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The course consists of lectures and exercises

I Session 1: behavioral approach to data modeling

I Session 2: subspace identification methods

I Session 3: optimization-based identification methods

"I hear, I forget; I see, I remember; I do, I understand."

session = lecture (you hear and see) + exercises (you do)
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Plan

1. Behavioral approach

2. Subspace methods

3. Optimization methods
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Outline

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations
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A classic line fitting method is solving Ax ≈ B

problem: fit points d1, . . . ,dN ∈ R2 by line going through 0

approach: find approximate solution x ∈ R of



a1
...

aN


x =




b1
...

bN


 , where di =

[
ai
bi

]

the fitting line is B := { [ a
b ] ∈ R2 | ax = b}

(x is model parameter)
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The choice of a and b is arbitrary

another approach: find approximate solution x ′ ∈ R of



b1
...

bN


x ′ =




a1
...

aN




the fitting line is B′ := { [ a
b ] ∈ R2 | a = bx ′ }

(x ′ is model parameter)

exceptions:
vertical line x = ∞ x ′ = 0
horizontal line x = 0 x ′ = ∞
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In general, the two solutions differ: B 6= B′

solving Ax = B and Bx ′ = A leads to different solutions

the fitting criterion depends on how we choose a and b

the mode representation affects the fitting criterion
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Ax = B imposes input/output model structure

functional relations
I Ax = B defined a function a 7→ b
I Bx = A defined a function b 7→ a

in the model B := { [ a
b ] ∈ R2 | ax = b}
a is input, b is output (a causes b)

in the model B′ := { [ a
b ] ∈ R2 | bx = a}
b is input, a is output (b causes a)
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Model class — set of all candidate models

in the example, the model class is M := { lines through 0}

separately, ax = b and bx = a don’t represent all B ∈M

any B ∈M is representable as B = {Π[ a
b ] | ax = b}

with Π a permutation matrix
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Definition of least-squares line fitting problem

given points D = {d1, . . . ,dN } ⊂ R2 and model class M

minimize over B ∈M error(D ,B)

where

error(D ,B̂) := min
D̂⊂B̂

N

∑
i=1
‖di − d̂i‖22

notes:

I D̂ ⊂ B̂ means that B̂ fits { d̂1, . . . , d̂N } exactly

I d̂i is the projection of di on the line B̂

I ‖di − d̂i‖2 is the orthogonal distance from di to B̂
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Any B ∈M can be represented as kernel

any B ∈M can be represented as

B = ker(R) := {d ∈ R2 | Rd = 0}

(R ∈ R1×2, R 6= 0 is a model parameter)

Rd = 0 defines a relation (implicit fucntion) between a and b

exact modeling condition

{d1, . . . ,dN } ⊂ ker(R) ⇐⇒ R
[
d1 · · · dN

]

︸ ︷︷ ︸
D

= 0
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Any B ∈M can be represented as image

any B ∈M can be represented as

B = image(P) := {d = P` | ` ∈ R}

(P ∈ R2×1 is a model parameter)

d = P` also defines a relation between a and b

exact modeling condition

D ⊂ image(P) ⇐⇒
[
d1 · · · dN

]
= PL

(L ∈ R1×N is a latent variable)
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For exact data, rank
([

d1 · · · dN

])
≤ 1

common feature of the representations considered

∃ x ∈ R,Π permut.
[
x −1

]
ΠD = 0 ⇐⇒

∃ R ∈ R1×2,R 6= 0 RD = 0 ⇐⇒
∃ P ∈ R2×1,L ∈ R1×N D = PL ⇐⇒





rank(D)≤ 1

representation free characterization of exact data

D ⊂B ∈M

m
rank(D) = 1
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Approximate modeling of data is equivalent
to low-rank approximation

minimize over D̂ error(D ,D̂)

subject to exact model for D̂ exists

m
minimize over D̂ error(D, D̂)

subject to D̂ is rank deficient
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Low-rank approximation is a general concept

1. multivariable data fitting U = Rq

I linear static model ↔ subspace
I model complexity ↔ subspace dimension
I rank(D) ↔ upper bound on the model complexity

2. nonlinear static modeling
I D 7→ D — nonlinear function
I nonlinearly structured low-rank approximation

3. linear time-invariant dynamical models
I D 7→ Hankel matrix D
I Hankel structured low-rank approximation
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The matrix structure corresponds to the
model class

structure S model class M

unstructured linear static

Hankel scalar LTI

q×1 Hankel q-variate LTI

q×N Hankel N equal length traj.

mosaic Hankel N general trajectory
[
Hankel unstructured

]
finite impulse response

block-Hankel Hankel-block 2D linear shift-invariant
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EIV, PCA, and factor analysis are related

errors-in-variables modeling
I all variables are perturbed by noise
I maximum likelihood estimation↔ LRA

principal component analysis
I another statistical setting for LRA

factor analysis
I factors↔ latent variables in an image representation
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A linear static model is a subspace

linear static model with q variables = subspace of Rq

model complexity ↔ subspace dimension
I Lm,0 — linear static models with complexity at most m

B ∈Lm,0 admits kernel, image, and I/O representations
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A linear static model admits kernel, image,
and input/output representations

kernel representation with parameter R ∈ Rp×q

ker(R) := {d | Rd = 0}

image representation with parameter P ∈ Rq×m

image(P) := {d = P` | ` ∈ Rm }

input/output representation with parameters X ∈ Rm×p, Π

Bi/o(X ,Π) := {d = Π
[u

y
]
| u ∈ Rm, y = X>u }
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The parameters R and P are not unique

addition of linearly dependent
I rows of R
I columns of P

minimal representations
I the smallest number of generators is m := dim(B)
I the max. number of annihilators is p := q−dim(B)

change of basis transformation
I ker(R) = ker(UR), U ∈ Rp×p,det(U) 6= 0
I image(P) = image(PV ), V ∈ Rm×m,det(V ) 6= 0
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Inputs and outputs can be deduced from B

definition
I input is a "free" variable

Π
[u

y
]
∈B and u input ⇐⇒ u ∈ Rm

I output is bound by input and model

fact:
m := dim(B) — number of inputs
p := q−m — number of outputs

choosing an I/O partition amounts to choosing
I full rank p×p submatrix of R
I full rank m×m submatrix of P
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It is possible to convert a given
representation into an equivalent one

B = ker(R) oo RP=0 //

X=−(R−1
o Ri)

⊤

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC

B = image(P)

X=(PoP−1
i )⊤

||zzzzzzzzzzzzzzzzzzzzzzzzzzz

B = Bi/o(X ,Π)

R=[X⊤ −I]Π⊤

aaCCCCCCCCCCCCCCCCCCCCCCCCCC

P⊤=[I X ]Π⊤

<<zzzzzzzzzzzzzzzzzzzzzzzzzzz

Π>P =:

[
Pi

Po

]
m

p
and RΠ =:

m p[
Ri Ro

]
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Dynamical models are sets of functions

observations are trajectories w

I (Rq)N — set of functions from N to Rq

I shift operator: (σ τw)(t) := w(t + τ), for all t ∈ N

discrete-time dynamic model B is a subset of (Rq)N

properties

I linearity: w ,v ∈B =⇒ αw + βv ∈B, for all α,β

I time-invariance: σ τB = B, for all τ ∈ N
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Controllability can be defined in a
representation free manner

t

w

wp

wc wf

T1 T2

≥ `

for all wp, wf ∈B, there is wc, such that wp∧wc∧wf ∈B

("∧" denotes "concatenation" of trajectories)
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An LTI model admits kernel and
input/state/output representations

kernel representation with parameter R(z) ∈ Rg×q[z]

ker(R) = {w | R(σ)w = R0w + R1σw + · · ·+ R`σ
`w = 0}

image representation with parameter P(z) ∈ Rq×g[z]

image(P) = {w = P(σ)v | for some v }

input/state/output representation

B(A,B,C,D,Π) := {w = Π
[u

y
]
|

exists x , such that σx = Ax + Bu and y = Cx + Du }
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Minimal kernel and image representations
have full rank R and P parameters

minimal rowdim(R) = number of outputs

minimal coldim(P) = number of inputs

lag of B — minimal `, for which kernel repr. exists
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The I/S/O representation is not unique

choice of an input/output partition

redundant states (nonminimality of the representation)
I minimal representation ⇐⇒ n = order of B

change of state space basis

B(A,B,C,D) = B(T−1AT ,T−1B,CT ,D),

for any nonsingular matrix T ∈ Rn×n
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The complexity of an LTI model is determined
by the number of inputs and the order

restriction of B on an interval [1,T ]

B|T = {w =
(
w(1), . . . ,w(T )

)
| there are wp,wf,

such that wp∧w ∧wf ∈B }

for sufficiently large T

dim(B|T ) = (# of inputs) ·T + (order)

complexity(B) =

[
m

`

]
→ # of inputs
→ order or lag

L q
m,` — LTI models with q variables and

complexity bounded by (m, `)
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Transition among different representations is
a powerful problem solving tool

a problem is easier, when suitable representation is used

examples:

I decoupling of a MIMO system

I diagonalization in linear algebra

I pole placement using canonical forms

the problem becomes to transform the representation

32 / 33



data identification // model

Bi/s/o(A,B,C,D)
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1. H(z) =C(Iz−A)−1B+D

2. realization of a transfer function

3. Z or Laplace transform ofH(t)

4. inverse transform ofH(z)

5. convolutionyd = H ⋆ud

6. exact identification

7. H(0) = D, H(t) =CAt−1B (discrete-time),
H(t) =CeAt B (continuous-time), fort > 0

8. realization of an impulse response
9. simulation with inputud andx(0) = 0

10. exact identification
11. simulation with inputud andx(0) = xini
12. exact identification
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