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First is the data . . .

data set

model

class

approximation

criterion
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Line fitting (linear static model)
data

model approx.

w1, . . . ,wN — data points (the order is not important)
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Time series data (dynamic model)

data

model approx.

w(1), . . . ,w(T ) — samples in time (the order is important)
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Summary: data
data

model approx.

◮ the data is a set w = {w1, . . . ,wN }

◮ of vector valued wk =




wk
1
...

wk
q




◮ time series wk
i =

(
wk

i (1), . . . ,w
k
i (Tk)

)

N — # of repeated experiments

q — # of variables

Tk — # of time samples in the k th exp.

◮ in static problems, T1 = · · ·= TN = 1
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Next is the model class . . .

data set

model

class

approximation

criterion
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Line fitting (linear static model)
data

model approx.

B — model: line through the origin

M — model class: all lines through the origin
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Conic section fitting (quadratic static model)
data

model approx.

B — model: conic section

M — model class: all conic sections
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Classical definition of dynamical model
data

model approx.

◮ dynamical model is signal processor

modelû ŷ

◮ specified by a map ŷ = f (û)

◮ "state space model", "transfer function model", . . .

◮ however, lines and conic sections may not be graphs

◮ e.g., , can’t be represented by f : û 7→ ŷ
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Behavioral definition of model
data

model approx.

◮ a model is a subset

B =
{

ŵ
∣∣ g(ŵ) = 0 holds

}

◮ represented by an implicit function g

◮ in the static case, g(ŵ) = 0 is algebraic equation

◮ in the dynamic case, g(ŵ) = 0 is difference equation

◮ ŵ =
[

û
ŷ

]
, ŷ = f (û) is a special case of g(ŵ) = 0

(g(û, ŷ) = ŷ − f (û))
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Summary: model
data

model approx.

◮ three data modeling examples:

problem model

line fitting static linear

conic section fitting static nonlinear

system identification dynamic

◮ two definitions of a model:

classical behavioral

map ŷ = f (û) set { ŵ g(ŵ) = 0}
f — function g — relation

◮ the classical one can not deal with all examples
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Finally, the approximation criterion . . .

data set

model

class

approximation

criterion
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Exact model

w ⊂ B ⇐⇒ w1, . . . ,wN ∈ B

⇐⇒ : "w is exact data of B"

◮ two well known exact modeling problems

◮ realization: LTI model class, impulse resp. data

◮ interpolation: static nonlinear model class

0 5 10

0

2

4

6

8

polynomial interpolation

u

y

B =
{ [

û
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Exact 3rd order nonlinear static models

B =
{ [

ŵ1

ŵ2

] ∣∣ g(ŵ1, ŵ2) = 0
}

g is 3rd order polynomial in ŵ1, ŵ2
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Ordinary least squares
data

model approx.
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Total least squares
data

model approx.
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Linear static case
data

model approx.

◮ total least squares

min
û,ŷ ,θ

∥∥[u− û y − ŷ
]∥∥

F
s.t. ûθ = ŷ︸ ︷︷ ︸

(û,ŷ)⊂B(θ )

ŵ = (û, ŷ) approximates w = (u,y)

◮ ordinary least squares

min
ê,θ

‖ê‖2 s.t. uθ = y + ê︸ ︷︷ ︸
(ê,u,y)⊂Bext(θ )

ê is unobserved (latent) input

22 / 62



Approximation criteria

◮ Misfit approach:

modify w as little as possible,

so that ŵ is exact

‖w − ŵ‖ is the misfit criterion

◮ Latency approach:

augment B by as small as possible e,

so that (e,w) is exact

‖e‖ is the latency criterion
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Deterministic vs stochastic setting

data

model approx.

◮ stochastic estimation ↔ deterministic approx.

noise

model

cost

function

maximum likelihood

◮ also in control

LQG control ↔ H2 optimal control
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Misfit and latency in the stochastic setting

data

model approx.

EIV ↔ misfit

G• •

+ +

ū

ũ

ȳ

ỹ

u y

ũ, ỹ — measurement errors

min
ŵ⊂B

‖w − ŵ‖

B :=
{[

û
ŷ

]
| ŷ = Ĝû

}

ARMAX ↔ latency

G

H

+

e

u = ū

y

e — disturbance

min
(ê,w)⊂Bext

‖ê‖

Bext :=

{[
ê
u
y

]
| y = [ Ĥ Ĝ ]

[
ê

u

]}
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Summary: approximation criterion

data

model approx.

◮ TLS ↔ misfit ↔ errors-in-variables

min
ŵ⊂B

‖w − ŵ‖
(

projection

of w on B

)

◮ OLS ↔ latency ↔ ARMAX

min
(ê,w)∈Bext

‖ê‖
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A general problem

data

w
identification
−−−−−−−−−→

model

B ∈ M

the aim is to obtain "simple" and "accurate" model:

"accurate" → min. error(w ,B̂) = misfit/latency

"simple" → Occam’s razor principle:

among equally accurate models,

choose the simplest
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Model complexity

◮ simple models are small models

B1 ⊂ B2 =⇒ B1 is simpler than B2

◮ nonlinear model complexity is an open problem

◮ in the linear time-invariant case, B is a subspace

size of the model = dimension of B

◮ however, models with inputs are infinite dimensional
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Linear time-invariant model’s complexity

◮ restriction of B on an interval [1,T ]

B|T = {w =
(
w(1), . . . ,w(T )

)
| ∃ wp,wf,

such that (wp,w ,wf) ∈ B}

◮ for sufficiently large T

dim(B|T ) = (# of inputs) ·T + (order)

complexity(B) =

[
m

ℓ

]
→ # of inputs

→ order or lag

◮ L
m,ℓ — set of LTI systems of bounded complexity
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Complexity selection
◮ if m is given and fixed, choosing the complexity is an

order selection problem

◮ in general, choosing the complexity involves

order selection and input selection

illustrated next on the example from the introduction
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Example: misfit-complexity trade-off
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‖w‖= 23.68

m= 0
ℓ= 0

number of inputs m
ord

er ℓ
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m= 0, ℓ= 0 =⇒ B = {0} is the only model
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Example: misfit-complexity trade-off
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m= 1, ℓ= 0 =⇒ B is a line through 0
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Example: misfit-complexity trade-off
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m= 1, ℓ= 1 =⇒ B is 1st order SISO
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Example: misfit-complexity trade-off
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Approximation error-complexity trade-off

minimize over B̂ ∈ L

[
error(w ,B̂)

complexity(B̂)

]

three ways to "scalarize" the problem:

1. minimize over B̂ ∈ L error(w ,B̂)+λcomplexity(B̂)

2.
minimize over B̂ ∈ L complexity(B̂)

subject to error(w ,B̂)≤ µ

3.
minimize over B̂ error(w ,B̂)

subject to B̂ ∈ L
m,ℓ
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Complexity minimization with error bound

minimize over B̂ ∈ L complexity(B̂)

subject to error(w ,B̂)≤ µ
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Error minimization with complexity bound

minimize over B̂ error(w ,B̂)

subject to B̂ ∈ L
m,ℓ
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Summary: error-complexity trade-off

◮ LTI model complexity

complexity(B) =

[
m

ℓ

]
→ # of inputs

→ order or lag

◮ error-complexity trade-off

minimize over B̂ ∈ L

[
error(w ,B̂)

complexity(B̂)

]

◮ tracing all optimal solutions requires hyper parameter

1. λ — no physical meaning

2. µ — bound on the error

3. (m, ℓ) — bound on the complexity
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Approximate identification problem

minimize over B̂ error(w ,B̂)

subject to B̂ ∈ L
m,ℓ

◮ in the case error = misfit

error(w ,B̂) = min
ŵ∈B̂

‖w − ŵ‖

◮ the problem is

minimize over B̂, ŵ ‖w − ŵ‖

subject to ŵ ∈ B̂ ∈ L
m,ℓ
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Exact, noisy, and missing data

◮ vk
i (t) — variance of the measurement noise on wk

i (t)

‖w − ŵ‖2
α =

N

∑
k=1

q

∑
i=1

T

∑
t=1

αk
i (t)

(
wk

i (t)− ŵk
i (t)

)2

noisy data

αk
i (t) :=

1

vk
i (t) missing data

vk
i (t) = ∞, αk

i (t) = 0

exact data

vk
i (t) = 0, αk

i (t) = ∞

◮ vk
i (t) = ∞ imposes equality constraint ŵk

i (t) = wk
i (t)

◮ vk
i (t) = 0 makes ‖w − ŵ‖2

α independent of wk
i (t)
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Summary: identification problem

◮ approximate identification in the misfit setting

minimize over B̂, ŵ ‖w − ŵ‖α

subject to ŵ ∈ B̂ ∈ L
m,ℓ

(SYSID)

◮ element-wise weighted error criterion ‖ · ‖α

exact wk
i (t) ↔ αk

i (t) = ∞

missing wk
i (t) ↔ αk

i (t) = 0
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Next: SYSID ↔ Hankel structured LRA

exact trajectory w ∈ B ∈ L
m,ℓ

m

R0w(t)+R1w(t +1)+ · · ·+Rℓw(t + ℓ) = 0

m

rank deficient

Hℓ+1(w) :=




w(1) w(2) · · · w(T − ℓ)
w(2) w(3) · · · w(T − ℓ+1)
w(3) w(4) · · · w(T − ℓ+2)
...

...
...

w(ℓ+1) w(ℓ+2) · · · w(T )
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w ∈ B ⇐⇒ Hℓ+1(w) rank deficient

◮ relation at time t = 1

R0w(1)+R1w(2)+ · · ·+Rℓw(ℓ+1) = 0

◮ in matrix form:

[
R0 R1 · · · Rℓ

]




w(1)
w(2)
...

w(ℓ+1)


= 0
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w ∈ B ⇐⇒ Hℓ+1(w) rank deficient

◮ relation at time t = 2

R0w(2)+R1w(3)+ · · ·+Rℓw(ℓ+2) = 0

◮ in matrix form:

[
R0 R1 · · · Rℓ

]




w(2)
w(3)
...

w(ℓ+2)


= 0
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w ∈ B ⇐⇒ Hℓ+1(w) rank deficient

◮ relation at time t = T − ℓ

R0w(T − ℓ)+R1w(T − ℓ+1)+ · · ·+Rℓw(T ) = 0

◮ in matrix form:

[
R0 R1 · · · Rℓ

]




w(T − ℓ)
w(T − ℓ+1)
w(T − ℓ+2)

...

w(T )



= 0
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Putting it all together

◮ relation for t = 1, . . . ,T − ℓ

R0w(t)+R1w(t +1)+ · · ·+Rℓw(t + ℓ) = 0

◮ in matrix form:

[
R0 R1 · · · Rℓ

]
︸ ︷︷ ︸

R




w(1) w(2) · · · w(T − ℓ)
w(2) w(3) · · · w(T − ℓ+1)
w(3) w(4) · · · w(T − ℓ+2)
...

...
...

w(ℓ+1) w(ℓ+2) · · · w(T )




︸ ︷︷ ︸
Hℓ+1(w)

= 0
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w ∈ B ⇐⇒ Hℓ+1(w) rank deficient

◮ with R ∈ R
(q−m)×q(ℓ+1) full row rank,

rank
(
Hℓ+1(w) = 0

)
≤ qℓ+m (q — # of variables)

w ∈ B ∈ L
m,ℓ ⇐⇒ rank

(
Hℓ+1(w)

)
≤ qℓ+m

◮ multiple time-series ↔ mosaic-Hankel matrix

{w1, . . . ,wN } ⊂ B ∈ L
m,ℓ

⇐⇒ rank
([

Hℓ+1(w
1) · · · Hℓ+1(w

N)
]

︸ ︷︷ ︸
Hℓ+1(w)

)
≤ qℓ+m
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Structured weighted low-rank approximation

minimize over B̂ and ŵ ‖w − ŵ‖α

subject to ŵ ⊂ B̂ ∈ L
m,ℓ

(SYSID)

m

minimize over ŵ ‖w − ŵ‖α

subject to rank
(
Hℓ+1(ŵ)

)
≤ qℓ+m

(SLRA)
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Summary: structured low-rank approximation

◮ (SYSID) ⇐⇒ (SLRA)

◮ LTI model class ⇐⇒ Hankel structure

◮ repeated experiments ⇐⇒ mosaic-Hankel structure

[
Hℓ+1(w

1) · · · Hℓ+1(w
N)

]

◮ bounded complexity ⇐⇒ rank constraint

(m, ℓ) ↔ r = qℓ+m

51 / 62



Outline

Introduction: data, model class, approximation

Approximation error–model complexity trade-off

System identification ↔ low-rank approximation

Solution methods: variable projection

Exercises

52 / 62



Solution methods

◮ given: data w and complexity bound (m, ℓ)

◮ find: B̂ that solves (SYSID) or, equivalently, (SLRA)

1. choice of model representation
◮ transfer function
◮ input/state/output
◮ . . .

2. choice of optimization method
◮ local optimization
◮ global optimization
◮ convex relaxations
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Model vs model representation

◮ 1st order SISO model B ∈ L1,1

Bde(θ) =
{

ŵ
∣∣∣
[
θ1 θ2 θ3 θ4

]



ŵ1(t)

ŵ2(t)

ŵ1(t+1)

ŵ2(t+1)


= 0, ∀t

}

◮ transfer functions

Gw1 7→w2
(z) =−

θ1 +θ3z

θ2 +θ4z
, Gw2 7→w1

(z) =−
θ2 +θ4z

θ1 +θ3z

◮ state space, convolution, . . . , representations

54 / 62



Problem formulation vs solution method

◮ in the classical setting, model = representation

◮ =⇒ problems are mixed with solution methods

◮ e.g., "total least-squares" is both problem and method

◮ the behavioral setting distinguishes

used for involves

abstract problem formulation B, L
m,ℓ

concrete solution methods B(θ ), θ ∈Θ

◮ low-rank approx. is abstract problem formulation
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Parameter optimization problem

◮ model representation

B(θ) = { ŵ | gθ (ŵ) = 0}

◮ parameterized model class

M = {B(θ) | θ ∈Θ}

◮ optimization problem

minimize over θ ∈Θ, ŵ ‖w − ŵ‖α

subject to gθ (ŵ) = 0
(SYSIDθ )
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Bilinear structure of the problem

◮ (SYSIDθ ) — constrained nonlinear least-squares

◮ B linear

=⇒ gθ (ŵ) bilinear (in θ and ŵ )

=⇒ (SYSIDθ ) can be solved globally for given θ

◮ variable projection (VARPRO)

for separable nonlinear least-squares problems

◮ if T ≫ ℓ, elimination of ŵ leads to big reduction
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System theoretic view of VARPRO

solving (SYSIDθ ) for given θ

m

misfit evaluation: error
(
w ,B(θ)

)

m

likelihood evaluation

m

least-squares smoothing of w by B(θ)

m

fast algorithms:

Kalman smoothing

Cholesky factorization

. . .
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Non-convexity of error
(
w ,B(θ )

)
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Computational details

◮ O(T ) evaluation of error
(
w ,B(θ)

)
and its derivatives

◮ using the Kalman smoother

◮ Cholesky factorization of banded Toeplitz matrix

◮ . . .

◮ B(θ) = B(αθ), for all α 6= 0

◮ Θ= {θ | ‖θ‖2 = 1} =⇒ optimization on a manifold

◮ generic methods (optimization theory)

◮ custom methods (system identification)

◮ data driven local coordinates (McKelvey)

◮ . . .
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Summary: solution methods

◮ solution methods involve two choices:

1. model representation

2. optimization method

◮ in the linear case, bilinear structure ❀ VARPRO

◮ constraint nonlinear least-squares problem

min
θ∈Θ

error
(
w ,B(θ)

)

◮ Θ is a manifold ❀ optimization on a manifold
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