ELEC system identification workshop Optimization methods

Ivan Markovsky

- 1. Behavioral approach
- 2. Subspace methods
- 3. Optimization methods

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Outline

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

An exact model contains the data Any model that is not exact is approximate

$w \subset \mathscr{B} \iff : \mathscr{B}$ is exact model for w"

$w \not\subset \mathscr{B} \iff$: " \mathscr{B} is approximate model for w"

To compare approximations, we use criteria

misfit criterion $\| w - \hat{w} \|$

modify w as little as possible, so that \hat{w} is exact

latency criterion ||e||

augment \mathscr{B} by as small as possible e, so that (e, w) is exact

In the linear static case, misfit and latency lead to the TLS and OLS problems

$$\widehat{w} = (\widehat{u}, \widehat{y})$$
 approximates $w = (u, y)$

latency (ordinary least squares)

$$\min_{\widehat{e},\theta} \|\widehat{e}\|_2 \quad \text{s.t.} \quad \underbrace{u\theta = y + \widehat{e}}_{(\widehat{e},u,y) \subset \mathscr{B}_{\text{ext}}(\theta)}$$

 \hat{e} is unobserved (latent) input

There is a one-to-one relation between noise model and approximation criterion

In a stochastic setting, misfit and latency correspond to EIV and ARMAX problems

$\mathsf{EIV} \leftrightarrow \mathsf{misfit}$

 $\widetilde{u}, \widetilde{y}$ — measurement errors

$$\min_{\widehat{\boldsymbol{w}} \subset \mathscr{B}} \| \boldsymbol{w} - \widehat{\boldsymbol{w}} \|$$
$$\mathscr{B} := \left\{ \begin{bmatrix} \widehat{u} \\ \widehat{y} \end{bmatrix} \mid \widehat{y} = \widehat{G} \widehat{u} \right\}$$

 $\textbf{ARMAX} \leftrightarrow \textbf{latency}$

e — disturbance

$$\min_{(\widehat{e},w)\subset\mathscr{B}_{\mathsf{ext}}} \|\widehat{e}\|$$
$$\mathscr{B}_{\mathsf{ext}} := \left\{ \begin{bmatrix} \widehat{e} \\ u \\ y \end{bmatrix} \mid y = [\widehat{H} \ \widehat{G}] \begin{bmatrix} \widehat{e} \\ u \end{bmatrix} \right\}$$

Summary: approximation criterion

TLS \leftrightarrow misfit \leftrightarrow errors-in-variables $\min_{\widehat{w} \subset \mathscr{B}} \| w - \widehat{w} \| \begin{pmatrix} \text{projection} \\ \text{of } w \text{ on } \mathscr{B} \end{pmatrix}$

 $\mathsf{OLS} \leftrightarrow \mathsf{latency} \leftrightarrow \mathsf{ARMAX}$

 $\min_{(\widehat{e},w)\in\mathscr{B}_{\mathsf{ext}}} \|\widehat{e}\|$

A general problem

the aim is to obtain "simple" and "accurate" model:

- "accurate" \rightarrow min. error($w, \widehat{\mathscr{B}}$) = misfit/latency
- "simple" \rightarrow Occam's razor principle: among equally accurate models, choose the simplest

Model complexity

simple models are small models

 $\mathscr{B}_1 \subset \mathscr{B}_2 \implies \mathscr{B}_1 \text{ is simpler than } \mathscr{B}_2$

nonlinear model complexity is an open problem

in the linear time-invariant case, $\mathcal B$ is a subspace

size of the model = dimension of ${\mathscr B}$

however, models with inputs are infinite dimensional

Linear time-invariant model's complexity

restriction of \mathscr{B} on an interval [1, T]

$$\begin{split} \mathscr{B}|_{\mathcal{T}} &= \{ \, \textit{w} = \big(\textit{w}(1), \dots, \textit{w}(\mathcal{T})\big) \mid \exists \ \textit{w}_{p}, \textit{w}_{f}, \\ & \text{such that} \, (\textit{w}_{p}, \textit{w}, \textit{w}_{f}) \in \mathscr{B} \, \} \end{split}$$

for sufficiently large T

$$dim(\mathscr{B}|_{\mathcal{T}}) = (\texttt{\# of inputs}) \cdot \mathcal{T} + (order)$$
$$complexity(\mathscr{B}) = \begin{bmatrix} m \\ \ell \end{bmatrix} \rightarrow \texttt{\# of inputs}$$
$$\rightarrow order or lag$$

 $\mathscr{L}_{\mathrm{m,\ell}}$ — set of LTI systems of bounded complexity

Complexity selection

if m is given and fixed, choosing the complexity is an order selection problem

in general, choosing the complexity involves order selection and input selection

 $\texttt{m}=\textbf{0},\,\ell=\textbf{0}\implies \mathscr{B}=\{\,\textbf{0}\,\}$ is the only model

 $m = 1, \ell = 0 \implies \mathscr{B}$ is a line through 0

 $m = 1, \ell = 1 \implies \mathscr{B}$ is 1st order SISO

 $\texttt{m}=\texttt{1},\,\ell=\texttt{2}\implies\mathscr{B}\text{ is 2nd order SISO}$

Approximation error-complexity trade-off

minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}$$

$$\begin{bmatrix} \operatorname{error}(\boldsymbol{w}, \widehat{\mathscr{B}}) \\ \operatorname{complexity}(\widehat{\mathscr{B}}) \end{bmatrix}$$

three ways to "scalarize" the problem:

1. minimize over $\widehat{\mathscr{B}} \in \mathscr{L} \operatorname{error}(w, \widehat{\mathscr{B}}) + \lambda \operatorname{complexity}(\widehat{\mathscr{B}})$

2. minimize over $\widehat{\mathscr{B}} \in \mathscr{L}$ complexity $(\widehat{\mathscr{B}})$ subject to error $(w, \widehat{\mathscr{B}}) \leq \mu$

3. minimize over $\widehat{\mathscr{B}}$ error $(w, \widehat{\mathscr{B}})$ subject to $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$

Complexity minimization with error bound

minimize over $\widehat{\mathscr{B}} \in \mathscr{L}$ complexity $(\widehat{\mathscr{B}})$ subject to error $(w, \widehat{\mathscr{B}}) \leq \mu$

Error minimization with complexity bound

minimize over $\widehat{\mathscr{B}}$ error $(w, \widehat{\mathscr{B}})$ subject to $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$

Summary: error-complexity trade-off

LTI model complexity

complexity(
$$\mathscr{B}$$
) = $\begin{bmatrix} m \\ \ell \end{bmatrix} \xrightarrow{\rightarrow} # of inputs \\ \xrightarrow{\rightarrow} order or lag$

error-complexity trade-off

minimize over
$$\widehat{\mathscr{B}} \in \mathscr{L}$$
 $\begin{bmatrix} \operatorname{error}(w, \widehat{\mathscr{B}}) \\ \operatorname{complexity}(\widehat{\mathscr{B}}) \end{bmatrix}$

tracing all optimal solutions requires hyper parameter

- 1. λ no physical meaning
- 2. μ bound on the error
- 3. (m, ℓ) bound on the complexity

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Approximate identification problem

minimize over
$$\widehat{\mathscr{B}}$$
 error $(w, \widehat{\mathscr{B}})$
subject to $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$

in the case error = misfit

$$\operatorname{error}(w,\widehat{\mathscr{B}}) = \min_{\widehat{w}\in\widehat{\mathscr{B}}} \|w - \widehat{w}\|$$

the problem is

 $\begin{array}{ll} \text{minimize} & \text{over } \widehat{\mathscr{B}}, \ \widehat{w} & \|w - \widehat{w}\| \\ \text{subject to} & \widehat{w} \in \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m},\ell} \end{array}$

Exact, noisy, and missing data

 $v_i^k(t)$ — variance of the measurement noise on $w_i^k(t)$

$$\|\boldsymbol{w} - \widehat{\boldsymbol{w}}\|_{\alpha}^{2} = \sum_{k=1}^{N} \sum_{i=1}^{q} \sum_{t=1}^{T} \alpha_{i}^{k}(t) (w_{i}^{k}(t) - \widehat{w}_{i}^{k}(t))^{2}$$

exact data

 $v_i^k(t) = \infty$ imposes equality constraint $\widehat{w}_i^k(t) = w_i^k(t)$

 $v_i^k(t) = 0$ makes $||w - \widehat{w}||_{\alpha}^2$ independent of $w_i^k(t)$

Summary: identification problem

approximate identification in the misfit setting

$$\begin{array}{ll} \text{minimize} & \text{over } \widehat{\mathscr{B}}, \ \widehat{w} & \|w - \widehat{w}\|_{\alpha} \\ \text{subject to} & \ \widehat{w} \in \widehat{\mathscr{B}} \in \mathscr{L}_{\mathrm{m},\ell} \end{array} \tag{SYSID}$$

element-wise weighted error criterion $\|\cdot\|_{\alpha}$ exact $w_i^k(t) \leftrightarrow \alpha_i^k(t) = \infty$ missing $w_i^k(t) \leftrightarrow \alpha_i^k(t) = 0$

Next: SYSID \leftrightarrow Hankel structured LRA

$$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$$
 rank deficient

relation at time t = 1

$$R_0 w(1) + R_1 w(2) + \cdots + R_\ell w(\ell + 1) = 0$$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(1) \\ w(2) \\ \vdots \\ w(\ell+1) \end{bmatrix} = 0$$

$$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$$
 rank deficient

relation at time t = 2

$$R_0 w(2) + R_1 w(3) + \dots + R_\ell w(\ell + 2) = 0$$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(2) \\ w(3) \\ \vdots \\ w(\ell+2) \end{bmatrix} = 0$$

 $w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$ rank deficient

relation at time $t = T - \ell$

$$R_0 w(T-\ell) + R_1 w(T-\ell+1) + \cdots + R_\ell w(T) = 0$$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \begin{bmatrix} w(T-\ell) \\ w(T-\ell+1) \\ w(T-\ell+2) \\ \vdots \\ w(T) \end{bmatrix} = 0$$

Putting it all together

relation for $t = 1, \ldots, T - \ell$

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_\ell w(t+\ell) = 0$$

$$\underbrace{\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix}}_{R} \underbrace{\begin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \\ w(2) & w(3) & \cdots & w(T-\ell+1) \\ w(3) & w(4) & \cdots & w(T-\ell+2) \\ \vdots & \vdots & & \vdots \\ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}}_{\mathscr{H}_{\ell+1}(w)} = 0$$

$w \in \mathscr{B} \iff \mathscr{H}_{\ell+1}(w)$ rank deficient

with $R \in \mathbb{R}^{(q-m) \times q(\ell+1)}$ full row rank,

 $\operatorname{rank}\left(\mathscr{H}_{\ell+1}(w)=0
ight)\leq q\ell+{\tt m}$ (q — # of variables)

 $w \in \mathscr{B} \in \mathscr{L}_{m,\ell} \iff \operatorname{rank}(\mathscr{H}_{\ell+1}(w)) \le q\ell + m$

multiple time-series \leftrightarrow mosaic-Hankel matrix

$$\{ w^{1}, \dots, w^{N} \} \subset \mathscr{B} \in \mathscr{L}_{m,\ell}$$

$$\iff \operatorname{rank} \left(\underbrace{\left[\mathscr{H}_{\ell+1}(w^{1}) \cdots \mathscr{H}_{\ell+1}(w^{N}) \right]}_{\mathscr{H}_{\ell+1}(w)} \right) \leq q\ell + m$$

Structured weighted low-rank approximation

$$\begin{array}{ll} \text{minimize} & \text{over } \widehat{\mathscr{R}} \text{ and } \widehat{w} & \|w - \widehat{w}\|_{\alpha} \\ \text{subject to} & \widehat{w} \subset \widehat{\mathscr{R}} \in \mathscr{L}_{\mathrm{m},\ell} \\ & & \\$$

Summary: structured low-rank approximation

$$(SYSID) \iff (SLRA)$$

LTI model class \iff Hankel structure

repeated experiments \iff mosaic-Hankel structure

$$\begin{bmatrix} \mathscr{H}_{\ell+1}(w^1) & \cdots & \mathscr{H}_{\ell+1}(w^N) \end{bmatrix}$$

bounded complexity \iff rank constraint

$$(\mathsf{m},\ell) \quad \leftrightarrow \quad \mathbf{r} = \mathbf{q}\ell + \mathsf{m}$$

Outline

Approximation error-model complexity trade-off

System identification \leftrightarrow low-rank approximation

Solution methods: variable projection

Solution methods

given: data w and complexity bound (m, ℓ)

find: $\widehat{\mathscr{B}}$ that solves (SYSID) or, equivalently, (SLRA)

- 1. choice of model representation
 - transfer function
 - input/state/output
 - ▶ ...
- 2. choice of optimization method
 - local optimization
 - global optimization
 - convex relaxations

Model vs model representation

1st order SISO model $\mathscr{B} \in \mathscr{L}_{1,1}$

$$\mathscr{B}_{\mathsf{de}}(\theta) = \left\{ \left. \widehat{w} \right| \left[\begin{array}{cc} \theta_1 & \theta_2 & \theta_3 & \theta_4 \end{array} \right] \left[\begin{array}{c} \widehat{w}_1(t) \\ \widehat{w}_2(t) \\ \widehat{w}_1(t+1) \\ \widehat{w}_2(t+1) \end{array} \right] = 0, \ \forall t \right\}$$

transfer functions

$$G_{w_1\mapsto w_2}(z)=-rac{ heta_1+ heta_3 z}{ heta_2+ heta_4 z} \quad,\quad G_{w_2\mapsto w_1}(z)=-rac{ heta_2+ heta_4 z}{ heta_1+ heta_3 z}$$

state space, convolution, ..., representations

Problem formulation vs solution method

in the classical setting, model = representation

- \implies problems are mixed with solution methods
- e.g., "total least-squares" is both problem and method

the behavioral setting distinguishes

used forabstractproblem formulationconcretesolution methods

involves

 $\mathscr{B}, \mathscr{L}_{\mathrm{m},\ell} \ \mathscr{B}(\theta), \ \theta \in \Theta$

low-rank approx. is abstract problem formulation

Parameter optimization problem

model representation

$$\mathscr{B}(heta) = \{ \, \widehat{w} \mid g_{ heta}(\widehat{w}) = \mathsf{0} \, \}$$

parameterized model class

$$\mathscr{M} = \{ \mathscr{B}(\boldsymbol{\theta}) \mid \boldsymbol{\theta} \in \Theta \}$$

optimization problem

 $\begin{array}{ll} \text{minimize} & \text{over } \theta \in \Theta, \ \widehat{w} & \|w - \widehat{w}\|_{\alpha} \\ \text{subject to} & g_{\theta}(\widehat{w}) = 0 \end{array} \tag{SYSID}_{\theta} \end{array}$

Bilinear structure of the problem

 $(SYSID_{\theta})$ — constrained nonlinear least-squares

 ${\mathscr B}$ linear

- $\implies g_{ heta}(\widehat{w})$ bilinear (in heta and \widehat{w})
- \implies (SYSID_{θ}) can be solved globally for given θ

variable projection (VARPRO) for separable nonlinear least-squares problems

if $T \gg \ell$, elimination of \widehat{w} leads to big reduction

System theoretic view of VARPRO

Non-convexity of error $(w, \mathscr{B}(\theta))$

Computational details

O(T) evaluation of error $(w, \mathscr{B}(\theta))$ and its derivatives

- using the Kalman smoother
- Cholesky factorization of banded Toeplitz matrix

▶ ...

$$\mathscr{B}(heta)=\mathscr{B}(lpha heta), ext{ for all } lpha
eq 0$$

 $\Theta = \{ \theta \mid \|\theta\|_2 = 1 \} \implies$ optimization on a manifold

- generic methods (optimization theory)
- custom methods (system identification)
 - data driven local coordinates (McKelvey)

▶ ...

Summary: solution methods

solution methods involve two choices:

- 1. model representation
- 2. optimization method

in the linear case, bilinear structure \rightsquigarrow VARPRO

constraint nonlinear least-squares problem

 $\min_{\theta \in \Theta} \, \operatorname{error} \bigl(\textit{w}, \mathscr{B}(\theta) \bigr)$

 Θ is a manifold \rightsquigarrow optimization on a manifold