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Outline

Introduction: data, model class, approximation



First is the data ...

data set

e

model

S

approximation

class

criterion



Line fitting (linear static model)

data
~ ~

approx.

model

w',...,wN — data points (the order is not important)
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Time series data (dynamic model)

data
~

model approx.

w(1),...,w(T) — samples in time (the order is important)
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Summary: data

data
-

model approx.

the dataisaset w={w',.... wN}

v

v

k

wf
of vector valued wk = |
Wq

v

time series wX = (wk(1),...,wX(Ty))

N — # of repeated experiments
qg — #ofvariables
Ty — # of time samples in the kth exp.

v

in static problems, Ty =--- = Ty =1
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Next is the model class ...

data set

PN

model approximation
class criterion
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Line fitting (linear static model)

data\
model approx.
% — model: line through the origin

# — model class: all lines through the origin
8,
6,
s 4
2,
0,
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Conic section fitting (quadratic static model)

data
~ ~

approx.

model

2 — model: conic section
# — model class: all conic sections
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Classical definition of dynamical model

data
~

model approx.

v

dynamical model is signal processor

i —{ model |—

specified by a map y = f(u)

v

v

"state space model", "transfer function model", ...

v

however, lines and conic sections may not be graphs

e.g., + : @* can't be represented by f: U+ y
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Behavioral definition of model

data
model approx.
» a model is a subset
% ={w|g(w)=0 holds }
» represented by an implicit function g .

in the static case, g(w) = 0 is algebraic equation

v

v

in the dynamic case, g(w) = 0 is difference equation

~

W= [H] , ¥ = f(U) is a special case of g(w)

y
(9(t.y) =y —f(u))
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Summary: model

data
- ~
model approx.
» three data modeling examples:
problem model
line fitting static linear
conic section fitting static nonlinear

system identification dynamic

» two definitions of a model:
classical behavioral

map y = f(u) set{w|g(w)=0}
f — function g — relation

» the classical one can not deal with all examples
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Finally, the approximation criterion ...

data set

PN

model approximation
class criterion
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Exact model

wc % <« w,. wheaz

<= : "ws exact data of #"

» two well known exact modeling problems
» realization: LTI model class, impulse resp. data

» interpolation: static nonlinear model class

polynomial interpolation

8 \/
ul 1y =~fu
S 4 [ } ’ y ( )}
2 f is 8th order polynomial
0

o
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Exact 3rd order nonlinear static models

#={ || | 9w, i) =0}

4] W1
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Ordinary least squares

model approx.

Wo
N
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Total least squares

data
~ ~
approx.

model
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Linear static case

data
~ ~

approx.

model

» total least squares

~

mir; |[[u=T y—Y]|s st U=y

(u,y)c(0)
w = (u,y) approximates w = (u, y)
» ordinary least squares

min ||€]l. st u8=y+e
0 —_—

6,

(8,U,Y)C Bext(6)

e is unobserved (latent) input

22/62



Approximation criteria

» Misfit approach:

modify w as little as possible,
so that w is exact
|w — w/|| is the misfit criterion

» Latency approach:

augment Z by as small as possible e,
so that (e, w) is exact
|le|| is the latency criterion
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Deterministic vs stochastic setting

data
~

model

» stochastic estimation <« deterministic approx.

noise  maximum likelihood cost

model " function

» also in control

LQG control <«  H, optimal control

approx.
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Misfit and latency in the stochastic setting

EIV & misfit
b y
u—® D—y
u y

U, y — measurement errors
min w— ]
wCHh

5 ={[5) 17-a)

data
-

model

ARMAX <« latency

e—{H_
(H— ¥
u=0—| G

e — disturbance
[l

approx.

_min
(e,W)C%ext

0= { [§] 1v-1ral ]|
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Summary: approximation criterion

data
~

model approx.

» TLS < misfit & errors-in-variables

: Ty projection
min w—w| (50 )

» OLS « latency <+ ARMAX

_min ¢
(e,w) € Pext
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Outline

Approximation error—-model complexity trade-off
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A general problem

data identification model
w ’ Be M

the aim is to obtain "simple" and "accurate" model:

"accurate” — min. error(w, @) = misfit/latency
"simple” — Occam’s razor principle:
among equally accurate models,
choose the simplest
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Model complexity

v

simple models are small models

By C B> = Ay issimpler than H-

v

nonlinear model complexity is an open problem

v

in the linear time-invariant case, % is a subspace

size of the model = dimension of %

v

however, models with inputs are infinite dimensional
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Linear time-invariant model’s complexity

» restriction of % on an interval [1, T]

Blr={w=(w(1),....w(T)) | 3 wp,w,
such that (wp, w, w) € A}

» for sufficiently large T

dim(#|1) = (# of inputs) - T + (order)

complexity(#) = [m] — # of inputs

¢| — order or lag

» £, — set of LTI systems of bounded complexity
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Complexity selection

» if m is given and fixed, choosing the complexity is an
order selection problem

» in general, choosing the complexity involves
order selection and input selection

illustrated next on the example from the introduction
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Example: misfit-complexity trade-off

o |w|=2368

L

<
20 0‘68

m=0,/=0 = %A ={0}is the only model
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Example: misfit-complexity trade-off

20
c 10 |
3
2
0 1 \

o
"Umber of inpyrs - )

m=1,/=0 = A is aline through 0
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Example: misfit-complexity trade-off

L

o
"Umber of inpyrs - )

m=1,/=1 = ZAis 1st order SISO
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Example: misfit-complexity trade-off

L

o
"Umber of inpyrs - )

m=1,/=2 = % is 2nd order SISO
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Approximation error-complexity trade-off

error(w, ) ]

minimize over Z € & U
complexity(%)

three ways to "scalarize" the problem:

1. minimize over Z c £ error(w, %) + .complexity (%)

minimize over Zc.¥ complexity(%)
subjectto error(w, %) <pu

-~

minimize over # error(w, %)
subjectto X e %,
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Complexity minimization with error bound

minimize over Z €. complexity(%)
subject to error(w,@) <pu

misfit
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Error minimization with complexity bound

minimize over % error(w, %)
subject to f%’?e.fm,g

misfit
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Summary: error-complexity trade-off

» LTI model complexity

_ _|m| — #ofinputs
complexity(%) = [6] — order or lag

» error-complexity trade-off
minimize over # € . error(w, )A
complexity (%)
» tracing all optimal solutions requires hyper parameter
1. A — no physical meaning
2. u— bound on the error
3. (m,¢) — bound on the complexity
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Outline

System identification «» low-rank approximation
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Approximate identification problem

~

minimize over # error(w, %)
subject to @egmg

» in the case error = misfit

error(w, %) = min ||w — ||
weR

» the problem is

minimize over &, w ||w— w||
subjectto we %€ %,
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Exact, noisy, and missing data

» vi(t) — variance of the measurement noise on w¥(t)

N q
Iw—wl =Y 3 Y af () (w(t)—wf(1)®
k=1i=1t=1
exact data
noisy data ~ vK(t)=0, ak(t) = oo
)=
vi(1) missing data

VE(t) =0, af(t) =0

i

> v,-k(t) = oo imposes equality constraint Vv/‘(t) = wk(1)

> v/ (t) =0 makes ||w — w||2 independent of w/(t)
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Summary: identification problem

» approximate identification in the misfit setting

minimize over B, W ||w — W/«

e SYSID
subjectto we Zec %, ( )

» element-wise weighted error criterion || - ||«

exact wk(t) < af(t) =

missing wX(t) < af(t)=0
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Next: SYSID <« Hankel structured LRA

exact trajectory w € Z € £,

)
Row(t)+ Ryw(t+1)+---+Rw(t+¢)=0
7
rank deficient
[ w(1) w(2) - w(T—1¢) ]
w(2) w@) - w(T—¢+1)
S (W) = w(3) w(4) - w(T—-(+2)

_W(€:+1) W(€:+ 2) .- W(:T)
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we B <— ;.1(w) rank deficient

» relation attime t =1

Row(1)+Ryw(2)+-- +Rw(l+1)=0

» in matrix form:

Ro R AL | =0
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we B <— ;.1(w) rank deficient

» relation attime t =2

Row(2)+ Ryw(3)+---+Rw({+2)=0

» in matrix form:

[Ro Ry -+ Ry . =0
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we B <— ;.1(w) rank deficient

» relation attime t =T —/
Row(T —0)+ Ryw(T —(+1)+---+Rw(T)=0

» in matrix form:

<

(T—1)

(
[RO Ry - Rd w(T—-(+2)| —_¢
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Putting it all together

» relationfort=1,..., T—/
Row(t)+Riw(t+1)+---+Rw(t+¢)=0

» in matrix form:

w(1) w(2) - w(T—4) ]
w(2) w(@) - w(T—¢+1)
[Ro R - R w(3) w(4) - w(T—-(4+2)| _p
§ w(er1) wiet2) - w(:T)

-

Hi+1(w)
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we B <— ;.1(w) rank deficient

» with R € R(@-)xq(t+1) fyll row rank,

rank (#,1(w)=0) <gl+m (g — # of variables)

weBe Ly — rank(#1(w)) <gl+m

» multiple time-series < mosaic-Hankel matrix

(w',... o wNYcse Ly
o rank ([Haa(w) - s (W)]) <

-

K1 (w)
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Structured weighted low-rank approximation

minimize over Zand W ||w— ||,
| e (SYSID)
subjectto wC B e L,

i
minimize over w ||w— w||q

LRA
subjectto rank (% 1(W)) < gl+m (S )
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Summary: structured low-rank approximation

v

(SYSID) <= (SLRA)

LTI model class <= Hankel structure

v

v

repeated experiments <= mosaic-Hankel structure

(A (W) o g (W)

v

bounded complexity <= rank constraint

(m,¢) <« r=ql+mnm
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Outline

Solution methods: variable projection
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Solution methods

» given: data w and complexity bound (m, ¢)

» find: % that solves (SYSID) or, equivalently, (SLRA)

1. choice of model representation

» transfer function
» input/state/output

>---

2. choice of optimization method

» local optimization
» global optimization
» convex relaxations
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Model vs model representation

» 1st order SISO model # € . 4

wy (1)
@de(e):{wj (01 6, 05 04 {%‘3)] —0, vr}
wo(t41)
» transfer functions

_ 01+ 65z
0>+ 0,42

B 0>+ 042
01+ 63z

GW1|—>W2(Z) — 9 GWQHW1 (Z) =

» state space, convolution, ..., representations
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Problem formulation vs solution method

in the classical setting, model = representation

v

— problems are mixed with solution methods

v

v

e.g., "total least-squares" is both problem and method

the behavioral setting distinguishes

v

used for involves
abstract problem formulation %, £,
concrete solution methods #(0), 6 € ©

v

low-rank approx. is abstract problem formulation
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Parameter optimization problem

» model representation
#(0)={w|ge(w) =0}
» parameterized model class
M={AB0)] 6O}
» optimization problem

minimize over 8 €O, w |w—w|q

. YSID
subjectto gy(w)=0 (SYSIDe)
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Bilinear structure of the problem

v

v

(SYSIDgy) — constrained nonlinear least-squares

A linear
= gg(w) bilinear (in 6 and w)
—> (SYSIDy) can be solved globally for given 6

variable projection (VARPRO)
for separable nonlinear least-squares problems

if T>> ¢, elimination of w leads to big reduction
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System theoretic view of VARPRO

solving (SYSIDg) for given 6
)

misfit evaluation: error(w, %(6))

0

likelihood evaluation

0

least-squares smoothing of w by %(6)

0

fast algorithms:
Kalman smoothing
Cholesky factorization
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Non-convexity of error(w, %(0))




Computational details

» O(T) evaluation of error(w,2(6)) and its derivatives

» using the Kalman smoother
» Cholesky factorization of banded Toeplitz matrix

» B(0)=A(ab), forall o #0

» ©={0]|0|2=1} = optimization on a manifold

» generic methods (optimization theory)
» custom methods (system identification)

» data driven local coordinates (McKelvey)

> CRCEE
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Summary: solution methods

» solution methods involve two choices:
1. model representation
2. optimization method

» in the linear case, bilinear structure ~» VARPRO

» constraint nonlinear least-squares problem

min error(w, 4(0))

» O is a manifold ~» optimization on a manifold
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Outline

Exercises
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