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Outline

Approximation error—model complexity trade-off
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An exact model contains the data
Any model that is not exact is approximate

wCH <—: "ZAisexact model for w"

w¢ A <. "ZAis approximate model for w"
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To compare approximations, we use criteria
misfit criterion ||w — w||
modify w as little as possible,
so that w is exact
latency criterion || e||

augment £ by as small as possible e,
so that (e, w) is exact
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In the linear static case, misfit and latency
lead to the TLS and OLS problems

misfit (total least squares)

Lrlnlr; H[u u y-— y”‘ st. ue=y
. (u.y)c#(0)

= (u,y) approximates w = (u, y)
latency (ordinary least squares)

min |[e]; st ub=y+e
e,0 S——

(éaua}/)c'%ext(e)

e is unobserved (latent) input



There is a one-to-one relation between noise
model and approximation criterion

stochastic estimation <+  deterministic approximation

noise cost

maximum likelihood
model " function

also in control

LQG control «++  H» optimal control



In a stochastic setting, misfit and latency
correspond to EIV and ARMAX problems

EIV < misfit ARMAX «+ latency
u | G| y e —| H |
v Y u=10 D=7
u y
U, y — measurement errors e— diSturban/(\:e
minfjw - w|| e lell

e[ 17-6) |

<co)

]|y:ma4j}



Summary: approximation criterion

TLS < misfit «+> errors-in-variables

min HW_'?VH ( projection )
wCHh

of won &%

OLS « latency «+» ARMAX

_min e
(e,W)€E PBext
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A general problem

data identification model
w RBec M

the aim is to obtain "simple" and "accurate" model:

"accurate” — min. error(w, @) = misfit/latency
"simple" — Occam’s razor principle:
among equally accurate models,
choose the simplest
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Model complexity

simple models are small models
By C B> —  Pqissimplerthan %o
nonlinear model complexity is an open problem

in the linear time-invariant case, 4 is a subspace

size of the model = dimension of %

however, models with inputs are infinite dimensional
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Linear time-invariant model’s complexity

restriction of % on an interval [1, T]

Blr={w=(w(1),....w(T)) | 3 wp, w,
such that (wp, w, w;) € A}

for sufficiently large T
dim(#|7) = (# of inputs) - T + (order)

m| — # of inputs
¢| — orderorlag

complexity(#) = {

Z,... — set of LTIl systems of bounded complexity
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Complexity selection

if m is given and fixed, choosing the complexity is an
order selection problem

in general, choosing the complexity involves
order selection and input selection
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Example: misfit-complexity trade-off

o [w|=2368 |

v

<
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m=0,/=0 = #={0} is the only model
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Example: misfit-complexity trade-off
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m=1,/=0 = ZAis aline through 0
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Example: misfit-complexity trade-off

m=1,/=1 = ZAis 1st order SISO
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Example: misfit-complexity trade-off

m=1,/=2 = % is 2nd order SISO
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Approximation error-complexity trade-off

minimize over % ¢ . error(m'/, gg)A
complexity(%)

three ways to "scalarize" the problem:

1. minimize over # € £ error(w, %) + Acomplexity(2)

minimize over % € ¥ complexity(@)
subjectto error(w, %) <pu
minimize over # error(w,@)
subjectto £ < %,
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Complexity minimization with error bound

minimize over Z € ¥ complexity(@)
subject to  error(w, %) < 11

misfit
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Error minimization with complexity bound

~

minimize over # error(w, )
subjectto A e %,

misfit
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Summary: error-complexity trade-off

LTI model complexity

complexity(#) = [m] — # of inputs

¢| — orderorlag

error-complexity trade-off

minimize over # ¢ ¥ error(m./, ‘@)A
complexity (%)

tracing all optimal solutions requires hyper parameter
1. A — no physical meaning
2. u — bound on the error
3. (m,¢) — bound on the complexity
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Outline

System identification «» low-rank approximation
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Approximate identification problem

~

minimize over # error(w, %)
subject to @Egmg

in the case error = misfit

error(w, %) = min ||w — w||
we#

the problem is

minimize over &, w |w— w||
subjectto we % e %,
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Exact, noisy, and missing data

vK(t) — variance of the measurement noise on wX(t)

N
w-—w2=Y Y ¥ af(t)(wh(t) - wh(1)?

k=1i=1t=1

exact data
noisy data v,-k(t) =0, a,.k(t) — oo
k t = 1
& (t) == v,."(t) i missing data

vE(t) = o, af(t) =0

i

vk

(t) = = imposes equality constraint w(t) = w(t)

vK(t) = 0 makes ||w — w||2 independent of w/(t)
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Summary: identification problem

approximate identification in the misfit setting

minimize over &, w |w—W|q

PO SYSID
subjectto weZec £, ( )

element-wise weighted error criterion || - ||«

exact  wi(t) < af(t)=w

missing wX(t) <« of(t)
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Next: SYSID « Hankel structured LRA

exact trajectory w € # € £, ¢

T
Row(t)+Ryw(t+1)+---+Rw(t+¢)=0
T
rank deficient
[ w(1) w2) - w(T—4) ]
w(2) w@) - w(T—(+1)
H(w)=| w@)  wd) - w(T-(+2)
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we B <— ;.1(w) rank deficient

relation at time = 1
Row(1)+Ryw(2)+--+ Rw({+1)=0

in matrix form:

[Ro Ry - Fi’e] . =0
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we B <— ;.1(w) rank deficient

relation attime t =2
Row(2)+ Ryw(3)+---+ Rw((+2)=0

in matrix form:

Ro R - R =0
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we B <— ;.1(w) rank deficient

relation attime t =T — /¢
Row(T —0)+Ryw(T —(+1)+---+Rw(T)=0

in matrix form:

[ w(T—¢) ]
w(T—0+1)
[Ro Ry - R@] w(T—(+2)| =0

W('T)
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Putting it all together

relationfort=1,..., T/
Row(t)+ Ryw(t+1)+---+Rw(t+¢)=0

in matrix form:

[ w(1) w(2) - w(T-4) ]
w(2) w(@) - w(T—(+1)
[Ro Ry - /:gg] w(3) w(4) - w(T—(+2)| -0
" _W(E.—I— 1) W(E‘—f- 2) .- W(‘T)
Hiy(w)
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we B <— ;.1(w) rank deficient

with R € R(@-)*a(+1) fyl| row rank,

rank (J%+1(w)=0) < gl+m (g — # of variables)

weBe Ly < rank(#1(w)) <gl+m

multiple time-series «  mosaic-Hankel matrix

(w'....wNyczez,

= rank ([ A (w') o A (wN)]) < glam

. /
-

A1 (W)

32/44



Structured weighted low-rank approximation

minimize over Zand W ||w— W||q
| e (SYSID)
subjectto wC e Ly

i
minimize over w ||w— w|q

N SLRA
subjectto  rank (#1(W)) < ql+m ( )
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Summary: structured low-rank approximation

(SYSID) <= (SLRA)

LTI model class < Hankel structure

repeated experiments <= mosaic-Hankel structure
[c%ﬂe+1(W1) - Hpa(wh)

bounded complexity < rank constraint

(m,¢) < r=ql+m
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Outline

Solution methods: variable projection
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Solution methods

given: data w and complexity bound (m, /)

find: % that solves (SYSID) or, equivalently, (SLRA)

1. choice of model representation

» transfer function
» input/state/output

>---

2. choice of optimization method
» local optimization
» global optimization
» convex relaxations
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Model vs model representation

1st order SISO model % € . 4

wy(t)
%de(e):{w‘ [91 6, 65 94] [ij(i(ﬂ)] —0, vr}
wo(t+1)
transfer functions

01+ 63z
0>+ 042

0>+ 0,42
01+ 065z

GW1HW2(Z) = ) C';WzHW1 (Z) =

state space, convolution, ..., representations
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Problem formulation vs solution method

in the classical setting, model = representation
—> problems are mixed with solution methods
e.g., "total least-squares" is both problem and method

the behavioral setting distinguishes

used for involves
abstract problem formulation B, Ly
concrete solution methods %(0),0 €O

low-rank approx. is abstract problem formulation
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Parameter optimization problem

model representation
#(0)={w|ge(w)=0}
parameterized model class
M={AB0)] 0O}
optimization problem

minimize over 6 €O, w ||w— w|q

subjectto ge(w)=0 (SYSIDo)
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Bilinear structure of the problem

(SYSIDg) — constrained nonlinear least-squares

% linear
= go(W) bilinear (in 6 and w)

—> (SYSIDy) can be solved globally for given 6

variable projection (VARPRO)
for separable nonlinear least-squares problems

if T>> ¢, elimination of w leads to big reduction
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System theoretic view of VARPRO

solving (SYSIDg) for given 6
)

misfit evaluation: error(w, %(6))

)

likelihood evaluation

)

least-squares smoothing of w by %(6)

0

fast algorithms:
Kalman smoothing
Cholesky factorization
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Non-convexity of error(w, %(0))

15

0.5F




Computational details

O(T) evaluation of error(w,%(0)) and its derivatives

» using the Kalman smoother
» Cholesky factorization of banded Toeplitz matrix

B(0)=HB(ab), forall o #£0

©={6]]6|2=1} = optimization on a manifold

» generic methods (optimization theory)
» custom methods (system identification)

» data driven local coordinates (McKelvey)

> DR
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Summary: solution methods

solution methods involve two choices:
1. model representation
2. optimization method

in the linear case, bilinear structure ~» VARPRO
constraint nonlinear least-squares problem

min error(w, 4(0))

© is a manifold ~» optimization on a manifold
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