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An exact model contains the data
Any model that is not exact is approximate

w ⊂B ⇐⇒ : "B is exact model for w"

w 6⊂B ⇐⇒ : "B is approximate model for w"
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To compare approximations, we use criteria

misfit criterion ‖w − ŵ‖

modify w as little as possible,
so that ŵ is exact

latency criterion ‖e‖

augment B by as small as possible e,
so that (e,w) is exact

6 / 44



In the linear static case, misfit and latency
lead to the TLS and OLS problems

misfit (total least squares)

min
û,ŷ ,θ

∥∥∥[u− û y − ŷ
]∥∥∥

F
s.t. ûθ = ŷ︸ ︷︷ ︸

(û,ŷ)⊂B(θ)

ŵ = (û, ŷ) approximates w = (u,y)

latency (ordinary least squares)

min
ê,θ
‖ê‖2 s.t. uθ = y + ê︸ ︷︷ ︸

(ê,u,y)⊂Bext(θ)

ê is unobserved (latent) input
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There is a one-to-one relation between noise
model and approximation criterion

stochastic estimation ↔ deterministic approximation

noise
model

cost
function

maximum likelihood

also in control

LQG control ↔ H2 optimal control
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In a stochastic setting, misfit and latency
correspond to EIV and ARMAX problems

EIV↔ misfit

G• •
+ +

ū
ũ

ȳ
ỹ

u y

ũ, ỹ — measurement errors

min
ŵ⊂B

‖w − ŵ‖

B :=
{[

û
ŷ

]
| ŷ = Ĝû

}

ARMAX↔ latency

G

H
+

e

u = ū
y

e — disturbance

min
(ê,w)⊂Bext

‖ê‖

Bext :=

{[
ê
u
y

]
| y = [ Ĥ Ĝ ]

[
ê
u

]}

9 / 44



Summary: approximation criterion

TLS↔ misfit↔ errors-in-variables

min
ŵ⊂B

‖w − ŵ‖
(

projection
of w on B

)

OLS↔ latency↔ ARMAX

min
(ê,w)∈Bext

‖ê‖
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A general problem

data
w

identification−−−−−−−−−→ model
B ∈M

the aim is to obtain "simple" and "accurate" model:

"accurate" → min. error(w ,B̂) = misfit/latency
"simple" → Occam’s razor principle:

among equally accurate models,
choose the simplest
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Model complexity

simple models are small models

B1 ⊂B2 =⇒ B1 is simpler than B2

nonlinear model complexity is an open problem

in the linear time-invariant case, B is a subspace

size of the model = dimension of B

however, models with inputs are infinite dimensional
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Linear time-invariant model’s complexity

restriction of B on an interval [1,T ]

B|T = {w =
(
w(1), . . . ,w(T )

)
| ∃ wp,wf,

such that (wp,w ,wf) ∈B }

for sufficiently large T

dim(B|T ) = (# of inputs) ·T + (order)

complexity(B) =

m
`

 → # of inputs
→ order or lag

Lm,` — set of LTI systems of bounded complexity

13 / 44



Complexity selection

if m is given and fixed, choosing the complexity is an
order selection problem

in general, choosing the complexity involves
order selection and input selection
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Example: misfit-complexity trade-off
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‖w‖= 23.68

m= 0
`= 0

number of inputs m
order `

m
is

fit

m = 0, ` = 0 =⇒ B = {0} is the only model
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Example: misfit-complexity trade-off
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7.88

m= 1
`= 0

number of inputs m
order `

m
is

fit

m = 1, ` = 0 =⇒ B is a line through 0
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Example: misfit-complexity trade-off
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m = 1, ` = 1 =⇒ B is 1st order SISO
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Example: misfit-complexity trade-off

0
1

2 0
1

2
3

10

20
0.60

m= 1
`= 2

number of inputs m
order `

m
is

fit

m = 1, ` = 2 =⇒ B is 2nd order SISO
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Approximation error-complexity trade-off

minimize over B̂ ∈L

[
error(w ,B̂)

complexity(B̂)

]

three ways to "scalarize" the problem:

1. minimize over B̂ ∈L error(w ,B̂) + λcomplexity(B̂)

2.
minimize over B̂ ∈L complexity(B̂)

subject to error(w ,B̂)≤ µ

3.
minimize over B̂ error(w ,B̂)

subject to B̂ ∈Lm,`
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Complexity minimization with error bound

minimize over B̂ ∈L complexity(B̂)

subject to error(w ,B̂)≤ µ
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Error minimization with complexity bound

minimize over B̂ error(w ,B̂)

subject to B̂ ∈Lm,`
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Summary: error-complexity trade-off
LTI model complexity

complexity(B) =

[
m

`

]
→ # of inputs
→ order or lag

error-complexity trade-off

minimize over B̂ ∈L

[
error(w ,B̂)

complexity(B̂)

]

tracing all optimal solutions requires hyper parameter
1. λ — no physical meaning
2. µ — bound on the error
3. (m, `) — bound on the complexity
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Solution methods: variable projection
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Approximate identification problem

minimize over B̂ error(w ,B̂)

subject to B̂ ∈Lm,`

in the case error = misfit

error(w ,B̂) = min
ŵ∈B̂
‖w − ŵ‖

the problem is

minimize over B̂, ŵ ‖w − ŵ‖
subject to ŵ ∈ B̂ ∈Lm,`
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Exact, noisy, and missing data
vk

i (t) — variance of the measurement noise on wk
i (t)

‖w − ŵ‖2α =
N

∑
k=1

q

∑
i=1

T

∑
t=1

α
k
i (t)

(
wk

i (t)− ŵk
i (t)

)2

noisy data

αk
i (t) :=

1
vk

i (t) missing data
vk

i (t) = ∞, αk
i (t) = 0

exact data
vk

i (t) = 0, αk
i (t) = ∞

vk
i (t) = ∞ imposes equality constraint ŵk

i (t) = wk
i (t)

vk
i (t) = 0 makes ‖w − ŵ‖2α independent of wk

i (t)
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Summary: identification problem

approximate identification in the misfit setting

minimize over B̂, ŵ ‖w − ŵ‖α

subject to ŵ ∈ B̂ ∈Lm,`
(SYSID)

element-wise weighted error criterion ‖ · ‖α

exact wk
i (t) ↔ αk

i (t) = ∞

missing wk
i (t) ↔ αk

i (t) = 0
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Next: SYSID↔ Hankel structured LRA

exact trajectory w ∈B ∈Lm,`

m

R0w(t) + R1w(t + 1) + · · ·+ R`w(t + `) = 0

m

rank deficient

H`+1(w) :=


w(1) w(2) · · · w(T − `)

w(2) w(3) · · · w(T − `+ 1)

w(3) w(4) · · · w(T − `+ 2)
...

...
...

w(`+ 1) w(`+ 2) · · · w(T )


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w ∈B ⇐⇒ H`+1(w) rank deficient

relation at time t = 1

R0w(1) + R1w(2) + · · ·+ R`w(`+ 1) = 0

in matrix form:

[
R0 R1 · · · R`

]


w(1)

w(2)
...

w(`+ 1)

= 0
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w ∈B ⇐⇒ H`+1(w) rank deficient

relation at time t = 2

R0w(2) + R1w(3) + · · ·+ R`w(`+ 2) = 0

in matrix form:

[
R0 R1 · · · R`

]


w(2)

w(3)
...

w(`+ 2)

= 0
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w ∈B ⇐⇒ H`+1(w) rank deficient

relation at time t = T − `

R0w(T − `) + R1w(T − `+ 1) + · · ·+ R`w(T ) = 0

in matrix form:

[
R0 R1 · · · R`

]


w(T − `)

w(T − `+ 1)

w(T − `+ 2)
...

w(T )

= 0
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Putting it all together

relation for t = 1, . . . ,T − `

R0w(t) + R1w(t + 1) + · · ·+ R`w(t + `) = 0

in matrix form:

[
R0 R1 · · · R`

]
︸ ︷︷ ︸

R


w(1) w(2) · · · w(T − `)

w(2) w(3) · · · w(T − `+ 1)

w(3) w(4) · · · w(T − `+ 2)
...

...
...

w(`+ 1) w(`+ 2) · · · w(T )


︸ ︷︷ ︸

H`+1(w)

= 0
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w ∈B ⇐⇒ H`+1(w) rank deficient

with R ∈ R(q−m)×q(`+1) full row rank,

rank
(
H`+1(w) = 0

)
≤ q`+m (q — # of variables)

w ∈B ∈Lm,` ⇐⇒ rank
(
H`+1(w)

)
≤ q`+m

multiple time-series ↔ mosaic-Hankel matrix

{w1, . . . ,wN } ⊂B ∈Lm,`

⇐⇒ rank
([

H`+1(w1) · · · H`+1(wN)
]

︸ ︷︷ ︸
H`+1(w)

)
≤ q`+m
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Structured weighted low-rank approximation

minimize over B̂ and ŵ ‖w − ŵ‖α

subject to ŵ ⊂ B̂ ∈Lm,`

(SYSID)

m

minimize over ŵ ‖w − ŵ‖α

subject to rank
(
H`+1(ŵ)

)
≤ q`+m

(SLRA)

33 / 44



Summary: structured low-rank approximation

(SYSID) ⇐⇒ (SLRA)

LTI model class ⇐⇒ Hankel structure

repeated experiments ⇐⇒ mosaic-Hankel structure[
H`+1(w1) · · · H`+1(wN)

]
bounded complexity ⇐⇒ rank constraint

(m, `) ↔ r = q`+m
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Solution methods

given: data w and complexity bound (m, `)

find: B̂ that solves (SYSID) or, equivalently, (SLRA)

1. choice of model representation
I transfer function
I input/state/output
I . . .

2. choice of optimization method
I local optimization
I global optimization
I convex relaxations
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Model vs model representation

1st order SISO model B ∈L1,1

Bde(θ ) =
{

ŵ
∣∣∣ [θ1 θ2 θ3 θ4

] ŵ1(t)
ŵ2(t)

ŵ1(t+1)
ŵ2(t+1)

= 0, ∀t
}

transfer functions

Gw1 7→w2(z) =−θ1 + θ3z
θ2 + θ4z

, Gw2 7→w1(z) =−θ2 + θ4z
θ1 + θ3z

state space, convolution, . . . , representations
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Problem formulation vs solution method

in the classical setting, model = representation

=⇒ problems are mixed with solution methods

e.g., "total least-squares" is both problem and method

the behavioral setting distinguishes

used for involves
abstract problem formulation B, Lm,`

concrete solution methods B(θ ), θ ∈Θ

low-rank approx. is abstract problem formulation
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Parameter optimization problem

model representation

B(θ ) = { ŵ | gθ (ŵ) = 0}

parameterized model class

M = {B(θ ) | θ ∈Θ}

optimization problem

minimize over θ ∈Θ, ŵ ‖w − ŵ‖α

subject to gθ (ŵ) = 0
(SYSIDθ )
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Bilinear structure of the problem

(SYSIDθ ) — constrained nonlinear least-squares

B linear

=⇒ gθ (ŵ) bilinear (in θ and ŵ)

=⇒ (SYSIDθ ) can be solved globally for given θ

variable projection (VARPRO)
for separable nonlinear least-squares problems

if T � `, elimination of ŵ leads to big reduction
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System theoretic view of VARPRO

solving (SYSIDθ ) for given θ

m
misfit evaluation: error

(
w ,B(θ )

)
m

likelihood evaluation

m
least-squares smoothing of w by B(θ )

m
fast algorithms:

Kalman smoothing
Cholesky factorization

. . .
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Non-convexity of error
(
w ,B(θ )

)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5
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0.5

1

1.5
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Computational details

O(T ) evaluation of error
(
w ,B(θ )

)
and its derivatives

I using the Kalman smoother
I Cholesky factorization of banded Toeplitz matrix
I . . .

B(θ ) = B(αθ ), for all α 6= 0

Θ = {θ | ‖θ‖2 = 1} =⇒ optimization on a manifold

I generic methods (optimization theory)
I custom methods (system identification)

I data driven local coordinates (McKelvey)
I . . .
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Summary: solution methods

solution methods involve two choices:
1. model representation
2. optimization method

in the linear case, bilinear structure ; VARPRO

constraint nonlinear least-squares problem

min
θ∈Θ

error
(
w ,B(θ )

)
Θ is a manifold ; optimization on a manifold
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