ELEC system identification workshop

Subspace methods

Ivan Markovsky

Plan

1. Behavioral approach
2. Subspace methods
3. Optimization methods

Outline

Exact modeling

Algorithms

Plan

Exact modeling

Algorithms

The goal is to obtain a model \mathscr{B} from data \mathscr{D}

\mathscr{U} - data space $\left(\mathbb{R}^{q}\right)^{\mathbb{N}}$: functions from \mathbb{N} to \mathbb{R}^{q}
\mathscr{D} - data: set of finite vector-valued time series

$$
\mathscr{D}=\left\{w_{\mathrm{d}}^{1}, \ldots, w_{\mathrm{d}}^{N}\right\}, \quad w_{\mathrm{d}}^{i}=\left(w_{\mathrm{d}}^{i}(1), \ldots, w_{\mathrm{d}}^{i}\left(T_{i}\right)\right)
$$

\mathscr{B} - model: subset of the data space \mathscr{U}
\mathscr{M} — model class: set of models

Work plan

1. define a modeling problem
(What is $\mathscr{D} \mapsto \mathscr{B}$?)
2. find an algorithm that solves the problem
3. implement the algorithm
(How to compute \mathscr{B} ?)

State the aim without hidden assumptions

all user choices should enter in the problem formulation
hyper-parameters should not appear in the solutions
the resulting methods should be automatic

User choices reflect prior knowledge; they determine the model class and fitting criterion

the "true model" assumption

$$
\mathscr{D}=\underbrace{\overline{\mathscr{D}}}_{\text {true data }}+\underbrace{\widetilde{\mathscr{D}}}_{\text {noise }} \quad \text { where } \quad \overline{\mathscr{D}} \subset \underbrace{\overline{\mathscr{B}}}_{\text {true model }} \in \mathscr{M}
$$

assuming, in addition, that $\widetilde{\mathscr{D}}$ is a stochastic process
noise
distribution $\leftarrow \underset{\text { principle }}{\text { maximum likelihood }} \rightarrow \underset{\text { criterion }}{\text { fitting }}$
we can specify \mathscr{M} and $\|\cdot\|$ as deterministic approximation

Examples of user choices for \mathscr{M} and $\|\cdot\|$

Model class
linear
static
time-invariant
nonlinear
dynamic
time-varying

Fitting criterion

exact approximate
deterministic stochastic

Why exact identification?

from simple to complex:
exact \mapsto approx. \mapsto stoch. \mapsto approx. stoch.
exact identification is ingredient of the other problems
exact methods lead to effective approximation heuristics

Exact identification in \mathscr{L} given data \mathscr{D}
find $\widehat{\mathscr{B}} \in \mathscr{L}$, such that $\mathscr{D} \subset \widehat{\mathscr{B}}$
nonunique solution always exists

Exact identification in $\mathscr{L}_{\mathrm{m}, \ell}$
given (m, ℓ) and data \mathscr{D}
find $\widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell}$, such that $\mathscr{D} \subset \widehat{\mathscr{B}}$
solution may not exist

Most powerful unfalsified model $\mathscr{B}_{\text {mpum }}(\mathscr{D})$ given data \mathscr{D}
find the smallest (m, ℓ), such that $\exists \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m}, \ell}^{q}, \mathscr{D} \subset \widehat{\mathscr{B}}$

Why complexity minimization?
makes the solution unique
Occam's razor: "simpler = better"

Identifiability question

Recover the data generating system $\overline{\mathscr{B}}$ from exact data \mathscr{D}

$$
\mathscr{D} \subset \overline{\mathscr{B}} \in \mathscr{L}^{q}
$$

Under what conditions $\mathscr{B}_{\text {mpum }}(\mathscr{D})=\overline{\mathscr{B}}$?
the answer is given by the "fundamental lemma"

Hankel matrix

consider the case $\mathscr{D}=w_{\mathrm{d}}$ (single trajectory)
main tool
$\mathscr{H}_{L}(w):=\left[\begin{array}{ccccc}w(1) & w(2) & w(3) & \cdots & w(T-L+1) \\ w(2) & w(3) & w(4) & \cdots & w(T-L+2) \\ w(3) & w(4) & w(5) & \cdots & w(T-L+3) \\ \vdots & \vdots & \vdots & & \vdots \\ w(L) & w(L+1) & w(L+2) & \cdots & w(T)\end{array}\right]$
if $w_{\mathrm{d}} \in \mathscr{B} \in \mathscr{L}^{a}$, then image $\left.\left(\mathscr{H}_{L}\left(w_{\mathrm{d}}\right)\right) \subset \mathscr{B}\right|_{L}$
extra conditions on w_{d} and \mathscr{B} are needed for

$$
\operatorname{image}\left(\mathscr{H}_{L}\left(w_{\mathrm{d}}\right)\right)=\left.\mathscr{B}\right|_{L}
$$

Persistency of excitation (PE)

u is PE of order L if $\mathscr{H}_{L}(u)$ is full row rank
system theoretic interpretation:

$$
\begin{gathered}
u \in\left(\mathbb{R}^{m}\right)^{T} \text { is PE } \\
\text { of order } L
\end{gathered} \Longleftrightarrow \begin{gathered}
\text { there is no } \mathscr{B} \in \mathscr{L}_{\mathrm{m}-1, L}, \\
\text { such that } u \in \mathscr{B}
\end{gathered}
$$

Lemma

1. $\mathscr{B} \in \mathscr{L}_{\mathrm{m}, \ell}^{q}$ controllable and
2. $w_{\mathrm{d}}=\left(u_{\mathrm{d}}, y_{\mathrm{d}}\right) \in \mathscr{B}$ with u_{d} PE of order $L+\mathrm{p} \ell$

$$
\Longrightarrow \quad \operatorname{image}\left(\mathscr{H}_{L}\left(w_{\mathrm{d}}\right)\right)=\left.\mathscr{B}\right|_{L}
$$

Plan

Exact modeling

Algorithms

The main idea is that a desired trajectory w can be constructed directly from the data w_{d}

any $\left.w \in \mathscr{B}\right|_{L}$ can be obtained from $w_{d} \in \mathscr{B}$

$$
w=\mathscr{H}_{L}\left(w_{\mathrm{d}}\right) g, \quad \text { for some } g
$$

$g \sim$ input and initial conditions, cf., image representation

Algorithms

$w_{\mathrm{d}} \mapsto$ kernel parameter R
$w_{\mathrm{d}} \mapsto$ impulse response H
$w_{\mathrm{d}} \mapsto$ state/space parameters (A, B, C, D)

- $w_{\mathrm{d}} \mapsto R \mapsto(A, B, C, D)$ or $w_{\mathrm{d}} \mapsto H \mapsto(A, B, C, D)$
- $W_{\mathrm{d}} \mapsto$ observability matrix $\mapsto(A, B, C, D)$
- $w_{\mathrm{d}} \mapsto$ state sequence $\mapsto(A, B, C, D)$
$w_{\mathrm{d}} \mapsto R$
under the assumptions of the lemma

$$
\operatorname{image}\left(\mathscr{H}_{\ell+1}\left(w_{\mathrm{d}}\right)\right)=\left.\mathscr{B}\right|_{\ell+1}
$$

leftker $\left(\mathscr{H}_{\ell+1}\left(w_{\mathrm{d}}\right)\right)$ defines a kernel repr. of \mathscr{B}

$$
\left[\begin{array}{llll}
R_{0} & R_{1} & \cdots & R_{\ell}
\end{array}\right] \mathscr{H}_{\ell+1}\left(w_{\mathrm{d}}\right)=0, \quad R_{i} \in \mathbb{R}^{g \times q}
$$

kernel representation

$$
\mathscr{B}=\operatorname{ker}(R(\sigma)), \quad \text { with } \quad R(z)=\sum_{i=0}^{\ell} R_{i} z^{i}
$$

recursive computation (exploiting Hankel structure)
$w_{\mathrm{d}} \mapsto H$
impulse response (matrix values trajectory)

$$
W=(\underbrace{0, \ldots, 0}_{\ell},\left[\begin{array}{c}
\prime \\
H^{\prime}(0)
\end{array}\right],\left[\begin{array}{c}
0 \\
H(1)
\end{array}\right], \ldots,\left[\begin{array}{c}
0 \\
H(t)
\end{array}\right])
$$

by the lemma, $W=\mathscr{H}_{\ell+t}\left(w_{\mathrm{d}}\right) G$
define $\mathscr{H}_{\ell+t}\left(u_{\mathrm{d}}\right)=:\left[\begin{array}{c}U_{\mathrm{p}} \\ U_{\mathrm{f}}\end{array}\right]$ and $\mathscr{H}_{\ell+t}\left(y_{\mathrm{d}}\right)=:\left[\begin{array}{c}Y_{\mathrm{p}} \\ Y_{\mathrm{f}}\end{array}\right]$
we have

$$
\begin{align*}
& {\left[\begin{array}{c}
U_{p} \\
Y_{p} \\
U_{\mathrm{f}}
\end{array}\right] G=\left[\begin{array}{c}
0 \\
0 \\
{\left[\begin{array}{l}
I_{\mathrm{n}} \\
0
\end{array}\right]}
\end{array}\right] \begin{array}{l}
\text { zero ini. conditions } \\
\text { impulse input }
\end{array}} \tag{1}\\
& Y_{\mathrm{f}} G=H \tag{2}
\end{align*}
$$

Block algorithm

input: u_{d}, y_{d}, ℓ, and t
solve (2) and let G_{p} be a solution
compute $H=Y_{f} G_{p}$
output: the first t samples of the impulse response H

Exercise: implement and test the algorithm

Refinements

solve (2) efficiently exploiting the Hankel structure
do the computations iteratively for pieces of H
automatically choose t, for a sufficient decay of H

Exercise: try the improvements
application for noisy data
$w_{\mathrm{d}} \mapsto(A, B, C, D)$
$w_{\mathrm{d}} \mapsto H(0: 2 \ell)$ or $R(\xi) \xrightarrow{\text { realization }}(A, B, C, D)$
$w_{\mathrm{d}} \mapsto$ obs. matrix $\mathscr{O}_{\ell+1}(A, C) \xrightarrow{(3)}(A, B, C, D)$

$$
\begin{equation*}
\mathscr{O}_{\ell+1}(\mathrm{~A}, \mathrm{C}) \mapsto(A, C), \quad\left(u_{\mathrm{d}}, y_{\mathrm{d}}, A, C\right) \mapsto\left(B, C, x_{\mathrm{ini}}\right) \tag{3}
\end{equation*}
$$

$w_{\mathrm{d}} \mapsto$ state sequence $x_{\mathrm{d}} \xrightarrow{(4)}(A, B, C, D)$

$$
\left[\begin{array}{c}
\sigma x_{d} \tag{4}\\
y_{d}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x_{d} \\
u_{d}
\end{array}\right]
$$

$\mathscr{O}_{\ell+1}(A, C) \mapsto(A, B, C, D)$
C is the first block entry of $\mathscr{O}_{\ell+1}(A, C)$
A is given by the shift equation

$$
\left(\sigma^{*} \mathscr{O}_{\ell+1}(A, C)\right) A=\left(\sigma \mathscr{O}_{\ell+1}(A, C)\right)
$$

(σ / σ^{*} removes first / last block entry)

Once C and A are known, the system of equations

$$
y_{\mathrm{d}}(t)=C A^{t} x_{\mathrm{d}}(1)+\sum_{\tau=1}^{t-1} C A^{t-1-\tau} B u_{\mathrm{d}}(\tau)+D \delta(t+1)
$$

is linear in $D, B, x_{d}(1)$

$w_{\mathrm{d}} \mapsto$ observability matrix

columns of $\mathscr{O}_{t}(A, C)$ are n indep. free resp. of \mathscr{B}
under the conditions of the lemma,

$$
\left[\begin{array}{c}
\mathscr{H}_{t}\left(u_{\mathrm{d}}\right) \\
\mathscr{H}_{t}\left(y_{\mathrm{d}}\right)
\end{array}\right] G=\left[\begin{array}{c}
0 \\
Y_{0}
\end{array}\right] \quad \begin{aligned}
& \leftarrow \\
& \leftarrow \text { zero inputs } \\
& \leftarrow \text { free responses }
\end{aligned}
$$

lin. indep. free responses $\Longrightarrow G$ maximal rank
rank revealing factorization

$$
Y_{0}=\mathscr{O}_{t}(A, C) \underbrace{\left[\begin{array}{lll}
x_{\mathrm{ini}, 1} & \cdots & x_{\mathrm{ini}, j}
\end{array}\right]}_{X_{\mathrm{ini}}}
$$

$w_{\mathrm{d}} \mapsto$ state sequence

sequential free responses $\Longrightarrow Y_{0}$ block-Hankel
then $X_{\text {ini }}$ is a state sequence of \mathscr{B}
computation of sequential free responses

$$
\begin{align*}
& \left.\left[\begin{array}{c}
U_{p} \\
Y_{p} \\
U_{f}
\end{array}\right] G=\left[\begin{array}{c}
U_{p} \\
Y_{p} \\
0
\end{array}\right]\right\} \text { zequential ini. conditions } \tag{5}\\
& Y_{f} G=Y_{0}
\end{align*}
$$

rank revealing factorization

$$
Y_{0}=\mathscr{O}_{t}(A, C)\left[\begin{array}{lll}
x_{\mathrm{d}}(1) & \cdots & x_{\mathrm{d}}(\mathrm{n}+\mathrm{m}+1)
\end{array}\right]
$$

Refinements

solve (5) efficiently exploiting the Hankel structure
iteratively compute pieces of $Y_{0} \leadsto$ iterative algorithm
requires smaller persistency of excitation of u_{d}
could be more efficient
(solve a few smaller systems of eqns than one big)

MOESP-type algorithms

project the rows of $\mathscr{H}_{\mathrm{n}}\left(y_{\mathrm{d}}\right)$ on rowspan ${ }^{\perp}\left(\mathscr{H}_{\mathrm{n}}(u)\right)$

$$
Y_{0}:=\mathscr{H}_{\mathrm{n}}\left(y_{\mathrm{d}}\right) \Pi_{u}^{\perp}
$$

where

$$
\Pi_{u}^{\perp}:=\left(1-\mathscr{H}_{\mathrm{n}}^{\top}(u)\left(\mathscr{H}_{\mathrm{n}}(u) \mathscr{H}_{\mathrm{n}}^{\top}(u)\right)^{-1} \mathscr{H}_{\mathrm{n}}(u)\right)
$$

Observe that $\Pi_{u} \frac{1}{}$ is maximal rank and

$$
\left[\begin{array}{c}
\mathscr{H}_{\mathrm{n}}(u) \\
\mathscr{H}_{\mathrm{n}}\left(y_{\mathrm{d}}\right)
\end{array}\right] \square_{u}^{\perp}=\left[\begin{array}{c}
0 \\
Y_{0}
\end{array}\right]
$$

\Longrightarrow the orthogonal projection computes free responses

Comments

$\mathscr{H}_{\mathrm{n}}\left(y_{\mathrm{d}}\right) \Pi_{u}^{\perp}$ are $T-\mathrm{n}+1$ free responses
(n such responses suffice for exact identification)
a geometric operation has system theoretic meaning
condition for $\operatorname{rank}\left(Y_{0}\right)=\mathrm{n}$ given in the literature

$$
\operatorname{rank}\left(\left[\begin{array}{c}
X_{\text {ini }} \\
\mathscr{H}_{\mathrm{n}}(u)
\end{array}\right]\right)=\mathrm{n}+\mathrm{nm}
$$

is not verifiable from the data $\left(u_{d}, y_{d}\right)$

N4SID-type algorithms

splitting of the data into "past" and "future"

$$
\mathscr{H}_{2 \mathrm{n}}\left(u_{\mathrm{d}}\right)=:\left[\begin{array}{c}
U_{\mathrm{p}} \\
U_{\mathrm{f}}
\end{array}\right], \quad \mathscr{H}_{2 \mathrm{n}}\left(y_{\mathrm{d}}\right)=:\left[\begin{array}{c}
Y_{\mathrm{p}} \\
Y_{\mathrm{f}}
\end{array}\right]
$$

and define $W_{p}:=\left[\begin{array}{l}U_{p} \\ Y_{p}\end{array}\right]$
oblique projection

$$
Y_{0}:=Y_{\mathrm{f}} / u_{\mathrm{f}} W_{\mathrm{p}}:=Y_{\mathrm{f}} \underbrace{}_{\boldsymbol{W}_{\mathrm{ob}} W_{\mathrm{p}}^{\top}} U_{\mathrm{f}}^{\top}]\left[\begin{array}{cc}
W_{\mathrm{p}} W_{\mathrm{p}}^{\top} & W_{\mathrm{p}} U_{\mathrm{f}}^{\top} \\
U_{\mathrm{f}} W_{\mathrm{p}}^{\top} & U_{\mathrm{f}} U_{\mathrm{f}}^{\top}
\end{array}\right]^{+}\left[\begin{array}{c}
W_{\mathrm{p}} \\
0
\end{array}\right] .
$$

of the rows of Y_{f} along rowspan $\left(U_{\mathrm{f}}\right)$ onto rowspan $\left(W_{\mathrm{p}}\right)$

N4SID-type algorithms

Observe that

$$
\left[\begin{array}{c}
W_{\mathrm{p}} \\
U_{\mathrm{f}} \\
Y_{\mathrm{f}}
\end{array}\right] \Pi_{\mathrm{obl}}=\left[\begin{array}{c}
W_{\mathrm{p}} \\
0 \\
Y_{0}
\end{array}\right]
$$

($\Pi_{\text {obl }}$ gives the least-norm, least-squares solution)
\Longrightarrow oblique proj. computes sequential free responses

Comments

$Y_{0}:=Y_{\mathrm{f}} / u_{\mathrm{f}} W_{\mathrm{p}}$ are $T-2 \mathrm{n}+1$ sequential free responses
($\mathrm{n}+\mathrm{m}+1$ such responses suffice for exact identification)
geometric operation has system theoretic meaning
conditions for rank $\left(Y_{0}\right)=\mathrm{n}$ given in the literature

1. u_{d} persistently exciting of order 2 n and
2. rowspan $\left(X_{\text {ini }}\right) \cap$ rowspan $\left(U_{\mathrm{f}}\right)=\{0\}$
are not verifiable from the data $\left(u_{\mathrm{d}}, y_{\mathrm{d}}\right)$

Summary

transitions among representations \approx system theory
exact identification aims at $\mathscr{B}_{\text {mpum }}\left(w_{\mathrm{d}}\right)$
$\mathscr{H}_{t}\left(w_{d}\right)$ plays key role in both analysis and computation
under controllability and u_{d} persistently exciting

$$
\operatorname{image}\left(\mathscr{H}_{t}\left(w_{\mathrm{d}}\right)\right)=\left.\mathscr{B}\right|_{t}
$$

subspace methods construct special responses from data

