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The goal is to obtain a model B from data D

data
D ⊂U

identification−−−−−−−−→ model
B ∈M

U — data space (Rq)N: functions from N to Rq

D — data: set of finite vector-valued time series

D = {w1
d , . . . ,w

N
d }, w i

d =
(
w i

d(1), . . . ,w i
d(Ti)

)
B — model: subset of the data space U

M — model class: set of models
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Work plan

1. define a modeling problem (What is D 7→B?)

2. find an algorithm that solves the problem

3. implement the algorithm (How to compute B?)
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State the aim without hidden assumptions

all user choices should enter in the problem formulation

hyper-parameters should not appear in the solutions

the resulting methods should be automatic
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User choices reflect prior knowledge; they
determine the model class and fitting criterion

the "true model" assumption

D = D̄︸︷︷︸
true data

+ D̃︸︷︷︸
noise

where D̄ ⊂ B̄︸︷︷︸
true model

∈M

assuming, in addition, that D̃ is a stochastic process

noise
distribution

← maximum likelihood
principle

→ fitting
criterion

we can specify M and ‖ · ‖ as deterministic approximation
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Examples of user choices for M and ‖ · ‖

Model class

linear nonlinear
static dynamic
time-invariant time-varying

Fitting criterion

exact approximate
deterministic stochastic
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Why exact identification?

from simple to complex:

exact 7→ approx. 7→ stoch. 7→ approx. stoch.

exact identification is ingredient of the other problems

exact methods lead to effective approximation heuristics
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Exact identification in L

given data D

find B̂ ∈L , such that D ⊂ B̂

nonunique solution always exists

Exact identification in Lm,`

given (m, `) and data D

find B̂ ∈Lm,`, such that D ⊂ B̂

solution may not exist
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Most powerful unfalsified model Bmpum(D)

given data D

find the smallest (m, `), such that ∃ B̂ ∈L q
m,`, D ⊂ B̂

Why complexity minimization?

makes the solution unique

Occam’s razor: "simpler = better"
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Identifiability question

Recover the data generating system B from exact data D

D ⊂B ∈L q

Under what conditions Bmpum(D) = B?

the answer is given by the "fundamental lemma"
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Hankel matrix
consider the case D = wd (single trajectory)

main tool

HL(w) :=


w(1) w(2) w(3) · · · w(T −L + 1)

w(2) w(3) w(4) · · · w(T −L + 2)

w(3) w(4) w(5) · · · w(T −L + 3)
...

...
...

...

w(L) w(L + 1) w(L + 2) · · · w(T )


if wd ∈B ∈L q, then image

(
HL(wd)

)
⊂B|L

extra conditions on wd and B are needed for
image

(
HL(wd)

)
= B|L
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Persistency of excitation (PE)

u is PE of order L if HL(u) is full row rank

system theoretic interpretation:

u ∈ (Rm)T is PE
of order L

⇐⇒ there is no B ∈Lm−1,L,
such that u ∈B

Lemma
1. B ∈L q

m,` controllable and

2. wd = (ud,yd) ∈B with ud PE of order L +p`

=⇒ image
(
HL(wd)

)
= B|L
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The main idea is that a desired trajectory w
can be constructed directly from the data wd

any w ∈B|L can be obtained from wd ∈B

w = HL(wd)g, for some g

g ∼ input and initial conditions, cf., image representation

17 / 33



Algorithms

wd 7→ kernel parameter R

wd 7→ impulse response H

wd 7→ state/space parameters (A,B,C,D)

I wd 7→ R 7→ (A,B,C,D) or wd 7→ H 7→ (A,B,C,D)

I wd 7→ observability matrix 7→ (A,B,C,D)

I wd 7→ state sequence 7→ (A,B,C,D)
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wd 7→ R

under the assumptions of the lemma

image
(
H`+1(wd)

)
= B|`+1

leftker
(
H`+1(wd)

)
defines a kernel repr. of B[

R0 R1 · · · R`

]
H`+1(wd) = 0, Ri ∈ Rg×q

kernel representation

B = ker
(
R(σ)

)
, with R(z) =

`

∑
i=0

Riz i

recursive computation (exploiting Hankel structure)

19 / 33



wd 7→ H
impulse response (matrix values trajectory)

W =
(

0, . . . ,0︸ ︷︷ ︸
`

,
[

I
H(0)

]
,
[

0
H(1)

]
, . . . ,

[
0

H(t)

])

by the lemma, W = H`+t(wd)G

define H`+t(ud) =:
[

Up
Uf

]
and H`+t(yd) =:

[
Yp
Yf

]
we haveUp

Yp

Uf

G =

 0
0[
Im
0

]

}

zero ini. conditions

← impulse input
(1)

Yf G = H (2)
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Block algorithm

input: ud, yd, `, and t

solve (2) and let Gp be a solution

compute H = YfGp

output: the first t samples of the impulse response H

Exercise: implement and test the algorithm
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Refinements

solve (2) efficiently exploiting the Hankel structure

do the computations iteratively for pieces of H

automatically choose t , for a sufficient decay of H

Exercise: try the improvements

application for noisy data
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wd 7→ (A,B,C,D)

wd 7→ H(0 : 2`) or R(ξ )
realization−−−−−−−→ (A,B,C,D)

wd 7→ obs. matrix O`+1(A,C)
(3)−−−→ (A,B,C,D)

O`+1(A,C) 7→ (A,C), (ud,yd,A,C) 7→ (B,C,x ini) (3)

wd 7→ state sequence xd
(4)−−−→ (A,B,C,D)[

σxd

yd

]
=

[
A B
C D

][
xd

ud

]
(4)
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O`+1(A,C) 7→ (A,B,C,D)

C is the first block entry of O`+1(A,C)

A is given by the shift equation(
σ
∗O`+1(A,C)

)
A =

(
σO`+1(A,C)

)
(σ / σ∗ removes first / last block entry)

Once C and A are known, the system of equations

yd(t) = CAtxd(1) +
t−1

∑
τ=1

CAt−1−τBud(τ) + Dδ (t + 1)

is linear in D, B, xd(1)
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wd 7→ observability matrix

columns of Ot(A,C) are n indep. free resp. of B

under the conditions of the lemma,[
Ht(ud)

Ht(yd)

]
G =

[
0

Y0

]
← zero inputs
← free responses

lin. indep. free responses =⇒ G maximal rank

rank revealing factorization

Y0 = Ot(A,C)
[
xini,1 · · · xini,j

]
︸ ︷︷ ︸

Xini
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wd 7→ state sequence
sequential free responses =⇒ Y0 block-Hankel

then Xini is a state sequence of B

computation of sequential free responsesUp

Yp

Uf

G =

Up

Yp

0


}

sequential ini. conditions

← zero inputs
(5)

Yf G = Y0

rank revealing factorization

Y0 = Ot(A,C)
[
xd(1) · · · xd(n+m+ 1)

]
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Refinements

solve (5) efficiently exploiting the Hankel structure

iteratively compute pieces of Y0 ; iterative algorithm

requires smaller persistency of excitation of ud

could be more efficient

(solve a few smaller systems of eqns than one big)
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MOESP-type algorithms

project the rows of Hn(yd) on rowspan⊥
(
Hn(u)

)
Y0 := Hn(yd)Π⊥u

where

Π⊥u :=
(

I−H >
n (u)

(
Hn(u)H >

n (u)
)−1

Hn(u)
)

Observe that Π⊥u is maximal rank and[
Hn(u)

Hn(yd)

]
Π⊥u =

[
0

Y0

]

=⇒ the orthogonal projection computes free responses
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Comments

Hn(yd)Π⊥u are T −n+ 1 free responses

(n such responses suffice for exact identification)

a geometric operation has system theoretic meaning

condition for rank(Y0) = n given in the literature

rank

([
Xini

Hn(u)

])
= n+nm

is not verifiable from the data (ud,yd)
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N4SID-type algorithms

splitting of the data into "past" and "future"

H2n(ud) =:
[

Up
Uf

]
, H2n(yd) =:

[
Yp
Yf

]
and define Wp :=

[
Up
Yp

]
oblique projection

Y0 := Yf/Uf
Wp := Yf

[
W>

p Uf
>
][WpW>

p WpU>f
UfW>

p UfUf
>

]+[
Wp

0

]
︸ ︷︷ ︸

Πobl

of the rows of Yf along rowspan(Uf) onto rowspan(Wp)
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N4SID-type algorithms

Observe that Wp

Uf

Yf

Πobl =

Wp

0
Y0


(Πobl gives the least-norm, least-squares solution)

=⇒ oblique proj. computes sequential free responses
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Comments

Y0 := Yf/Uf
Wp are T −2n+ 1 sequential free responses

(n+m+ 1 such responses suffice for exact identification)

geometric operation has system theoretic meaning

conditions for rank(Y0) = n given in the literature

1. ud persistently exciting of order 2n and

2. rowspan(Xini)∩ rowspan(Uf) = {0}

are not verifiable from the data (ud,yd)
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Summary

transitions among representations ≈ system theory

exact identification aims at Bmpum(wd)

Ht(wd) plays key role in both analysis and computation

under controllability and ud persistently exciting

image
(
Ht(wd)

)
= B|t

subspace methods construct special responses from data
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