ELEC system identification workshop

Behavioral approach

Ivan Markovsky

The course consists of lectures and exercises

- Session 1: behavioral approach to data modeling
- Session 2: subspace identification methods
- Session 3: optimization-based identification methods
"I hear, I forget; I see, I remember; I do, I understand."
session $=$ lecture (you hear and see) + exercises (you do)

Plan

1. Behavioral approach
2. Subspace methods
3. Optimization methods

Outline

From $A x=B$ to low-rank approximation

Linear static model representations

Linear time-invariant model representations

Outline

From $A x=B$ to low-rank approximation

Linear static model representations

Linear time-invariant model representations

A classic line fitting method is solving $A x \approx B$

problem: fit points $d_{1}, \ldots, d_{N} \in \mathbb{R}^{2}$ by line going through 0 approach: find approximate solution $x \in \mathbb{R}$ of

$$
\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{N}
\end{array}\right] x=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{N}
\end{array}\right], \quad \text { where } \quad d_{i}=\left[\begin{array}{c}
a_{i} \\
b_{i}
\end{array}\right]
$$

the fitting line is $\quad \mathscr{B}:=\left\{\left.\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{R}^{2} \right\rvert\, a x=b\right\}$
(x is model parameter)

The choice of a and b is arbitrary

another approach: find approximate solution $x^{\prime} \in \mathbb{R}$ of

$$
\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{N}
\end{array}\right] x^{\prime}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]
$$

the fitting line is $\mathscr{B}^{\prime}:=\left\{\left.\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{R}^{2} \right\rvert\, a=b x^{\prime}\right\}$
(x^{\prime} is model parameter)
$\begin{array}{llll}\text { exceptions: } & \text { vertical line } & x=\infty & x^{\prime}=0 \\ & \text { horizontal line } & x=0 & x^{\prime}=\infty\end{array}$

In general, the two solutions differ: $\mathscr{B} \neq \mathscr{B}^{\prime}$

solving $A x=B$ and $B x^{\prime}=A$ leads to different solutions
the fitting criterion depends on how we choose a and b
the mode representation affects the fitting criterion

$A x=B$ imposes input/output model structure

functional relations

- $A x=B$ defined a function $a \mapsto b$
- $B x=A$ defined a function $b \mapsto a$
in the model $\mathscr{B}:=\left\{\left.\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{R}^{2} \right\rvert\, a x=b\right\}$ a is input, b is output
(a causes b)
in the model $\mathscr{B}^{\prime}:=\left\{\left.\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{R}^{2} \right\rvert\, b x=a\right\}$
b is input, a is output (b causes a)

Model class - set of all candidate models

in the example, the model class is $\mathscr{M}:=\{$ lines through 0$\}$
separately, $a x=b$ and $b x=a$ don't represent all $\mathscr{B} \in \mathscr{M}$
any $\mathscr{B} \in \mathscr{M}$ is representable as $\mathscr{B}=\left\{\left.\Pi\left[\begin{array}{l}a \\ b\end{array}\right] \right\rvert\, a x=b\right\}$
with Π a permutation matrix

Definition of least-squares line fitting problem

given points $\mathscr{D}=\left\{d_{1}, \ldots, d_{N}\right\} \subset \mathbb{R}^{2}$ and model class \mathscr{M}

$$
\text { minimize } \quad \text { over } \mathscr{B} \in \mathscr{M} \quad \operatorname{error}(\mathscr{D}, \mathscr{B})
$$

where

$$
\operatorname{error}(\mathscr{D}, \widehat{\mathscr{B}}):=\min _{\widehat{\mathscr{D}} \subset \widehat{\mathscr{B}}} \sum_{i=1}^{N}\left\|d_{i}-\widehat{d}_{i}\right\|_{2}^{2}
$$

notes:

- $\widehat{\mathscr{D}} \subset \widehat{\mathscr{B}}$ means that $\widehat{\mathscr{B}}$ fits $\left\{\widehat{d}_{1}, \ldots, \widehat{d}_{N}\right\}$ exactly
- \widehat{d}_{i} is the projection of d_{i} on the line $\widehat{\mathscr{B}}$
- $\left\|d_{i}-\widehat{d}_{i}\right\|_{2}$ is the orthogonal distance from d_{i} to $\widehat{\mathscr{B}}$

Any $\mathscr{B} \in \mathscr{M}$ can be represented as kernel

any $\mathscr{B} \in \mathscr{M}$ can be represented as

$$
\mathscr{B}=\operatorname{ker}(R):=\left\{d \in \mathbb{R}^{2} \mid R d=0\right\}
$$

($R \in \mathbb{R}^{1 \times 2}, R \neq 0$ is a model parameter)
$R d=0$ defines a relation (implicit fucntion) between a and b
exact modeling condition

$$
\left\{d_{1}, \ldots, d_{N}\right\} \subset \operatorname{ker}(R) \Longleftrightarrow \underbrace{\left[\begin{array}{lll}
d_{1} & \cdots & d_{N}
\end{array}\right]}_{D}=0
$$

Any $\mathscr{B} \in \mathscr{M}$ can be represented as image

any $\mathscr{B} \in \mathscr{M}$ can be represented as

$$
\begin{aligned}
\mathscr{B}=\operatorname{image}(P):= & \{d=P \ell \mid \ell \in \mathbb{R}\} \\
& \left(P \in \mathbb{R}^{2 \times 1} \text { is a model parameter }\right)
\end{aligned}
$$

$d=P \ell$ also defines a relation between a and b
exact modeling condition

$$
\mathscr{D} \subset \operatorname{image}(P) \quad \Longleftrightarrow \quad\left[\begin{array}{lll}
d_{1} & \cdots & d_{N}
\end{array}\right]=P L
$$

($L \in \mathbb{R}^{1 \times N}$ is a latent variable)

For exact data, $\operatorname{rank}\left(\left[\begin{array}{lll}d_{1} & \cdots & d_{N}\end{array}\right]\right) \leq 1$

common feature of the representations considered
$\left.\begin{array}{lrl}\exists x \in \mathbb{R}, \Pi \text { permut. } & {\left[\begin{array}{ll}x & -1\end{array}\right] \Pi D=0} & \Longleftrightarrow \\ \exists R \in \mathbb{R}^{1 \times 2}, R \neq 0 & R D=0 & \Longleftrightarrow \\ \exists P \in \mathbb{R}^{2 \times 1}, L \in \mathbb{R}^{1 \times N} & D=P L & \Longleftrightarrow\end{array}\right\} \operatorname{rank}(D) \leq 1$
representation free characterization of exact data

$$
\begin{gathered}
\mathscr{D} \subset \mathscr{B} \in \mathscr{M} \\
\mathbb{\sharp} \\
\operatorname{rank}(D)=1
\end{gathered}
$$

Approximate modeling of data is equivalent to low-rank approximation

minimize over $\widehat{\mathscr{D}} \quad \operatorname{error}(\mathscr{D}, \widehat{\mathscr{D}})$
subject to exact model for $\widehat{\mathscr{D}}$ exists

$$
\Uparrow
$$

minimize over $\widehat{D} \quad \operatorname{error}(D, \widehat{D})$
subject to \widehat{D} is rank deficient

Low-rank approximation is a general concept

1. multivariable data fitting $\mathscr{U}=\mathbb{R}^{q}$

- linear static model \leftrightarrow subspace
- model complexity \leftrightarrow subspace dimension
- $\operatorname{rank}(D) \quad \leftrightarrow \quad$ upper bound on the model complexity

2. nonlinear static modeling

- $\mathscr{D} \mapsto D$ - nonlinear function
- nonlinearly structured low-rank approximation

3. linear time-invariant dynamical models

- $\mathscr{D} \mapsto$ Hankel matrix D
- Hankel structured low-rank approximation

The matrix structure corresponds to the model class

structure \mathscr{S}
unstructured
Hankel
$q \times 1$ Hankel
$q \times N$ Hankel
mosaic Hankel
[Hankel unstructured]
model class \mathscr{M}
linear static
scalar LTI
q-variate LTI
N equal length traj.
N general trajectory
finite impulse response
block-Hankel Hankel-block 2D linear shift-invariant

EIV, PCA, and factor analysis are related

errors-in-variables modeling

- all variables are perturbed by noise
- maximum likelihood estimation \leftrightarrow LRA
principal component analysis
- another statistical setting for LRA
factor analysis
- factors \leftrightarrow latent variables in an image representation

Outline

From $A x=B$ to low-rank approximation

Linear static model representations

Linear time-invariant model representations

A linear static model is a subspace

linear static model with q variables $=$ subspace of \mathbb{R}^{q}
model complexity \leftrightarrow subspace dimension

- $\mathscr{L}_{\mathrm{m}, \mathrm{0}}$ - linear static models with complexity at most m
$\mathscr{B} \in \mathscr{L}_{\mathrm{m}, \mathrm{O}}$ admits kernel, image, and I/O representations

A linear static model admits kernel, image, and input/output representations

kernel representation with parameter $R \in \mathbb{R}^{p \times q}$

$$
\operatorname{ker}(R):=\{d \mid R d=0\}
$$

image representation with parameter $P \in \mathbb{R}^{q \times m}$

$$
\operatorname{image}(P):=\left\{d=P \ell \mid \ell \in \mathbb{R}^{\mathrm{m}}\right\}
$$

input/output representation with parameters $X \in \mathbb{R}^{m \times p}, \Pi$

$$
\mathscr{B}_{\mathrm{i} / 0}(X, \Pi):=\left\{\left.d=\Pi\left[\begin{array}{l}
u \\
y
\end{array}\right] \right\rvert\, u \in \mathbb{R}^{m}, y=X^{\top} u\right\}
$$

The parameters R and P are not unique

addition of linearly dependent

- rows of R
- columns of P
minimal representations
- the smallest number of generators is $\mathrm{m}:=\operatorname{dim}(\mathscr{B})$
- the max. number of annihilators is $\mathrm{p}:=q$ - $\operatorname{dim}(\mathscr{B})$
change of basis transformation
- $\operatorname{ker}(R)=\operatorname{ker}(U R), \quad U \in \mathbb{R}^{\mathrm{p} \times p}, \operatorname{det}(U) \neq 0$
- image $(P)=\operatorname{image}(P V), \quad V \in \mathbb{R}^{\mathrm{m} \times \mathrm{m}}, \operatorname{det}(V) \neq 0$

Inputs and outputs can be deduced from \mathscr{B}

definition

- input is a "free" variable

$$
\Pi\left[\begin{array}{l}
u \\
y
\end{array}\right] \in \mathscr{B} \text { and } u \text { input } \quad \Longleftrightarrow \quad u \in \mathbb{R}^{\mathrm{m}}
$$

- output is bound by input and model
fact: $\mathrm{m}:=\operatorname{dim}(\mathscr{B})$ - number of inputs
$p:=q-m-$ number of outputs
choosing an I/O partition amounts to choosing
- full rank $\mathrm{p} \times \mathrm{p}$ submatrix of R
- full rank $m \times m$ submatrix of P

It is possible to convert a given representation into an equivalent one

$$
\mathscr{B}=\operatorname{ker}(R) \longleftrightarrow \mathscr{P}=0 \longrightarrow \mathscr{B}=\operatorname{image}(P)
$$

$$
\Pi^{\top} P=:\left[\begin{array}{c}
P_{\mathrm{i}} \\
P_{\mathrm{o}}
\end{array}\right] \begin{aligned}
& \mathrm{m} \\
& \mathrm{p}
\end{aligned} \quad \text { and } \quad R \Pi=:\left[\begin{array}{cc}
\mathrm{m} & \mathrm{p} \\
R_{\mathrm{i}} & R_{\mathrm{o}}
\end{array}\right]
$$

Outline

From $A x=B$ to low-rank approximation

Linear static model representations

Linear time-invariant model representations

Dynamical models are sets of functions

observations are trajectories w

- $\left(\mathbb{R}^{q}\right)^{\mathbb{N}}$ - set of functions from \mathbb{N} to \mathbb{R}^{q}
- shift operator: $\left(\sigma^{\tau} w\right)(t):=w(t+\tau)$, for all $t \in \mathbb{N}$
discrete-time dynamic model \mathscr{B} is a subset of $\left(\mathbb{R}^{q}\right)^{\mathbb{N}}$
properties
- linearity: $w, v \in \mathscr{B} \Longrightarrow \alpha w+\beta v \in \mathscr{B}$, for all α, β
- time-invariance: $\sigma^{\tau} \mathscr{B}=\mathscr{B}$, for all $\tau \in \mathbb{N}$

Controllability can be defined in a representation free manner

for all $w_{\mathrm{p}}, w_{\mathrm{f}} \in \mathscr{B}$, there is w_{c}, such that $w_{\mathrm{p}} \wedge w_{\mathrm{c}} \wedge w_{\mathrm{f}} \in \mathscr{B}$
(" \wedge " denotes "concatenation" of trajectories)

An LTI model admits kernel and input/state/output representations

kernel representation with parameter $R(z) \in \mathbb{R}^{g \times q}[z]$

$$
\operatorname{ker}(R)=\left\{w \mid R(\sigma) w=R_{0} w+R_{1} \sigma w+\cdots+R_{\ell} \sigma^{\ell} w=0\right\}
$$

image representation with parameter $P(z) \in \mathbb{R}^{q \times g}[z]$

$$
\operatorname{image}(P)=\{w=P(\sigma) v \mid \text { for some } v\}
$$

input/state/output representation

```
\(\mathscr{B}(A, B, C, D, \Pi):=\left\{\left.w=\Pi\left[\begin{array}{l}u \\ y\end{array}\right] \right\rvert\,\right.\)
    exists \(x\), such that \(\sigma x=A x+B u\) and \(y=C x+D u\}\)
```

Minimal kernel and image representations have full rank R and P parameters
minimal rowdim $(R)=$ number of outputs
minimal coldim $(P)=$ number of inputs
lag of \mathscr{B} — minimal ℓ, for which kernel repr. exists

The I/S/O representation is not unique

choice of an input/output partition
redundant states (nonminimality of the representation)

- minimal representation $\Longleftrightarrow \mathrm{n}=$ order of \mathscr{B}
change of state space basis

$$
\mathscr{B}(A, B, C, D)=\mathscr{B}\left(T^{-1} A T, T^{-1} B, C T, D\right),
$$

for any nonsingular matrix $T \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$

The complexity of an LTI model is determined

 by the number of inputs and the order restriction of \mathscr{B} on an interval $[1, T]$$$
\begin{aligned}
& \left.\mathscr{B}\right|_{T}=\left\{w=(w(1), \ldots, w(T)) \mid \text { there are } w_{\mathrm{p}}, w_{\mathrm{f}},\right. \\
& \\
& \text { such that } \left.w_{\mathrm{p}} \wedge w \wedge w_{\mathrm{f}} \in \mathscr{B}\right\}
\end{aligned}
$$

for sufficiently large T

$$
\operatorname{dim}\left(\left.\mathscr{B}\right|_{T}\right)=(\# \text { of inputs }) \cdot T+(\text { order })
$$

$$
\operatorname{complexity}(\mathscr{B})=\left[\begin{array}{l}
\mathrm{m} \\
\ell
\end{array}\right] \rightarrow \text { \# of inputs } \quad \rightarrow \text { order or lag }
$$

$\mathscr{L}_{\mathrm{m}, \ell}^{q}$ - LTI models with q variables and complexity bounded by (m, ℓ)

Transition among different representations is a powerful problem solving tool

a problem is easier, when suitable representation is used
examples:

- decoupling of a MIMO system
- diagonalization in linear algebra
- pole placement using canonical forms
the problem becomes to transform the representation
data \longrightarrow identification \longrightarrow model

1. $H(z)=C(I z-A)^{-1} B+D$
2. realization of a transfer function
3. Z or Laplace transform of $H(t)$
4. inverse transform of $H(z)$
5. convolution $y_{\mathrm{d}}=H \star u_{\mathrm{d}}$
6. exact identification
7. $H(0)=D, H(t)=C A^{t-1} B$ (discrete-time), $H(t)=C e^{A t} B$ (continuous-time), for $t>0$
8. realization of an impulse response
9. simulation with input u_{d} and $x(0)=0$
10. exact identification
11. simulation with input u_{d} and $x(0)=x_{\text {ini }}$
12. exact identification
