd is generating in the errors-in-variables
setting (EIV), where the true system is

B̄ = {(u,y) | u−σu+σ2u = 0.81y−1.456σy+σ2y}

168b 〈Example data-driven impulse response estimation 168b〉≡ 169a⊲
clear all, n = 2; Td = 100; Tf = 10; s = 0.01; rng(’default’)

sys0 = ss(tf([1 -1 1], [1 -1.456 0.81], 1));

ud0 = rand(Td, 1); yd0 = lsim(sys0, ud0); wd0 = [ud0 yd0];

wt = randn(Td, 2); wd = wd0 + 0.1 * wt / norm(wt) * norm(wd0);

6.4 Solution via matrix completion 169

and the to-be-found response yf is the impulse response h̄ of B̄. An estimate ĥ of h̄

is validated in terms of the relative error e := ‖h̄− ĥ‖2/‖h̄‖2.

169a 〈Example data-driven impulse response estimation 168b〉+≡ ⊳168b 169e⊲
h0 = impulse(sys0, Tf - 1);

e = @(hh) norm(h0 - hh) / norm(h0);

In order to map the special case of impulse response estimation into the general
data-driven simulation problem (DD SIM), we define the trajectory w = [u

y] as

u = up ∧uf = (

ini. cond.︷ ︸︸ ︷
0, . . . ,0,︸ ︷︷ ︸

ℓ

pulse input︷ ︸︸ ︷
1,0, . . . ,0︸ ︷︷ ︸

t+1

), y = yp ∧ yf =
(

ini. cond.︷ ︸︸ ︷
0, . . . ,0,︸ ︷︷ ︸

ℓ

impulse response︷ ︸︸ ︷
h(0),h(1), . . . ,h(t)︸ ︷︷ ︸

t+1

)
.

i.e., the response of the system to the pulse input under zero initial conditions.
169b 〈Trajectory w in (DD SIM) for impulse response estimation 169b〉≡ (169e)

uf = zeros(Tf, 1); uf(1) = 1;

yf = NaN * ones(Tf, 1); wf = [uf yf];

The data-driven simulation method (DD SIM), using the SLRA package, is com-
pared with the subspace-type method uy2h of Section 3.2:

169c 〈Subspace method for data-driven impulse response estimation 169c〉≡ (169e)
hh_ss = uy2h(wd(:, 1), wd(:, 2), 2, 2, Tf);

as well as model identification followed by model-based simulation:
169d 〈System identification followed by model-based simulation 169d〉≡ (169e)

[sysh_id, info_id] = ident(wd, 1, n);

hh_id = impulse(sysh_id, Tf - 1);

The obtained results in the simulation example
169e 〈Example data-driven impulse response estimation 168b〉+≡ ⊳169a

〈Trajectory w in (DD SIM) for impulse response estimation 169b〉
〈Using the SLRA package for solving (DD SIM) 168a〉
〈Subspace method for data-driven impulse response estimation 169c〉
〈System identification followed by model-based simulation 169d〉
results = [e(hh) e(hh_id) e(hh_ss)]

show that the error e(hh) of the data-driven method is equal to the error e(hh_id)
of the method identifying a model and simulating its impulse response. The reason
for this is that the objective function of the data-driven problem coincides with the
objective function of the identification problem. Indeed, ‖w− ŵ‖v = 0 because w

contains only exact and missing data. Another justification of the equivalence of the
classical and the data-driven methods for data-driven simulation is that in this case
the trajectory wf does not carry information about the data generating system. Thus,
the system identification and data-driven simulation methods use the same data.

The error e(hh) of the data-driven method, however, is smaller than the error
e(hh_ss) of the subspace method uy2h. The reason for this is that the subspace
method is suboptimal. Indeed, it does not use nonlinear optimization, while the other
methods optimize cost functions that make them statistically optimal (maximum
likelihood estimators) in the errors-in-variables setting.

170 6 Data-driven filtering and control

6.5 Notes and references

Much work is done separately on identification and model-based design, but rela-
tively little work on their interplay in solving the overall problem. The cliche “all
models are wrong but some are useful” is true when the model-based methods are
applied in practice, where there is no “true” model in the model class. The ques-
tion occurs “what is the best model for the problem at hand?” The identification
literature answers instead questions about the closeness of the identified model to
a true model and does not take into account the subsequent usage of the model for
model-based design, e.g., noise filtering, prediction, and control.

The issue of developing identification methods aimed at their intended usage is
considered in an area of research known as “identification for control”, see, e.g.,
(Ljung, 2002). The identified model is tuned for maximum performance of the
closed-loop system, i.e., the identification criterion is linked to the control objective.
The interplay between identification and control is central also in adaptive control,
where the modeling and control tasks are solved simultaneously, in real-time. Both
identification for control and adaptive control, however, use model-based methods.

Data-driven control, also known as model-free control, has its roots in classical
heuristics for proportional-integral-differential (PID) controller tuning such as the
Ziegler–Nichols method (Ziegler and Nichols, 1942). Rigorous data-driven meth-
ods, however, appeared only in the late 90’s (Chan, 1996; Favoreel, 1999; Hjal-
marsson et al, 1998; Safonov and Tsao, 1997). Since then data-driven control has
gained a lot of interest as evident by the large number of publications.

Although the particular problems considered range from LQG to fuzzy control,
the corresponding methods developed can be classified into four main approaches:

• Subspace-type data-driven methods are proposed for solution of H2/H∞ control
problems in (Favoreel, 1999; Markovsky and Rapisarda, 2008; Shi and Skelton,
2000; Woodley, 2001). The signal of interest is constrained to belong to a sub-
space computed from the measured data only. Viewed abstractly, the subspace
is a model for the signal, although it is not parameterized in a familiar transfer
function, state-space, etc. form.

• Similarly to the subspace methods, the virtual reference feedback tuning meth-

ods (Campi et al, 2002; Van Heusden et al, 2011) design the controller without
resorting on nonlinear optimization methods. Contrary to the subspace methods,
however, they produce a feedback controller and operate recursively in real-time.

• An adaptive approach, called controller unfalsification, is developed in (Safonov
and Cabral, 2001; Safonov and Tsao, 1997). The controller is viewed as an exclu-
sion rule (Polderman and Willems, 1998) and the main idea is to reject (falsify)
controllers using previously collected experimental data from the plant.

• In iterative feedback tuning the controller parameters are optimized by a gradient
type method minimizing the control objective, which depends on measured data
only (Hildebrand et al, 2004; Hjalmarsson et al, 1998).

For an extensive list of references, see the overview (Hou and Wang, 2013).

References 171

Data-driven subspace methods are used in metrology for dynamic measurements
(speed-up of a sensor) (Markovsky, 2015a,b). The classical approach (Eichstädt
et al, 2010) for dynamic measurements is design of a compensator, which requires
a model of the sensor dynamics. In some cases however, the sensor dynamic is
not know a priori because it depends on environmental parameters that are vari-
able and/or unpredictable. In dynamic weighing, the to-be-measured mass affects
the measurement process dynamics, so that again the assumption that it is a pri-
ori known is unrealistic. For these situations, adaptive methods are proposed (Shu,
1993). The data-driven methods have the advantage over the adaptive methods of
being computationally cheaper and therefore more suitable for real-time implemen-
tation on a digital signal processor.

Exercises

6.1 (Missing values compleation with given model). Given a linear time-invariant
system B ∈ L q

m,ℓ and a sequence wd ∈ (R
q
e)

T with missing values wd,Im = NaN and
given values wd,Ig , check if wd ∈ B|T , i.e., find a complete sequence ŵ ∈ (Rq)T

that agrees with the given data ŵIg = wd,Ig and is a trajectory of the system B, or
assert that such a trajectory does not exist.

6.2 (Subspace metod for data-driven step response simulation).

Implement the method developed in Exercise 3.5 and study empirically the estima-
tion accuracy in the present of noise on the given trajectory.

6.3 (Data-driven step response simulation, using the SLRA package).

Use the SLRA package to solve the data-driven simulation problem (DD SIM) in the
special case of a step input and zero initial conditions (step response simulation).

References

Campi M, Lecchini A, Savaresi S (2002) Virtual reference feedback tuning: a direct
method for the design of feedback controllers. Automatica 38:1337–1346

Chan JT (1996) Data-based synthesis of a multivariable linear-quadratic regulator.
Automatica 32:403–407

De Moor B (1994) Total least squares for affinely structured matrices and the noisy
realization problem. IEEE Trans Signal Proc 42(11):3104–3113

Eichstädt S, Elster C, Esward T, Hessling J (2010) Deconvolution filters for the
analysis of dynamic measurement processes: a tutorial. Metrologia 47:522–533

Favoreel W (1999) Subspace methods for identification and control of linear and
bilinear systems. PhD thesis, ESAT, K.U.Leuven

Furuta K, Wongsaisuwan M (1995) Discrete-time LQG dynamic controller design
using plant Markov parameters. Automatica 31(9):1317–1324

172 6 Data-driven filtering and control

Gevers M (2004) Identification for control: Achievements and open problems. IFAC
Proceedings 37(9):401–412

Heinig G (1995) Generalized inverses of Hankel and Toeplitz mosaic matrices. Lin-
ear Algebra Appl 216(0):43–59

Hildebrand R, Lecchini A, Solari G, Gevers M (2004) Prefiltering in iterative feed-
back tuning: Optimization of the prefilter for accuracy. IEEE Trans Automat
Contr 49:1801–1806

Hjalmarsson H, Gevers M, Gunnarsson S, Lequin O (1998) Iterative feedback tun-
ing: theory and applications. IEEE Control Systems Magazine 18:26–41

Hou ZS, Wang Z (2013) From model-based control to data-driven control: Survey,
classification and perspective. Information Sciences 235:3–35

Ikeda M, Fujisaki Y, Hayashi N (2001) A model-less algorithm for tracking control
based on input-ouput data. Nonlinear Analysis 47:1953–1960

Kalman RE (1979) On partial realizations, transfer functions, and canonical forms.
Acta Polytechnica Scandinavica 31:9–32

Kawamura Y (1998) Direct construction of lq regulator based on orthogonalization
of signals: Dynamical output feedback. Control Lett 34:1–9

Ljung L (2002) Identification for control: simple process models. In: Proceedings of
the 41st IEEE Conference on Decision and Control, 2002, vol 4, pp 4652–4657

Markovsky I (2015a) An application of system identification in metrology. Control
Eng Practice 43:85–93

Markovsky I (2015b) Comparison of adaptive and model-free methods for dynamic
measurement. IEEE Signal Proc Lett 22(8):1094–1097

Markovsky I (2017) A missing data approach to data-driven filtering and control.
IEEE Trans Automat Contr 62:1972–1978

Markovsky I, De Moor B (2005) Linear dynamic filtering with noisy input and
output. Automatica 41(1):167–171

Markovsky I, Rapisarda P (2008) Data-driven simulation and control. Int J Control
81(12):1946–1959

Polderman J, Willems JC (1998) Introduction to mathematical systems theory.
Springer-Verlag

Safonov M, Cabral F (2001) Fitting controllers to data. Control Lett 43(4):299–308
Safonov M, Tsao T (1997) The unfalsified control concept and learning. IEEE Trans

Automat Contr 42(6):843–847
Shi G, Skelton R (2000) Markov data-based LQG control. J of Dynamic Systems,

Measurement, and Control 122:551–559
Shu W (1993) Dynamic weighing under nonzero initial conditions. IEEE Trans In-

strumentation Measurement 42(4):806–811
Van Heusden K, Karimi A, Bonvin D (2011) Data-driven model reference control

with asymptotically guaranteed stability. Int J of Adaptive Control and Signal
Proc 25(4):331–351

Woodley B (2001) Model free subspace based H∞ control. PhD thesis, Stanford
University

Ziegler J, Nichols N (1942) Optimum settings for automatic controllers. Trans
American Society of Mechanical Engineers 64:759–768

Chapter 7

Nonlinear modeling problems

With four parameters I can fit an elephant, and with five I can

make him wiggle his trunk.

J. von Neumann

Applied to nonlinear modeling problem, the maximum likelihood estimation princi-
ple leads to nonconvex optimization problems and yields inconsistent estimators
in the errors-in-variables setting. This chapter presents a computationally cheap
and statistically consistent estimation method based on a bias correction procedure,
called adjusted least squares estimation. The adjusted least squares method is ap-
plied to curve fitting (static modeling) and system identification.

Section 7.1 presents a general nonlinear data modeling framework. The model
class consists of affine varieties with bounded complexity (dimension and degree)
and the fitting criteria are algebraic and geometric. Section 7.2 shows that the under-
lying computational problem is polynomially structured low-rank approximation.
In the algebraic fitting method, the approximating matrix is unstructured and the
corresponding problem can be solved globally and efficiently. The geometric fitting
method aims to solve the polynomially structured low-rank approximation problem,
which is nonconvex and has no analytic solution. The equivalence of nonlinear data
modeling and low-rank approximation unifies existing curve fitting methods, show-
ing that algebraic fitting is a relaxation of geometric fitting, obtained by removing
the structure constraint. Motivated by the fact that the algebraic fitting method is
efficient but statistically inconsistent, Section 7.3.3 proposes a bias correction pro-

cedure. The resulting adjusted least squares method yields a consistent estimator.
Simulation results show that it is effective also for small sample sizes.

Section 7.4 considers the class, called polynomial time-invariant, of discrete-
time, single-input, single-output, nonlinear dynamical systems described by a poly-
nomial difference equation. The identification problem is: 1) find the monomials
appearing in the difference equation representation of the system (structure selec-
tion), and 2) estimate the coefficients of the equation (parameter estimation). Since
the model representation is linear in the parameters, the parameter estimation by
minimization of the 2-norm of the equation error leads to unstructured low-rank ap-
proximation. However, knowledge of the model structure is required and even with
the correct model structure, the method is statistically inconsistent. For the structure
selection, we propose to use 1-norm regularization and for the bias correction, we
use the adjusted least squares method.

173

174 7 Nonlinear modeling problems

7.1 A framework for nonlinear data modeling

Identifying a curve in a set of curves that best fits given data points is a common
problem in computer vision, statistics, and coordinate metrology. In the applications,
the curve that is fitted to the data is a model for the data and, correspondingly, the
set of candidate curves is the model class.

Data modeling problems are specified by choosing a model class and a fitting cri-
terion. The fitting criterion is maximisation of a measure for fit between the data and
a model. Equivalently, the criterion can be formulated as minimization of a measure
for lack of fit (misfit) between the data and a model. Data modeling problems can be
classified according to the type of model and the type of fitting criterion as follows:

• linear/affine vs nonlinear model class,
• algebraic vs geometric fitting criterion.

A model is a subset of the data space. The model is linear if it is a subspace. Oth-
erwise, it is nonlinear. A geometric fitting criterion minimises the sum-of-squares
of the Euclidean distances from the data points to a model. An algebraic fitting cri-
terion minimises an equation error (residual) in a representation of the model. In
general, the algebraic fitting criterion has no simple geometric interpretation. Prob-
lems using linear model classes and algebraic criteria are easier to solve numerically
than problems using nonlinear model classes and geometric criteria.

Section 7.1.1 considers nonlinear static models: kernels of systems of multivari-
able polynomials (affine varieties). The complexity of such a model is defined as
the pair of the variety’s dimension and the degree of its polynomial representation.
Section 7.1.2 shows examples of conic section fitting and subspace clustering.

7.1.1 Models defined by solution sets of polynomial equations

Consider first static multivariate models. The to-be-modelled data

D =
{

d1, . . . ,dN

}
⊂ R

q.

is a set of N real q-dimensional vectors—the observations, also called data points.
A model for the data D is a subset of the data space Rq and a model class M q for D
is a set of subsets of Rq. For example, the linear model class in R

q consists of all
subspaces of Rq. An example of a nonlinear model class in R

2 is the set of the conic
sections. When the dimension q of the data space is understood from the context, it
is skipped from the notation of the model class.

In nonlinear data modeling problems, the model is usually represented by an
explicit function y = f (u), where d = Π col(u,y), with Π a permutation matrix. The
corresponding statistical estimation problem is regression. As in the linear case, we
call the functional relation y = f (u) among the variables u and y, an input/output
representation of the model

7.1 A framework for nonlinear data modeling 175

B = {Π col(u,y) | y = f (u)}. (I/O)

Input-output representations are appealing because they display a causal relation

among the variables: some variables (inputs) cause other variables (outputs). Also
from a computational point of view, all outcomes d ∈ B are conveniently parame-
terized by the independent variable y.

The alternative kernel representation

B = ker(R) := {d ∈ R
q | R(d) = 0} (KER)

defines the model by a relation, also called an implicit function R(d) = 0. Clearly,
(I/O) is a special case of (KER). In the linear case, we argued that the kernel repre-
sentation has advantages over the input/output representation. This is even more so,
in the nonlinear case. Consider, for example, data fitting by a conic section model.
Only parabolas and lines can be represented by functions. Hyperbolas, ellipses, and
the vertical line {(u,y) | u = 0} are not graphs of a function y = f (u) and therefore
can not be modeled by an input/output representation.

Using the kernel representation however complicates the basic problem of de-
scribing the behavior B, corresponding to a given function R. Indeed, this problem
is equivalent to solving an equation R(d) = 0. Finding all solutions of a nonlinear
equation is in general an intractable problem.

The complexity of a linear static model B is defined as the dimension of B, i.e.,
the smallest number m, such that there is a linear function P : Rm → R

q, for which

B = image(P) := {P(ℓ) | ℓ ∈ R
m }. (IMAGE)

Similarly, the dimension of a nonlinear model B is defined as the smallest natural
number m, such that there is a function P : Rm → R

q, for which (IMAGE) holds. In
the context of nonlinear models, however, the model dimension alone is not suffi-
cient to define the model complexity. For example, in R

2 both a linear model (a line
passing through the origin) and an ellipse have dimension equal to one, however, it
is intuitively clear that the ellipse is a more “complex” model than the line.

The missing element in the definition of the model complexity in the nonlinear
case is the “complexity” of the function P. In what follows, we restrict to models
that can be represented as kernels of polynomial functions, i.e., we consider affine

varieties. The complexity of an affine variety (IMAGE) is defined as the pair (m,d),
where m is the dimension of B and d is the degree of R. This definition allows us to
distinguish a linear or affine model (d= 1) from a nonlinear model (d> 1) with the
same dimension. For a model B with complexity (m,d), we call d the degree of B.

The complexity of a model class is the maximal complexity (in a lexicographic
ordering of the pairs (m,d)) over all models in the class. The model class of com-
plexity bounded by (m,d) is denoted by Pm,d.

176 7 Nonlinear modeling problems

7.1.2 Special cases

The model class Pq
m,d and the related exact and approximate modeling problems

(EM) and (AM) are illustrated next on specific examples.

1. Linear/affine model class of bounded complexity.

An affine model B (i.e., an affine set in R
q) is an affine variety, defined by a

first order polynomial through kernel or image representation. The dimension of
the affine variety coincides with the dimension of the affine set. Therefore, Pq

m,1
is an affine model class in R

q with complexity bounded by m. The linear model
class in R

q, with dimension bounded by m, is a subset L q

m,0 of Pq

m,1.
2. Geometric fitting by a linear model.

Approximate data modeling using the linear model class L q
m and the geometric

fitting criterion (dist) is a low-rank approximation problem

minimize over D̂
∥∥Φ(D)−Φ(D̂)

∥∥
F

subject to rank
(
Φ(D̂)

)
≤ m,

(LRA)

where
Φ(D) :=

[
d1 · · · dN

]
.

The rank constraint in (LRA) is equivalent to the constraint that the data D̂ is
exact for a linear model of dimension bounded by m. This justifies the statement
that exact modeling is an ingredient of approximate modeling.

3. Algebraic curves.

In the special case of a curve in the plane, we use the notation

x := first component d1· of d and y := second component d2· of d.

Note that w = col(x,y) is not necessarily an input/output partitioning of the vari-
ables. An affine variety of dimension one is called an algebraic curve. A second
order algebraic curve

B(A,b,c) = {d | d⊤Ad +b⊤d + c = 0}, (B(A,b,c))

where A = A⊤, b, and c are parameters, is a conic section.
4. Subspace clustering.

In the subspace clustering problem, the data D is fitted by a model B ⊂ R
q that

is the union of n-subspaces B1, . . . ,Bn with bounded dimensions

dim(B1)≤ r1, . . . ,dim(Bn)≤ rn.

The union of subspaces model admits a representation

B(R1, . . . ,Rn) = {d ∈ R
q | (R1d) · · ·(Rnd) = 0},

7.1 A framework for nonlinear data modeling 177

where R1 ∈ R
(q−r1)×q, . . . , Rn ∈ R

(q−rn)×q are parameters of the model. At
least one of the Ri is assumed to be nonzero in order to avoid the trivial model
B(0, . . . ,0) = R

q. Note that in the case q = 2 and n = 2, with r1 = r2 = 1, the
union of two lines model B(R1,R2) is a special conic section B(A,b,c), with

A = (R1)⊤R2 +(R2)⊤R1, b = 0, and c = 0.

Fitting a set of points D in R
q by a union of lines model B(R1, . . . ,Rn) is a type

of a clustering problem. Indeed, the data D is clustered into the r subspaces:

Bi = B(Ri) = {d ∈ R
q | Rid = 0} for i = 1, . . . ,n.

Next, we consider a simplified version of the subspace clustering problem when
q= 2 and r = 2 and the data is fitted exactly. The problem is: Given a data set D ,
find B̂ = B(R1,R2), such that D is fitted exactly by B̂. The data points di ∈R

2,
i = 1, . . . ,N lie on a union of two lines if and only if there are vectors R1 and R2,
at least one of which is nonzero, such that

(R1di)(R
2di) = 0, for i = 1, . . . ,N.

This condition can be written in a matrix form as

[
R1

1R2
1 R1

1R2
2 +R1

2R2
1 R1

2R2
2

]
︸ ︷︷ ︸

θ




x2
1 · · · x2

N

x1y1 · · · xNyN

y2
1 · · · y2

N




︸ ︷︷ ︸
Φ(D)

= 0.

(Ri
j is the jth element of the vector Ri.) We showed that if D ⊂ B̂ holds,

rank(Φ(D))≤ 2.

In subspace clustering, the rank constraint is only a necessary condition for exact
data fitting. In addition, θ ∈ leftker

(
Φ(D)

)
should have the following structure

θ1 = 1
θ2 = α +β
θ3 = αβ ,

for some α and β . This is a polynomial factorization condition that makes pos-
sible to map the estimated parameter θ to the the model parameters R1,R2 by
solving the equations:

θ1 = R1
1R2

1
θ2 = R1

1R2
2 +R1

2R2
1

θ3 = R1
2R2

2.
(FACTORIZE)

178 7 Nonlinear modeling problems

Applied to the data d1 =
[−1
−1

]
, d2 =

[
1
−1

]
, d3 =

[
1
1

]
, d4 =

[−1
1

]
the kernel

computation of the matrix Φ(D), followed by the solution of (FACTORIZE)
yields the exact fit shown in Figure 7.1. Note that the obtained model B(R1,R2)
is a particular conic section fitting exactly the data.

−2 −1 0 1 2
−2

−1

0

1

2

a

b

Fig. 7.1: Subspace clustering example: fitting data (circles) by a union of two lines.

7.2 Nonlinear low-rank approximation

This section considers geometric and algebraic fitting problems with the static
polynomial model class Pq

m,d of bounded complexity. Section 7.2.1 introduces a
parametrization of the model, defined by a kernel representations. The model struc-
ture is the set of monomials that appear in the representations. Due to the combina-
torial increase of the number of monomials as a function of the number of variables
and the degree, the structure detection problem (finding which monomials have zero
coefficients) is a key problem in nonlinear data modeling. Section 7.2.2 shows that
the geometric fitting problem with the model class Pq

m,d is equivalent to polyno-
mially structured low-rank approximation and the geometric fitting problem is a
relaxation of the geometric fitting problem when the structure is ignored.

7.2.1 Parametrization of the kernel representations

Consider a kernel representation (KER) of an affine variety B ∈Pq
m,d, parametrized

by a p×1 multivariable polynomial R. The number of monomials in q variables with
degree d or less is

qext :=
(
q+d

d

)
=

(q+d)!
d!q!

. (qext)

Define the vector of all such monomials

7.2 Nonlinear low-rank approximation 179

φ(d) :=
[
φ1(d) · · · φqext(d)

]⊤
.

The polynomial R can be written as

RΘ (d) = ∑
qext
k=1 Θkφk(d) =Θφ(d), (RΘ)

where Θ is an p×qext parameter matrix.
In what follows, we assume that the monomials are ordered in φ(d) in decreasing

degree according to the lexicographic ordering (with alphabet the indexes of d). For
example, with q= 2, d= 2, and d = col(x,y),

qext = 6 and φ⊤(x,y) = [φ1 φ2 φ3 φ4 φ5 φ6]
= [x2 xy x y2 y 1]

In general,
φk(d) = d

dk1
1· · · · d

dkq
q· , for k = 1, . . . ,qext, (φk)

where

• d1·, . . . ,dq· ∈ R are the elements of d ∈ R
q, and

• dki ∈ Z+, is the degree of the ith element of d in the kth monomial φk.

The matrix formed from the degrees dki

D=
[
dki

]
∈ R

qext×q

uniquely defines the vector of monomials φ . The degrees matrix D depends only on
the number of variables q and the degree d. For example, with q= 2 and d= 2,

D⊤ =

[
2 1 1 0 0 0
0 1 0 2 1 0

]
.

The function monomials generates an implicit function phi that evaluates the
2-variate vector of monomials φ , with degree d.

179a 〈Monomials constructor 179a〉≡ 179b⊲
function [Deg, phi] = monomials(deg)

Defines:
monomials, used in chunks 184b and 187a.

First an extended degrees matrix Dext ∈ {0,1, . . . ,d}(d+1)2×2, corresponding to all
monomials xdx ydy with degrees at most d, is generated. It can be verified that

Dext =
[
rd⊗1d+1 1d+1 ⊗ rd

]
, where rd :=

[
0 1 · · · d

]⊤

is such a matrix; moreover, the monomials are ordered in decreasing degree.
179b 〈Monomials constructor 179a〉+≡ ⊳179a 180⊲

Deg_ext = [kron([0:deg]’, ones(deg + 1, 1)), ...

kron(ones(deg + 1, 1), [0:deg]’)];

180 7 Nonlinear modeling problems

Then the rows of Dext are scanned and those with degree less than or equal to d are
selected to form a matrix D.

180 〈Monomials constructor 179a〉+≡ ⊳179b
str = []; Deg = []; q = 2;

for i = 1:size(Deg_ext, 1)

if (sum(Deg_ext(i, :)) <= deg)

for k = q:-1:1,

str = sprintf(’.* d(%d,:) .^ %d %s’, ...

k, Deg_ext(i, k), str);

end

str = sprintf(’; %s’, str(4:end));

Deg = [Deg_ext(i, :); Deg];

end

end

eval(sprintf(’phi = @(d) [%s];’, str(2:end)))

Minimality of the kernel representation is equivalent to the condition that the pa-
rameter Θ is full row rank. The nonuniqueness of RΘ corresponds to a nonunique-
ness of Θ . The parameters Θ and QΘ , where Q is a nonsingular matrix, define the
same model. Therefore, without loss of generality, we can assume that the represen-
tation is minimal and normalise it, so that

ΘΘ⊤ = Ip.

Note that a p× qext full row rank matrix Θ defines via (RΘ) a polynomial ma-
trix RΘ , which defines a minimal kernel representation (KER) of a model BΘ

in Pq
m,d. Therefore, Θ defines a function

BΘ : Rp×qext → Pq
m,d.

Vice verse, a model B in Pq
m,d corresponds to a (nonunique) p×qext full row rank

matrix Θ , such that B = BΘ . For a given q, there are one-to-one mappings

qext ↔ d and p↔ m,

defined by (qext) and p= q−m, respectively.

7.2.2 Curve fitting ⇐⇒ polynomial low rank approximation

We show that the approximate modeling problems (AM) and (EM) for the model
class of affine varieties with bounded complexity Pm,d are equivalent to low-rank
approximation problems.

Proposition 7.1 (Algebraic fit ⇐⇒ unstructured low-rank approximation)

Algebraic fitting with the model class Pm,d

7.2 Nonlinear low-rank approximation 181

minimize over Θ ∈ R
p×qext

√
∑N

j=1

∥∥RΘ (d j)
∥∥2

F

subject to ΘΘ⊤ = Ip

(AM′
Θ)

is equivalent to the unstructured low-rank approximation

minimize over Φ̂ ∈ R
q×p ‖Φd(D)− Φ̂‖F

subject to rank(Φ̂)≤ qext −p.
(LRA)

Proof. Using the polynomial representation (RΘ), the squared cost function of (AM′
Θ)

can be rewritten as a quadratic form

∑N
j=1

∥∥RΘ (d j)
∥∥2

F =
∥∥ΘΦd(D)

∥∥2
F

= trace
(
ΘΦd(D)Φ⊤

d (D)Θ⊤)= trace
(
ΘΨd(D)Θ⊤).

Therefore, the algebraic fitting problem is equivalent to an eigenvalue problem
for Ψd(D) or, equivalently, to low-rank approximation problem for Φd(D). ⊓⊔

Proposition 7.2 (Geometric fit ⇐⇒ polynomial low rank approximation)

Geometric fitting with the model class Pm,d

minimize over B ∈ Pm,d dist(D ,B) (AM)

is equivalent to polynomially structured low-rank approximation

minimize over D̂ ∈ R
q×N ‖D− D̂‖F

subject to rank
(
Φd(D̂)

)
≤ qext −p.

(PSLRA)

Proof. Problem (AM) is equivalent to

minimize over D̂ and B
√

∑N
j=1 ‖d j − d̂ j‖2

2

subject to D̂ ⊂ B ∈ Pm,d.
(∗)

Using the condition

D̂ ⊂ B ∈ Pm,d =⇒ rank
(
Φd(D̂)

)
≤ qext −p (MPUM)

to replace the constraint of (∗) with a rank constraint for the structured matrix
Φd(D̂) = Φd(D̂), this latter problem becomes a polynomially structured low-rank
approximation problem (PSLRA). ⊓⊔

Propositions 7.1 and 7.2 show a relation between the algebraic and geometric
fitting problems.

Corollary 7.3. Algebraic fitting (AM′
Θ) is a relaxation of geometric fitting (AM),

obtained by removing the structure constraint of the approximating matrix Φd(D̂).

182 7 Nonlinear modeling problems

7.3 Computational algorithms

In the linear case, the misfit computation problem is a linear least norm problem.
This fact is effectively used in the variable projection method. In the nonlinear
case, the misfit computation problem is a nonconvex optimization problem. Thus
the elimination step of the variable projection approach is not possible in the non-
linear case. This requires the approximation D̂ = { d̂1, . . . , d̂N } to be treated as an
extra optimization variable together with the model parameter Θ . As a result, the
computational complexity and sensitivity to local minima increases in the nonlinear
case. Therefore, the choice of the initial approximation is critical. The default initial
approximation is obtained from a direct method such as the algebraic fitting method.
Next, we present a modification of the algebraic fitting method that is motivated by
the objective of obtaining an unbiased estimate in the errors-in-variables setup.

7.3.1 Bias corrected low-rank approximation

Assume that the data D is generated according to the errors-in-variables model

d j = d̄ j + d̃ j, where d̄ j ∈ B̄ ∈ Pm,q

and vec
([

d̃1 · · · d̃N

])
∼ N(0,s2IqN). (EIV)

Here B̄ is the to-be-estimated true model. The estimate B̂ obtained by the algebraic
fitting method (AM′

Θ) is biased, i.e., E(B̂) 6= B̄. In this section, we derive a bias
correction procedure. The correction depends on the noise variance s2, however, the
noise variance can be estimated from the data D together with the model parame-
ter Θ̂ . The resulting bias corrected estimate B̂c is invariant to rigid transformations.
Simulation results show that B̂c has smaller orthogonal distance to the data than
alternative direct methods.

Define the matrices

Ψ := Φd(D)Φ⊤
d (D) and Ψ̄ := Φd(D̄)Φ⊤

d (D̄)

The algebraic fitting method computes the estimate Θ̂ from the eigenvalue decom-
position of Ψ . We construct a “corrected” matrix Ψc, such that

E(Ψc) = Ψ̄ . (∗)

This property ensures that the corrected estimate Θ̂c, obtained from the eigenvectors
related to the p smallest eigenvalues of Ψc, is unbiased.

182 〈Bias corrected low-rank approximation 182〉≡
function [th, sh] = bclra(D, deg)

[q, N] = size(D); qext = nchoosek(q + deg, deg);

7.3 Computational algorithms 183

〈construct the corrected matrix Ψc 184b〉
〈estimate s2 and θ 185b〉

Defines:
bclra, used in chunk 187a.

The key tool to achieve bias correction is the sequence of the Hermite polynomi-
als, defined by the recursion

h0(x) = 1, h1(x) = x, and

hk(x) = xhk−1(x)− (k−2)hk−2(x), for k = 2,3, . . .

(See Table 7.1 for explicit expressions of h2, . . . , h10.) The Hermite polynomials

Table 7.1: Explicit expressions of the Hermite polynomials h2, . . . , h10.

h2(x) = x2 −1
h3(x) = x3 −3x

h4(x) = x4 −6x2 +3
h5(x) = x5 −10x3 +15x

h6(x) = x6 −15x4 +45x2 −15
h7(x) = x7 −21x5 +105x3 −105x

h8(x) = x8 −28x6 +210x4 −420x2 +105
h9(x) = x9 −36x7 +378x5 −1260x3 +945x

h10(x) = x10 −45x8 +630x6 −3150x4 +4725x2 −945

have the deconvolution property

E
(
hk(x̄+ x̃)

)
= x̄k, where x̃ ∼ N(0,1). (∗∗)

The following code generates a cell array h of implicit function that evaluate
the sequence of Hermite polynomials: h{k+1}(d)= hk(d). (The difference in the
indexes of the h and h is due to MATLAB convention indexes to be positive integers.)

183 〈define the Hermite polynomials 183〉≡ (184b)
h{1} = @(x) 1; h{2} = @(x) x;

for k = 3:(2 * deg + 1)

h{k} = @(x) [x * h{k - 1}(x) zeros(1, mod(k - 2, 2))] ...

- [0 (k - 2) * h{k - 2}(x)];

end

We have,

Ψ =
N

∑
ℓ=1

φ(dℓ)φ
⊤(dℓ) =

N

∑
ℓ=1

[
φi(dℓ)φ j(dℓ)

]
,

and, from (φk), the (i, j)th element of Ψ is

ψi j =
N

∑
ℓ=1

d
di1+d j1
1ℓ · · · d

diq+d jq

qℓ =
N

∑
ℓ=1

q

∏
k=1

(d0,kℓ+ d̃kℓ)
diq+d jq .

184 7 Nonlinear modeling problems

By assumption, d̃kℓ are independent, zero mean, normally distributed (see (EIV)).
Then, using the deconvolution property (∗∗) of the Hermit polynomials,

ψc,i j :=
N

∑
ℓ=1

q

∏
k=1

hdik+d jk
(dkℓ) (ψi j)

has the unbiasness property (∗), i.e.,

E(ψc,i j) =
N

∑
ℓ=1

q

∏
k=1

d
dik+d jk

0,kℓ =: ψ0,i j.

The elements ψc,i j of the corrected matrix are even polynomials of s of degree
less than or equal to

dψ =

⌈
qd+1

2

⌉
.

The following code constructs a 1× (dψ +1) vector of the coefficients of ψc,i j as a
polynomial of s2. Note that the product of Hermite polynomials in (ψi j) is a convo-
lution of their coefficients.

184a 〈construct ψc,i j 184a〉≡ (184b)
Deg_ij = Deg(i, :) + Deg(j, :);

for l = 1:N

psi_ijl = 1;

for k = 1:q

psi_ijl = conv(psi_ijl, h{Deg_ij(k) + 1}(D(k, l)));

end

psi_ijl = [psi_ijl zeros(1, dpsi - length(psi_ijl))];

psi(i, j, :) = psi(i, j, :) + ...

reshape(psi_ijl(1:dpsi), 1, 1, dpsi);

end

The corrected matrix

Ψc(s
2) =Ψc,0 + s2Ψc,1 + · · ·+ s2dψΨc,dψ

is then obtained by computing its elements in the lower triangular part
184b 〈construct the corrected matrix Ψc 184b〉≡ (182) 185a⊲

〈define the Hermite polynomials 183〉
Deg = monomials(deg);

dpsi = ceil((q * deg + 1) / 2);

psi = zeros(qext, qext, dpsi);

for i = 1:qext

for j = 1:qext

if i >= j

〈construct ψc,i j 184a〉
end

end

end

Uses monomials 179a.

and using the symmetry property to fill in the upper triangular part

7.3 Computational algorithms 185

185a 〈construct the corrected matrix Ψc 184b〉+≡ (182) ⊳184b
for k = 1:dpsi,

psi(:, :, k) = psi(:, :, k) + triu(psi(:, :, k)’, 1);

end

The rows of the parameter Θ̂ form a basis for the p-dimensional (approximate)
null space of Ψc(s

2)
ΘΨc(s

2) = 0.

Computing simultaneously s and Θ is a polynomial eigenvalue problem: the noise
variance estimate is the minimum eigenvalue and Θ is a corresponding eigenvector.

185b 〈estimate s2 and θ 185b〉≡ (182)
[evec, ev] = polyeig_(psi); ev(find(ev < 0)) = inf;

[sh2, min_ind] = min(ev);

sh = sqrt(sh2); th = evec(:, min_ind);

(The function polyeig_ is a minor modification of the standard MATLAB function
polyeig. The input to polyeig_ is a 3-dimensional tensor while the input to
polyeig is a sequence of matrices—the slices of the tensor in the third dimension.)

7.3.2 Method based on local optimization

The nonlinearly structured low-rank approximation problem (PSLRA) is solved nu-
merically using Optimization Toolbox.

185c 〈Polynomially structured low-rank approximation 185c〉≡ 185d⊲
function [th, Dh, info] = pslra(D, phi, r, xini)

[q, N] = size(D); nt = size(phi(D), 1);

Defines:
pslra, used in chunk 187a.

If not specified, the initial approximation is taken as the algebraic fit and the data.
185d 〈Polynomially structured low-rank approximation 185c〉+≡ ⊳185c 185e⊲

if (nargin < 4) | isempty(xini)

tini = lra(phi(D), r); xini = [D(:); tini(:)];

end

Uses lra 105a.

Anonymous functions that extract the data approximation D̂ and the model param-
eter θ from the optimization parameter x are defined next.

185e 〈Polynomially structured low-rank approximation 185c〉+≡ ⊳185d 185f⊲
Dh = @(x) reshape(x(1:(q * N)), q, N);

th = @(x) reshape(x((q * N + 1):end), nt - r, nt)’;

The optimization problem is set and solved, using the Optimization Toolbox:
185f 〈Polynomially structured low-rank approximation 185c〉+≡ ⊳185e

〈set optimization solver and options 115d〉
prob.objective = @(x) norm(D - Dh(x), ’fro’);

prob.nonlcon = @(x) deal([], ...

[th(x)’ * phi(Dh(x)), th(x)’ * th(x) - eye(nt - r)]);

prob.x0 = xini;

〈call optimization solver 115e〉 Dh = Dh(x); th = th(x);

186 7 Nonlinear modeling problems

7.3.3 Numerical examples

In this section, we apply the algebraic and geometric fitting methods on algebraic
curve fitting examples. In all examples, except for the last one, the data D is simu-
lated in the errors-in-variables setup, see (EIV) on page 182. The perturbations d̃ j,
j = 1, . . . ,N are independent, zero mean, normally distributed 2× 1 vectors with
covariance matrix s2I2. The true model B̄ = ker(r̄), the number of data points N,
and the perturbation standard deviation s are simulation parameters. The true model
is plotted by a solid line, the data points by circles, the algebraic fit by a dotted line,
the bias corrected fit by dashed dotted line, and the geometric fit by a dashed line.

Test function

The test script test_curve_fitting assumes that the simulation parameters:

• polynomial r in x and y, defined as a symbolic object;
• degree d of r;
• number of data points N;
• noise standard deviation s; and
• coordinates ax of a rectangle for plotting the results

are already defined.

186a 〈Test curve fitting 186a〉≡
〈initialize the random number generator 25〉
〈default parameters 186b〉
〈generate data 186c〉
〈fit data 187a〉
〈plot results 187b〉

Defines:
test_curve_fitting, used in chunks 188–90.

If not specified, q= 2, m= 1.
186b 〈default parameters 186b〉≡ (186a)

if ~exist(’q’), q = 2; end

if ~exist(’m’), m = 1; end

if ~exist(’xini’), xini = []; end

The true (D0) and noisy (D) data points are generated by plotting the true model
186c 〈generate data 186c〉≡ (186a) 186d⊲

figure,

H = plot_model(r, ax, ’LineStyle’, ’-’, ’color’, ’k’);

Uses plot_model 187c.

and sampling N equidistant points on the curve
186d 〈generate data 186c〉+≡ (186a) ⊳186c

D0 = [];

for h = H’,

D0 = [D0 [get(h, ’XData’); get(h, ’YData’)]];

end

7.3 Computational algorithms 187

D0 = D0(:, round(linspace(1, size(D0, 2), N)));

D = D0 + s * randn(size(D0));

The data is fitted by the algebraic (lra), bias corrected (bclra), and geometric
(pslra) fitting methods:

187a 〈fit data 187a〉≡ (186a 190b)
qext = nchoosek(q + deg, deg); p = q - m;

[Deg, phi] = monomials(deg);

th_exc = lra(phi(D), qext - p)’;

th_ini = bclra(D, deg);

[th, Dh] = pslra(D, phi, qext - p, xini);

Uses bclra 182, lra 105a, monomials 179a, and pslra 185c.

The noisy data and the fitted models are plotted on top of the true model:
187b 〈plot results 187b〉≡ (186a 190b)

hold on; plot(D(1,:), D(2,:), ’o’, ’markersize’, 7);

plot_model(th2poly(th_exc, phi), ax, ...

’LineStyle’, ’:’, ’color’, ’k’);

plot_model(th2poly(th_ini, phi), ax, ...

’LineStyle’, ’-.’, ’color’, ’r’);

plot_model(th2poly(th, phi), ax, ...

’LineStyle’, ’-’, ’color’, ’b’);

axis(ax); print_fig(sprintf(’%s-est’, name))

Uses plot_model 187c and th2poly 187d.

Plotting the algebraic curve

B = {d | φ(d)θ = 0}

in a region, defined by the vector rect, is done with the function plot_model.
187c 〈Plot the model 187c〉≡

function H = plot_model(r, rect, varargin)

H = ezplot(r, rect);

if nargin > 2, for h = H’, set(h, varargin{:}); end, end

Defines:
plot_model, used in chunks 186c, 187b, and 253.

The function th2poly converts a vector of polynomial coefficients to a function
that evaluates that polynomial.

187d 〈Θ 7→ RΘ 187d〉≡
function r = th2poly(th, phi), r = @(x, y) th’ * phi([x y]’);

Defines:
th2poly, used in chunk 187b.

Fitting algebraic curves in R
2

188 7 Nonlinear modeling problems

Simulation 1: Parabola

B = {col(x,y) | y = x2 +1}

188a 〈Curve fitting examples 188a〉≡ 188b⊲
clear all

name = ’parabola’;

N = 20; s = 0.1;

deg = 2; syms x y;

r = x^2 - y + 1;

ax = [-1 1 1 2.2];

test_curve_fitting

Uses test_curve_fitting 186a.
−1 −0.5 0 0.5 1
1

1.2

1.4

1.6

1.8

2

2.2

Simulation 2: Hyperbola

B = {col(x,y) | x2 − y2 −1 = 0}

188b 〈Curve fitting examples 188a〉+≡ ⊳188a 188c⊲
name = ’hyperbola’;

N = 20; s = 0.3;

deg = 2; syms x y;

r = x^2 - y^2 - 1;

ax = [-2 2 -2 2];

test_curve_fitting

Uses test_curve_fitting 186a.
−2 −1 0 1 2

−2

−1

0

1

2

Simulation 3: Cissoid

B = {col(x,y) | y2(1+x)= (1−x)3 }

188c 〈Curve fitting examples 188a〉+≡ ⊳188b 189a⊲
name = ’cissoid’;

N = 25; s = 0.02;

deg = 3; syms x y;

r = y^2 * (1 + x) ...

- (1 - x)^3;

ax = [-1 0 -10 10];

test_curve_fitting

Uses test_curve_fitting 186a. −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

7.3 Computational algorithms 189

Simulation 4: Folium of Descartes

B = {col(x,y) | x3 + y3 −3xy = 0}

189a 〈Curve fitting examples 188a〉+≡ ⊳188c 189b⊲
name = ’folium’;

N = 25; s = 0.1;

deg = 3; syms x y;

r = x^3 + y^3 - 3 * x * y;

ax = [-2 2 -2 2];

test_curve_fitting

Uses test_curve_fitting 186a.
−2 −1 0 1 2

−2

−1

0

1

2

Simulation 5: Eight curve

B = {col(x,y) | y2 − x2 + x4 = 0}

189b 〈Curve fitting examples 188a〉+≡ ⊳189a 189c⊲
name = ’eight’;

N = 25; s = 0.01;

deg = 4; syms x y;

r = y^2 - x^2 + x^4;

ax = [-1.1 1.1 -1 1];

test_curve_fitting

Uses test_curve_fitting 186a.
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Simulation 6: Limacon of Pascal

B = {col(x,y) | y2 + x2 − (4x2 −
2x+4y2)2 = 0}

189c 〈Curve fitting examples 188a〉+≡ ⊳189b 190a⊲
name = ’limacon’;

N = 25; s = 0.002;

deg = 4; syms x y;

r = y^2 + x^2 - (4 * x^2 ...

- 2 * x + 4 * y^2)^2;

ax = [-.1 .8 -0.5 .5];

test_curve_fitting

Uses test_curve_fitting 186a. 0 0.2 0.4 0.6 0.8
−0.5

0

0.5

190 7 Nonlinear modeling problems

Simulation 7: Four-leaved rose

B = {(x,y) | (x2+y2)3−4x2y2 = 0}

190a 〈Curve fitting examples 188a〉+≡ ⊳189c 190b⊲
name = ’rose’;

N = 30; s = 0.002;

deg = 6; syms x y;

r = (x^2 + y^2)^3 ...

- 4 * x^2 * y^2;

ax = [-1 1 -1 1];

test_curve_fitting

Uses test_curve_fitting 186a. −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Simulation 8: “Special data”

example from (Gander et al, 1994)

190b 〈Curve fitting examples 188a〉+≡ ⊳190a
name = ’special-data’;

D = [1 2 5 7 9 3 6 8 ;

7 6 8 7 5 7 2 4];

D0 = D; deg = 2;

xini = [D(:)’ 1 0 0 1 0 -1]’;

figure, ax = [-4 10 -1 9];

〈fit data 187a〉 〈plot results 187b〉
0 5 10

0

2

4

6

8

7.4 Identification of polynomial time-invariant systems

In this section, we considers a nonlinear identification problem. Section 7.4.1 de-
fines the model class, called polynomial time-invariant. The identification problem
with known model structure is considered in Section 7.4.2 and the structure selec-
tion problem (i.e., selecting the monomials that appear in the difference equation
representation of the model) is considered in Section 7.4.3. We address the struc-
ture selection problem by adding a sparsity inducing 1-norm regularizer in the cost
function. The 1-norm regularizer imposes the prior knowledge of a small number of
monomials, which is often physically meaningful. The number of monomials in the
model structure is also a measure for the complexity of the model, so that the regu-
larized cost function reflects the accuracy vs complexity trade-off. Once the model
structure is selected, the model parameters are re-estimated using the adjusted least
squares method. Section 7.4.4 shows a simulation example of the overall method.

7.4 Identification of polynomial time-invariant systems 191

7.4.1 Polynomial time-invariant model class

A polynomial time-invariant model is defined by a higher order difference equation

R
(
w,σw, . . . ,σ ℓw

)
= 0, (KER)

where R is a multivariable polynomial. We consider the special case of (KER) with
two manifest variables (q= 2), input/output partitioning w = [u

y], and R of the form

R(w,σw, . . . ,σ ℓw) = f (x)−σ ℓy, (R)

where
x := col(w,σw, . . . ,σ ℓ−1w,σ ℓu).

Therefore, the model class considered is defined by the difference equation

σ ℓy = f (x). (I/O)

The assumption (KER) about R allows us to compute the response of the model to
a given input and initial condition by recursive evaluation of y(t), for t = 1,2, . . .

Note that f is a nx-variate polynomial, where

nx := dim(x) = 2ℓ+1.

It is linearly parameterized by a parameter vector θ , with dim(θ) =: nθ :

f (x) = θ1 x
n11
1 · · ·xn1nx

nx︸ ︷︷ ︸
φ1(x)

+ · · ·+θnθ
x

nnθ 1

1 · · ·xnnθ nx
nx︸ ︷︷ ︸

φnθ
(x)

=
[
θ1 · · · θnθ

]



φ1(x)
...

φnθ
(x)


= θ⊤φ(x),

The vector of monomials φ defines the model structure.
For the input/output model (I/O), the parameterization of the function R is

R(w,σw, . . . ,σ ℓw) =
[
θ⊤ −1

][φ(x)
σ ℓy

]
= θ⊤

extφext(xext) = R(xext),

where xext :=
[x

σ ℓy

]
= col(w,σw, . . . ,σ ℓw).

A particular model with representation (I/O) is specified by the model struc-
tured φ and the model parameter vector θ . With a given model structure, the model

Bφ (θ) := {w = [u
y] | (I/O) holds }, (Bφ (θ))

depends on the parameter vector θ only.

192 7 Nonlinear modeling problems

The model class defined by (Bφ (θ)) is denoted by Pφ . In what follows we will
consider model structures consisting of all monomials with bounds on the lag ℓ and
the degree nmax. The corresponding model class is denoted by Pℓ,nmax . The number
of parameters nθ =

(2ℓ+1
nmax

)
is combinatorial in ℓ and nmax.

Example 7.4 (First order quadratic time-invariant model). By definition, a first or-
der (ℓ= 1) quadratic (nmax = 2) time-invariant model has a representation

R(w,σw) = ∑
i+ j+k+l=2

Ri jklu
iy j(σu)k(σy)l .

The polynomial R can be written as R = θ⊤φ(x) with a vector of model parameters

θ⊤ =
[

R2000 R1100 R1010 R1001 R0200 R0110 R0101 R0020 R0011 R0002
]

and model structure

φ(x) =
[

u2 uy uσu uσy y2 yσu yσy (σu)2 σuσy (σy)2]⊤.

Therefore, in this simplest possible nontrivial example of a polynomial time-invariant
system, the number of parameters is nθ = 10.

7.4.2 Identification with known structure

The identification problem considered is defined as follows: Given a time series
wd ∈ (R2)T and model structure φ ,

minimize over θ̂ and ŵ ‖w− ŵ‖
subject to ŵ ∈ Bφ (θ̂).

(NLSYSID)

It yields the maximum-likelihood estimator for the true parameter vector θ̄ in the
errors-in-variables setting. As in the static case, the dynamic modeling problem is
equivalent to the polynomially structured low-rank approximation problem

minimize over ŵ ‖w− ŵ‖
subject to rank

(
Φ(ŵ)

)
≤ nθ −1,

(NLSLRA)

where
Φ(ŵ) :=

[
φext
(
x̂ext(ℓ+1)

)
· · · φext

(
x̂ext(T)

)]
. (Φ(ŵ))

Contrary to affine structured low-rank approximation problems, (NLSLRA) does
not allow the approximation matrix D̂ to be eliminated analytically, as done in the
variable projection method (see Section 4.2). Therefore, the number of optimization
variables is of the order of magnitude of the number of data points. This makes the

7.4 Identification of polynomial time-invariant systems 193

use of local optimization methods infeasible for medium to large scale polynomially
structured low-rank approximation problems.

With exact data, the extended true parameter vector θ̄⊤
ext :=

[
θ̄⊤ −1

]
is in the

left kernel of the matrix Φ(w). Moreover, provided that the left kernel of Φ(w)
is one dimensional, the true system’s parameter vector θ̄ can be computed from a
nonzero vector θ̂ext in leftker

(
Φ(w)

)
, by scaling. The condition that Φ(w) has one

dimensional left kernel, i.e., rank
(
Φ(w)

)
= nθ − 1 is a nonlinear equivalent to the

persistency of excitation assumption in linear system identification, cf., Lemma 3.7.
With noisy data, a heuristic identification method is obtained by compute an

approximate left kernel of Φ(w) by minimization of the residual error

minimize over θext ‖θ⊤
extΦ(wd)‖2

subject to ‖θext‖2 = 1.
(LRA)

(LRA) is equivalent to unstructured low-rank approximation of the matrix Φ(w).
The minimization of the residual error (LRA) is a relaxation of the maximum

likelihood estimation method (NLSLRA). As in the static case, we use the bias cor-
rection procedure, presented in Section 7.3.1, in order to improve the performance
of the basic low-rank approximation method (LRA).

7.4.3 Structure selection

We propose a method for structure selection, based on sparse approximation within
a larger model class Pℓ,nmax , i.e., we consider all monomials φ with a bounded total
degree. Assuming that the true model structure φ̄ is included in φ , i.e., the monomi-
als in φ̄ are a subset of the monomials in φ , the parameter vector of a less complex
model, represented within a larger model class is a sparse vector. Only the coeffi-
cients corresponding to the monomials that are part of the model’s representation
are nonzero.

Sparsity can be enforced by an ℓ1-norm regularizer:

minimize over θ
∥∥[θ⊤ −1

]
Φ(w)

∥∥
2︸ ︷︷ ︸

fitting error

+ γ ‖θ‖1︸ ︷︷ ︸
regularizer

. (LS-SVM)

Problem (LS-SVM) is a least squares support vector machine problem (Suykens and
Vandewalle, 1999). It is convex and can be solved globally and efficiently.

The regularization parameter γ is selected, so that the computed parameter vec-
tor θ̂ has a specified sparsity, i.e., the number of nonzero elements in θ̂ is equal to a
specified number nx.

194 7 Nonlinear modeling problems

7.4.4 Identification experiments

In order to validate the method for polynomial time-invariant system identification,
presented in Section 7.4.2 and the bias correction method of Section 7.3.1, we per-
form Monte Carlo experiments with data simulated in the errors-in-variables setting.
The true model

B̄ = {w = [u
y] | σ2y+a1σy+a0y = cαy3 +b0u+b1σu+b2σ2 }

is polynomial time-invariant with

f (x) = θ1u(t)+θ2u(t +1)+θ3u(t +2)+θ4y(t)+θ5y3(t)+θ6y(t +1).

It belongs to the class P2,3, i.e., ℓ= 2 and nmax = 3. The degrees matrix N is

u(t) y(t) u(t +1) y(t +1) u(t +2)
φ1 1 0 0 0 0
φ2 0 1 0 0 0
φ3 0 0 1 0 0
φ4 0 0 0 1 0
φ5 0 0 0 0 1
φ6 0 3 0 0 0

and the true parameter vector is

θ̄ =
[
−0.5 0.25 −1 −0.25 0.3 0.1

]⊤
.

Figure 7.2 shows the relative estimation error e := ‖θ̄ − θ̂‖/‖θ̄‖, averaged over
100 Monte Carlo experiments. The result shows that both (LRA) and the bias cor-
rection methods recover the exact model from noise free data. The bias correction,
however, reduces the estimation error of the basic low-rank approximation method.

0 0.1
0

1

noise level

e

low-rank approximation

bias correction

Fig. 7.2: Both unstructured low-rank approximation (solid red line) and bias cor-
rected low-rank approximation (dashed blue line) recover the exact model from ex-
act data however the bias correction reduces the error when the data is noisy.

7.5 Notes and references 195

7.5 Notes and references

Curve fitting

Fitting curves to data is a basic problem in coordinate metrology, see (Van Huffel,
1997, Part IV). In the computer vision literature, there is a large body of work on
ellipsoid fitting (see, e.g., (Bookstein, 1979; Fitzgibbon et al, 1999; Gander et al,
1994; Kanatani, 1994; Markovsky et al, 2004)), which is a special case of the data
fitting problem in the chapter when the degree of the polynomial is equal to two.
The subspace clustering problem (fitting the model that is a union of subspaces to
the data) is a generalized principal component analysis problem (Vidal et al, 2005).

The problem of passing from image to kernel representation of the model
is known in computer algebra as the implicialization problem (Cox et al, 2004,
page 96). The inverse—passing from a kernel to an image representation of the
model—is a problem of solving a system of multivariable polynomial equations.

Nonlinearly structured low-rank approximation

Relaxation of the nonlinearly structured low-rank approximation problem, based
on ignoring the nonlinear structure and thus solving the problem as unstructured
low-rank approximation, (i.e., the algebraic fitting method) is known in the machine
learning literature as kernel principal component analysis (Schölkopf et al, 1999;
Vidal et al, 2005). The principal curves, introduced in (Hastie and Stuetzle, 1989),
lead to a problem of minimizing the sum of squares of the distances from data points
to a curve. This is a polynomially structured low-rank approximation problem. More
generally, dimensionality reduction by manifold learning, see, e.g., (Zhang and Zha,
2005) is related to the problem of fitting an affine variety to data, which is also
polynomially structured low-rank approximation.

Nonlinear system identification

Major classes of nonlinear models, listed in decreasing level of generality, are:

• Volterra series (Boyd et al, 1984),
• Nonlinear state space (Paduart et al, 2010),
• Nonlinear Auto Regressive Exogenous (NARX) (Billings, 2013),
• Block-oriented (Giri and Bai, 2010).

The Volterra series represent the output of the system as a sum of convolutions of
what are called the system kernels’ with the input. This representation is an universal
approximation of a nonlinear system’s dynamics as the number of terms in the sum
grows (Boyd et al, 1984). The challenge in system identification with this class of
systems is the explosion of the system parameters (the kernel functions). A possible
solution is to use regularization and therefore prior knowledge about the kernels.

196 7 Nonlinear modeling problems

NARX model represents the system by a nonlinear difference equation. The dif-
ference equation can be specified by basis expansion, neural network, etc. Using
expansion in a basis and truncating the infinite series to a finite one, turns the model
identification problem into a parameter estimation problem—find the expansion co-
efficients from the data. As with the Volterra series, the problem of estimating the
parameters is ill-posed, so that prior knowledge about the model is needed.

The block-oriented models represent the system as a connection of linear time-
invariant dynamic and nonlinear static subsystems. Depending on the topology of
the connection network and the types of blocks being used, there are different types
of block-oriented models (Hammerstein, Wiener, Wiener-Hammerstein, . . .). The
problem of structure selection for a block-oriented model is to discover from data
the network topology and the type of models in the nodes. Even with given struc-
ture, however, the problem of estimating the model parameters may be challenging.

Exercises

7.1 (Exact line fitting). Given a set of points D = {d1, . . . ,dN } ⊂ R
2,

1. find conditions for existence of a line that passes through the points,
2. explain how to test the condition numerically,
3. implement a method for exact line fitting.

7.2 (Approximate line fitting). Given a set of points D = {d1, . . . ,dN } ⊂ R
2, ex-

plain how to find a line B in R
2 that is as close as possible to the data D in the sense

of minimizing the geometric distance.

7.3 (Exact conic section fitting). Given a set of points D = {d1, . . . ,dN } ⊂ R
2,

1. find conditions for existence of an exact conic section B(A,b,c) fit,
2. propose a numerical method for exact conic section fitting,
3. implement the method and test it on the data D =

{[−1
−1

]
,
[

1
−1

]
,
[

1
1

]
,
[−1

1

]}
.

7.4 (Approximate conic section fitting).

Implement the algebraic fitting method in the special case of a conic section model.

References

Billings S (2013) Nonlinear system identification: NARMAX methods in the time,
frequency, and spatio-temporal domains. John Wiley & Sons

Bookstein FL (1979) Fitting conic sections to scattered data. Computer Graphics
Image Proc 9:59–71

Boyd S, Chua L, Desoer C (1984) Analytical foundations of Volterra series. IMA
Journal of Mathematical Control and Information 1(3):243–282

Cox D, Little J, O’Shea D (2004) Ideals, varieties, and algorithms. Springer

References 197

Fitzgibbon A, Pilu M, Fisher R (1999) Direct least-squares fitting of ellipses. IEEE
Trans Pattern Anal Machine Intelligence 21(5):476–480

Gander W, Golub G, Strebel R (1994) Fitting of circles and ellipses: Least squares
solution. BIT 34:558–578

Giri F, Bai EW (2010) Block-oriented nonlinear system identification, vol 1.
Springer

Hastie T, Stuetzle W (1989) Principal curves. J American Statistical Association
84:502–516

Kanatani K (1994) Statistical bias of conic fitting and renormalization. IEEE Trans
Pattern Anal Machine Intelligence 16(3):320–326

Markovsky I, Kukush A, Van Huffel S (2004) Consistent least squares fitting of
ellipsoids. Numerische Mathematik 98(1):177–194

Paduart J, Lauwers L, Swevers J, Smolders K, Schoukens J, Pintelon R (2010) Iden-
tification of nonlinear systems using polynomial nonlinear state space models.
Automatica 46(4):647–656

Schölkopf B, Smola A, Müller K (1999) Kernel principal component analysis., MIT
Press, Cambridge, MA, pp 327–352

Shklyar S, Kukush A, Markovsky I, Van Huffel S (2007) On the conic section fitting
problem. Journal of Multivariate Analysis 98:588–624

Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers.
Neural processing letters 9(3):293–300

Usevich K, Markovsky I (2016) Adjusted least squares fitting of algebraic hypersur-
faces. Linear Algebra Appl 502:243–274

Van Huffel S (ed) (1997) Recent Advances in Total Least Squares Techniques and
Errors-in-Variables Modeling. SIAM, Philadelphia

Vidal R, Ma Y, Sastry S (2005) Generalized principal component analysis (GPCA).
IEEE Trans Pattern Analysis and Machine Intelligence 27(12):1945–1959

Zhang Z, Zha H (2005) Principal manifolds and nonlinear dimension reduction via
local tangent space alignment. SIAM J on Scientific Computing 26:313–338

Chapter 8

Dealing with prior knowledge

It is reasonable to expect that prior knowledge concerning

system parameters and structure may enhance rates of

convergence or improve other properties such as robustness.

Goodwin et al (1979)

Centering by mean subtraction is a common preprocessing step applied before other
data modeling methods are used. Section 8.1 studies different ways of combining
linear data modeling by low-rank approximation with data centering. It is shown
that in the basic case of approximation in the Frobenius norm and no structure, the
two-step procedure of preprocessing the data by mean subtraction and low-rank ap-
proximation is optimal. In the case of approximation in either a weighted norm or
with a structure constraint, the two-step procedure is suboptimal. We show modifi-
cations of the variable projection and alternating projections methods for weighted
and structured low-rank approximation with centering.

Section 8.2 considers an approximate rank revealing factorization problem with
structure constraints on the normalized factors. Examples of structure, motivated by
an application of the problem in microarray data analysis, are sparsity, nonnegativ-
ity, periodicity, and smoothness. An alternating projections algorithm is developed.
Although the algorithm is motivated by a specific application in microarray data
analysis, the approach is applicable to other types of structure.

Section 8.3 considers the problem of solving approximately in the least squares
sense an overdetermined system of linear equations with complex valued coeffi-
cients, where the elements of the solution vector are constrained to have the same
phase. This problem is reduced to a generalized low-rank matrix approximation.

Section 8.4 considers a blind identification problem with prior knowledge about
the input in the form of a linear time-invariant autonomous system. A special case of
the problem for constant input has an application in metrology for dynamic measure-
ment. The general problem can be viewed alternatively as a gray-box identification
problem or an input estimation problem with unknown model dynamics.

199

200 8 Dealing with prior knowledge

8.1 Data preprocessing

A system’s behavior can be linearized around a certain operating point, or offset. Usually,
these offsets are unknown, and there are two ways to deal with their presence: first, subtract-
ing estimates of these offsets from the input-output data, second, incorporating the offset
into the model as an unknown parameter.

Verhaegen et al (2007)

Closely related to the linear model is the affine one. The observations

D = {d1, . . . ,dN }

satisfy an affine static model B if D ⊂B, where B is an affine set, i.e., B = c+B′,
with B′ ⊂R

q a linear model and c∈R
q an offset vector. Obviously, the affine model

class contains as a special case the linear model class. The parameter c, however,
allows us to account for a constant offset in the data. Consider, for example, the data

D = {
[

1
1

]
,
[

1
−1

]
},

which satisfies the affine model

B =
[

1
0

]
+{d |

[
1 0

]
d = 0}

but is not fitted by a linear model of dimension one.
Subtracting the offset c from the data vector d, reduces the affine modeling prob-

lem with known offset parameter to an equivalent linear modeling problem. In a
realistic data modeling setup, however, the offset parameter is unknown and has to
be identified together with the linear model B′. A common heuristic for solving this
problem is to replace the offset c by the mean

M(D) :=
1
N

D1N =
1
N
(d1 + · · ·+dN) ∈ R

q,

where
D =

[
d1 · · ·dN

]
and 1N :=

[
1 · · · 1

]⊤
.

This leads to the following two-step procedure for identification of affine models:

1. pre-processing: subtract the mean from the data points,
2. linear identification: identify a linear model for the pre-processed data.

When the aim is to derive an optimal in some specified sense approximate affine
model, the two-step procedure may lead to suboptimal results. Indeed, even if the
data centering and linear identification steps are individually optimal with respect
to the desired optimality criterion, their composition need not be optimal for the
affine modeling problem, i.e., simultaneous subspace fitting and centering. It turns
out, however, that in the case of the basic low-rank approximation problem (unstruc-
tured approximation in the Frobenius norm) the two-step procedure is optimal. In

8.1 Data preprocessing 201

the cases of weighted and Hankel structured low-rank approximation problems, the
two-step procedure is suboptimal. Methods based on the alternating projections and
variable projection algorithms are developed in these cases.

8.1.1 Matrix centering

The matrix centering operation C subtracts the mean M(D) from the columns

C(D) := D−M(D)1⊤N = D(I − 1
N

1N1⊤N).

The following proposition justifies the name “matrix centering” for C(·).

Proposition 8.1 (Matrix centering) The matrix C(D) is column centered, i.e.,

M
(

C(D)
)
= 0.

As shown next, mean computation can be viewed as an optimal modeling problem.

Proposition 8.2 (Mean computation as an optimal modeling) The mean M(D) is

a solution to the following optimization problem:

minimize over D̂ and c ‖D− D̂‖F

subject to D̂ = c1⊤N .

Note 8.3 (Intercept). Data fitting with an intercept is a special case of centering when
only the output is centered. Intercept requires an input/output partition of the vari-
ables and assumes that the input has no offset.

8.1.2 Unweighted low-rank approximation with centering

In this section, we consider the unstructured low-rank approximation problem in the
Frobenius norm with centering

minimize over D̂ and c ‖D− c1⊤N − D̂‖F

subject to rank(D̂)≤ m.
(LRAc)

The following theorem shows that the two-step procedure yields a solution to (LRAc).

Theorem 8.4 (Optimality of the two-step procedure). A solution to (LRAc) is the

mean of D, c∗ = M(D), and an optimal in a Frobenius norm rank-m approxima-

tion D̂∗ of the centered data matrix C(D).

202 8 Dealing with prior knowledge

Corollary 8.5 (Nonuniqueness of the solution of (LRAc)). Let

D̂ = PL, where P ∈ R
q×m and L ∈ R

m×N

be a rank revealing factorization of an optimal in a Frobenius norm rank-m approx-

imation of the centered data matrix C(D). The solutions of (LRAc) are of the form

c∗(z) = M(D)+Pz

D̂∗(z) = P(L− z1⊤N)
for z ∈ R

m.

The same nonuniqueness appears in weighted and structured low-rank approxima-
tion problems with centering. It may cause problems in the optimization algorithms.
Also solutions produced by different methods can not be compared directly.

8.1.3 Weighted low-rank approximation with centering

Consider the weighted low-rank approximation problem with centering

minimize over D̂ and c ‖D− D̂− c1⊤‖W

subject to rank(D̂)≤ m,
(WLRAc)

where W is a symmetric positive definite matrix and ‖ · ‖W is the weighted norm,
defined in (‖ · ‖W). The two-step procedure of computing the mean in a preprocess-
ing step and then the weighted low-rank approximation of the centered data matrix,
in general, yields a suboptimal solution to (WLRAc). We present two algorithms
for finding a locally optimal solution to (WLRAc). The first one is an alternating
projections type method and the second one is a variable projection type method.
First, however, we present a special case of (WLRAc) with analytic solution that is
more general than the case W = αI, with α 6= 0 solved in Theorem 8.4.

Theorem 8.6 (Two-sided weighted low-rank approximation with centering).

A solution to (WLRAc), in the case W =Wr ⊗Wl, where Wl ∈ R
q×q and Wr ∈ R

N×N

with Wr1N = λ1N , for some λ , is

c∗ =
√

W−1
l c∗m/

√
λ , D̂∗ =

√
W−1

l D̂∗
m

√
W−1

r ,

where (c∗m, D̂
∗
m) is a solution to the unweighted low-rank approximation problem

minimize over D̂m and cm ‖Dm − cm1⊤N − D̂m‖F

subject to rank(D̂m)≤ m.

for the modified data matrix Dm :=
√

WlD
√

Wr.

8.1 Data preprocessing 203

Alternating projections algorithm

Following the derivation of the alternating projections method in Section 4.1.4, we
use the image representation of the rank constraint

rank(D̂)≤ m ⇐⇒ D̂ = PL, where P ∈ R
q×m and L ∈ R

m×N ,

in order to obtain an equivalent bilinear problem

minimize over P ∈ R
q×m, L ∈ R

m×N , c ∈ R
q ‖D−PL− c1⊤N‖W (WLRAc,P)

to problem (WLRAc). We have

‖D− c1⊤N −PL‖W =

∥∥∥∥vec(D)−
[
IN ⊗P 1N ⊗ Iq

][vec(L)
c

]∥∥∥∥
W

=

∥∥∥∥vec(D)−
[
L⊤⊗ Iq 1N ⊗ Iq

][vec(P)
c

]∥∥∥∥
W

,

so that problem (WLRAc,P) is linear in c and L as well as in c and P. This sug-
gests a method for weighted low-rank approximation with centering that solves the
following two linear least squares problems iteratively,

minimize over c and L

∥∥∥∥vec(D)−
[
IN ⊗P 1N ⊗ Iq

][vec(L)
c

]∥∥∥∥
W

and

minimize over c and P

∥∥∥∥vec(D)−
[
L⊤⊗ Iq 1N ⊗ Iq

][vec(P)
c

]∥∥∥∥
W

.

The method is summarized in Algorithm 9. The initial approximation c(0), P(0), L(0)

is computed by data centering and unweighted low-rank approximation.
Since on each iteration the cost function value is guaranteed to be non increasing

and the cost function is bounded from below, the sequence of cost function values
generated by the algorithm converges, see Figure 8.1. Moreover, it can be shown
that the sequence of the parameters c(k), P(k), L(k) converges to a locally optimal
solution to (WLRAc,P).

Example 8.7 (Suboptimality of the two-stage procedure for weighted low-rank ap-

proximation with centering). In a randomly generated rank-1 weighted approxima-
tion problem with q= 3 variables and N = 6 data points, the mean of the data matrix
and the approximation of the mean, produced by the Algorithm 9 are, respectively

c(0) =




0.5017
0.7068
0.3659


 and ĉ =




0.4365
0.6738
0.2964


 .

204 8 Dealing with prior knowledge

The weighted rank-1 approximation of the matrix D− c(0)1⊤N has approximation
error 0.1484, while the weighted rank-1 approximation of the matrix D − ĉ1⊤N
has approximation error 0.1477. This proves the suboptimality of the two-step
procedure—data centering, followed by weighted low-rank approximation.

1 2 3 4 5 6

0.15

0.16

0.17

0.18

0.19

0.2

0.21

iteration step, k

‖D
−

P
(k
) L

(k
)
−

c(
k
) 1

⊤ N
‖ W

Fig. 8.1: The sequence of the cost function values, produced by Algorithm 9, con-
verges monotonically.

Algorithm 9 Alternating projections algorithm for weighted low-rank approxima-
tion with centering.

Input: data matrix D ∈R
q×N , rank constraint m, positive definite weight matrix W ∈R

Nq×Nq, and
relative convergence tolerance ε .

1: Initial approximation: compute the mean c(0) := M(D) and the rank-m approximation D̂(0) of
the centered matrix D− c(0)1⊤N . Let D̂(0) = P(0)L(0), with P(0) ∈ R

q×m and L(0) ∈ R
m×N full

rank.
2: k := 0.
3: repeat

4: Let P :=
[
IN ⊗P(k) 1N ⊗ Iq

]
and

[
vec(L(k+1))

ĉ(k+1)

]
:=
(
P⊤WP

)−1
P⊤W vec(D).

5: Let L :=
[
L(k+1)⊤⊗ Iq 1N ⊗ Iq

]
and

[
vec(P(k+1))

ĉ(k+1)

]
:=
(
L⊤WL

)−1
L⊤W vec(D).

6: Let D̂(k+1) := P(k+1)L(k+1).
7: k = k+1.
8: until ‖D̂(k)− D̂(k−1)‖W/‖D̂(k)‖W < ε .

Output: Locally optimal solution ĉ := ĉ(k) and D̂∗ = D̂(k) of (WLRAc,P).

8.1 Data preprocessing 205

Variable projection algorithm

The variable projection approach is based on the observation that (WLRAc,P) is a
double minimization problem

minimize over P ∈ R
q×m M(P)

where the inner minimization is a weighted least squares problem

M(P) := min
L∈Rm×N , c∈Rq

‖D−PL− c1⊤N‖W

and therefore can be solved analytically. This reduces the original problem to a
nonlinear least squares problem over P only. We have that

M(P) =

√
vec⊤(D)WP

(
P⊤WP

)−1
P⊤W vec(D),

where
P :=

[
IN ⊗P 1N ⊗ Iq

]
.

For the outer minimization a nonlinear (least squares) algorithm is used.

Example 8.8. For the same data, initial approximation, and convergence tolerance as
in Example 8.7, the variable projection algorithm, using numerical approximation
of the derivatives in combination with quasi-Newton method converges to a locally
optimal solution with approximation error 0.1477—the same as the one found by
the alternating projections algorithm. The optimal parameters found by the two al-
gorithms are equivalent up to the nonuniqueness of the solution, see Theorem 8.5.

8.1.4 Hankel structured low-rank approximation with centering

Consider the Hankel structured low-rank approximation problem with centering

minimize over ŵ and c ‖w− c− ŵ‖2

subject to rank
(
Hn+1(ŵ)

)
≤ n,

(HLRAc)

where w is a scalar-valued sequence
(
w(1), . . . ,w(T)

)
.

Variable projection algorithm

Using the kernel representation of the rank constraint

rank
(
Hn+1(ŵ)

)
≤ r ⇐⇒ there is full rank matrix R ∈ R

1×n+1

such that RHn+1(wd) = 0,

206 8 Dealing with prior knowledge

we have
RHn+1(ŵ) = 0 ⇐⇒ TT−n(R)ŵ = 0,

where TT−n(c) is an upper triangular Toeplitz matrix, defined in (T) on page 117.
Let P be a full rank matrix, such that

image(P) = ker
(
TT−n(R)

)
.

Then the constraint of (HLRAc) can be replaced by “there is v, such that ŵ = Pv,”
which leads to the following problem equivalent to (LRAc)

minimize over R M(R),

where

M(R) := min
c,v

∥∥∥∥w−
[
1N P

][c

v

]∥∥∥∥
2
.

The evaluation of M for a given R is a standard least squares problem.

Example 8.9 (Suboptimality of the two-stage procedure for structured low-rank ap-

proximation with centering.). The data sequence is w(t) = 0.9t +1, for t = 1, . . . ,10.
The sequence (0.91, . . . ,0.910) satisfies a difference equation σw = aw, however,
a shifted sequence w(t) = 0.9t + c, with c 6= 0, does not satisfy such an equation.
The mean of the data is M(w) = 1.5862, so that the centered data w(t)−M(w) is
not a trajectory of a first order autonomous linear time-invariant model. Solving the
Hankel structured low-rank approximation problem with centering (HLRAc) yields
the exact solution ĉ = 1.

Preprocessing by centering the data is a common practice in system identifica-
tion. Example 8.9 shows that preprocessing may lead to suboptimal results. There-
fore, there is a need for methods that combine data preprocessing with the existing
identification methods. The algorithm derived in this section is such a method for
identification of a scalar autonomous system.

8.2 Approximate low-rank factorization

As shown in the previous chapters, prior knowledge about the true data generating
system plays an important role in data modeling. How important? In fact, without
prior knowledge, no method can do better than a random guess. Our aim is to de-
velop methods that exploit as effectively as possible the available prior knowledge.

In system identification, prior knowledge is specified via the model class and the
approximation criterion. The model class corresponds to the matrix structure and the
rank constraint in the low-rank approximation setting. We consider different types
of structure in order to incorporate different model classes met in applications, see
Table 1.1. The prior knowledge related to the approximation criterion corresponds

8.2 Approximate low-rank factorization 207

to information about the noise, e.g., 2-norm cost function corresponds to Gaussian
measurement noise and the weight matrix corresponds to the noise covariance.

In general, either the addition of the structure constraints or the replacement of
the Frobenius norm with a weighted norm, makes the modified low-rank approxima-
tion problem difficult to solve. A globally optimal solution can no longer be given
in terms of the singular values and the resulting optimization problem is nonconvex.

In addition to the prior knowledge expressed as a structure constraint, low-rank
constraint, and weighted cost function, section considers prior knowledge expressed
in terms of a rank revealing factorization of the true data matrix D̄ = P̄L̄. In order

to make the factorization unique, we normalize the P̄ factor as P̄ =
[

Im
P̄′

]
. Examples

of prior knowledge encountered in bioinformatics are nonnegativity of P̄′ and L̄,
sparsity of P̄′, and small variation of the rows of L̄. “Using the prior knowledge”
means imposing the same structure that is present in the true data D̄ also on the
approximation D̂. This in turn amounts to adding constraints in the optimization
problem.

Next, we present an alternating projections algorithm for low-rank approximation
with structured factors. We use the alternating projections approach, because it lends
itself naturally to the factorization D̂ = P̂L̂ and is easier to modify when there are
constraints on P̂ and L̂. Certain constrained problems can be treated also using a
modification of the variable projection method.

8.2.1 Prior knowledge and problem formulation

In order to make the parameters P̄ and L̄ unique, we impose the normalization

P̄ =
[

Im
P̄′

]
. (A1)

In addition, elements specified by a selector matrix S are equal to zero:

Svec(P̄′) = 0. (A2)

The parameter L̄ is periodic with a hyper-parameter the period l ∈ Z+:

L̄ = 1⊤l ⊗ L̄′, (A3)

where L̄′ is nonnegative
L̄′ ≥ 0, (A4)

and has smooth rows in the sense that

‖L̄′D‖2
F ≤ δ , (A5)

with D being the finite difference matrix

208 8 Dealing with prior knowledge

D :=




1 −1
−1 1

. . .
. . .

−1 1




and δ > 0 a smoothness hyper-parameter.
The data D is generated in the errors-in-variables setup (EIV), where the noise

D̃ is assumed to be element-wise uncorrelated with standard deviations Σi j, i =
1, . . . ,q, j = 1, . . . ,N. Then, under assumptions (A1–A5) the maximum likelihood
estimator for the parameters P̄ and L̄ is given by the following optimization problem:

minimize over P′, L′, and D̂ ‖D− D̂‖Σ (cost function) (C0)

subject to D̂ = PL (rank constraint)

P =
[

Im
P′

]
(normalization of P) (C1)

Svec(P′) = 0 (zero elements of P′) (C2)

L = 1⊤l ⊗L′ (periodicity of L) (C3)

L′ ≥ 0 (nonnegativity of L′) (C4)

‖L′D‖2
F ≤ δ (smoothness of L′) (C5)

8.2.2 Computational algorithm

The alternating projections algorithm, see Algorithm 10, is based on the observa-
tion that the cost function (C0) is quadratic and the constraints (C1–C5) are linear
in either P or L. Therefore, for a fixed value of P, (C0–C5) is a nonnegativity con-
strained least squares problem in L and vice verse, for a fixed value of L, (C0–C5) is a
constrained least squares problem in P. These problems correspond to, respectively,
steps 1 and 2 of the algorithm. Geometrically they are projections. In the unweighted
and unconstrained case, the problem on step 1 is the orthogonal projection

D̂ = DL⊤(LL⊤)−1L⊤ = DΠL

of the row of D on rowspan(L). Similarly, the problem on step 2 is the projection

D̂ = P(P⊤P)−1P⊤D = ΠPD

of the columns of D on colspan(P).

Theorem 8.10 (Markovsky and Niranjan (2008)). Algorithm 10 is globally and

monotonically convergent in the ‖ · ‖Σ norm, i.e., if

D̂(k) := P(k)L(k)

8.2 Approximate low-rank factorization 209

Algorithm 10 Alternating projections algorithm for solving problem (C0–C5).

• Find an initial approximation (P′(0),L′(0)) from centering and basic low-rank approximation.
• For k = 0,1, . . . till convergence do

1. P′(k+1) := argminP′ ‖D−PL‖Σ subject to (C1–C2) with L′ = L′(k)

2. L′(k+1) := argminL′ ‖D−PL‖Σ subject to (C3–C5) with P′ = P′(k+1)

is the approximation on the kth step of the algorithm, then

f (k) := ‖D− D̂(k)‖2
Σ → f ∗, as k → ∞. (f (k)→ f ∗)

Assuming that there exists a solution to the problem (C0–C5) and any (locally opti-

mal) solution is unique (i.e., it is a strict minimum), the sequences D̂(k), P(k), and L(k)

converge element-wise, i.e.,

D̂(k) → D∗, P(k) → P∗, and L(k) → L∗, as k → ∞, (D(k) → D∗)

where D̂∗ := P∗L∗ is a (locally optimal) solution of (C0–C5).

8.2.3 Implementation details

The optimization problem on step 1 of the algorithm is computed separately for each
row pi of P. Let di be the ith row of D and Σi,: be the ith row of Σ . The problem

minimize over P ‖D−PL‖2
Σ subject to (C1–C2)

is equivalent to m problems

minimize over pi ‖di − piL‖Σi,: subject to (C1–C2). (∗)

The optimization problem on step 2 is not separable due to constraint (C5).

Taking into account constraint (C1)

Since the first m rows of P are fixed, we do not solve (∗) for i = 1, . . . ,m, but define

pi := e⊤i , for i = 1, . . . ,m,

where ei is the ith unit vector (the ith column of the identity matrix Im).

210 8 Dealing with prior knowledge

Taking into account constraint (C2)

Let Si be a selector matrix for the zeros in the ith row of P

Svec(P′) = 0 ⇐⇒ piSi = 0, for i = m+1, . . . ,q.

The ith problem in (∗) becomes

minimize over pi ‖di − piL‖Σi,: subject to piSi = 0. (∗∗)

Let the rows of the matrix Ni form a basis for the left null space of Si. Then piSi = 0
if and only if pi = ziNi, for certain zi, and problem (∗∗) becomes

minimize over zi ‖di − ziNiL‖Σi,: .

Therefore, the solution of (∗) is

pi,∗ = diL⊤N⊤
i (NiLL⊤N⊤

i)−1Ni.

Note 8.11. It is not necessary to explicitly construct the matrices Si and compute
basis Ni for their left null spaces. Since Si is a selector matrix, it is a submatrix of
the identity matrix Im. The rows of the complementary submatrix of Im form a basis
for the left null space of Si. This particular matrix Ni is also a selector matrix, so that
the product NiL need not be computed explicitly.

Taking into account constraint (C3)

We have,

D−PL = D−P(1⊤l ⊗L′) =
[
D1 · · · Dl

]
−P

[
L′ · · · L′]

=




D1
...

Dl


−




P
...
P


L′ =: D′− (1l ⊗P)︸ ︷︷ ︸

P′

L′ = D′−P′L′.

Then the problem

minimize over L ‖D−PL‖2
Σ subject to (C3–C5)

is equivalent to the problem

minimize over L′ ‖D′−P′L′‖2
Σ ′ subject to (C4–C5),

where Σ ′ := vec(Σ1:l, :).

8.3 Complex least squares with constrained phase 211

Taking into account constraint (C4)

Adding the nonnegativity constraint changes the least squares problem to a non-
negative least squares problem. It does not admit an analytical solution but due to
convexity it can be solved globally and efficiently. We use an active-set algorithm
(Gill et al, 1999), which is implemented in the function lsqlin of MATLAB.

Taking into account constraint (C5)

The problem

minimize over L ‖D−PL‖2
Σ subject to ‖LD‖2

F ≤ δ

is equivalent to a regularized least squares problem

minimize over L ‖D−PL‖2
Σ + γ‖LD‖2

F

for certain regularization parameter γ . The latter problem is equivalent to the stan-
dard least squares problem

minimize over L

∥∥∥∥
[

diag
(

vec(Σ)
)

vec(D)
0

]
−
[

diag
(

vec(Σ)
)
(I ⊗P)√

γ(D⊤⊗ I)

]
vec(L)

∥∥∥∥ .

8.3 Complex least squares with constrained phase

The problem considered in this section is defined as follows.

Problem 8.12. Given a complex valued m×n matrix A and an m×1 vector b, find a
real valued n×1 vector x and a number φ , such that the equation’s error or residual
of the overdetermined system of linear equations

Axeiφ ≈ b, (i is the imaginary unit)

is minimized in the least squares sense, i.e.,

minimize over x ∈ R
n and φ ∈ (−π,π] ‖Axeiφ −b‖. (CLS)

Problem (CLS) is a complex linear least squares problem with constraint that all
elements of the solution have the same phase.

Problem (CLS) is nonconvex. General purpose local optimization methods can
be used for solving it, however, this approach has the usual disadvantages of local
optimization methods: need of initial approximation, no guarantee of global opti-
mality, convergence issues, and no insight in the geometry of the solutions set. In
(Bydder, 2010) the following closed form solution to (CLS) is derived

212 8 Dealing with prior knowledge

x̂ =
(
Re(A

HA)
)+

Re(A
Hbe−iφ) (SOL1 x̂)

φ̂ =
1
2
∠
(
(AHb)⊤Re(A

HA)+(AHb)
)
, (SOL1 φ̂)

where Re(A)/Im(A) is the real/imaginary part,∠(A) is the angle, AH is the complex
conjugate transpose, and A+ is the pseudoinverse of A. Moreover, in the case when
a solution of (CLS) is not unique, (SOL1 x̂, SOL1 φ̂) is a least norm element of the
solution set, i.e., a solution (x,φ), such that ‖x‖ is minimized. Expression (SOL1 x̂)
is the result of minimizing the cost function ‖Axeiφ − b‖ with respect to x, for a
fixed φ . This is a linear least squares problems. Then minimization of the cost func-
tion with respect to φ , for x fixed to its optimal value (SOL1 x̂), leads to (SOL1 φ̂).

8.3.1 Solution

Problem (CLS) is equivalent1 to the problem

minimize over x ∈ R
n and φ ′ ∈ (−π,π] ‖Ax−beiφ ′‖2, (CLS’)

where φ ′ =−φ . With

y1 := Re(e
iφ ′
) = cos(φ ′) = cos(φ) and y2 := Im(e

iφ ′
) = sin(φ ′) =−sin(φ),

we have [
Re(beiφ ′

)

Im(beiφ ′
)

]
=

[
Re(b) −Im(b)
Im(b) Re(b)

][
y1

y2

]
.

Then, (CLS’) is furthermore equivalent to the problem

minimize over x ∈ R
n and y ∈ R

2
∥∥∥∥
[
Re(A)
Im(A)

]
x−
[
Re(b) −Im(b)
Im(b) Re(b)

]
y

∥∥∥∥
subject to ‖y‖2 = 1,

or

minimize over z ∈ R
n+2 z⊤C⊤Cz subject to z⊤D⊤Dz = 1, (CLS”)

with

C :=
[
Re(A) Re(b) −Im(b)
Im(A) Im(b) Re(b)

]
∈R

2m×(n+2) and D :=
[

0 0
0 I2

]
∈R

(n+2)×(n+2).

(C, D)

1 Two optimization problems are equivalent if the solution of the first can be obtained from the
solution of the second by a one-to-one transformation. Of practical interest are equivalent problems
for which the transformation is simpler than the original problem.

8.3 Complex least squares with constrained phase 213

It is well known that a solution of problem (CLS”) can be obtained from the general-
ized eigenvalue decomposition of the pair of matrices (C⊤C,D). More specifically,
the smallest generalized eigenvalue λmin of (C⊤C,D) is equal to the minimum value
of (CLS”), i.e.,

λmin = ‖Ax̂eiφ̂ −b‖2
2.

If λmin is simple, a corresponding generalized eigenvector zmin is of the form

zmin = α




x̂

−cos(φ̂)
sin(φ̂)


 ,

for some α ∈ R. We have the following result.

Theorem 8.13 (Markovsky (2011)). Let λmin be the smallest generalized eigen-

value of the pair of matrices (C⊤C,D), defined in (C, D), and let zmin be a corre-

sponding generalized eigenvector. Assuming that λmin is a simple eigenvalue, prob-

lem (CLS) has unique solution, given by

x̂ =
1

‖z2‖2
z1, φ̂ = ∠(−z2,1 + iz2,2), where zmin =:

[
z1

z2

] }
n}
2
. (SOL2)

Remarks:

1. Generalized eigenvalue decomposition vs generalized singular value decompo-

sition Since the original data are the matrix A and the vector b, the generalized
singular value decomposition of the pair (C,D) can be used instead of the gen-
eralized eigenvalue decomposition of the pair (C⊤C,D). This avoids “squaring”
the data and is recommended from a numerical point of view.

2. Link to low-rank approximation and total least squares Problem (CLS”) is
equivalent to the generalized low-rank approximation problem

minimize over Ĉ ∈ R
2m×(n+2)

∥∥(C−Ĉ)D
∥∥

F

subject to rank(Ĉ)≤ n+1 and ĈD⊥ =CD⊥,
(GLRA)

where

D⊥ =

[
In 0
0 0

]
∈ R

(n+2)×(n+2)

and ‖ · ‖F is the Frobenius norm. Indeed, the constraints of (GLRA) imply that

∥∥(C−Ĉ)D
∥∥

F = ‖b− b̂‖2, where b̂ = Axeiφ .

The normalization (SOL2) is reminiscent to the generic solution of the total least
squares problems. The solution of total least squares problems, however, involves
a normalization by scaling with the last element of a vector zmin in the approx-

214 8 Dealing with prior knowledge

imate kernel of the data matrix C, while the solution of (CLS) involves normal-
ization by scaling with the norm of the last two elements of the vector zmin.

3. Uniqueness of the solution and minimum norm solutions A solution x of (CLS)
is nonunique when A has nontrivial null space. This source of nonuniqueness is
fixed in (Bydder, 2010) by choosing from the solutions set a least norm solution.
A least norm solution of (CLS), however, may also be nonunique due to possible
nonuniquess of φ . Consider the following example,

A =

[
1 i

−i 1

]
, b =

[
1
−i

]
,

which has two least norm solutions

x̂eiφ1 =

[
1
0

]
and x̂′eiφ2 =

[
0
−i

]
.

Moreover, there is a trivial nonuniqueness of x and φ due to xeiφ = −xei(φ±π)

with both φ and one of the angles φ ±π in the interval (−π,π].

8.3.2 Computational algorithms

Solution (SOL1 x̂, SOL1 φ̂) gives a straightforward procedure for computing a least
norm solution of problem (CLS).

214a 〈Complex least squares, solution by (SOL1 x̂, SOL1 φ̂) 214a〉≡
function cx = cls1(A, b)

invM = pinv(real(A’ * A)); Atb = A’ * b;

phi = 1 / 2 * angle((Atb).’ * invM * Atb);

x = invM * real(Atb * exp(-i * phi));

cx = x * exp(i * phi);

Defines:
cls1, used in chunk 217b.

The computational cost of cls1 is O(n2m+n3).
Theorem 8.13 gives two alternative procedures—one based on the generalized

eigenvalue decomposition:
214b 〈Complex least squares, solution by generalized eigenvalue decomposition 214b〉≡

function cx = cls2(A, b)

〈define C, D, and n 215a〉
[v, l] = eig(C’ * C, D); l = diag(l);

l(find(l < 0)) = inf; % ignore nevative values

[ml, mi] = min(l); z = v(:, mi);

phi = angle(-z(end - 1) + i * z(end));

x = z(1:(end - 2)) / norm(z((end - 1):end));

cx = x * exp(i * phi);

Defines:
cls2, used in chunk 217b.

8.3 Complex least squares with constrained phase 215

215a 〈define C, D, and n 215a〉≡ (214 215)
C = [real(A) real(b) -imag(b);

imag(A) imag(b) real(b)];

n = size(A, 2); D = diag([zeros(1, n), 1, 1]);

and the other one based on the generalized singular value decomposition:
215b 〈Complex least squares, solution by generalized singular value decomposition 215b〉≡

function cx = cls3(A, b)

〈define C, D, and n 215a〉
[u, v] = gsvd(C, D); z = v(:, 1);

phi = angle(-z(end - 1) + i * z(end));

x = pinv(C(:, 1:n)) * [real(b * exp(- i * phi));

imag(b * exp(- i * phi))];

cx = x * exp(i * phi);

Defines:
cls3, used in chunk 217b.

The computational cost of cls2 is O
(
(n+2)2m+(n+2)3

)
and of cls3 is O

(
m3+

(n+2)2m2 +(n+2)2m+(n+2)3
)
.

Note, however, that cls2 and cls3 compute the full generalized eigenvalue
decomposition and generalized singular value decomposition, respectively, while
only the smallest generalized eigenvalue/eigenvector or singular value/singular vec-
tor pair is needed for solving (CLS). This suggests a way of reducing the computa-
tional complexity by a factor of magnitude.

The equivalence between problem (CLS) and the generalized low-rank approx-
imation problem (GLRA), noted in remark 2 above, allows us to use the algorithm
from (Golub et al, 1987) for solving problem (CLS). The resulting Algorithm 11 is
implemented in the function cls4.

215c 〈Complex least squares, solution by Algorithm 11 215c〉≡
function cx = cls4(A, b)

〈define C, D, and n 215a〉
R = triu(qr(C, 0));

[u, s, v] = svd(R((n + 1):(n + 2), (n + 1):end));

phi = angle(v(1, 2) - i * v(2, 2));

x = R(1:n, 1:n) \ (R(1:n, (n + 1):end) * [v(1, 2); v(2, 2)]);

cx = x * exp(i * phi);

Defines:
cls4, used in chunk 217b.

The computational cost of cls4 is O
(
(n+2)2m

)
.

Table 8.1: Summary of methods for solving the complex least squares prob-
lem (CLS).

function method computational cost
cls1 (SOL1 x̂, SOL1 φ̂) O(n2m+n3)
cls2 full generalized eigenvalue decomp. O

(
(n+2)2m+(n+2)3

)

cls3 full generalized singular value decomp. O
(
m3 +(n+2)2m2 +(n+2)2m+(n+2)3

)

cls4 Algorithm 11 O
(
(n+2)2m

)

216 8 Dealing with prior knowledge

Algorithm 11 Solution of (CLS) using generalized low-rank approximation.

Input: A ∈ C
m×n, b ∈ C

m×1

1: QR factorization of C, QR =C.

2: Define R =:
[

R11 R12
0 R22

] }
n}
2

, where R11 ∈ R
n×n.

3: Singular value decomposition of R22, UΣV⊤ = R22.

4: Let φ̂ := ∠(v12 − iv22) and x̂ := R−1
11 R12

[
v12
v22

]
.

Output: x̂eiφ̂

Numerical examples

Generically, the four solution methods implemented in the functions cls1, . . . ,
cls4 compute the same result, which is equal to the unique solution of prob-
lem (CLS). As predicted by the theoretical computation costs, the method based on
Algorithm 11 is the fastest of the four methods when both the number of equations
and the number of unknowns is growing, see Figure 8.2.

500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

cls1
cls2
cls3
cls4

number of equations m

co
m

pu
ta

tio
n

tim
e

(s
ec

)

n = 200

100 200 300 400 500 600 700
0

1

2

3

4

5

6

cls1

cls2

cls3

cls4

co
m

pu
ta

tio
n

tim
e

(s
ec

)

m = 700

number of unknowns n

Fig. 8.2: The empirical results of the computation time match the theoretical results
of the computational complexity, shown in Table CLS.

The figures are generated by using random test data
216a 〈Computation time for cls1-4 216a〉≡ 216b⊲

〈initialize the random number generator 25〉
mm = 1000; nm = 1000; s = {’b-’ ’g-.’ ’r:’ ’c-’};

Am = rand(mm, nm) + i * rand(mm, nm);

bm = rand(mm, 1) + i * rand(mm, 1);

and solving problems with increasing number of equations m

216b 〈Computation time for cls1-4 216a〉+≡ ⊳216a 217a⊲
Nm = 10; M = round(linspace(500, 1000, Nm)); n = 200;

for j = 1:Nm, m = M(j); 〈call cls1-4 217b〉 end

k = 1; x = M; ax = [500 1000 0 0.5]; name = ’cls-f1’;

〈plot cls results 217c〉

8.4 Blind identification with deterministic input model 217

as well as increasing number of unknowns n

217a 〈Computation time for cls1-4 216a〉+≡ ⊳216b
Nn = 10; N = round(linspace(100, 700, Nn)); m = 700;

for j = 1:Nn, n = N(j); 〈call cls1-4 217b〉 end

k = 2; x = N; ax = [100 700 0 6]; name = ’cls-f2’;

〈plot cls results 217c〉

217b 〈call cls1-4 217b〉≡ (216b 217a)
A = Am(1:m, 1:n); b = bm(1:m);

for i = 1:4 % cls1, cls2, cls3, cls4

eval(sprintf(’tic, x = cls%d(A, b); t(%d) = toc;’, i, i))

end

T(:, j) = t’;

Uses cls1 214a, cls2 214b, cls3 215b, and cls4 215c.

217c 〈plot cls results 217c〉≡ (216b 217a)
figure(k), hold on

for i = 1:4 plot(x, T(i, :), s{i}, ’linewidth’, 2), end

legend(’cls1’, ’cls2’, ’cls3’, ’cls4’)

for i = 1:4, plot(x, T(i, :), [s{i}(1) ’o’]), end

axis(ax), print_fig(name)

8.4 Blind identification with deterministic input model

The blind identification problem aims to find an input/output model from observa-
tions of the output only. Without prior knowledge about the input, blind identifi-
cation is an ill-posed problem, i.e., there are infinitely many solutions that explain
the data equally well. Section 8.4.1 defines a blind identification problem with prior
knowledge that the input is generated by a given autonomous linear time-invariant
model. Analysis of the problem in Section 8.4.2 shows that knowledge of the input
model is insufficient. We add an additional assumption that the zeros of the model
are a priori known, which makes the problem well posed. Solution methods, based
on low-rank approximation, are presented in Section 8.4.3.

8.4.1 Problem formulation

The setup of the problem considered in this section is shown in Figure 8.3. The
output y of an unknown linear time-invariant system By to an input u and initial
condition xini,y is observed. The unobserved input u is generated by a known au-
tonomous linear time-invariant model Bu under initial condition xini,u. The aim is
to find By from y, using the prior knowledge that u ∈ Bu.

218 8 Dealing with prior knowledge

Bu By

xini,u xini,y

y
u

Fig. 8.3: The setup of the blind identification problem is a series connection of an
autonomous system Bu with output u and a system By with input u and output y.
The goal is to find By, given y and Bu.

Problem 8.14 (Blind identification with deterministic input model).

Given a system Bu ∈ L0,nu , output signal yd ∈ R
T , and model class L1,ny ,

find a system By ∈ L1,ny and an input signal ud ∈ Bu, such that [ud
yd] ∈ By.

Examples of signals u ∈ Bu, where Bu ∈ L m
0,nu

are:

• constant

u(t) = c, for Bu := {u | σu = u},
• exponential signal (with known base λ)

u(t) = cλ t , for Bu = {u | (σ −λ)u = 0},

• ramp signal

u(t) = ct, for Bu = {u | (σ −1)2u = 0},
• sine signal (with known frequency ω)

u(t) = csin(ωt), for Bu = {u | (σ − eiωt)(σ − e−iωt)u = 0}.

The blind system identification problem 8.14 can alternatively be viewed as a
special gray-box identification problem, where the data y is generated by a system
that is a series connection of a known autonomous system an unknown system, or
as an input estimation problem with unknown model dynamics and prior knowledge
that the input is a response of a known autonomous model.

The analysis of Problem 8.14 shows that it is ill-posed, i.e., in general, the input u

can not be estimated uniquely from y and Bu. Additional information is needed in
order to ensure uniqueness of the solution. We add the following assumption.

Assumption 8.15 The zeros and the DC-gain of By are known.

The implication of this assumption is that in a transfer function representation of

By = {(u,y) | qy(σ)u = py(σ)y}

with py monic, the polynomial qy is known. Equivalently, we assume that By has
no zeros and the DC-gain is equal to one, i.e., with py monic, qy = 1.

8.4 Blind identification with deterministic input model 219

8.4.2 Analysis of the problem in the single-input single-output case

In this section, we consider exact (noise free) data. Let

Bu = {u | pu(σ)u = 0} and By = {(u,y) | qy(σ)u = py(σ)y}.

The interconnection of Bu and By is an autonomous linear time-invariant system
B ∈ L 1

0,n, of order n := nu +ny, with representation

B = {y | py(σ)pu(σ)y = 0}.

Therefore, the Z-transform Z (y) of y ∈ B is a rational function Z (y) = q/p, with
p = pu py. Next, we derive the polynomial q.

For u ∈ Bu and (u,y) ∈ By, there is are polynomial xini,u and xini,y of degrees
nu −1 and ny −1, respectively, such that Z (u) = xini,u/pu and

Z (y) =
qy

py

Z (u)+
xini,y

py

.

Using these relations we obtain

Z (y) =
qy

py

xini,u

pu

+
xini,y

py

=
qyxini,u + puxini,y

pu py

, (∗)

so that
q = qyxini,u + puxini,y.

The polynomials p and q can be found from the data y. (This is an exact iden-
tification problem.) Then, since pu is given, finding py from p = pu py is a decon-
volution problem. Computing qy and the initial conditions xini,u and xini,y from q,
however, is an ill-posed problem (it has a nonunique solution). This issue is not a
problem of a particular solution method. The nonuniqueness in determining xini,u
and qy shows that Problem 8.14 is ill-posed.

Using Assumption 8.15, i.e., qy = 1, (∗) becomes

q = xini,u + puxini,y =
[
1 pu

][xini,u
xini,y

]

or, equivalently [[
Inu

0ny−1×nu

]
Mny−1(pu)

][
xini,u
xini,y

]
= q. (∗∗)

The system (∗∗) defines a well-posed problem for the estimation of xini,u and xini,y
from the given pu and the identified q.

220 8 Dealing with prior knowledge

8.4.3 Solution method

The analysis done in the previous section suggest the following solution method:

1. identification: compute an input/output representation Bi/o(p,q) of Bmpum(yd),
2. deconvolution: compute By from Bi/o(p,q) and Bu, and
3. estimation: find the initial condition (xini,u,xini,y) from (∗∗).

With exact data the identification of Bmpum(yd) need not exploit the prior knowledge
of the Bu model. In case of inexact data when approximation is involved, however,
the prior knowledge should be used. This leads to a grey-box identification problem.

Two methods for solving the grey-box identification problem are presented. The
first one is a heuristic subspace methods. The second one is a maximum-likelihood
method that leads to a Hankel structured low-rank approximation with a linear
equality constraint on the kernel parameter R. Both methods find directly By, using
Assumption 8.15. This eliminates the need of solving the deconvolution problem
on step 2. With knowledge of By, the maximum-likelihood estimate of the initial
condition (xini,u,xini,y) is given by a Kalman filter. This is a more robust alternative
to the one of solving the system of linear equations (∗∗).

Subspace method

The subspace method is based on the fact that with exact data

py(σ)pu(σ)yd = 0,

so that the signal
y′d := pu(σ)yd,

is annihilated by py(σ) and, therefore,

y′d ∈ B′
y := ker

(
py(σ)

)
.

Since y′d is commutable from the given data, assuming that y′d is persistently exciting
of order ny, we can find B′

y by computing Bmpum(y
′
d). Once B′

y is computed, under
Assumption 8.15, the model By is known. In case of noisy data, the computation of
an estimate of By involves approximation, see Exercise 4.4.

Maximum-likelihood method

Let the data be generated in the output error setting, i.e.,

yd = ȳ+ ỹ, where ỹ ∼ N(0,s2I),

8.5 Notes and references 221

is the measurement noise and ȳ is the true output, i.e., for some ū ∈ Bu,
[

ū
ȳ

]
∈ By.

Then, the maximum-likelihood estimation problem is

minimize over ŷ, û, and B̂y ‖yd − ŷ‖2

subject to û ∈ Bu and
[

û
ŷ

]
∈ By ∈ L1,ny .

(BLSYSID)

The following proposition relates problem (BLSYSID) to a Hankel structured
low-rank approximation problem with additional structure of the left kernel.

Proposition 8.16. Under Assumption 8.15, problem (BLSYSID) is equivalent to the

structured low-rank approximation problem

minimize over ŷ and p̂y ‖yd − ŷ‖2

subject to p̂yTny(pu)H (ŷ) = 0.
(SLRA)

Problem (SLRA) can be solved by the variable projection method of Section 4.4.
An implementation of the method is available (Markovsky and Usevich, 2014).

8.5 Notes and references

Nonnegative low-rank approximation

A low-rank approximation problem with element-wise nonnegativity constraint

minimize over D̂ ‖D− D̂‖F

subject to rank(D̂)≤ m and D̂ ≥ 0
(NNLRA)

arises in Markov chains (Vanluyten et al, 2006) and image mining (Lee and Seung,
1999). Using the image representation, we obtain the following problem

minimize over D̂, P ∈ R
q×m, and L ∈ R

m×N ‖D− D̂‖F

subject to D̂ = PL and P,L ≥ 0,
(NNLRAP)

which is a relaxation of problem (NNLRA). The minimal m, for which (NNLRAP)
has a solution, is called the positive rank of D̂ (Berman and Shaked-Monderer,
2003). In general, the positive rank is less than or equal to the rank.

Note that due to the nonnegativity constraint on D̂, the problem can not be solved
using the variable projection method. (There is no closed form solution for the
equivalent problem with D̂ eliminated.) The alternating projections algorithm, how-
ever, can be used. With the Frobenius norm approximation, the projections are least
squares problems with a nonnegativity constraint, see Algorithm 12.

222 8 Dealing with prior knowledge

Algorithm 12 Alternating projections algorithm for nonnegative low-rank approxi-
mation.
Input: Data matrix D, desired rank m, and convergence tolerance ε .
1: Set k := 0 and compute an initial approximation D̂(0) := P(0)L(0) from the singular value de-

composition by setting all negative elements to zero.
2: repeat

3: k := k+1.
4: Solve: L(k) := argminL ‖D−P(k−1)L‖F subject to L ≥ 0.
5: Solve: P(k) := argminP ‖D−PL(k)‖F subject to P ≥ 0.
6: until ‖P(k−1)L(k−1)−P(k)L(k)‖F < ε

Output: A locally optimal solution D̂∗ := P(k)L(k) to problem (NNLRAP).

Blind identification with deterministic input model

Problem 8.14 is motivated by an application for dynamic measurements in metrol-
ogy, in which case u is a to-be-measured quantity, By is the measurement device
(sensor), and y is the measured value. After calibration, in a steady state u = y,
so that the to-be-measured quantity is read out from the sensor’s output. Due to
the transient response of the sensor, however, exact measurement is achieved only
asymptotically. Dynamic measurement methods aim to reduce the measurement er-
ror due to the transient by taking into account the dynamic properties of the sensor.

In (Markovsky, 2015), the dynamic measurement problem is viewed from a sig-
nal processing perspective as an input estimation problem, where the input is an
unknown constant. In case of known sensor dynamics (By given), the problem is
solved by the classical Kalman filter. In practical situations in metrology, however,
By is not a priori known. For example, in mass measurement, the sensor dynamics
depends on the to-be-measured mass parameter. In this case, the dynamic measure-
ment problem becomes Problem 8.14 with Bu := {u | σu = u}.

Exercises

8.1 (Matrix centering). Prove Proposition 8.1.

8.2 (Mean computation as an optimal modeling). Prove Proposition 8.2.

8.3 (Autonomous system identification with centering, using internal model).

Let A q

0,ℓ be the class of bounded complexity autonomous affine time-invariant mod-

els c+B, with B ∈ L q

0,ℓ. The problem of finding a model in A q

0,ℓ from data is
actually the linear time-invariant identification problem with centering, considered
in Section 8.1.4. This exercise explores a solution method using the internal model

principle. Applied to the problem at hand, the internal model principle is: aug-
ment the to-be-found model B̂ of B with the known model Bc := {c | c(t1) =
c(t2) for all t1, t2 } of the offset c. Derive a kernel representation of the augmented
model B̂ext in terms of kernel representations of B̂ and Bc. Use this result to

References 223

re-formulate the 2-norm optimal autonomous system identification with centering
problem as an equivalent Hankel low-rank approximation problem with a linear
constraint on the kernel. Use the SLRA package to solve this latter problem.

References

Berman A, Shaked-Monderer N (2003) Completely positive matrices. World Scien-
tific Publishing Co

Bydder M (2010) Solution of a complex least squares problem with constrained
phase. Linear Algebra Appl 433(11–12):1719–1721

Gill PE, Murray M, Wright MH (1999) Practical Optimization. Academic Press
Gillis N (2011) NMF: Complexity, algorithms and applications. PhD thesis, Univer-

sité catholique de Louvain
Gillis N, Glineur F (2012) Accelerated multiplicative updates and hierarchical als

algorithms for nonnegative matrix factorization. Neural computation 24(4):1085–
1105

Gillis N, Vavasis S (2014) Fast and robust recursive algorithmsfor separable non-
negative matrix factorization. IEEE transactions on pattern analysis and machine
intelligence 36(4):698–714

Golub G, Hoffman A, Stewart G (1987) A generalization of the Eckart–Young–
Mirsky matrix approximation theorem. Linear Algebra Appl 88/89:317–327

Goodwin G, Ramadge P, P C (1979) Ultimate objectives and prior knowledge in
system identification. IFAC Proceedings 12(8):1123–1129

Lee D, Seung H (1999) Learning the parts of objects by non-negative matrix factor-
ization. Nature 401:788–791

Markovsky I (2011) On the complex least squares problem with constrained phase.
SIAM J Matrix Anal Appl 32(3):987–992

Markovsky I (2015) An application of system identification in metrology. Control
Eng Practice 43:85–93

Markovsky I, Niranjan M (2008) Approximate low-rank factorization with struc-
tured factors. Comput Statist Data Anal 54:3411–3420

Markovsky I, Usevich K (2014) Software for weighted structured low-rank approx-
imation. J Comput Appl Math 256:278–292

Udell M (1015) Generalized low rank models. PhD thesis, Stanford University
Udell M, Horn C, Zadeh R, Boyd S (2016) Generalized low rank models. Founda-

tions and Trends in Machine Learning 9(1):1–118
Vanluyten B, Willems JC, De Moor B (2006) Matrix factorization and stochastic

state representations. In: Proc. 45th IEEE Conf. on Dec. and Control, San Diego,
California, pp 4188–4193

Verhaegen M, Verdult V, Bergboer N (2007) Filtering and system identification: An
introduction to using matlab software

Appendix A

Total least squares

The least squares problem that we are considering here is

known by different names in different scientific disciplines. For

example, mathematicians may regard the (least squares)

problem as finding the closest point in a given subspace to a

given point in a function space. . . . Statisticians introduce

probability distribution into their conception of the problem and

use such terms as regression analysis to describe this area.

Engineers reach this problem by studying such topics as

parameter estimation, filtering, and process identification.

Lawson and Hanson (1987, Page 2)

Approximate solution of an overdetermined system of linear equations AX ≈ B is
one of the main topics in (numerical) linear algebra and is covered in any linear
algebra textbook, see, e.g., (Strang, 1976, Section 3.3), (Meyer, 2000, Sections 4.6
and 5.14), and (Trefethen and Bau, 1997, Lecture 11). The classical approach is
approximate solution in the least squares sense:

minimize over B̂ and X ‖B− B̂‖F subject to AX = B̂, (LS)

where the matrix B is modified as little as possible in the sense of minimizing the
correction size ‖B− B̂‖F, so that the modified system of equations AX = B̂ is com-
patible. The least squares problem has an analytic solution: assuming that that the
matrix A is full column rank, the unique least squares approximate solution is

X̂ls = (A⊤A)−1A⊤B and B̂ls = A(A⊤A)−1A⊤B.

In the case when A is rank deficient, the solution is either nonunique or does not
exist. Such least squares problems are solved numerically by regularization tech-
niques, see, e.g., (Lawson and Hanson, 1987) and (Björck, 1996, Section 2.7).

There are many variations and generalizations of the least squares method for
solving approximately an overdetermined system of equations. Well known ones are
methods for recursive least squares approximation (Kailath et al, 2000, Section 2.6),
regularized least squares (Hansen, 1997), linear and quadratically constrained least
squares problems (Golub and Van Loan, 1996, Section 12.1).

Next, we list generalizations related to the class of the total least squares methods
because of their close connection to corresponding low-rank approximation prob-
lems. From a data modeling point of view, total least squares is low-rank approxima-
tion using an input/output representation of the rank constraint. In all these problems
the basic idea is to modify the given data as little as possible, so that the modified
data defines a compatible system of equations. In the different methods, however,
the correction is done and its size is measured in different ways. This results in dif-

225

226 A Total least squares

ferent properties of the methods in a stochastic estimation setting and motivates the
use of the methods in different practical setups.

Data least squares

The data least squares (Degroat and Dowling, 1991) method is the “reverse” of the
least squares method in the sense that A is modified and B is not:

minimize over Â and X ‖A− Â‖F subject to ÂX = B. (DLS)

The solution of the data least squares problem (DLS) can be found in closed form.

Total least squares

The classical total least squares (Golub, 1973; Golub and Reinsch, 1970; Golub and
Van Loan, 1980) method modifies symmetrically the matrices A and B:

minimize over Â, B̂, and X
∥∥[A B

]
−
[
Â B̂

]∥∥
F

subject to ÂX = B̂.
(TLS)

Conditions for existence and uniqueness of a total least squares approximate solu-
tion are given in terms of the singular value decomposition of the augmented data
matrix

[
A B

]
. In the generic case when a unique solution exists, that solution is

given in terms of the right singular vectors of
[
A B

]
corresponding to the smallest

singular values. In this case, the optimal total least squares approximation
[
Â B̂

]

of the data matrix
[
A B

]
coincides with the Frobenius norm optimal low-rank ap-

proximation of
[
A B

]
, i.e., in the generic case, the model obtained by the total least

squares method coincides with the model obtained by the unstructured low-rank
approximation in the Frobenius norm.

Theorem A.1. Let D̂∗ be a solution to the low-rank approximation problem

minimize over D̂ ‖D− D̂‖F subject to rank(D̂)≤ m

and let B̂∗ = image(D̂∗) be the corresponding optimal linear static model. The

parameter X̂∗ of an input/output representation B̂∗ =Bi/o(X̂
∗) of the optimal model

is a solution to the total least squares problem (TLS) with data matrices

m
{

q−m
{
[

A⊤

B⊤

]
= D ∈ R

q×N .

A total least squares solution X̂∗ exists if and only if an input/output representation

Bi/o(X̂
∗) of B̂∗ exists and is unique if and only if an optimal model B̂∗ is unique.

In the case of existence and uniqueness of a total least squares solution

A Total least squares 227

D̂∗ =
[
Â∗ B̂∗]⊤ , where Â∗X̂∗ = B̂∗.

The theorem makes explicit the link between low-rank approximation and total
least squares. From a data modeling point of view,

total least squares is low-rank approximation of the data matrix D =
[
A B

]⊤,
followed by input/output representation of the optimal model.

227a 〈Total least squares 227a〉≡
function [x, ah, bh] = tls(a, b)

n = size(a, 2); [r, p, dh] = lra([a b]’, n);

〈low-rank approximation 7→ total least squares solution 227b〉
Uses lra 105a.

227b 〈low-rank approximation 7→ total least squares solution 227b〉≡ (227a)
x = p2x(p)’; ah = dh(1:n, :)’; bh = dh((n + 1):end, :)’;

Lack of solution of the total least squares problem (TLS)—a case called non-

generic total least squares problem—is caused by lack of existence of an in-
put/output representation of the model. Nongeneric total least squares problems are
considered in (Paige and Strakos, 2005; Van Huffel and Vandewalle, 1988, 1991).

Generalized total least squares

The generalized total least squares (Van Huffel and Vandewalle, 1989) method mea-
sures the size of the data correction matrix

[
∆A ∆B

]
:=
[
A B

]
−
[
Â B̂

]

after row and column weighting:

minimize over Â, B̂, and X
∥∥Wl
([

A B
]
−
[
Â B̂

])
Wr
∥∥

F

subject to ÂX = B̂.
(GTLS)

Here the matrices are Wl and Wr are positive semidefinite weight matrices—Wl cor-
responds to weighting of the rows and Wr to weighting of the columns of the correc-
tion

[
∆A ∆B

]
. Similarly to the classical total least squares problem, the existence

and uniqueness of a generalized total least squares approximate solution is deter-
mined from the singular value decomposition. The data least squares and total least
squares problems are special cases of the generalized total least squares problem.

228 A Total least squares

Restricted total least squares

The restricted total least squares (Van Huffel and Zha, 1991) method constrains the
correction to be in the form

[
∆A ∆B

]
= PeELe, for some E,

i.e., the row and column span of the correction matrix are constrained to be within
the given subspaces image(Pe) and image(L⊤

e), respectively. The restricted total
least squares problem is:

minimize over Â, B̂, E, and X ‖E‖F

subject to
[
A B

]
−
[
Â B̂

]
= PeELe and ÂX = B̂.

(RTLS)

The generalized total least squares problem is a special case of (RTLS).

Procrustes problem

The Procrustes problem: Given m×n real matrices A and B,

minimize over X ‖B−AX‖F subject to X⊤X = In

is a least squares problem with a constraint that the unknown X is an orthogonal
matrix. The solution is given by X = UV⊤, where UΣV⊤ is the singular value de-
composition of AB⊤, see (Golub and Van Loan, 1996, page 601).

Weighted total least squares

The weighted total least squares (De Moor, 1993, Section 4.3) method general-
izes the classical total least squares problem by measuring the correction size by a
weighted matrix norm ‖ · ‖W

minimize over Â, B̂, and X
∥∥[A B

]
−
[
Â B̂

]∥∥
W

subject to ÂX = B̂.
(WTLS)

Special weighted total least squares problems correspond to weight matrices W with
special structure, e.g., diagonal W corresponds to element-wise weighted total least

squares (Markovsky et al, 2005). In general, the weighted total least squares prob-
lem has no analytic solution in terms of the singular value decomposition, so that
contrary to the above listed generalizations, weighted total least squares problems,
in general, can not be solved globally and efficiently. Weighted low-rank approxi-
mation problems are considered in (Manton et al, 2003; Markovsky and Van Huffel,
2007a; Wentzell et al, 1997).

A Total least squares 229

Regularized total least squares

The regularized total least squares (Beck and Ben-Tal, 2006b; Fierro et al, 1997;
Golub et al, 1999; Sima, 2006; Sima et al, 2004) methods is defined as

minimize over Â, B̂, and X
∥∥[A B

]
−
[
Â B̂

]∥∥
F
+ γ‖DX‖F

subject to ÂX = B̂.
(RegTLS)

Global and efficient solution methods for solving regularized total least squares
problems are derived in (Beck and Ben-Tal, 2006b).

Structured total least squares

The structured total least squares method (Abatzoglou et al, 1991; De Moor, 1993)
method is a total least squares method with the additional constraint that the correc-
tion should have certain specified structure

minimize over Â, B̂, and X
∥∥[A B

]
−
[
Â B̂

]∥∥
F

subject to ÂX = B̂ and
[
Â B̂

]
has a specified structure.

(STLS)

Hankel and Toeplitz structured total least squares problems are the most often stud-
ied ones due to the their application in signal processing and system theory.

Structured total least norm

The structured total least norm method (Rosen et al, 1996) is the same as the struc-
tured total least squares method with a general matrix norm in the approximation
criterion instead of the Frobenius norm. For generalizations and applications of the
total least squares problem in the periods 1990–1996, 1996–2001, and 2001–2006,
see respectively the edited books (Van Huffel, 1997), (Van Huffel and Lemmerling,
2002), and the special issues (Van Huffel et al, 2007a,b). An overview of total least
squares is given in (Markovsky and Van Huffel, 2007b; Markovsky et al, 2010).

Exercises

A.1 (Geometric interpretation of the total least squares). Show that the total
least squares problem

230 A Total least squares

minimize over x ∈ R, â ∈ R
N , and b̂ ∈ R

N
N

∑
j=1

∥∥∥∥d j −
[

â j

b̂ j

]∥∥∥∥
2

2

subject to â jx = b̂ j, for j = 1, . . . ,N

(tls)

minimizes the sum of the squared orthogonal distances from the data points d1, . . . ,dN

to the fitting line
B = {col(a,b) | xa = b}

over all lines passing through the origin, except for the vertical line.

A.2 (Unconstrained problem, equivalent to the total least squares problem).

Show that (tls) is equivalent to the unconstrained optimization problem

minimize ftls(x), where ftls(x) :=
‖ax−b‖2

2

‖x‖2
2 +1

, (tls’)

where a =
[
a1 · · · aN

]⊤ and b =
[
b1 · · · bN

]⊤.

A.3 (Lack of total least squares solution). Using the formulation (tls’), derived
in Problem 1.3, show that the total least squares line fitting problem (tls) has no
solution for the data in Problem 1.1.

References

Abatzoglou T, Mendel J, Harada G (1991) The constrained total least squares tech-
nique and its application to harmonic superresolution. IEEE Trans Signal Proc
39:1070–1087

Arablouei R, Dogancay K (2012) Linearly-constrained recursive total least-squares
algorithm. IEEE Signal Proc Letters 19(12):821–824

Beck A, Ben-Tal A (2006a) A global solution for the structured total least squares
problem with block circulant matrices. SIAM J Matrix Anal Appl 27(1):238–255

Beck A, Ben-Tal A (2006b) On the solution of the Tikhonov regularization of the
total least squares. SIAM J Optimization 17(1):98–118

Beck A, Eldar Y (2010) Structured total maximum likelihood: An alternative to
structured total least squares. SIAM Journal on Matrix Analysis and Applications
31(5):2623–2649

Björck Å (1996) Numerical Methods for Least Squares Problems. SIAM
Cadzow J (1988) Signal enhancement—A composite property mapping algorithm.

IEEE Trans Signal Proc 36:49–62
De Moor B (1993) Structured total least squares and L2 approximation problems.

Linear Algebra Appl 188–189:163–207
Degroat R, Dowling E (1991) The data least squares problem and channel equaliza-

tion. IEEE Trans Signal Proc 41:407–411

References 231

Fierro R, Golub G, Hansen P, O’Leary D (1997) Regularization by truncated total
least squares. SIAM J Sci Comp 18(1):1223–1241

Golub G (1973) Some modified matrix eigenvalue problems. SIAM Review 15:318–
344

Golub G, Reinsch C (1970) Singular value decomposition and least squares solu-
tions. Numer Math 14:403–420

Golub G, Van Loan C (1980) An analysis of the total least squares problem. SIAM
J Numer Anal 17:883–893

Golub G, Van Loan C (1996) Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press

Golub G, Hansen P, O’Leary D (1999) Tikhonov regularization and total least
squares. SIAM J Matrix Anal Appl 21(1):185–194

Hansen PC (1997) Rank-Deficient and Discrete Ill-Posed Problems: Numerical As-
pects of Linear Inversion. SIAM

Hnetynkova I, Plesinger M, Sima D (2016) Solvability of the core problem with
multiple right-hand sides in the TLS sense. SIAM J Matrix Anal Appl 37(3):861–
876

Huang JJ, Dragotti PL (2017) Sparse signal recovery using structured total maxi-
mum likelihood. In: Int. Conf. on Sampling Theory and Applications, pp 639–
643

Kailath T, Sayed AH, Hassibi B (2000) Linear Estimation. Prentice Hall
Lawson C, Hanson R (1987) Solving Least Squares Problems. Classics in Applied

Mathematics, Society for Industrial and Applied Mathematics
Manton J, Mahony R, Hua Y (2003) The geometry of weighted low-rank approxi-

mations. IEEE Trans Signal Proc 51(2):500–514
Markovsky I (2008) Structured low-rank approximation and its applications. Auto-

matica 44(4):891–909
Markovsky I (2010) Bibliography on total least squares and related methods. Statis-

tics and Its Interface 3:329–334
Markovsky I, Van Huffel S (2007a) Left vs right representations for solving

weighted low rank approximation problems. Linear Algebra Appl 422:540–552
Markovsky I, Van Huffel S (2007b) Overview of total least squares methods. Signal

Proc 87:2283–2302
Markovsky I, Rastello M, Premoli A, Kukush A, Van Huffel S (2005) The element-

wise weighted total least squares problem. Comput Statist Data Anal 50(1):181–
209

Markovsky I, Willems JC, Van Huffel S, De Moor B (2006) Exact and Approximate
Modeling of Linear Systems: A Behavioral Approach. SIAM

Markovsky I, Sima D, Van Huffel S (2010) Total least squares methods. Wiley In-
terdisciplinary Reviews: Comput Stat 2(2):212–217

Meyer C (2000) Matrix Analysis and Applied Linear Algebra. SIAM
Paige C, Strakos Z (2005) Core problems in linear algebraic systems. SIAM J Matrix

Anal Appl 27:861–875
Rhode S, Usevich K, Markovsky I, Gauterin F (2014) A recursive restricted total

least-squares algorithm. IEEE Trans Signal Process 62(21):5652–5662

232 A Total least squares

Rosen J, Park H, Glick J (1996) Total least norm formulation and solution of struc-
tured problems. SIAM J Matrix Anal Appl 17:110–126

Sima D (2006) Regularization techniques in model fitting and parameter estimation.
PhD thesis, ESAT, K.U.Leuven

Sima D, Van Huffel S, Golub G (2004) Regularized total least squares based on
quadratic eigenvalue problem solvers. BIT 44:793–812

Strang G (1976) Linear Algebra and Its Applications. Academic Press
Trefethen L, Bau D (1997) Numerical Linear Algebra. SIAM
Van Huffel S (ed) (1997) Recent Advances in Total Least Squares Techniques and

Errors-in-Variables Modeling. SIAM, Philadelphia
Van Huffel S (2004) Total least squares and errors-in-variables modeling: Bridg-

ing the gap between statistics, computational mathematics and engineering. In:
Antoch J (ed) Proc. COMPSTAT, Physika-Verlag, Heidelberg, pp 539–555

Van Huffel S, Lemmerling P (eds) (2002) Total Least Squares and Errors-in-
Variables Modeling: Analysis, Algorithms and Applications. Kluwer

Van Huffel S, Vandewalle J (1988) Analysis and solution of the nongeneric total
least squares problem. SIAM J Matrix Anal Appl 9:360–372

Van Huffel S, Vandewalle J (1989) Analysis and properties of the generalized total
least squares problem AX ≈ B when some or all columns in A are subject to error.
SIAM J Matrix Anal 10(3):294–315

Van Huffel S, Vandewalle J (1991) The total least squares problem: Computational
aspects and analysis. SIAM, Philadelphia

Van Huffel S, Zha H (1991) The restricted total least squares problem: Formulation,
algorithm and properties. SIAM J Matrix Anal Appl 12(2):292–309

Van Huffel S, Zha H (1993) The total least squares problem. In: Rao C (ed) Hand-
book of Statistics: Comput. Stat., vol 9, Elsevier, Amsterdam, pp 377–408

Van Huffel S, Cheng CL, Mastronardi N, Paige C, Kukush A (2007a) Editorial: Total
least squares and errors-in-variables modeling. Comput Stat Data Anal 52:1076–
1079

Van Huffel S, Markovsky I, Vaccaro RJ, Söderström T (2007b) Guest editorial:
Total least squares and errors-in-variables modeling. Signal Proc 87(10):2281–
2282

Wentzell P, Andrews D, Hamilton D, Faber K, Kowalski B (1997) Maximum likeli-
hood principal component analysis. J Chemometrics 11:339–366

Yeredor A (2004) Multiple delays estimation for chirp signals using structured total
least squares. Linear Algebra Appl 391:261–286

Yeredor A, De Moor B (2004) On homogeneous least-squares problems and the
inconsistency introduced by mis-constraining. Computational statistics & data
analysis 47(3):455–465

Appendix B

Solutions to the exercises

The students will find the solution really interesting if they have

made an honest effort, and have the consciousness of having

done well. Then they are eager to see what else they could

accomplish with that effort, and how they could do equally well

another time.

Pólya (1957)

Chapter 1

1.1 (Geometric interpretation of rank-1 approximation). In both problems
(lraR) and (lraP) the cost function is the sum of the squared distances from the data
points d j to their approximations d̂ j

‖D− D̂‖2
F =

N

∑
j=1

‖d j − d̂ j‖2
2.

The rank-1 constraint of
D̂ =

[
d̂1 · · · d̂N

]
,

is equivalent to the constraint that the approximations d̂ j lie on a line B passing
through the origin. In (lraR), B = ker(R). In (lraP), B = image(P). By the orthogo-
nality principle, d̂ j must be the orthogonal projection of d j on B, so that ‖d− d̂ j‖2

2 is
the squared orthogonal distance from d j to B. Therefore, the rank-1 approximation
problems (lraR) and (lraP) minimize the sum of the squared orthogonal distances
from the data points to the fitting line B over all lines passing through the origin.

1.2 (Quadratically constrained problem, equivalent to rank-1 approximation).

Consider the rank-1 approximation problem (lraP) and observe that for a fixed pa-
rameter P ∈ R

2×1, it becomes a least squares problem in the parameter L ∈ R
1×N

minimize over L ‖D−PL‖2
F.

Assuming that P 6= 0, the solution is unique and is given by

L∗ = (P⊤P)−1P⊤D.

Then the minimum M(P) = ‖D−PL∗‖2
F is given by

233

234 B Solutions to the exercises

M(P) = trace
(

D⊤(I2 −P(P⊤P)−1P⊤)D
)
.

The function M, however, depends only on the direction of P, i.e.,

M(P) = M(αP), for all α 6= 0.

Therefore, without loss of generality we can assume that ‖P‖2 = 1. This argument
and the derivation of M show that problem (lra′P) is equivalent to problem (lraP). All
solutions of (lraP) are obtained from a solution P′∗ of (lra′P) by multiplication with a
nonzero scalar and vice verse a solution P∗ of (lraP) is reduced to a solution of (lra′P)
by normalization P∗/‖P∗‖. A solution to (lra′P), however, is still not unique because
if P′∗ is a solution, so is −P′∗.

1.3 (Line fitting by rank-1 approximation). The set of vectors P ∈ R
2, such that

P⊤P = 1, is parametrized by

P(θ) =

[
cos(θ)
sin(θ)

]
, where θ ∈ [0,2π).

The graph of M
(
P(θ)

)
(see Figure B.1) shows that the global minimum

M
(
P(θ ∗,1)

)
= M

(
P(θ ∗,2)

)
= 20

is achieved for θ ∗,1 = π/2 and θ ∗,2 = 3π/2. The corresponding model parameters

P∗,1 =
[

0
1

]
and P∗,2 =

[
0
−1

]
, (∗)

define a vertical line passing through the origin.

0

20

50

100

140

θ

M
(P

(θ
))

π/2 π 3π/2 2π

Fig. B.1: The cost function of the rank-1 approximation problem (lra′P) in Prob-
lem 1.3 has two global minima, corresponding to θ = π/2 and θ = 3π/2.

B Solutions to the exercises 235

1.4 (Analytic solution of a rank-1 approximation problem).

M(P) = trace
(
D⊤(I2 −PP⊤)D

)

= trace
(
(I2 −PP⊤)DD⊤)

= · · · substituting the data and

using the constraint P⊤P = p2
1 + p2

2 = 1 · · ·

= trace
([

p2
2 −p1 p2

−p1 p2 p2
1

][
20 0
0 140

])

= 20p2
2 +140p2

1 = 20sin2(θ)+140cos2(θ).

From the analytic expression of M it is easy to see that

20 ≤ M
(
P(θ)

)
≤ 140,

and the minimum is achieved for sin(θ) =±1, cf., (∗) in Problem 1.3.

1.5 (Literate program for Sylvester matrix construction). The Sylvester matrix
constructor function sylv has two compulsory inputs—the polynomials p and q—
and one output—the Sylvester matrix (R), represented in the code by the variable S:

235a 〈Sylvester matrix constructor 235a〉≡ 235b⊲
function S = sylv(p, q)

Defines:
sylv, used in chunk 235d.

After determining the degrees n = deg(p) and m = deg(q) from the lengths of p
and q, the matrix S is initializing with the (n+m)× (n+m) zero matrix:

235b 〈Sylvester matrix constructor 235a〉+≡ ⊳235a 235c⊲
n = length(p) - 1; m = length(q) - 1; S = zeros(n + m);

The elements of p and q are assigned to the corresponding elements of S:
235c 〈Sylvester matrix constructor 235a〉+≡ ⊳235b

for i = 1:m, S(i:i + n, i) = p(:); end

for i = 1:n, S(i:i + m, m + i) = q(:); end

Using sylv, we find that the greatest common factor’s degree in the example
235d 〈GCD example 235d〉≡

p = [1 3 5 3]; q = [3 5 3 1];

d = 6 - rank(sylv(p, q))

Uses sylv 235a.

is d= 1. Indeed,

p(z) = (1+ z)(3z2 +2z+1) and q(z) = (1+ z)(z2 +2z+3).

236 B Solutions to the exercises

Chapter 2

2.1 (Relations among rank(P), rank(R), and dim(B), for a linear static model B).

1. From the definition of an image representation B = image(P), it follows that the
columns of P span B. By definition, dim(B) is the number of linearly indepen-
dent vectors that span B. Also, by definition, rank(P) is the number of linearly
independent columns of P. Therefore, rank(P) = dim(B).

2. From the definition of a kernel representation B = ker(R), it follows that the
rows of R span the orthogonal complement B⊥ of B, defined as

B⊥ := {z ∈ U | z ⊥ w for all w ∈ B }.

We have that
image(R⊤) = B⊥.

Also from part 1 of the problem, we have that rank(R) = dim(B⊥). Since,

dim(B)+dim(B⊥) = q,

we obtain the relation rank(R) = q−dim(B).

2.2 (B1
?
= B2). Let B1 = ker(R1) = image(P1) and B2 = ker(R2) = image(P2).

The kernel parameters R1 and R2 as well as the image parameters P1 and P2 are not
unique, so that they can not be compared element-wise. The simplest way to check
whether B1 = B2, is to derive the input/output representations B1 = Bi/o(X

1,Π)
and B2 =Bi/o(X

2,Π), with a permutation matrix Π for which both representations
exist, and compare the corresponding parameters X1 and X2.

A MATLAB function that checks if two models specified by image representa-
tions are equal is:

236 〈p1_eq_p2 236〉≡
function ans = p1_eq_p2(p1, p2, tol)

if ~exist(’tol’) || isempty(tol), tol = 1e-12; end

ans = norm(p2x(p1) - p2x(p2)) < tol

2.3 (Input/output partitions that are not possible). Let B be a linear static
model with q variables and m inputs. In order to formulate the solution, first, we to
introduce some notation. Consider a set of indeces I ⊆ {1, . . . ,q} and denote by
card(I) the number of elements of I . The matrix ΠI := II , which consists of the
rows of the q×q identity matrix with indeces in I , selects the elements of d ∈ R

q,
which indeces are in I . It is a projection from R

q onto R
card(I). Acting on a set B,

ΠI projects all vectors in the set, i.e., ΠI B := {ΠI d | d ∈ B }.
By definition, a set of variables dI can be inputs in an input/output representation

of the model B if they are free, i.e.,

ΠI B = R
card(I).

B Solutions to the exercises 237

Note that for a linear static model, ΠiB is either {0} or R. Which is the case ({0}
or R) can be checked from a given representation of the model. For example, let
B = image(P), then ΠiB = R if and only if the ith row of P is zero.

Example B.1. The linear static model with three variables and one input

B = image






1
0
0




= ker

([
0 1 0
0 0 1

])

has only two possible input/output partitions: u=w1, y= [w2
w3] and u=w1, y= [w3

w2].
Indeed, the function r2io

237a 〈Test r2io 237a〉≡
r2io([0 0 1; 0 1 0])

computes the input/output partitionings from the parameter R in a kernel represen-
tation of the model

ans =

1 2 3

1 3 2

2.4 (Initial conditions specification by trajectory). First, we consider the map
wp 7→ x(0). For a trajectory wp =

[up
yp

]
of the system B, we have that

yp =




C

CA
...

CAℓ−1




︸ ︷︷ ︸
O

x(−ℓ+1)+




H(0)
H(1) H(0)
...

. . .
. . .

H(ℓ−1) · · · H(1) H(0)




︸ ︷︷ ︸
T

up (∗)

for some x(−ℓ+1). Since the state space representation is minimal, O is full column
rank. Therefore, a solution x(−ℓ+1) of (∗) is unique and the unique x(0) is

x(0) = Aℓ−1x(−ℓ+1)+
[
Aℓ−2B · · · BA0 0

]
︸ ︷︷ ︸

C

up.

The resulting function is:
237b 〈wp2x0 237b〉≡

function x0 = wp2x0(wp, sys)

[p, m, n] = size(sys); ell = ceil(n / p);

xini = obsv(sys) \ (wp(:, 2) - lsim(sys, wp(:, 1)));

x0 = sys.a ^ (ell - 1) * xini + obsv(sys) * wp(:, 1);

Next, we consider the map wp 7→ x(0). In order to set x(0), we append a past
trajectory wp to wf, i.e., we consider the extended trajectory w = wp ∧wf. The past
trajectory wp is determined as a solution of the system

238 B Solutions to the exercises

x(0) =
[
C −Aℓ−1O+T Aℓ−1O+

][up

yp

]
.

The resulting function is:
238a 〈x02wp 238a〉≡

function wp = x02wp(x0, sys)

[p, m, n] = size(sys); ell = ceil(n / p);

〈construct C 238b〉
〈construct T 238c〉
O = obsv(sys);

AO = sys.a ^ (ell -1) * pinv(O);

wp = pinv([C - AO * T , AO]) * x0;

wp = reshape(wp, ell, 2);

where
238b 〈construct C 238b〉≡ (238a)

C = [sys.b zeros(ell, 1)];

for i = 1:(ell - 2)

C = [sys.a * C(:, 1) C];

end

and
238c 〈construct T 238c〉≡ (238a)

h = impulse(sys, ell - 1);

T = toeplitz(h, [h(1) zeros(1, ell - 1)]);

Finally, we test the functions wp2x0 and x02wp on a simulation example.
238d 〈simulate data 238d〉≡ (238e)

n = 2; sys = drss(n);

T = 20; u = rand(T, 1); xini = rand(n, 1);

[y, t, x] = lsim(sys, u, [], xini); w = [u y];

The results of the computation
238e 〈test 238e〉≡

〈simulate data 238d〉
wp = w(end - n + 1:end, :); x0 = x(end, :)’;

wp2x0(wp, sys) - x0 % == 0

wp2x0(x02wp(x0, sys), sys) - x0 % == 0

are of the order of the machine precision, which empirically confirms that the deriva-
tion is correct and the functions wp2x0, x02wp are correctly implemented.

2.5 (w
?∈ B = ker

(
R(σ)

)
). Consider a trajectory w ∈ ker

(
R(σ)

)
. We have that

R(σ)w = 0 ⇐⇒ R0w(t)+R1w(t +1)+ · · ·+Rℓw(t + ℓ) = 0, for t = 1, . . . ,T − ℓ

⇐⇒




R0 R1 · · · Rℓ

R0 R1 · · · Rℓ

. . .
. . .

. . .

R0 R1 · · · Rℓ




︸ ︷︷ ︸
MT−ℓ(R)∈Rp(T−ℓ)×qT




w(1)
w(2)
...

w(T)




︸ ︷︷ ︸
vec(w)

= 0.

B Solutions to the exercises 239

The last equation holds if and only if w ∈ ker
(
R(σ)

)
. Therefore, we can check if

w ∈ ker
(
R(σ)

)
by checking ‖MT−ℓ(R)vec(w)‖< ε , where ε is a tolerance.

An alternative way for checking if w ∈ ker
(
R(σ)

)
is derived from

w ∈ ker
(
R(σ)

)
⇐⇒ MT−ℓ(R)vec(w) = 0

⇐⇒ RHℓ+1(w) = 0,

where

[
R0 R1 · · · Rℓ

]
︸ ︷︷ ︸

R




w(1) w(2) · · · w(T − ℓ)
w(2) w(3) · · ·
...

...
...

w(ℓ+1) w(ℓ+2) · · · w(T)




︸ ︷︷ ︸
Hℓ+1(w)∈Rq(ℓ+1)×(T−ℓ)

= 0.

In this case the numerical test is ‖RHℓ+1(w)‖< ε .
The second method is implemented in in the function w_in_ker.

239a 〈w_in_ker 239a〉≡
function a = w_in_ker(w, r, ell)

a = norm(r * blkhank(w, ell + 1)) < 1e-8;

Uses blkhank 26a.

Applying it on the data
239b 〈Test trajectory 239b〉≡

w = [0 0 0 0; 1 1 1 1];

r = [1 -1 -1 1]; ell = 1;

w_in_ker(w, r, 1)

it gives positive answer, so that w is a trajectory of B.

2.6 (ker
(
R(σ)

)
↔ Bi/o(p,q)). In the single-input single-output case, with in-

put/output partitioning w = [u
y] and minimal representations

B = ker
(
R(σ)

)
= Bi/o(p,q),

the link between R(z) and
(

p(z),q(z)
)

is given by

R(z) =
[
−q(z) p(z)

]
. ((p,q) 7→ R)

Indeed,

R(σ)w =
[
−q(σ) p(σ)

][u

y

]
⇐⇒ q(σ)u = p(σ)y.

MATLAB implementation: We represent R(z) by a vector and Bi/o(p,q) by a tf
object (from the Control System Toolbox of MATLAB). Our convention of repre-
senting a polynomial is ordering the coefficients in ascending degrees, i.e.,

R(z) = R0 +R1z+ · · ·+Rℓz
ℓ ↔ R =

[
R0 R1 · · · Rℓ

]
.

240 B Solutions to the exercises

MATLAB and the Control System Toolbox, on the other hand, use the convention
of ordering the coefficients in descending degrees. This requires interchanging the
order when making the transitions from R to (p,q) and back.

240a 〈(TF) 7→ R(z) 240a〉≡
[q, p] = tfdata(tf(sys), ’v’); R = zeros(1, 2 * length(p));

R(1:2:end) = - fliplr([q zeros(length(p) - length(q))]);

R(2:2:end) = fliplr(p);

and
240b 〈R(z) 7→ (TF) 240b〉≡ (240e)

q = - fliplr(R(1:2:end));

p = fliplr(R(2:2:end));

sys = tf(q, p, -1);

2.7 (image
(
P(σ)

)
↔ Bi/o(p,q)). Consider the single-input single-output case,

with an input/output partitioning w = [u
y] and minimal representations

B = image
(
P(σ)

)
= Bi/o(p,q).

From ((p,q) 7→ R) and the identity R(z)P(z) = 0, we have

P(z) =

[
p(z)
q(z)

]
. ((p,q) 7→ P)

Therefore, the transition P 7→ (p,q) is p(z) = P1(z) and q(z) = P2(z).
MATLAB implementation:

240c 〈(TF) 7→ P(z) 240c〉≡ (118a 146a 147b 240e)
[q, p] = tfdata(tf(sys), ’v’); P = zeros(2, length(p));

P(1, :) = fliplr(p);

P(2, :) = fliplr([q zeros(length(p) - length(q))]);

and
240d 〈P(z) 7→ (TF) 240d〉≡ (119)

p = fliplr(P(1, :)); q = fliplr(P(2, :)); sys = tf(q, p, -1);

An indirect way of implementing the transition R(z) 7→P(z) is two go via Bi/o(p,q):
240e 〈R(z) 7→ P(z) 240e〉≡ (118c)

〈R(z) 7→ (TF) 240b〉
〈(TF) 7→ P(z) 240c〉

Chapter 3

3.1 (The most powerful unfalsified model in L0). By definition, a model B is
exact for data D if it contains the data, i.e., D ⊂ B. Since the model is linear, it
must contain also all linear combinations of the data, i.e., span(D)⊂ B. Among all
exact linear static models for D , the most powerful one is the smallest one, so that

Bmpum(D) = span(D). (∗)

B Solutions to the exercises 241

Next, we consider the question of computing Bmpum(D). Since Bmpum(D) is a
set. First, we need to choose how to represent it. Then, the question of computing
Bmpum(D) becomes a question of computing the corresponding model parameter.

Kernel, image, and input/output representations of Bmpum(D) are candidates for
defining parameter estimation problems equivalent to the original problem of com-
puting Bmpum(D). Consider an image representation image(P) of Bmpum(D).

From (∗) it follows that the columns of P span the image of the data matrix
D =

[
d1 · · · dN

]
. We can impose the stronger requirement that the columns of P

are a basis of image(D). The problem of computing Bmpum(D) from D , then be-
comes the standard linear algebra problem of computing a basis for the image of a
matrix. This problem can be solved by existing algorithms. Therefore, the problem
of computing Bmpum(D) in L0 is solved by reduction to an already solved problem.

Optional continuation of Exercise 3.1

Can you derive the result differently? We prefer, of course, a short and intuitive argument
to a long and heavy one: Can you see it at a glance?

Pólya (1957)

1. Implement and test the method for computing Bmpum(D) = image(P).
2. Explore the approaches based on the kernel and input/output representations.
3. Compare the different solution methods with respect to the following criteria.

• Theory: which method was easiest/shortest to derive?
• Insight: which method did you find most insightful in understating the map

D 7→ Bmpum(D)?

• Algorithms: what are the algorithms being used and which one is fastest?

3.2 (The most powerful unfalsified model in L 1
0,ℓ). We are looking for an au-

tonomous linear time-invariant model B = ker
(

p(σ)
)

with lag at most ℓ, such that
yd ∈ B. Therefore, the system of linear equations

p0yd(t)+ p1yd(t +1)+ · · ·+ pℓyd(t + ℓ) = 0, for t = 1, . . . ,T − ℓ.

must hold true. Written in a matrix form the system of equations is
[
p0 p1 · · · pℓ

]
︸ ︷︷ ︸

p

Hℓ+1(yd) = 0. (∗)

Since p 6= 0, we obtain an equivalent rank condition rank
(
Hℓ+1(yd)

)
≤ ℓ that de-

pends on the data yd and the lag ℓ only and is verifiable by existing methods.

3.3 (yd 7→ Bmpum(yd) = ker
(

p(σ)
)
). Equation (∗) suggests a method for comput-

ing the parameter vector p from the left kernel of the matrix Hℓ+1(yd), i.e., p can

242 B Solutions to the exercises

be computed by constructing the Hankel matrix Hℓ+1(yd) and computing its left
kernel. Then, any vector in the left kernel defines an exact model for yd.

So far we assumed that ℓ is given. In case when the ℓ is unknown, we can detect
the smallest ℓ, for which there is an exact model by doing the rank test for ℓ= 1,2, . . .

242 〈Finding the lag 242〉≡
for ell = 1:ell_max

if (rank(H(y, ell + 1)) == ell)

break

end

end

In the example, ℓ= 3 and p can be chosen as
[
1 1 1 −1

]
.

Note that the method, described above, for the computation of a kernel repre-
sentation ker

(
p(σ)

)
=Bmpum(yd) generalizes trivially to the model class L q

m,ℓ, i.e.,
general multivariable linear time-invariant systems. Indeed, the only difference with
the scalar autonomous case is that the kernel of the Hankel matrix Hℓ+1(wd), con-
structed from the data wd, has dimension p. A basis for the kernel contains the
parameters R0,R1, . . . ,Rℓ of a (in general nonminimal) kernel representation

ker
(
R(σ)

)
= Bmpum(wd).

3.4 (yd 7→ Bmpum(yd) = B(A,c)
)
). Finding the most powerful unfalsified model

in the model class L 1
0,ℓ is equivalent to the realization problem. Indeed, the im-

pulse response of Bi/s/o(A,xini,c,0) and the output of Bss(A,c) due to initial condi-
tion x(1) = xini are identical. Therefore, realization algorithms, e.g., Kung’s method
(h2ss), can be used for computing a state-space representation of Bmpum(yd).

3.5 (Data-driven step response estimation). A data-driven step response estima-
tion method can be obtained mutatis mutandis from the impulse response estimation
method, see Section 3.2. Under the assumptions of Lemma 3.7, there is gk such that

wk = Hℓ+t(wd)gk, for k = 1, . . . ,m,

where ℓ is the lag of the system, t is the number of to-be-estimated samples of the
step response, and wk =

[uk
yk

]
, with

uk =
(

0, . . . ,0︸ ︷︷ ︸
ℓ

,ek, . . . ,ek︸ ︷︷ ︸
t

)
and yk =

(
0, . . . ,0︸ ︷︷ ︸

ℓ

,sk(1), . . . ,sk(t)︸ ︷︷ ︸
t

)
.

By construction, the sk(1), . . . ,sk(t)’s are the first t samples of the step response due
to the zero initial conditions (see Exercise 2.4) and step on the kth input.

Reordering the equations, we obtain the following relations

Hf,ygk = sk,[
Hp

Hf,u

]
gk =

[
0qℓ×1
1t ⊗ ek

]
, for k = 1, . . . ,m.

Defining G :=
[
g1 · · · gm

]
and S :=

[
s1 · · · sm

]
,

B Solutions to the exercises 243

Hf,yG = S,
[

Hp

Hf,u

]
G =

[
0qℓ×m
1t ⊗ I

]
.

By construction the second equation has a solution and any solution G satisfies the
first equation. Taking the least-norm solution, we obtain the following closed-form
expression for the first t samples of the impulse response

S = Hf,y

[
Hp

Hf,u

]+ [0qℓ×m
1t ⊗ I

]
.

This gives us a data-driven algorithm for step response estimation.
For implementation and testing, see the solution of Exercise 6.2.

Chapter 4

4.1 (Distance from a data point to a linear model).

1. The distance computation is equivalent to the standard least squares problem

dist(d,B) := min‖d − d̂‖2 subject to d̂ = Pℓ.

Since P is full column rank (minimal representation), the best approximation is

d̂∗ = P(P⊤P)−1P⊤d =: ΠPd (d∗)

and the distance of d to B is

dist(d,B) = ‖d − d̂∗‖2 =
√

d⊤(I −ΠP)d. (distP)

Substituting d =
[

1
0

]
and P =

[
1
1

]
in (distP), we have

dist
([

1
0

]
, image

([
1
1

]))
= · · ·= 1/

√
2.

1

1√
2

B

d

d̂

2. Using a minimal kernel representation ker(R) of the model B, the distance com-
putation problem is equivalent to the problem

244 B Solutions to the exercises

dist(d,B) := min
d̂

‖d − d̂‖2 subject to Rd̂ = 0.

This is not a standard least squares problem. A change of variables ∆d := d − d̂,
however, leads to an equivalent standard least norm problem

dist(d,B) := min
d̂

‖∆d‖2 subject to R∆d = Rd.

Since R is full row rank (minimal representation),

∆d∗ = R⊤(RR⊤)−1Rd = ΠR⊤d

and
dist(d,B) = ‖∆d∗‖2 =

√
d⊤ΠR⊤d. (distR)

3. As shown in part 1, d̂∗ is unique (and can be computed by, e.g., (d∗) and (distP)).
4. A vector ∆d is orthogonal to the model B if and only if ∆d is orthogonal to all

vectors in B. Using (d∗) and the basis P for B, we have

∆d∗⊤P = (d − d̂∗)⊤P = d⊤(I −ΠP)P = 0,

which shows that is ∆d∗ is orthogonal to B.
The converse statement “∆d = d− d̂ being orthogonal to B implies that d̂ is the
closest point in B to d” is also true. It completes the proof of what is known
as the orthogonality principle—d̂ is an optimal approximation of a point d in a
model B if and only if the approximation error d − d̂ is orthogonal to B.

4.2 (Distance from a data point to an affine model).

1. The problem of computing dist(d,B) reduces to an equivalent problem of com-
puting the distance of a point to a subspace by the change of variables

d′ := d − c.

We have

dist(d,B) = min
d̂∈B

‖d − d̂‖2 = min
d̂′∈B′

‖d′− d̂′‖2 = dist(d′,B′).

2. Using the change of variables argument, we have

dist
([

0
0

]
,ker(

[
1 1

]
)+

[
1
2

])
= dist

(
−
[

1
2

]
,ker(

[
1 1

]
)

)
.

Then using (distR) we have dist
(
−
[

1
2

]
,ker(

[
1 1

]
)
)
= · · ·=

√
9/2.

B Solutions to the exercises 245

3 √
3√
2

B

B′

d̂′

d

d̂′

4.3 (Two-sided weighted low-rank approximation). Define

Dm :=
√

WlD
√

Wr and D̂m :=
√

WlD̂
√

Wr.

Since Wl and Wr are nonsingular,

rank(D̂) = rank(D̂m).

Then, from (WLRA2), we obtain the equivalent problem

minimize over D̂m ‖Dm − D̂m‖F

subject to rank(D̂m)≤ m,
(WLRA2’)

which is an unweighted low-rank approximation.
MATLAB implementation:

245a 〈Two-sided weighted low-rank approximation 245a〉≡
function [r, p, dh] = glra(d, m, wl, wr)

swl = sqrtm(wl);

swr = sqrtm(wr);

d = swl * d * swr’;

[r, p, dh] = lra(d, m);

r = r * swl;

p = pinv(swl) * p;

dh = swl \ dh / swr’;

Uses lra 105a.

4.4 (A simple method for approximate system identification). A trivial way of
obtaining an approximate identification method from a corresponding exact iden-
tification method is to replace exact computations by corresponding approximate
computations. In the case of the method described in the solution of Exercise 3.3,
the computation is for a basis of the left kernel of the Hankel matrix Hℓ+1(wd). An
approximate version of this computation is unstructured low-rank approximation
(lra). This gives us the following approximate identification method:

245b 〈w2r 245b〉≡
function R = w2r(w, m, ell)

〈reshape w and define q, T 27a〉
R = lra(blkhank(w, ell + 1), q * ell + m);

Uses blkhank 26a and lra 105a.

246 B Solutions to the exercises

4.5 (Misfit computation using state space representation). A finite sequence
w =

(
w(1), . . . ,w(T)

)
, with an input/output partition w = [u

y], is a trajectory of B =
Bi/s/o(A,B,C,D), if and only if there is an initial condition xini ∈ R

n, such that

y =




C

CA

CA2

...
CAT−1




︸ ︷︷ ︸
O

xini +




D

CB D

CAB CB D
...

. . .
. . .

. . .

CAT−1B · · · CAB CB D




︸ ︷︷ ︸
T

u = Oxini +T u. (O,T)

Substituting the last expression for y in the definition (misfit Lm,ℓ) of the misfit, we
obtain an ordinary least squares problem

min
x̂ini,û

∥∥∥∥
[

ud
yd

]
−
[

0 I

O T

][
x̂ini
û

]∥∥∥∥ .

The solution gives us the initial condition x̂ini and the input û of the optimal approx-
imation ŵ of wd in B. The output ŷ is O x̂ini +T û. Knowing ŵ, we can evaluate the
misfit as

dist
(
wd,Bi/s/o(A,B,C,D)

))
= ‖wd − ŵ‖.

Note B.2 (Fast computation of the misfit using errors-in-varibales Kalman filter).

Solving the least squares problem by general purpose methods leads to cubic in
the number of samples T computational cost. The matrices O and T , however,
have structured that allows fast computations. A recursive algorithm, known as the
errors-in-variables Kalman filter, has linear in T computational complexity.

Optional continuation of Exercise 4.5

As in the misfit computation in the static case, see Exercise 4.1, you can continue
this exercise by considering alternative solutions that use different representations
of the model. Different solutions of the problem give a better perspective and allow
us to choose the most robust, efficient, simple to implement, etc method.

1. Implement and test the method for computing (misfit Lm,ℓ), based on the in-
put/state/output representation of the model.

2. Explore the approaches based on the kernel and image representations.
3. Compare the different solution methods with respect to the following criteria.

• Theory: which method was easiest/shortest to derive?
• Insight: which method did you find most insightful in understating the misfit

computational problem?
• Algorithms: which one is most efficient computationally?

B Solutions to the exercises 247

Chapter 5

5.1 (Matrix representation of polynomial multiplication).

1. The equivalence of the polynomial product c(z) = a(z)b(z) and the matrix-vector
product c = Mn(a)b can be proven by direct inspection of the two expression.
From c(z) = a(z)b(z), we have that

ci = ∑m
k=0 akbi−k. (∗)

On the other hand, from c = Mn(a)b, we have that ci is also given by (∗).
2. The statement follows from part 1 and the fact that convolution c = a ⋆ b of

sequences is equivalent to polynomial multiplication c(z) = a(z)b(z). Indeed,
(∗) is the definition of the discrete convolution c = a⋆b.

3. As in part 1, the equivalence of c = a(σ)b and M⊤
m−n(a)b can be proven by

inspection. By definition, from c = a(σ)b, we have

ci = ∑m
k=0 akbi+k. (∗∗)

On the other hand, from c = M⊤
n (a)b, we have that ci is also given by (∗∗).

5.2 (Computing approximate common factor with slra). First we define the
reduced Sylvester matrix structure (Rd), using the red_sylv function:

247a 〈Define the reduced Sylvester matrix structure tts 247a〉≡ (247e)
n = length(p) - 1;

tts = red_sylv(1:n + 1, n + 2:2 * (n + 1), d)’;

Uses red_sylv 151.

The structure parameter vector is concatenation of the coefficients of p and q:
247b 〈Call slra 247b〉≡ (247e)

[z, phqh, info] = slra(tts [p(:); q(:)], size(tts, 1) - 1);

Uses slra 116c.

The approximating polynomials p̂ and q̂ are extracted from the parameter phqh:
247c 〈Extract p̂ and q̂ from the slra parameter vector 247c〉≡ (247e)

ph = phqh(1:n + 1); qh = phqh(n + 2:end);

In order to find the approximate common factor c, we use ((u,v) 7→ c),
247d 〈Compute the approximate common factor from the slra kernel parameter 247d〉≡ (247e)

v = z(1:n - d + 1); u = - z(n - d + 2:end);

c = [blktoep(u, d + 1)’; blktoep(v, d + 1)’] \ [p(:); q(:)];

Uses blktoep 117a.

Putting everything together, we obtain the following function:
247e 〈Approximate common factor, using slra 247e〉≡

function [c, ph, qh, M, info] = agcd_slra(p, q, d)

〈Define the reduced Sylvester matrix structure tts 247a〉
〈Call slra 247b〉
〈Extract p̂ and q̂ from the slra parameter vector 247c〉
〈Compute the approximate common factor from the slra kernel parameter 247d〉
M = norm([p(:); q(:)] - phqh);

248 B Solutions to the exercises

Defines:
agcd_slra, used in chunk 248.

5.3 (Approximate common factor numerical examples). Algorithm 8 converges
in 4 iteration steps and the slra algorithm (called from agcd_slra) converges
in 11 iteration steps. Both methods find the approximate common factor

c(z) = 3.9830+1.9998z+1.0000z2,

to which correspond approximating polynomials

p̂(z) = 20.0500+18.0332z+9.0337z2 +2.0001z3

q̂(z) = 20.0392+14.0178z+7.0176z2 +0.9933z3.

The approximation error is M(c) = 0.0126.
248 〈Approximate common factor numerical examples 248〉≡

p = conv([1 2 4], [2 5]) + [0 0.04 0.03 0.05];

q = conv([1 2 4], [1 5]) + [0 0.01 0.02 0.04];

d = 2;

[c, ph, qh, M, info] = agcd_slra(p, q, d);

Uses agcd_slra 247e.

Chapter 6

6.1 (Missing values completion with given model). Two solutions are presented:

• using an image representation of the model, and
• using an input/state/output representation.

The solutions are constructive and lead to algorithms for solving the problem. Both
algorithms complete the sequence or prove that the sequence can not be completed.

Using image representation

Assuming that the model B is controllable, it has an image representation B =
image

(
P(σ)

)
. For any w ∈ B|T , there is latent variable v, such that w := T (P)v.

Therefore, the sequence wd ∈ (R
q
e)

T with missing values wd,Im = NaN and given
values wd,Ig is a trajectory of B if and only if the system of linear equations

wd,Ig = TIg(P)v (v)

has a solution v̂, in which case a completion of the missing values is given by

ŵIm = TIm(P)v̂. (ŵ)

B Solutions to the exercises 249

The solution presented is summarized in Algorithm 13.

Algorithm 13 Missing values completion with model B = image
(
P(σ)

)
.

Input: Polynomial matrix P(z) defining an image representation B = image
(
P(σ)

)
of the system

and a sequence wd ∈ (R
q
e)

T .
1: if (v) has a solution v̂ then

2: wd ∈ B|T , with a certificate (ŵ).
3: else

4: wd 6∈ B|T , with a certificate wd,Ig /∈ BIg .
5: end if

Output: The completed sequence ŵ or a certificate that wd,Ig /∈ BIg .

Using input/state/output representation

In the general case of a possibly uncontrollable system B, the problem can be ap-
proached using an input/state/output representation Bi/s/o(A,B,C,D). The solution
is again a solvability test for a system of linear equations with a coefficients matrix

P :=
[

0 I

O T (H)

]
∈ R

qT×(n+mT),

which consists of the extended observability matrix O and the low-triangular block-
Toeplitz matrix T of the Markov parameters, see (O,T). For w ∈ B|T , we have

w =

[
u

y

]
=

[
0 I

O T

][
xini
u

]
=: Pv′.

Therefore, the sequence wd ∈ (R
q
e)

T with missing values wd,Im = NaN and given
values wd,Ig is a trajectory of B if and only if the system of linear equations

wd,Ig = PIg(M)v′ (v′)

has a solution v̂′, in which case a completion of the missing values is given by

ŵIm = PIm v̂′. (ŵ′)

The solution method presented is summarized in Algorithm 14.

Note B.3 (Computational cost). Solving (v) and (v′) by general purpose methods that
do not exploit the structure of the matrices T and O requires O(T 3) operations.

Note B.4 (Approximate solution). If wd 6∈ B|T , (v) and (v′) have no solution. Com-
puting a least squares approximate solution leads to a “smoothed sequence” ŵ,
which simultaneously approximates the given and completes the missing values.

250 B Solutions to the exercises

Algorithm 14 Missing values completion with a model B = Bi/s/o(A,B,C,D).

Input: Matrices A,B,C,D defining an input/state/output representation B = Bi/s/o(A,B,C,D) of
the system and a sequence wd ∈ (R

q
e)

T .
1: if (v′) has a solution v̂′ then

2: wd ∈ B|T , with a certificate (ŵ′).
3: else

4: wd 6∈ B|T , with a certificate wd,Ig /∈ BIg .
5: end if

Output: The completed sequence ŵ or a certificate that wd,Ig /∈ BIg .

Note B.5 (Online filtering with missing data). Finding a recursive online algorithm
for solving (v) and (v′) approximately in the least squares sense is an open problem.
Such an algorithm would generalize the Kalman filter to missing data estimation.

6.2 (Subspace method for data-driven step response simulation). MATLAB im-
plementation of the method, described in the solution of Exercise 3.5:

250a 〈Data-driven step response simulation, subspace method 250a〉≡ 250d⊲
function sh = dd_step_subspace(wd, n, Tf)

ud = wd(:, 1); yd = wd(:, 2); T = length(ud);

H = [blkhank(ud, n + Tf); blkhank(yd, n + Tf)];

u = [zeros(n, 1); ones(Tf, 1)]; yp = zeros(n, 1);

sh = H(end-Tf+1:end, :) * pinv(H(1:end-Tf, :)) * [u; yp];

Uses blkhank 26a.

In order to study empirically the estimation accuracy in the present of noise, we
simulate data in the errors-in-variables setup.

250b 〈Test data-driven step response simulation 250b〉≡ 250c⊲
n = 2; T = 50; Tf = 5; sn = 0.01;

sys0 = drss(n); u0 = rand(T, 1); y0 = lsim(sys0, u0);

w0 = [u0 y0]; wt = randn(T, 2);

wd = w0 + sn * norm(w0) * wt / norm(wt);

Let s̄ be the step response of the true system and ŝ the estimated step response. The
estimation accuracy is evaluated by the relative error

e := ‖s̄− ŝ‖2/‖s̄‖2.

250c 〈Test data-driven step response simulation 250b〉+≡ ⊳250b 251a⊲
s0 = step(sys0, Tf); s0 = s0(1:Tf);

e = @(sh) norm(s0 - sh) / norm(s0);

sh_subspace = dd_step_subspace(wd, n, Tf); e(sh_subspace)

6.3 (Data-driven step response simulation, using the SLRA package). The fol-
lowing function solves (DD SIM), in the case of a step response estimation, using
the SLRA package:

250d 〈Data-driven step response simulation, subspace method 250a〉+≡ ⊳250a
function [sh, info] = dd_step_slra(wd, n, Tf)

uf = ones(Tf, 1); yf = NaN * ones(Tf, 1); wf = [uf yf];

opt.exct = {[], 1}; opt.wini = {0, 0}; opt.solver = ’m’;

B Solutions to the exercises 251

[sysh, info, wh] = ident({wd wf}, 1, n, opt);

sh = wh{2}(:, 2);

The estimate obtained with dd_step_slra is compared with the estimate ob-
tained with the subspace method dd_step_subspace on the simulation setup of
Example 6.2

251a 〈Test data-driven step response simulation 250b〉+≡ ⊳250c
sh_slra = dd_step_slra(wd, n, Tf); e(sh_slra)

Chapter 7

7.1 (Exact line fitting). The points d1, . . . ,dN , di = [xi
yi
] lie on line if and only if

there is a nonzero vector
[
R1 R2 R3

]
6= 0, such that

R1xi +R2yi +R3 = 0, for i = 1, . . . ,N.

This system of linear equations can be written as a matrix equation

[
R1 R2 R3

]
︸ ︷︷ ︸

R




x1 · · · xN

y1 · · · yN

1 · · · 1




︸ ︷︷ ︸
Dext

= 0.

Since the parameter vector R is nonzero, we have that, by construction,

rank(Dext)≤ 2. (∗)

We have shown that the points di = [xi
yi
], i = 1, . . . ,N lie on a line if and only if

a matrix constructed from the data points is rank deficient. Moreover, the model
parameters can be computed from a nonzero vector in the left kernel of this matrix.

The condition for exact line fitting (∗) can be checked in MATLAB as follows:
251b 〈Check if the data can be fitted by a line 251b〉≡

N = size(d, 2); dext = [d; ones(1, N)];

if (rank(dext) < 3)

disp(’exact fit exists’)

else

disp(’exact fit does not exist’)

end

where the columns of d are the data points. When an exact line that fits the points
exists, its parameter vector R can be computed by the null function:

251c 〈Find an exact fit of data by a line 251c〉≡
r = null(dext’)’;

7.2 (Approximate line fitting). Observing that
√

∑N
j=1

∥∥d j − d̂ j

∥∥2
2 =

∥∥∥
[
d1 · · · dN

]
−
[
d̂1 · · · d̂N

]∥∥∥
F
,

252 B Solutions to the exercises

the geometric line fitting problem can be rewritten as

minimize over B̂ and D̂ ‖D− D̂‖F

subject to d̂1, . . . , d̂N ∈ B̂ and B̂ is a line in R
2.

Using the result of Exercise 7.1, we replace the constraint by the rank constraint (∗).
This gives us the low-rank approximation problem:

minimize over D̂ ‖D− D̂‖F

subject to rank
([

D̂

1⊤N

])
≤ 2.

Note that due to the fixed row of ones, this problem is not unstructured low-rank
approximation. Using the truncated singular value decomposition (see Theorem 4.5)
in general does not preserve the structure of the extended data matrix Dext. Ignoring
the structure leads to a suboptimal solution. Optimal solution, based on the singular
value decomposition, is developed in (Golub et al, 1987), see also (Zha, 1991).

7.3 (Exact conic section fitting). The points d1, . . . ,dN , di = [xi
yi
] lie on a conic

section if and only if there is a symmetric matrix A = A⊤, a vector b, and a scalar c,
at least one of which nonzero, such that

d⊤
i Adi +b⊤di + c = 0, for i = 1, . . . ,N. (∗∗)

Equation (∗∗) is linear in the parameters A, b, c and has a matrix representation

[
a11 2a12 b1 a22 b2 c

]
︸ ︷︷ ︸

R




x2
1 · · · x2

N

x1y1 · · · xNyN

x1 · · · aN

y2
1 · · · y2

N

y1 · · · yN

1 · · · 1




︸ ︷︷ ︸
Dext

= 0.

Since, by assumption, the parameter vector R is nonzero, we have that

rank(Dext)≤ 5. (∗)

We have shown that the points di = [xi
yi
], i = 1, . . . ,N lie on a conic section if and

only if a matrix constructed from the data is rank deficient. Moreover, the model
parameters can be computed from a nonzero vector in the left kernel of the matrix.

For the MATLAB implementation of the exact conic section fitting method, we
define a function that constructs a column of the Dext matrix

252a 〈Bivariate quadratic function 252a〉≡ (253c)
f = @(x, y) [x .^ 2; x .* y; x; y .^ 2; y; ones(size(x))];

The exact model’s parameter vector is then computed as
252b 〈Find an exact fit of data by a conic section 252b〉≡

B Solutions to the exercises 253

R = null(f(d(1, :), d(2, :))’)’;

The obtained conic section model can be plotted by the function
253a 〈Plot a conic section 253a〉≡

function H = plot_model(th, f, ax, c)

H = ezplot(@(a, b) th * f(a, b), ax);

for h = H’, set(h, ’color’, c, ’linewidth’, 2); end

Uses plot_model 187c.

Applying the method on the data in the problem:
253b 〈Find and plot exact conic sections fitting the data 253b〉≡

d = [-1 1 1 -1;

-1 -1 1 1];

plot(d(1, :), d(2, :), ’o’, ’markersize’, 12)

ax = 2 * axis;

R = null(f(d(1, :), d(2, :))’)’;

for i = 1:size(R, 1)

hold on, plot_model(R(i, :), f, ax, c(i));

end

Uses plot_model 187c.

we obtained the two conic sections, shown in Figure B.2

−2 −1 0 1 2
−2

−1

0

1

2

x

y

Fig. B.2: For the data points given in Problem 7.3 there are infinitely many exact
fitting conic section models. Two of them are shown in the figure.

Note that when rank(D)< 5, i.e., the dimension of the left kernel of D is higher
than one, the rows of R define different exact conic sections that fit the data. In this
case, there are infinitely many exact conic section fitting models. Their parameter
vectors can be obtained as linear combinations of the rows of the matrix R.

7.4 (Approximate conic section fitting). The algebraic fitting method involves the
construction of the augmented data matrix dext and doing unstructured low-rank
approximation by calling the function lra:

253c 〈Algebraic conic section fitting 253c〉≡
function R = function als(d)

〈Bivariate quadratic function 252a〉

254 B Solutions to the exercises

R = lra(f(d(1, :), d(2, :)), 5);

Uses lra 105a.

The result R defines a kernel representation of the optimal algebraic fitting model B̂.
It can be plotted using the function plot_model.

Chapter 8

8.1 (Matrix centering).

E
(

C(D)
)
= E

(
D−E(D)1⊤N

)

=
1
N

(
D− 1

N
D1N1⊤N

)
1N

=
1
N

D1N − 1
N2 D1N 1⊤N 1N︸ ︷︷ ︸

N

= 0.

8.2 (Mean computation as an optimal modeling). The optimization problem is a
linear least squares problem and its solution is

ĉ = D1N(1
⊤
N 1N)

−1 =
1
N

D1N = E(D).

8.3 (Autonomous system identification with centering, using internal model).

Let
B = ker

(
P(σ)

)
and Bc = ker

(
Pc(σ)

)

be minimal kernel representations. The model Bc for the constant has parameter

Pc(z) := 1− z.

Therefore, the augmented system Bext has a kernel representation

Bext = ker
(
Pext(σ)

)
, with Pext(z) = P(z)Pc(z) = P(z)(1− z).

The autonomous system identification problem with centering becomes then

minimize over ŷ and P ∈ R[z], deg(P) = ℓ ‖yd − ŷ‖
subject to Pc(σ)(1−σ)ŷ = 0.

Using Lemma 5.10 and the matrix representation of the polynomial product (see
Exercise 5.1), we have an equivalent Hankel low-rank approximation problem

B Solutions to the exercises 255

minimize over ŷ and P ∈ R
1×(ℓ+1) ‖yd − ŷ‖

subject to P




1 −1
. . .

. . .

1 −1


Hℓ+2(ŷ) = 0,

with structured kernel. The SLRA package allows specification of linear constraints
on the kernel parameter R, so that the autonomous system identification problem
with centering can be solved by the SLRA package.

255 〈Autonomous system identification with centering, using internal model 255〉≡
function [sys_aug, yh, info] = aut_ident_center(y, ell, opt)

s.m = ell + 2; opt.psi = blktoep([1 -1], ell + 1);

[yh, info] = slra(y, s, ell + 1, opt);

sysh = h2ss(yh, ell + 1); xini_aug = sysh.b;

sysh_aug = ss(sysh.a, [], sysh.c, [], -1);

Uses blktoep 117a, h2ss 74c, and slra 116c.

Chapter A

A.1 (Geometric interpretation of the total least squares). The constraint

â jx = b̂ j, for j = 1, . . . ,N

is equivalent to the constraint that the points

d̂1 :=
[

â1

b̂1

]
, . . . , d̂N :=

[
âN

b̂N

]

lie on the line
Bi/o(x) := {d = [a

b] ∈ R
2 | ax = b}.

Therefore, problem (tls) can be written as

minimize over x and d̂1, . . . , d̂N ∑N
j=1

∥∥d j − d̂ j

∥∥2
2

subject to d̂ j ∈ Bi/o(x), for j = 1, . . . ,N.
(tls’)

In turn, problem (tls’) is equivalent to minimization of ftls : R→ R defined by

ftls(x) := min
d̂1,...,d̂N

N

∑
j=1

∥∥d j− d̂ j

∥∥2
2 subject to d̂ j ∈Bi/o(x), for j = 1, . . . ,N. (tls”)

The minimization problem in (tls”) is separable in the variables d̂1, . . . , d̂N , i.e., (tls”)
decouples into N independent problems

256 B Solutions to the exercises

ftls, j(x) = min
d̂ j

∥∥d j − d̂ j

∥∥2
2 subject to d̂ j ∈ Bi/o(x), for i = 1, . . . ,N.

By the orthogonality principle, ftls, j(x) is the squared orthogonal distance from d j

to the line Bi/o(x). Subsequently,

ftls(x) = ∑N
j=1 ftls, j(x)

is the sum of squared orthogonal distances from the data points to the line Bi/o(x).
For any x ∈ R, Bi/o(x) is a line passing through the origin and any line passing

through the origin, except for the vertical line, corresponds to a set Bi/o(x), for some
x ∈ R. Therefore, the total least squares problem minx∈R ftls(x) minimizes the sum
of squared orthogonal distances from the data points to a line, over all lines passing
through the origin, except for the vertical line.

A.2 (Unconstrained problem, equivalent to the total least squares problem).

The total least squares approximation problem (tls) is minx ftls(x), where

ftls(x) = min
â,b̂

∥∥∥
[
a b

]
−
[
â b̂

]∥∥∥
2

F
subject to âx = b̂ (ftls)

or with the change of variables ∆a := a− â and ∆b := b− b̂,

ftls(x) = min
∆a,∆b

∥∥[∆a ∆b
]∥∥2

F subject to ax−b = ∆ax−∆b. (f ′tls)

Define
∆b := ax−b, ∆D :=

[
∆a ∆b

]⊤
, and R =

[
x⊤ −1

]

in order to write (f ′tls) as a standard linear least norm problem

min
∆D

∥∥∆D
∥∥2

F subject to R∆D = ∆b⊤.

The least norm solution for ∆D is

∆D∗ =
1

RR⊤ R⊤∆b,

so that, we have

ftls(x) = ‖∆D∗‖2
F = trace

(
(∆D∗)⊤D∗)= ∆b⊤∆b

RR⊤ =
‖ax−b‖2

‖x‖2 +1
.

From Problem 1.2 and the derivation of ftls, we see that ftls(x) is the sum of squared
orthogonal distances from the data points to the model Bi/o(x), defined by x.

A.3 (Lack of total least squares solution). The total least squares line fitting
method, applied to the data in Problem 1.1 leads to the overdetermined system

References 257

col(−2,−1,0,1,2,2,1,0,−1,−2)︸ ︷︷ ︸
a

x = col(1,4,6,4,1,−1,−4,−6,−4,−1)︸ ︷︷ ︸
b

.

Therefore, using the (tls’) formulation, the problem is to minimize the function

ftls(x) =
(ax−b)⊤(ax−b)

x2 +1
= · · · substituting a and b with

their numerical values
· · ·= 20

x2 +7
x2 +1

.

The first derivative of ftls is

d
dx

ftls(x) =− 240x

(x2 +1)2 ,

so that ftls has a unique stationary point at x = 0. The second derivative of ftls at
x = 0 is negative, so that the stationary point is a maximum. This proves that ftls has
no minimum and the total least squares problem has no solution.

Figure B.3 shows the plot of ftls over the interval [−6.3,6.3]. It can be verified
that the infimum of ftls is 20 and ftls has asymptotes ftls(x)→ 20 for x →±∞, i.e.,
the infimum is achieved asymptotically as x tends to infinity or minus infinity.

−6 −4 −2 0 2 4 6

20

40

60

80

100

120

140

x

f t
ls
(x
)

Fig. B.3: Cost function of the total least squares problem (tls’) in Problem 1.4.

References

Golub G, Hoffman A, Stewart G (1987) A generalization of the Eckart–Young–
Mirsky matrix approximation theorem. Linear Algebra Appl 88/89:317–327

Pólya G (1957) How to Solve It. Doubleday
Zha H (1991) The restricted singular value decomposition of matrix triplets. SIAM

J Matrix Anal Appl 12(1):172–194

Appendix C

Proofs

It is time to dispel a popular misconception. The goal of

mathematics is discovery, not proof.

Chover (1972)

The proof is meaningful when it answers the students doubts,

when it proves what is not obvious. Intuition may fly the student

to a conclusion but where doubt remains he may then be asked

to call upon plodding logic to show the overland route to the

same goal.

Kline (1974)

Emphasize the difference between “seeing” and “proving”:

Can you see clearly that the step is correct? But can you also

prove that the step is correct?

Pólya (1957)

Chapter 4

Proof of Proposition 4.4

The probability density function of the observation vector vec(D) is

p
B̂,D̂

(
vec(D)

)
=





const ·exp
(
− 1

2s2 ‖vec(D)−vec(D̂)‖2
V−1

)
,

if image(D̂)⊂ B̂ and dim(B̂)≤ m

0, otherwise.

“const” is a term that does not depend on D̂ and B̂. The log-likelihood function is

ℓ(B̂, D̂) =





−const · 1
2s2 ‖vec(D)−vec(D̂)‖2

V−1 ,

if image(D̂)⊂ B̂ and dim(B̂)≤ m

−∞, otherwise,

and the maximum likelihood estimation problem is

minimize over B̂ and D̂
1

2s2 ‖vec(D)−vec(D̂)‖2
V−1

subject to image(D̂)⊂ B̂ and dim(B̂)≤ m.

This problem is equivalent to Problem 4.2 with ‖ · ‖= ‖ · ‖V−1 .

259

260 C Proofs

Proof of Proposition 4.5

The proof is given in (Vanluyten et al, 2006). Let D̂∗ be a solution to

D̂∗ := argmin
D̂

‖D− D̂‖ subject to rank(D̂)≤ m. (LRA)

and let
D̂∗ :=U∗Σ ∗(V ∗)⊤

be a singular value decomposition of D̂∗. By the unitary invariance of the Frobenius
norm, we have that

‖D− D̂∗‖F = ‖(U∗)⊤(D− D̂∗)V ∗‖F = ‖(U∗)⊤DV ∗
︸ ︷︷ ︸

D̂

−Σ ∗‖F,

which shows that Σ ∗ is an optimal approximation of D̂. Partition

D̂ =:
[

D̂11 D̂12

D̂21 D̂22

]

conformably with Σ ∗ =:
[

Σ∗
1 0

0 0

]
and observe that

rank
([

Σ ∗
1 D̂12

0 0

])
≤ m and D̂12 6= 0 =⇒

∥∥∥∥D̂−
[

Σ ∗
1 D̂12

0 0

]∥∥∥∥
F
<

∥∥∥∥D̂−
[

Σ ∗
1 0

0 0

]∥∥∥∥
F
,

so that D̂12 = 0. Similarly D̂21 = 0. Observe also that

rank
([

D̂11 0
0 0

])
≤ m and D̂11 6=Σ ∗

1 =⇒
∥∥∥∥D̂−

[
D̂11 0

0 0

]∥∥∥∥
F
<

∥∥∥∥D̂−
[

Σ ∗
1 0

0 0

]∥∥∥∥
F
,

so that D̂11 = Σ ∗
1 . Therefore,

D̂ =

[
Σ ∗

1 0
0 D̂22

]
.

Let
D̂22 =U22Σ22V⊤

22

be the singular value decomposition of D̂22. Then the matrix
[

I 0
0 U⊤

22

]
D̂

[
I 0
0 V22

]
=

[
Σ ∗

1 0
0 Σ22

]

has optimal rank-m approximation Σ ∗ =:
[

Σ∗
1 0

0 0

]
, so that

C Proofs 261

min
(

diag(Σ ∗
1)
)
> max

(
diag(Σ22)

)

Therefore,

D =U∗
[

I 0
0 U22

][
Σ ∗

1 0
0 Σ22

][
I 0
0 V⊤

22

]
(V ∗)⊤

is a singular value decomposition of D.
Then, if σm > σm+1, the rank-m truncated singular value decomposition

D̂∗ =U∗
[

Σ ∗
1 0

0 0

]
(V ∗)⊤ =U∗

[
I 0
0 U22

][
Σ ∗

1 0
0 0

][
I 0
0 V⊤

22

]
(V ∗)⊤

is unique and D̂∗ is the unique solution of (LRA). Moreover, D̂∗ is simultaneously
optimal in any unitarily invariant norm.

Proof of Theorem 4.18

Defining
∆ pIg := pIg − p̂Ig

and using the identity

RS (p̂) = 0 ⇐⇒ Gp̂ =−vec(RS0),

we have

RS (p̂) = 0 ⇐⇒
[
G:,Ig G:,Im

][pIg −∆ pIg

p̂Im

]
=−vec(RS0).

Therefore, (M) is equivalent to

M(R) := min
∆ pIg∈Rng , p̂Im∈Rnm

‖∆ pIg‖2
2 subject to

[
G:,Ig G:,Im

][∆ pIg

− p̂Im

]
= G:,Ig pIg +vec(RS0),

which is a generalized linear least norm problem. The solution follows from Lemma 4.19.

Proof of Theorem 4.19

Under assumption 1, B has a nontrivial left kernel of dimension m−ny. Therefore,

for the nonsingular matrix T =
[

B+

B⊥

]
∈ R

m×m, we have that

262 C Proofs

T B =

[
B+

B⊥

]
B =

[
B+B

B⊥B

]
=

[
Iny

0

]
.

Pre-multiplying both sides of the constraint of (GLN) by T , we have the following
equivalent constraint [

B+Ax

B⊥Ax

]
+

[
y

0

]
=

[
B+c

B⊥c

]
.

The first equation
y = B+(c−Ax)

uniquely determines y, given x. The second equation

B⊥Ax = B⊥c (∗)

defines a linear constraint for x only. By assumption 2, it is an underdetermined
system of linear equations. Therefore, (GLN) is equivalent to the following standard
least norm problem

f = min
x

‖x‖2
2 subject to B⊥Ax = B⊥c. (GLN’)

By assumption 3, the solution is unique and is given by (SOL).

Proof of Theorem 4.20

We call a set R ⊂R
d×m a “homogeneous set” if for all R∈R and for all nonsingular

matrices T ∈ R
d×d , T R ∈ R. Let R be a solution to (SLRAC′′

R) with the constraint
R ∈ R, where R is a homogeneous set. We will show that

‖RR⊤− Im−r‖2
F = m− r− rank(R). (∗)

There exists an orthogonal matrix U diagonalizing RR⊤. We have,

‖RR⊤− Im−r‖2
F = ‖URR⊤U⊤− Im−r‖2

F

= ‖diag(a1, . . . ,arank(R),0, . . . ,0)− Im−r‖2
F, where ai > 0

=
rank(R)

∑
i=1

(ai −1)2 +m− r− rank(R).

Suppose that ai 6= 1 for some i. The matrix

R′ = diag(1, . . . ,1,1/
√

ai,1, . . . ,1)R

has the same row span and rank as R, so that by the homogeneity property of M,
M(R) = M(R′). However, we have

C Proofs 263

‖RR⊤− Im−r‖2
F > ‖R′R′⊤− Im−r‖2

F,

so that R′ ∈R achieves smaller value of the cost function of (SLRAC′′
R) than R. This

is a contradiction. Therefore, ai = 1 for all i. This concludes the proof of (∗).
So far we showed that minimization of the cost function in (SLRAC′′

R) on homo-
geneous sets is equivalent to minimization of

M(R)+ γ
(
m− r− rank(R)

)
. (M′′)

The set of full row rank matrices

R f := {R ∈ R
(m−r)×m | rank(R) = m− r}

and the set of rank-deficient matrices

Rd := {R ∈ R
(m−r)×m | rank(R)< m− r}

are homogeneous. Denote the solutions of (SLRAC′′
R) on these sets as

M∗
f := inf

R∈R f

M(R)+ γ ‖RR⊤− Im−r‖2
F

(∗)
= inf

R∈R f

M(R)< γ,

M∗
d := inf

R∈Rd

M(R)+ γ ‖RR⊤− Im−r‖2
F

(∗)
= inf

R∈Rd

M(R)︸ ︷︷ ︸
≥0

+γ
(
m− r− rank(R)

)
︸ ︷︷ ︸

≥γ

.

Then, M∗
f < γ ≤ M∗

d and

M∗ := inf
R∈R(m−r)×m

M(R)+ γ ‖RR⊤− Im−r‖2
F = M∗

f .

In addition, by the homogeneity of M, the minimum of (SLRAC′
R) coincides with

M∗
f . Therefore, the solutions of (SLRAC′′

R) and (SLRAC′
R) coincide if they exist.

Chapter 5

Proof of Lemma 5.10

(=⇒) Assume that
w|T−ℓ ∈ B|T−ℓ and B ∈ L q

m,ℓ (w ∈ B)

holds and let ker(R), with R(z) = ∑ℓ
i=0 ziRi ∈ R

g×q[z] full row rank, be a kernel
representation of B. The assumption B ∈ Lm,ℓ implies that g ≥ p := q−m. From
w ∈ B|T , we have that

[
R0 R1 · · · Rℓ

]
Hℓ+1(w) = 0, (repr)

264 C Proofs

which implies that

rank
(
Hℓ+1(w)

)
≤ m(ℓ+1)+(q−m)ℓ. (rank)

holds.
(⇐=) Assume that (rank) holds. Then, there is a full row rank matrix

R :=
[
R0 R1 · · · Rℓ

]
∈ R

p×q(ℓ+1),

such that (repr) holds. Define the polynomial matrix R(z) = ∑ℓ
i=0 ziRi. Then the

system B induced by R(z) via the kernel representation ker
(
R(σ)

)
is such that

(w ∈ B) holds.

Proof of Proposition 5.20

Assume that p and q have a common factor c of degree d. Then, there are polyno-
mials u and v, such that p = cu and q = cv. Therefore, pv = qu. Written in a matrix
form, this equation is T ⊤(p)v = T ⊤(q)u or

Rd(p,q)

[
v

−u

]
= 0.

Since z := [v
−u] 6= 0 and Rd(p,q) has less columns than rows, we’ve proved that

Rd(p,q) is rank deficient.
Assume now that Rd(p,q) is rank deficient. Then there is a nonzero vector z in

the null space, i.e., Rd(p,q)z = 0. Partitioning z as z =: [v
−u], we obtain polynomials

u and v, such that p = cu and q = cv, with c of degree d.

Proof of Theorem 5.22

The polynomial equations p= uc and q= vc are equivalent to the following systems
of algebraic equations




p̂0

p̂1
...

p̂n


= T ⊤

d+1(u)




c0

c1
...

cd


 ,




q̂0

q̂1
...

q̂n


= T ⊤

d+1(v)




c0

c1
...

cd


 ,

where the Toeplitz matrix constructor T is defined in (T) on page 117. Rewriting
and combining the above equations, we have that a polynomial c is a common factor
of p̂ and q̂ with degree(c)≤ d if and only if the system of equations

C Proofs 265




p̂0 q̂0

p̂1 q̂1
...

...
p̂n q̂n


= T ⊤

n−d+1(c)




u0 v0

u1 v1
...

...
un−d vn−d




has a solution.
The condition degree(c) = d implies that the highest power coefficient cd of c

is different from 0. Since c is determined up to a scaling factor, we can impose the
normalization cd = 1. Conversely, imposing the constraint cd = 1 in the optimiza-
tion problem to be solved ensures that degree(c) = d. Therefore, Problem 5.17 is
equivalent to

minimize over p̂, q̂ ∈ R
n+1, u, v ∈ R

n−d+1, and c0, . . . ,cd−1 ∈ R

trace
(([

p q
]
−
[
p̂ q̂

])⊤ ([
p q

]
−
[
p̂ q̂

]))

subject to
[
p̂ q̂

]
= T ⊤

n−d+1(c)
[
u v
]
.

Substituting
[
p̂ q̂

]
in the cost function and minimizing with respect to

[
u v
]

by
solving a least squares problem gives the equivalent problem (ACF’).

Chapter 8

Proof of Theorem 8.4

Using a kernel representation of the rank constraint

rank(D̂)≤ m ⇐⇒ there is full rank matrix R ∈ R
(q−m)×q, such that RD̂ = 0,

we have the following equivalent problem to (LRAc)

minimize over D̂, c, and R ∈ R
(q−m)×q ‖D− c1⊤N − D̂‖2

F

subject to RD̂ = 0 and RR⊤ = Iq−m.
(LRAc,R)

The Lagrangian of (LRAc,R) is

L(D̂,c,R,Λ ,Ξ) :=
q

∑
i=1

N

∑
j=1

(di j − ci − d̂i j)
2 +2trace(RD̂Λ)+ trace

(
Ξ(I −RR⊤)

)
.

Setting the partial derivatives of L to zero, we obtain the necessary optimality con-
ditions

266 C Proofs

∂L/∂ D̂ = 0 =⇒ D− c1⊤N − D̂ = R⊤Λ⊤, (L1)

∂L/∂c = 0 =⇒ Nc = (D− D̂)1N , (L2)

∂L/∂R = 0 =⇒ D̂Λ = R⊤Ξ , (L3)

∂L/∂Λ = 0 =⇒ RD̂ = 0, (L4)

∂L/∂Ξ = 0 =⇒ RR⊤ = I. (L5)

The theorem follows from the system of equations (L1–L5). Next we list the deriva-
tion steps.

From (L3), (L4), and (L5), it follows that Ξ = 0 and from (L1), we obtain

D− D̂ = c1⊤N +R⊤Λ⊤.

Substituting the last identity in (L2), we have

Nc = (c1⊤N +R⊤Λ⊤)1N = Nc+R⊤Λ⊤1N =⇒ R⊤Λ⊤1N = 0

=⇒ Λ⊤1N = 0.

Multiplying (L1) from the left by R and using (L4) and (L5), we have

R(D− c1⊤N) = Λ⊤. (∗)

Now, multiplication of the last identity from the right by 1N and use of Λ⊤1N = 0,
shows that c is the row mean of the data matrix D,

R(D1N −Nc) = 0 =⇒ c =
1
N

D1N .

Next, we show that D̂ is an optimal in a Frobenius norm rank-m approximation
of D− c1⊤N . Multiplying (L1) from the right by Λ and using D̂Λ = 0, we have

(D− c1⊤N)Λ = R⊤Λ⊤Λ . (∗∗)

Defining
Σ :=

√
Λ⊤Λ and V := ΛΣ−1,

(∗) and (∗∗) become

R(D− c1⊤N) = ΣV⊤, V⊤V = I

(D− c1⊤N)V = R⊤Σ , RR⊤ = I.

The above equations show that the rows of R and the columns of V span, respec-
tively, left and right m-dimensional singular subspaces of the centered data matrix
D− c1⊤N . The optimization criterion is minimization of

‖D− D̂− c1⊤N‖F = ‖R⊤Λ⊤‖F =
√

trace(ΛΛ⊤) = trace(Σ).

C Proofs 267

Therefore, a minimum is achieved when the rows of R and the columns of V span
the, respectively left and right m-dimensional singular subspaces of the centered
data matrix D− c1⊤N , corresponding to the m smallest singular values. The solution
is unique if and only if the mth singular value is strictly bigger than the (m+ 1)st
singular value. Therefore, D̂ is a Frobenius norm optimal rank-m approximation of
the centered data matrix D− c1⊤N , where c = D1N/N.

Proof of Corollary 8.5

c1⊤N + D̂ = c1⊤N +PL

= c1⊤N +Pz1⊤N +PL−Pz1⊤N

= (c+Pz)︸ ︷︷ ︸
c′

1⊤N +P(L− z1⊤N)︸ ︷︷ ︸
L′

= c′1⊤N + D̂′

Therefore, if (c, D̂) is a solution, then (c′, D̂′) is also a solution. From Theorem 8.4,
it follows that c = M(D), D̂ = PL is a solution.

Proof of Theorem 8.6

Using the property Wr1N = λ1N of Wr, we have

‖D− D̂− c1⊤‖W = ‖
√

Wl(D− D̂− c1⊤)
√

Wr‖F

= ‖Dm − D̂m − cm1⊤‖F

where

Dm =
√

WlD
√

Wr, D̂m =
√

WlD̂
√

Wr, and cm =
√

Wlc
√

λ .

Therefore, the considered problem is equivalent to the low-rank approximation
problem (LRAc) for the modified data matrix Dm.

Proof of Theorem 8.10

First, we show that the sequence D̂(0), D̂(1), . . . , D̂(k), . . . converges monotonically in
the Σ -weighted norm ‖·‖Σ . On each iteration, Algorithm 10 solves two optimization
problems (steps 1 and 2), which cost functions and constraints coincide with the
ones of problem (C0–C5). Therefore, the cost function ‖D−D̂(k)‖2

Σ is monotonically
nonincreasing. The cost function is bounded from below, so that the sequence

268 C Proofs

‖D− D̂(1)‖2
Σ , ‖D− D̂(2)‖2

Σ , . . .

is convergent. This proves (f (k)→ f ∗).
Although, D̂(k) converges in norm, it may not converge element-wise. A suffi-

cient condition for element-wise convergence is that the underlying optimization
problem has a solution and this solution is unique, see (Kiers, 2002, Theorem 5).
The element-wise convergence of D̂(k) and the uniqueness (due to the normalization
condition (A1)) of the factors P(k) and L(k), implies element-wise convergence of
the factor sequences P(k) and L(k) as well. This proves (D(k) → D∗).

In order to show that the algorithm convergence to a minimum point of (C0–C5),
we need to verify that the first order optimality conditions for (C0–C5) are satisfied
at a cluster point of the algorithm. The algorithm converges to a cluster point if and
only if the union of the first order optimality conditions for the problems on steps 1
and 2 are satisfied. Then

P′(k−1) = P′(k) =: P′∗ and L′(k−1) = L′(k) =: L′∗.

From the above conditions for a stationary point and the Lagrangians of the prob-
lems of steps 1 and 2 and (C0–C5), it is easy to see that the union of the first order
optimality conditions for the problems on steps 1 and 2 coincides with the first order
optimality conditions of (C0–C5).

References

Chover J (1972) The green book of calculus. WA Benjamin
Kiers H (2002) Setting up alternating least squares and iterative majorization algo-

rithms for solving various matrix optimization problems. Comput Stat Data Anal
41:157–170

Kline M (1974) Why Johnny Can’t Add: The Failure of the New Math. Random
House Inc

Pólya G (1957) How to Solve It. Doubleday
Vanluyten B, Willems JC, De Moor B (2006) Matrix factorization and stochastic

state representations. In: Proc. 45th IEEE Conf. on Dec. and Control, San Diego,
California, pp 4188–4193

Notation

Symbolism can serve three purposes. It can communicate ideas

effectively; it can conceal ideas; and it can conceal the absence

of ideas.

M. Kline

Sets of numbers

R the set of real numbers
Z, Z+ the sets of integers and positive integers (natural numbers)

Norms and extreme eigen/singular values

‖x‖= ‖x‖2, x ∈ R
n vector 2-norm

‖w‖, w ∈ (Rq)T signal 2-norm
‖A‖, A ∈ R

m×n matrix induced 2-norm
‖A‖F, A ∈ R

m×n matrix Frobenius norm
‖A‖W , W ≥ 0 matrix weighted norm
‖A‖∗ nuclear norm
λ (A), A ∈ R

m×m spectrum (set of eigenvalues)
λmin(A), λmax(A) minimum, maximum eigenvalue of a symmetric matrix
σmin(A), σmax(A) minimum, maximum singular value of a matrix

Matrix operations

A+, A⊤ pseudoinverse, transpose
vec(A) column-wise vectorization
vec−1 operator reconstructing the matrix A back from vec(A)
col(a,b) the column vector [a

b]
coldim(A) the number of block columns of A

rowdim(A) the number of block rows of A

image(A) the span of the columns of A (the image or range of A)
ker(A) the null space of A (kernel of the function defined by A)
diag(v), v ∈ R

n the diagonal matrix diag(v1, . . . ,vn)
⊗ Kronecker product A⊗B := [ai jB]
⊙ element-wise (Hadamard) product A⊙B := [ai jbi j]

269

270 Notation

Expectation, covariance, and normal distribution

E, cov expectation, covariance operator
x ∼ N(m,V) x is normally distributed with mean m and covariance V

Fixed symbols

B, M model, model class
S structure specification
Hi(w) Hankel matrix with i block rows, see (Hi) on page 11
Ti(c) upper triangular Toeplitz matrix with i block rows, see (T) on page 117
R(p,q) Sylvester matrix for the pair of polynomials p and q, see (R) on page 11
Oi(A,C) extended observability matrix with i block-rows, see (O) on page 52
Ci(A,B) extended controllability matrix with i block-columns, see (C) on page 52

Linear time-invariant model class

m(B), p(B) number of inputs, outputs of B
ℓ(B), n(B) lag, order of B
w|T , B|T restriction of w, B to the interval [1,T], see (B|T) on page 53

L q,n
m,ℓ := {B ⊂ (Rq)Z | B is linear time-invariant with

m(B)≤ m, ℓ(B)≤ ℓ, and n(B)≤ n}

If m, ℓ, or n are not specified, the corresponding invariants are not bounded.

Miscellaneous

:= / =: left (right) hand side is defined by the right (left) hand side
: ⇐⇒ left-hand side is defined by the right-hand side
⇐⇒ : right-hand side is defined by the left-hand side
σ τ the shift operator (σ τ f)(t) = f (t + τ)
i imaginary unit
δ Kronecker delta, δ0 = 1 and δt = 0 for all t 6= 0

1n =

[
1
...
1

]
vector with n elements that are all ones

W ≻ 0 W is positive definite
⌈a⌉ rounding to the nearest integer greater than or equal to a

With some abuse of notation, the discrete-time signal, vector, and polynomial
(
w(1), . . . ,w(T)

)
↔ col(w(1), . . . ,w(T)

)
↔ z1w(1)+ · · ·+ zT w(T)

are all denoted by w. The intended meaning is understood from the context.

Index

(Rq)Z 47
2U 60
B⊥ 39
Bi/o(X ,Π) 38
Bmpum(D) 61
E 54
Hi, j(w) 26
TT (P) 117
C j(A,B) 52
L q

m,0 39
Oi(A,C) 52
R(p,q) 11
corr 54
dist(D ,B) 62
image(P) 38
n(B) 47
ker(R) 38
λ (A) 29
Bi/s/o(A,B,C,D,Π) 48
‖ · ‖∗ 120
‖ · ‖W 100
⊗ 105
⊥ 55
σ τ w 47
c(B) 60
∧ 51

adaptive
beamforming 28

adaptive beamforming 12
adjusted least squares 182
affine model 132, 200
affine variety 175
algebraic curve 176
algebraic fitting 63, 174
algorithm

bisection 122

Kung 74, 75, 156
variable projection see variable projection

alternating projections 24, 106, 107, 131,
203, 208

analysis problem 2, 39
analytic solution 31, 102, 111, 202
annihilator 38
approximate

common factor 12
deconvolution 149
model 60
rank revealing factorization 74
realization 9, 75

ARMA systems 55
ARMAX systems 58, 79
array signal processing 12
autonomous model 48

balanced model reduction 75
bias correction 182
bias vs variance trade-off 86
bilinear constraint 112
bisection 122

centering 200
chemometrics 13, 131
circulant matrix 23, 111
clustering 28
compensated least squares 182
complex valued data 211
complexity–accuracy trade-off 65
computational complexity 112, 214
computer algebra 28
conic section fitting 19, 176
controllability

gramian 74
matrix 52

271

272 Index

controllable system 49
convex optimization 17, 121
convex relaxation 24
convolution 50
coordinate metrology 174
correlation 10
correlation function 54
curve fitting 63

data-driven methods 75, 161
deterministic identification 10
Diophantine equation 155
direction of arrival 12, 28
distance

algebraic 62
geometric 62
orthogonal 5
to uncontrollability 153

Eckart–Young–Mirsky theorem 23
epipolar constraint 21
errors-in-variables 30, 64, 145
errors-in-variables Kalman filter 246
exact identification 10
exact model 60
expectation maximization 24
explicit representation 174

factor analysis 14
feature map 19, 20
fitting

algebraic 174
criterion 4
geometric 20, 174

fundamental matrix 21

Gauss-Markov 64
generalized eigenvalue decomposition 213
generator 38
geometric fitting 20, 174
Grassman manifold 131
greatest common divisor 11

Hadamard product 66
Hankel matrix 10

infinite 9
Hankel structured low-rank approximation

see low-rank approximation
harmonic retrieval 141
Hermite polynomials 183

identifiability 61
identification

approximate 11

autonomous system 141
deterministic 10
errors-in-variables 145
exact 10
finite impulse response 147
output error 146
output only 141

ill-posed problem 2
image mining 221
implicialization problem 195
implicit representation 174
input/output partition 2
intercept 201
internal model principle 222

Kalman smoothing 118
kernel methods 19
kernel principal component analysis 195
kernel representation 3
Kronecker product 105
Kung’s algorithm 74, 75, 156

Lagrangian 265
latency 63
latent semantic analysis 15
least squares methods 226
left prime 58
lexicographic ordering 60
line fitting 3, 31
literate programming 25
localization 17
low-rank approximation

circulant structured 23
generalized 23, 103
Hankel structured 9
nonnegative 221
restricted 23
two-sided weighted 106
weighted 100, 103

machine learning 15, 28
manifold learning 195
Markov chains 221
Markov parameter 52
matrix

Hurwitz 29
Schur 29

matrix completion 16, 88
maximum likelihood 101, 111
measurement errors 30
microarray data analysis 18, 28
misfit 63
missing data 16, 88, 106
model

Index 273

approximate 60
autonomous 48
class 60
exact 60
finite dimensional 47
finite impulse response 147
invariants 38
linear dynamic 46
linear static 38

complexity 46
linear time-invariant

complexity 53
most powerful unfalsified 61
representation 23
shift-invariant 47
static

affine 200
stochastic 10
structure 19
sum-of-damped-exponentials 141
trajectory 46

model reduction 9, 140
most powerful unfalsified model 61
multidimensional scaling 17
multivariate calibration 13

norm
nuclear 17
unitarily invariant 104
weighted 65, 100

noweb 25
nuclear norm 17, 88, 119
numerical rank 122, 124

observability
gramian 74
matrix 52

Occam’s razor 46
optimization

manifold 128
orthogonal regression 30
orthogonality principle 244, 256
orthogonalizer 82
output tracking 166

palindromic 142
Pareto optimal solutions 66
persistency of excitation 11, 76
pole placement 154
polynomial eigenvalue problem 185
positive rank 221
power set 60
pre-processing 200
principal component analysis 28, 130

kernel 28
principal curves 195
Procrustes problem 228
projection 62
proper orthogonal decomposition 156
pseudospectra 29
psychometrics 14

rank
minimization 17, 65, 66
numerical 73
revealing factorization 9

rank increment 81
rank one 13, 31
realizability 52
realization

approximate 9, 138
Kung’s algorithm 156
theory 50–53

recommender system 16
recursive least squares 225
regression 64, 174
regression model 64
regularization 7, 225
representation

convolution 50
explicit 174
image 3

minimal 38
implicit 20, 174
kernel 3

minimal 38
problem 10

reproducible research 25
residual 62
Riccati equation 29, 63
Riccati recursion 118
rigid transformation 18, 182

Schur algorithm 118
semidefinite optimization 119
separable least squares 209
shape from motion 28
shift

operator 47
shift structure 72
singular value decomposition 27
singular value decompositions

generalized 23
restricted 23

SLICOT library 118
smoothing 63
spectral density 55
spectral estimation

274 Index

nonparameteric 55
stability radius 29
stereo vision 21
Stiefel manifold 128
stochastic process

normalized 55
white 55

stochastic system 10
structure

bilinear 21
quadratic 21

structure exploiting methods 118
structure shift 72
structured linear algebra 29
structured total least norm 229
subspace

methods 24, 99, 171, 250
subspace clustering 176
subspace methods 71
sum-of-damped-exponentials 141
sum-of-exponentials modeling 141

Sylvester matrix 11
system

lag 48
order 47

system identification see identification
system realization see realization

stochastic 10

total least squares 5, 229
element-wise weighted 228
generalized 227
regularized 229
restricted 228
structured 229
weighted 228

tracking control 166
trade-off curve 124
trajectory 46

variable projection 24, 112, 205

Index 275

Acknowledgements

A number of individuals and funding agencies supported me during the preparation
of the book. Oliver Jackson—Springer’s editor engineering—encouraged me to em-
bark on the project and to prepare this second edition of the book. My colleagues at
ESAT/STADIUS (formally SISTA), K.U.Leuven, ECS/VLC (formerly ISIS), Uni-
versity of Southampton, and the department ELEC, Vrije Universiteit Brussels cre-
ated the right environment for developing the ideas in the book. In particular, I am
in debt to Jan C. Willems for his personal guidance and example of critical thinking.
The behavioral approach that Jan initiated in the early 1980’s is present in this book.

M. De Vos, D. Sima, K. Usevich, and J. C. Willems proofread chapters of the
first edition and suggested improvements. I gratefully acknowledge funding from:

• the European Research Council (ERC) under the European Union’s Seventh
Framework Programme (FP7/2007–2013) / ERC Grant agreement number 258581
“Structured low-rank approximation: Theory, algorithms, and applications”;

• the Fund for Scientific Research (FWO-Vlaanderen), FWO projects G028015N
“Decoupling multivariate polynomials in nonlinear system identification” and
G090117N “Block-oriented nonlinear identification using Volterra series”;

• the Belgian Science Policy Office Interuniversity Attraction Poles Programme,
network on “Dynamical Systems, Control, and Optimization” (DYSCO); and

• the FWO/FNRS Excellence of Science project “Structured low-rank matrix / ten-
sor approximation: numerical optimization-based algorithms and applications”.

	Introduction
	Classical and behavioral paradigms for data modeling
	Motivating example for low-rank approximation
	Overview of applications
	Overview of algorithms
	Notes and references

	Part I Linear modeling problems
	From data to models
	Static model representations
	Dynamic model representations
	Stochastic model representation
	Exact and approximate data modeling
	Notes and references

	Exact modeling
	Kung's realization method
	Impulse response computation
	Stochastic system identification
	Missing data recovery
	Notes and references

	Approximate modeling
	Unstructured low-rank approximation
	Structured low-rank approximation
	Nuclear norm heuristic
	Missing data estimation
	Notes and references

	Part II Applications and generalizations
	Applications
	Model reduction
	System identification
	Approximate common factor of two polynomials
	Pole placement by a low-order controller
	Notes and references

	Data-driven filtering and control
	Model-based vs data-driven paradigms
	Missing data approach
	Estimation and control examples
	Solution via matrix completion
	Notes and references

	Nonlinear modeling problems
	A framework for nonlinear data modeling
	Nonlinear low-rank approximation
	Computational algorithms
	Identification of polynomial time-invariant systems
	Notes and references

	Dealing with prior knowledge
	Data preprocessing
	Approximate low-rank factorization
	Complex least squares with constrained phase
	Blind identification with deterministic input model
	Notes and references

	Total least squares
	Solutions to the exercises
	Proofs
	Notation
	Index

