ELEC system identification workshop Behavioral approach

Ivan Markovsky

The course consists of lectures and exercises

- Session 1: behavioral approach to data modeling
- Session 2: subspace identification methods
- Session 3: optimization-based identification methods

"I hear, I forget; I see, I remember; I do, I understand."

session = lecture (you hear and see) + exercises (you do)

Plan

- 1. Behavioral approach
- 2. Subspace methods
- 3. Optimization methods

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations

A classic line fitting method is solving $Ax \approx B$

problem: fit points $d_1, \ldots, d_N \in \mathbb{R}^2$ by line going through 0

approach: find approximate solution $x \in \mathbb{R}$ of

$$\begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix} x = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}, \quad \text{where} \quad d_i = \begin{bmatrix} a_i \\ b_i \end{bmatrix}$$

the fitting line is $\mathscr{B} := \{ \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2 \mid ax = b \}$

(x is model parameter)

The choice of *a* and *b* is arbitrary

another approach: find approximate solution $x' \in \mathbb{R}$ of

$$\begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix} x' = \begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix}$$

the fitting line is $\mathscr{B}' := \{ [{}^a_b] \in \mathbb{R}^2 \mid a = bx' \}$ (x' is model parameter)

exceptions: vertical line $x = \infty$ x' = 0horizontal line x = 0 $x' = \infty$ In general, the two solutions differ: $\mathscr{B} \neq \mathscr{B}'$

solving Ax = B and Bx' = A leads to different solutions

the fitting criterion depends on how we choose a and b

the mode representation affects the fitting criterion

Ax = B imposes input/output model structure

functional relations

- Ax = B defined a function $a \mapsto b$
- Bx = A defined a function $b \mapsto a$

in the model
$$\mathscr{B} := \{ \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2 \mid ax = b \}$$

a is input, *b* is output (*a* causes *b*)

in the model $\mathscr{B}' := \{ \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2 \mid bx = a \}$ *b* is input, *a* is output (*b* causes *a*)

Model class — set of all candidate models

in the example, the model class is $\mathcal{M} := \{ \text{ lines through } 0 \}$

separately, ax = b and bx = a don't represent all $\mathscr{B} \in \mathscr{M}$

any $\mathscr{B} \in \mathscr{M}$ is representable as $\mathscr{B} = \{ \Pi \begin{bmatrix} a \\ b \end{bmatrix} \mid ax = b \}$ with Π a permutation matrix

Definition of least-squares line fitting problem

given points $\mathscr{D} = \{ d_1, \dots, d_N \} \subset \mathbb{R}^2$ and model class \mathscr{M}

minimize over $\mathscr{B} \in \mathscr{M}$ error $(\mathscr{D}, \mathscr{B})$

where

$$\operatorname{error}(\mathscr{D},\widehat{\mathscr{B}}) := \min_{\widehat{\mathscr{D}} \subset \widehat{\mathscr{B}}} \quad \sum_{i=1}^{N} \|d_i - \widehat{d}_i\|_2^2$$

notes:

- $\widehat{\mathscr{D}} \subset \widehat{\mathscr{B}}$ means that $\widehat{\mathscr{B}}$ fits $\{\widehat{d}_1, \dots, \widehat{d}_N\}$ exactly
- \hat{d}_i is the projection of d_i on the line $\hat{\mathscr{B}}$
- $\|d_i \hat{d}_i\|_2$ is the orthogonal distance from d_i to $\widehat{\mathscr{B}}$

Any $\mathscr{B} \in \mathscr{M}$ can be represented as kernel

any $\mathscr{B} \in \mathscr{M}$ can be represented as

$$\mathscr{B} = \operatorname{\mathsf{ker}}(R) := \{ d \in \mathbb{R}^2 \mid Rd = 0 \}$$

 $(R \in \mathbb{R}^{1 \times 2}, R \neq 0 \text{ is a model parameter})$

Rd = 0 defines a relation (implicit function) between a and b

exact modeling condition

$$\{d_1,\ldots,d_N\}\subset \ker(R) \iff R\underbrace{\left[d_1 \cdots d_N\right]}_{D}=0$$

Any $\mathscr{B} \in \mathscr{M}$ can be represented as image

any $\mathscr{B} \in \mathscr{M}$ can be represented as

$$\mathscr{B} = \mathsf{image}(P) := \{ d = P\ell \mid \ell \in \mathbb{R} \}$$

 $(P \in \mathbb{R}^{2 \times 1}$ is a model parameter)

$d = P\ell$ also defines a relation between *a* and *b*

exact modeling condition

$$\mathscr{D} \subset \operatorname{image}(P) \iff \begin{bmatrix} d_1 & \cdots & d_N \end{bmatrix} = PL$$

 $(L \in \mathbb{R}^{1 \times N} \text{ is a latent variable})$

For exact data, rank
$$\left(\begin{bmatrix} d_1 & \cdots & d_N \end{bmatrix} \right) \le 1$$

common feature of the representations considered

$$\exists x \in \mathbb{R}, \Pi \text{ permut.} \quad \begin{bmatrix} x & -1 \end{bmatrix} \Pi D = 0 \iff \\ \exists R \in \mathbb{R}^{1 \times 2}, R \neq 0 \qquad RD = 0 \iff \\ \exists P \in \mathbb{R}^{2 \times 1}, L \in \mathbb{R}^{1 \times N} \qquad D = PL \iff \end{cases}$$
 rank(D) ≤ 1

representation free characterization of exact data

Approximate modeling of data is equivalent to low-rank approximation

minimize over $\widehat{\mathscr{D}}$ error($\mathscr{D}, \widehat{\mathscr{D}}$) subject to exact model for $\widehat{\mathscr{D}}$ exists $\widehat{\mathbb{Q}}$ minimize over \widehat{D} error(D, \widehat{D}) subject to \widehat{D} is rank deficient

Low-rank approximation is a general concept

1. multivariable data fitting $\mathscr{U} = \mathbb{R}^q$

- $\blacktriangleright \text{ linear static model } \leftrightarrow \quad \text{subspace}$
- $\blacktriangleright \ \ \mathsf{model} \ \mathsf{complexity} \quad \leftrightarrow \quad \mathsf{subspace} \ \mathsf{dimension}$
- ▶ rank(D) \leftrightarrow upper bound on the model complexity

2. nonlinear static modeling

- $\mathscr{D} \mapsto D$ nonlinear function
- nonlinearly structured low-rank approximation

3. linear time-invariant dynamical models

- $\mathscr{D} \mapsto \mathsf{Hankel} \mathsf{matrix} D$
- Hankel structured low-rank approximation

The matrix structure corresponds to the model class

structure \mathscr{S}	model class \mathcal{M}
unstructured	linear static
Hankel	scalar LTI
$q \times 1$ Hankel	q-variate LTI
$q \times N$ Hankel	N equal length traj.
mosaic Hankel	N general trajectory
[Hankel unstructured]	finite impulse response
block-Hankel Hankel-block	2D linear shift-invariant

EIV, PCA, and factor analysis are related

errors-in-variables modeling

- all variables are perturbed by noise
- maximum likelihood estimation \leftrightarrow LRA

principal component analysis

another statistical setting for LRA

factor analysis

• factors \leftrightarrow latent variables in an image representation

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations

A linear static model is a subspace

linear static model with q variables = subspace of \mathbb{R}^q

model complexity \leftrightarrow subspace dimension • $\mathscr{L}_{m,0}$ — linear static models with complexity at most m

 $\mathscr{B} \in \mathscr{L}_{\mathrm{m},0}$ admits kernel, image, and I/O representations

A linear static model admits kernel, image, and input/output representations

kernel representation with parameter $R \in \mathbb{R}^{p \times q}$

$$\ker(R) := \{ d \mid Rd = 0 \}$$

image representation with parameter $P \in \mathbb{R}^{q \times m}$

$$image(P) := \{ d = P\ell \mid \ell \in \mathbb{R}^m \}$$

input/output representation with parameters $X \in \mathbb{R}^{m \times p}$, Π

$$\mathscr{B}_{\mathsf{i/o}}(X, \Pi) := \{ d = \Pi \begin{bmatrix} u \\ y \end{bmatrix} \mid u \in \mathbb{R}^{\mathsf{m}}, \ y = X^{\top}u \}$$

The parameters *R* and *P* are not unique

addition of linearly dependent

- rows of R
- columns of P

minimal representations

- the smallest number of generators is $m := \dim(\mathscr{B})$
- the max. number of annihilators is $p := q \dim(\mathscr{B})$

change of basis transformation

- ▶ $\operatorname{ker}(R) = \operatorname{ker}(UR), \quad U \in \mathbb{R}^{p \times p}, \operatorname{det}(U) \neq 0$
- image(P) = image(PV), $V \in \mathbb{R}^{m \times m}$, det(V) $\neq 0$

Inputs and outputs can be deduced from \mathscr{B}

definition

input is a "free" variable

$$\Pi\begin{bmatrix} u\\ y\end{bmatrix}\in\mathscr{B} \text{ and } u \text{ input } \iff u\in\mathbb{R}^m$$

output is bound by input and model

fact:

 $m := \dim(\mathscr{B})$ — number of inputs p := q - m — number of outputs

choosing an I/O partition amounts to choosing

- full rank p×p submatrix of R
- full rank m × m submatrix of P

It is possible to convert a given representation into an equivalent one

$$\Pi^{\top} P =: \begin{bmatrix} P_{i} \\ P_{o} \end{bmatrix} \stackrel{m}{p} \text{ and } R\Pi =: \begin{bmatrix} m & p \\ R_{i} & R_{o} \end{bmatrix}$$

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations

Dynamical models are sets of functions

observations are trajectories w

- $(\mathbb{R}^q)^{\mathbb{N}}$ set of functions from \mathbb{N} to \mathbb{R}^q
- ▶ shift operator: $(\sigma^{\tau}w)(t) := w(t + \tau)$, for all $t \in \mathbb{N}$

discrete-time dynamic model \mathscr{B} is a subset of $(\mathbb{R}^q)^{\mathbb{N}}$

properties

- ▶ linearity: $w, v \in \mathscr{B} \implies \alpha w + \beta v \in \mathscr{B}$, for all α, β
- time-invariance: $\sigma^{\tau} \mathscr{B} = \mathscr{B}$, for all $\tau \in \mathbb{N}$

Controllability can be defined in a representation free manner

for all w_p , $w_f \in \mathscr{B}$, there is w_c , such that $w_p \wedge w_c \wedge w_f \in \mathscr{B}$ (" \wedge " denotes "concatenation" of trajectories)

An LTI model admits kernel and input/state/output representations

kernel representation with parameter $R(z) \in \mathbb{R}^{g \times q}[z]$

$$\ker(R) = \{ w \mid R(\sigma)w = R_0w + R_1\sigma w + \dots + R_\ell\sigma^\ell w = 0 \}$$

image representation with parameter $P(z) \in \mathbb{R}^{q \times g}[z]$

$$image(P) = \{ w = P(\sigma)v \mid \text{for some } v \}$$

input/state/output representation

$$\mathscr{B}(A, B, C, D, \Pi) := \{ w = \Pi \begin{bmatrix} u \\ y \end{bmatrix} |$$

exists x, such that $\sigma x = Ax + Bu$ and $y = Cx + Du \}$

Minimal kernel and image representations have full rank *R* and *P* parameters

minimal row dim(R) = number of outputs

minimal coldim(P) = number of inputs

lag of \mathscr{B} — minimal ℓ , for which kernel repr. exists

The I/S/O representation is not unique

choice of an input/output partition

redundant states (nonminimality of the representation)

• minimal representation \iff n = order of \mathscr{B}

change of state space basis

 $\mathscr{B}(A, B, C, D) = \mathscr{B}(T^{-1}AT, T^{-1}B, CT, D),$ for any nonsingular matrix $T \in \mathbb{R}^{n \times n}$ The complexity of an LTI model is determined by the number of inputs and the order

restriction of \mathscr{B} on an interval [1, T]

$$\begin{split} \mathscr{B}|_{\mathcal{T}} &= \{ \, \textit{w} = \big(\textit{w}(1), \dots, \textit{w}(\mathcal{T})\big) \mid \text{there are } \textit{w}_{p}, \textit{w}_{f}, \\ \text{such that } \textit{w}_{p} \land \textit{w} \land \textit{w}_{f} \in \mathscr{B} \, \} \end{split}$$

for sufficiently large T

$$\dim(\mathscr{B}|_{\mathcal{T}}) = (\text{\# of inputs}) \cdot \mathcal{T} + (\text{order})$$
$$\operatorname{complexity}(\mathscr{B}) = \begin{bmatrix} m \\ \ell \end{bmatrix} \xrightarrow{\rightarrow} \text{\# of inputs}$$
$$\xrightarrow{\rightarrow} \text{ order or lag}$$

 $\mathscr{L}^{q}_{m,\ell}$ — LTI models with q variables and complexity bounded by (m, ℓ)

Transition among different representations is a powerful problem solving tool

a problem is easier, when suitable representation is used

examples:

- decoupling of a MIMO system
- diagonalization in linear algebra
- pole placement using canonical forms

the problem becomes to transform the representation

- 1. $H(z) = C(Iz A)^{-1}B + D$
- 2. realization of a transfer function
- 3. Z or Laplace transform of H(t)
- 4. inverse transform of H(z)
- 5. convolution $y_d = H \star u_d$
- 6. exact identification

- 7. $H(0) = D, H(t) = CA^{t-1}B$ (discrete-time), $H(t) = Ce^{At}B$ (continuous-time), for t > 0
- 8. realization of an impulse response
- 9. simulation with input u_d and x(0) = 0
- 10. exact identification
- 11. simulation with input u_d and $x(0) = x_{ini}$
- 12. exact identification