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The course consists of lectures and exercises

» Session 1: behavioral approach to data modeling
» Session 2: subspace identification methods
» Session 3: optimization-based identification methods

"I hear, | forget; | see, | remember; | do, | understand.”

session = lecture (you hear and see) + exercises (you do)
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Plan

1. Behavioral approach
2. Subspace methods

3. Optimization methods

/33



Outline

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations
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Outline

From Ax = B to low-rank approximation
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A classic line fitting method is solving Ax ~ B

problem: fit points d;, ..., dy € R? by line going through 0

approach: find approximate solution x € R of
x=1|:|, where d= [;’;]

the fitting line is % := {[2] € R? | ax = b}

(x is model parameter)



The choice of a and b is arbitrary

another approach: find approximate solution x’ € R of

the fitting line is %' := {[§] € R? | a=bx'}

(x" is model parameter)

vertical line X=0 x' =0

exceptions: , . ,
horizontal line x=0 X =



In general, the two solutions differ: % # %’

solving Ax = B and Bx’ = A leads to different solutions
the fitting criterion depends on how we choose a and b

the mode representation affects the fitting criterion



Ax = B imposes input/output model structure

functional relations

» Ax = B defined a function a— b
» Bx = A defined a function b— a

in the model % := {[] € R? | ax = b}
ais input, bis output (a causes b)

in the model %' := {[2] € R? | bx = a}
bis input, ais output (b causes a)
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Model class — set of all candidate models

in the example, the model class is .# := { lines through 0}

separately, ax = b and bx = adon’t represent all Z € .#

any # € ./ is representable as Z = {M[7] |ax=>b}

with N a permutation matrix
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Definition of least-squares line fitting problem

given points 2 = {dy,...,dy} € R? and model class .#
minimize over B < .# error(Z,A)

where

N
n Y |d—di3
B =1

error(2, ) := mi
9c
notes:
» 9 C % means that 4 fits {81 feen ,aN} exactly
> a,- is the projection of d; on the line B
> ||di— EI,-||2 is the orthogonal distance from dj to %
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Any % € ./ can be represented as kernel
any % <€ ./ can be represented as
B =ker(R):={deR?| Rd=0}

(RcR"™2, R+ 0 is a model parameter)
Rd = 0 defines a relation (implicit fucntion) between a and b

exact modeling condition

(dy,....dy} Cker(R) R[oh dN}:o

————
D
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Any % € ./ can be represented as image

any % <€ . can be represented as
P =image(P) ={d=Pt|lcR}

(P € R?*' is a model parameter)
d = P¢ also defines a relation between a and b

exact modeling condition
g Cimage(P) <« [di - dy|=PL
(L e R"™N is a latent variable)
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For exact data, rank ( [d1 d,\,} ) <1

common feature of the representations considered

3 x € R, permut. [x —1] ND=0 <«
JReR™2 R+£0 RD=0 s ¢rank(D) <1
IPeR¥>! LeRN D=PL =

representation free characterization of exact data

DCRBe M

)
rank(D) = 1
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Approximate modeling of data is equivalent
to low-rank approximation

minimize over 2 error(2,2)

subjectto exact model for 2 exists

)
minimize over D error(D, ﬁ)
subject to D is rank deficient
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Low-rank approximation is a general concept

1. multivariable data fitting % = RY

» linear static model <« subspace
» model complexity <« subspace dimension
» rank(D) < upper bound on the model complexity

2. nonlinear static modeling

» 9 +— D — nonlinear function
» nonlinearly structured low-rank approximation

3. linear time-invariant dynamical models

» 9 +— Hankel matrix D
» Hankel structured low-rank approximation
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The matrix structure corresponds to the

model class

structure .

model class .#

unstructured
Hankel

g x 1 Hankel
g x N Hankel
mosaic Hankel

Hankel unstructured

block-Hankel Hankel-block

linear static

scalar LTI

g-variate LTI

N equal length traj.
N general trajectory

finite impulse response

2D linear shift-invariant
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EIV, PCA, and factor analysis are related

errors-in-variables modeling

» all variables are perturbed by noise
» maximum likelihood estimation +» LRA

principal component analysis
» another statistical setting for LRA

factor analysis
» factors <> latent variables in an image representation
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Outline

Linear static model representations
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A linear static model is a subspace

linear static model with g variables = subspace of R9

model complexity <«  subspace dimension
» Zno — linear static models with complexity at most m

# € £, 0 admits kernel, image, and I/O representations
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A linear static model admits kernel, image,
and input/output representations

kernel representation with parameter R € RP*9
ker(R):={d|Rd=0}
image representation with parameter P € R9*™
image(P) :={d=Pl| {cR"}
input/output representation with parameters X € R™*? 1

Bo(X,M):={d=N[}] |[ueR", y=X"u}
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The parameters R and P are not unique

addition of linearly dependent

» rows of R
» columns of P

minimal representations

» the smallest number of generators is m := dim(%)
» the max. number of annihilators is p := g —dim(%)

change of basis transformation
» ker(R) =ker(UR), U e RP*P det(U)+#0
» image(P) =image(PV), V eR™" det(V)#0
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Inputs and outputs can be deduced from 4
definition
» input is a "free" variable
Nyl e Zanduinput <= ueR"
» output is bound by input and model

m := dim(#) — number of inputs

fact:
p := q —m — number of outputs

choosing an I/O partition amounts to choosing

» full rank p x p submatrix of R
» full rank m x m submatrix of P
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It is possible to convert a given
representation into an equivalent one

% = ker(R) RP=0 % = image(P)

X=—(Ry'R)T  X=(PoP 1)’

R=[xT —1n’ PT=[ X7

B = Byo(X,N)
P ot
Tp_. i| m _.|p
np= [PJ " and AN —.[Fz’, Ro}
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Outline

Linear time-invariant model representations
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Dynamical models are sets of functions

observations are trajectories w

» (R9)N — set of functions from N to RY

» shift operator: (c*w)(t) := w(t+7), forall te N
discrete-time dynamic model 4 is a subset of (R%)N

properties
» linearity: w,ve 8 — oaw+pBve %, forall a,

» time-invariance: 0% = 4, forall T € N
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Controllability can be defined in a
representation free manner

w
: // ‘\\
1 \ .
] \ :
1 \ :
1 \ :
1 \ :
' We '\ : Wi
] \ :
Wp : Sov /\/
> L |
< > t
T4 T2

for all wp, w; € 4, there is wg, such that wo A we A w; € A
("A" denotes "concatenation" of trajectories)

27/33



An LTI model admits kernel and
input/state/output representations

kernel representation with parameter R(z) € R9*9(Z]
ker(R) = {w | R(c)w = Ryw + Riow+---+ R,c‘w =0}
image representation with parameter P(z) € R9*9|z]

image(P)={w = P(o)v | for some v}
input/state/output representation

B(A,B,C,D,N):={w=n[}] |
exists x, such that ox = Ax+Buand y = Cx+ Du}
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Minimal kernel and image representations
have full rank R and P parameters

minimal rowdim(R) = number of outputs
minimal coldim(P) = number of inputs

lag of 2 — minimal ¢, for which kernel repr. exists
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The 1/S/O representation is not unique
choice of an input/output partition

redundant states (nonminimality of the representation)
» minimal representation <= n = order of #

change of state space basis

%(A,B,C,D)=2(T AT, T 'B,CT,D),
for any nonsingular matrix T € R™*"
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The complexity of an LTI model is determined

by the number of inputs and the order
restriction of % on an interval [1, T]

Blr={w=(w(1),...,w(T)) | there are wp, w;,
such that wp AWA W € B}

for sufficiently large T

dim(#|7) = (# of inputs) - T + (order)

. m| — # of inputs
lexity (%) =
complexity(2) H — order or lag

#1, — LTI models with g variables and
complexity bounded by (m, /)
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Transition among different representations is
a powerful problem solving tool

a problem is easier, when suitable representation is used

examples:

» decoupling of a MIMO system
» diagonalization in linear algebra

» pole placement using canonical forms
the problem becomes to transform the representation
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[ e o o

data

H(z) =C(1z—A)"1B+D
realization of a transfer function
Z or Laplace transform dfi (t)
inverse transform dfl (z)
convolutionyy = H xug

exact identification

identification————> model

Bisio(A,B,C, D)

realization——

H(0) = D, H(t) = CA""1B (discrete-time’

H(t) = Ce™B (continuous-time), fot > 0
realization of an impulse response
simulation with inputiy andx(0) =0

. exact identification
. simulation with inputiy andx(0) = Xini
. exact identification

33/33



	From Ax=B to low-rank approximation
	Linear static model representations
	Linear time-invariant model representations

