DYSCO course on low-rank approximation and its applications

Behavioral approach

Ivan Markovsky

Vrije Universiteit Brussel

Plan

- 1. Introduction
- 2. Computational tools
- 3. Behavioral approach
- 4. System identification
- 5. Subspace methods
- 6. Generalizations

Outline

From Ax = b to low-rank approximation

 $\textit{Low-rank} \leftrightarrow \textit{behavioral approach}$

Exercises

Linear static models representations

Linear time-invariant model representations

Solution methods

Outline

From Ax = b to low-rank approximation

 $\textit{Low-rank} \leftrightarrow \textit{behavioral approach}$

Exercises

Linear static models representations

Linear time-invariant model representations

Solution methods

Line fitting $\stackrel{?}{\leftrightarrow} Ax \approx b$

classic problem: fit the points

$$\mathscr{D} := \{ d_1, \ldots, d_N \} \in \mathbb{R}^2$$

by a line passing through the origin

▶ classic solution: find approx. solution $x \in \mathbb{R}$ of

$$\begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix} x = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}$$

where $d_i = (a_i, b_i)$

the fitting line is

$$\mathscr{B}(x) := \{ (a,b) \in \mathbb{R}^2 \mid ax = b \}$$
 (*)

Line fitting $\stackrel{?}{\leftrightarrow} Ax \approx b$

▶ another solution: find approx. solution $x' \in \mathbb{R}$ of

$$\begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix} x' = \begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix}$$

the fitting line is

$$\mathscr{B}(x') := \{ (a,b) \in \mathbb{R}^2 \mid a = bx' \}$$
 (**)

- if exact solution exists, x' = 1/x, unless x = 0
- exceptions:
 - horizontal line (x = 0)
 - vertical line (x' = 0)

Approximation criteria

solving approximately the overdetermined systems

$$Ax = B$$
 and $A = Bx'$

where

$$A := \operatorname{col}(a_1, \dots, a_{10})$$
 and $B := \operatorname{col}(b_1, \dots, b_{10})$

in the least squares sense \rightsquigarrow different solutions

 the data modeling criterion depends on the (arbitrary) choice of model representation

Input/output representation

• Ax = b and A = bx' define lines in \mathbb{R}^2

$$\mathscr{B}(x) := \{ (a,b) \in \mathbb{R}^2 \mid ax = b \}$$
 (*)

$$\mathscr{B}(x') := \{ (a,b) \in \mathbb{R}^2 \mid a = bx' \}$$
 (**)

- (*) and (**) define a line *B* by functions
 - *a* → *b* in (*)
 - *b* → *a* in (**)
- input/output representations
 - ▶ in (*), a is input, b is output (a causes b)
 - ▶ in (**), b is input, a is output (b causes a)

Input/output representation

- ▶ we are interested in *M* set of lines through 0
- separately (*), (**) don't represent all lines through 0
- ▶ I/O representation: any $\mathscr{B} \in \mathscr{M}$ is representable as

$$\mathscr{B} = \mathscr{B}(x, \Pi) = \{ \Pi \begin{bmatrix} a \\ b \end{bmatrix} \mid ax = b \}$$

for some $x \in \mathbb{R}$ and a permutation matrix Π

link to system of linear equations

$$\mathscr{D} \subset \mathscr{B}(x, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) \quad \Longleftrightarrow \quad Ax = B$$

 $\mathscr{D} \subset \mathscr{B}(x, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}) \quad \Longleftrightarrow \quad Bx' = A$

Kernel representation

• any $\mathscr{B} \in \mathscr{M}$ can be represented as

$$\mathscr{B} = \ker(R) := \{ d \in \mathbb{R}^2 \mid Rd = R_1 a + R_2 b = 0 \}$$

for some nonzero vector $\boldsymbol{R} \in \mathbb{R}^{1 \times 2}$

- Rd = 0 defines a relation between *a* and *b*
- $\mathscr{D} \subset \ker(R)$ implies that

$$R\underbrace{\begin{bmatrix}d_1 & \cdots & d_N\end{bmatrix}}_{D} = 0$$

Image representation

• any $\mathscr{B} \in \mathscr{M}$ can be represented as

$$\mathscr{B} = \operatorname{image}(\mathsf{P}) := \{ d = \mathsf{P}\ell \mid \ell \in \mathbb{R} \}$$

for some vector $P \in \mathbb{R}^{2 \times 1}$

• $\mathscr{D} \subset \operatorname{image}(P)$ implies that

$$\begin{bmatrix} d_1 & \cdots & d_N \end{bmatrix} = PL$$

for some $L \in \mathbb{R}^{1 \times N}$

Summary

common feature of the representations considered

$$\exists x \in \mathbb{R} \qquad Ax = B \implies \\ \exists x' \in \mathbb{R} \qquad Bx' = A \implies \\ \exists x \in \mathbb{R}, \Pi \text{ permut.} \qquad [x -1] \Pi D = 0 \iff \\ \exists R \in \mathbb{R}^{1 \times 2}, R \neq 0 \qquad RD = 0 \iff \\ \exists P \in \mathbb{R}^{2 \times 1}, L \in \mathbb{R}^{1 \times N} \qquad D = PL \iff$$

representation free characterization of the exact data

Low-rank approximation

- representation free formulation
- exact modeling problem:

 \exists exact model for $\mathscr{D} \iff D$ is rank deficient

approximate modeling problem:

minimizeover $\widehat{\mathscr{D}}$ error($\mathscr{D}, \widehat{\mathscr{D}}$)subject to \exists exact model for $\widehat{\mathscr{D}}$ \updownarrow \updownarrow minimizeover \widehat{D} subject to \widehat{D} is rank deficient

Generalizations

1. multivariable data fitting $\mathscr{U} = \mathbb{R}^q$

- $\blacktriangleright \text{ linear static model } \leftrightarrow \quad \text{subspace}$
- $\blacktriangleright \ \ \mathsf{model} \ \mathsf{complexity} \quad \leftrightarrow \quad \mathsf{subspace} \ \mathsf{dimension}$
- ▶ rank(D) \leftrightarrow upper bound on the model complexity

2. nonlinear static modeling

- $\mathscr{D} \mapsto D$ nonlinear function
- nonlinearly structured low-rank approximation

3. linear time-invariant dynamical models

- $\mathscr{D} \mapsto$ Hankel matrix D
- Hankel structured low-rank approximation

4. nonlinear dynamic (2. + 3.)

Structure $\mathscr{S} \leftrightarrow \mathsf{Model}\ \mathsf{class}\ \mathscr{M}$

unstructured Hankel $q \times 1$ Hankel $q \times N$ Hankel mosaic Hankel [Hankel unstructured] block-Hankel Hankel-block linear static scalar LTI *q*-variate LTI *N* equal length traj. *N* general traj. finite impulse response 2D linear shift-invariant

Related frameworks

- behavioral approach in systems and control theory
 - representation free: model = set (the behavior)
 - no a priori separation of inputs and outputs
- errors-in-variables modeling
 - all variables are perturbed by noise
 - maximum likelihood estimation \leftrightarrow LRA
- principal component analysis
 - another statistical setting for LRA
- factor analysis
 - factors \leftrightarrow latent variables in image repr.

Outline

From Ax = b to low-rank approximation

$\textit{Low-rank} \leftrightarrow \textit{behavioral approach}$

Exercises

Linear static models representations

Linear time-invariant model representations

Solution methods

Behavioral approach

Jan C. Willems (1939–2013)

Outline

From Ax = b to low-rank approximation

Low-rank \leftrightarrow behavioral approach

Exercises

Linear static models representations

Linear time-invariant model representations

Solution methods

Outline

From Ax = b to low-rank approximation

 $Low-rank \leftrightarrow behavioral \ approach$

Exercises

Linear static models representations

Linear time-invariant model representations

Solution methods

Linear static model

"Good definition should formalize sensible intuition." Jan Willems

- ▶ linear static model with q variables = subspace of \mathbb{R}^q
- ► model complexity ↔ subspace dimension (the more the model can fit, the less useful it is)
- linear static models with complexity at most m L^q_{m,0}
- ▶ any $\mathscr{B} \in \mathscr{L}^q_{m,0}$ admits kernel, image, and input/output representations

Representations

• kernel representation with parameter $R \in \mathbb{R}^{p \times q}$

$$\ker(R) := \{ d \mid Rd = 0 \}$$

• image representation with parameter $P \in \mathbb{R}^{q \times m}$

$$image(P) := \{ d = P\ell \mid \ell \in \mathbb{R}^m \}$$

input/output representation

$$\mathscr{B}_{\mathsf{i/o}}(X,\Pi) := \{ d = \Pi \begin{bmatrix} u \\ y \end{bmatrix} \mid u \in \mathbb{R}^{\mathsf{m}}, \ y = X^{\top}u \}$$

with parameters $X \in \mathbb{R}^{m \times p}$ and permutation matrix Π

Nonuniqueness of the parameters

- ► columns of *P* are generators of the model *𝔅*
- rows of R are annihilators of B
- the parameters R and P are not unique due to
 - addition of linearly dependent generators/annihilators
 - change of basis transformation

 $\ker(R) = \ker(UR),$ for all $U \in \mathbb{R}^{p \times p}$, $\det(U) \neq 0$

image(P) = image(PV), for all $V \in \mathbb{R}^{m \times m}$, $det(V) \neq 0$

- ► the smallest number of generators m := dim(ℬ)
- max. number of annihilators $p := q \dim(\mathscr{B})$

Inputs and outputs

input is a "free" variable

 $\Pi \operatorname{col}(u, y) \in \mathscr{B} \text{ and } u \text{ input } \iff u \in \mathbb{R}^m$

- output is bound by input and model
- ▶ fact: m := dim(𝔅) number of inputs
- p := q m number of outputs
- generically any I/O partition is possible
- choosing a partition amounts to choosing full rank p×p submatrix of R or full rank m×m submatrix of P

Transition among representations

Outline

From Ax = b to low-rank approximation

 $Low-rank \leftrightarrow behavioral \ approach$

Exercises

Linear static models representations

Linear time-invariant model representations

Solution methods

Dynamical models

- observations are trajectories: functions $\mathscr{T} \mapsto \mathbb{R}^q$
- universal set: $(\mathbb{R}^q)^{\mathscr{T}}$ set of functions
- the time axis \mathscr{T} is \mathbb{Z} (discrete) or \mathbb{R} (continuous)
- dynamic model \mathscr{B} is a subset of $(\mathbb{R}^q)^{\mathscr{T}}$
- ► linearity: $w, v \in \mathscr{B} \implies \alpha w + \beta v \in \mathscr{B}, \forall \alpha, \beta$
- ▶ shift operator: $(\sigma^{\tau}w)(t) := w(t + \tau)$, for all $t \in \mathscr{T}$
- time-invariance: $\sigma^{\tau} \mathscr{B} = \mathscr{B}$, for all $\tau \in \mathscr{T}$

Controllability

for all w_p , $w_f \in \mathscr{B}$, $\exists w_c$, such that $w_p \wedge w_c \wedge w_f \in \mathscr{B}$

Complexity of an LTI model

- ► static model \$\mathcal{B} \in \mathcal{L}_{m,0}^q\$ complexity = m (increasing m requires increasing # of var. q)
- LTI dynamic model has two aspects:
 - multivariable number of inputs m
 - dynamics time memory span ℓ
- complexity of an LTI model is ordered pair (m, ℓ)
- notation:
 - \mathscr{L}^q all LTI models with q variables
 - \mathscr{L}^{q}_{m} at most m inputs
 - $\mathscr{L}^{q}_{m,\ell}$ complexity bounded by (m,ℓ)

Restriction of the behavior on an interval

w_p ∧ w_f — concatenation of w_p and w_f

 $\mathscr{B}|_{\mathcal{T}} := \{ w \in (\mathbb{R}^q)^{\mathcal{T}} \mid \exists w_p, w_f, \text{ such that } w_p \land w \land w_f \in \mathscr{B} \}$

• for $\mathscr{B} \in \mathscr{L}^q$ and T > 0, $\mathscr{B}|_T$ is a subspace

$$\dim(\mathscr{B}|_{\mathcal{T}}) \leq T_{\mathfrak{m}} + p^{\boldsymbol{\ell}}$$

- complexity of $\mathscr{B} \sim \dim(\mathscr{B}|_{\mathcal{T}})$
- therefore, (m, ℓ) specifies the complexity

Representations

▶ kernel representation with par. $R(z) \in \mathbb{R}^{g \times q}[z]$

$$\ker(R) = \{ w \mid R(\sigma)w = R_0w + R_1\sigma w + \dots + R_\ell\sigma^\ell w = 0 \}$$

▶ image representation with par. $P(z) \in \mathbb{R}^{q \times g}[z]$

$$image(P) = \{ w = P(\sigma)v \mid \text{for some } v \}$$

input/state/output representation

 $\mathscr{B}(A, B, C, D, \Pi) := \{ w = \Pi \operatorname{col}(u, y) \mid \exists x, \text{ such that } \sigma x = Ax + Bu \text{ and } y = Cx + Du \}$

(default $\Pi = I$, in which case it is skipped)

- ▶ any $\mathscr{B} \in \mathscr{L}^q$ admits kernel and I/S/O representations
- any controllable $\mathscr{B} \in \mathscr{L}^q$ admits image representation
- ▶ lag of \mathscr{B} minimal ℓ , for which kernel repr. exists
- minimal row dim(R) = number of outputs
- minimal coldim(P) = number of inputs

(for details, see Section 2.2)

Nonuniqueness of I/S/O representation

- choice of an input/output partition
- redundant states (nonminimality of representation)
- change of state space basis

$$\mathscr{B}(A, B, C, D) = \mathscr{B}(T^{-1}AT, T^{-1}B, CT, D),$$

for any nonsingular matrix $T \in \mathbb{R}^{n \times n}$

▶ minimal representation ⇒ smallest n = order of ℬ

Transition among representations

- using different representations is a powerful idea
- problems are trivial, given suitable representations
- ► cf., matrix factorizations in numerical linear algebra
- the problem becomes to transform representations

Links among I/O model representations

- 1. $H(z) = C(Iz A)^{-1}B + D$
- 2. realization of a transfer function
- 3. Z or Laplace transform of H(t)
- 4. inverse transform of H(z)
- 5. convolution $y_d = H \star u_d$
- 6. exact identification

7. $H(0) = D, H(t) = CA^{t-1}B$ (discrete-time), $H(t) = Ce^{At}B$ (continuous-time), for t > 0

- 8. realization of an impulse response
- 9. simulation with input u_d and x(0) = 0
- 10. exact identification
- 11. simulation with input u_d and $x(0) = x_{ini}$
- 12. exact identification

Outline

From Ax = b to low-rank approximation

 $Low-rank \leftrightarrow behavioral \ approach$

Exercises

Linear static models representations

Linear time-invariant model representations

Solution methods

Problems with analytic solutions

- ► unstructured, unweighted $(\|\cdot\|_{\mathsf{F}} := \|\operatorname{vec}(\cdot)\|_2)$ minimize over $\widehat{D} \quad \|D - \widehat{D}\|_{\mathsf{F}}$ subject to $\operatorname{rank}(\widehat{D}) \le r$ (LRA)
- unstructured, with left/right weighting matrices

minimize over
$$\widehat{D} \| W_{\mathsf{I}}(D - \widehat{D}) W_{\mathsf{r}} \|_{\mathsf{F}}$$

subject to $\operatorname{rank}(\widehat{D}) \leq r$

circulant structure

Truncated SVD

Theorem Let $D = U\Sigma V^{\top}$ be the (thin) SVD of $D \in \mathbb{R}^{q \times N}$ and define

$$U =: \begin{bmatrix} r & q-r \\ U_1 & U_2 \end{bmatrix} q , \quad \Sigma =: \begin{bmatrix} r & q-r \\ \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} r & r & q-r \\ q-r & V =: \begin{bmatrix} V_1 & V_2 \end{bmatrix} N$$

An optimal low-rank approximation (a solution of (LRA)) is

$$\widehat{D}^* = U_1 \Sigma_1 V_1^{ op}, \qquad \widehat{\mathscr{B}}^* = \ker(U_2^{ op}) = \operatorname{image}(U_1).$$

It is unique if and only if $\sigma_r \neq \sigma_{r+1}$.

- $\widehat{\mathscr{B}}^*$ depends only on the left singular vectors
- in general
 - structures other than circular
 - norms other than 2-norm
 - weights other than "left/right" multiplication of $D \hat{D}$ lead to hard non-convex optimization problems
- there are many (heuristic) solution methods

Overview of algorithms

- global solution methods
 - SDP relaxations of rational function min. problem
 - systems of polynomial equations (computer algebra)
 - branch-and-bound, simulating annealing, ...
- local optimization methods
 - variable projections
 - alternating projections
 - variations (parameterization + optimization method)
- convex relaxations / multistage methods
 - subspace methods
 - nuclear norm heuristic

Summary

- linear static model = subspace
- model representations
 - input/output (a function, system AX = B)
 - kernel (implicit function, relation)
 - image (introduces latent variables)
- ▶ representation invariant problem formulation → LRA
- \blacktriangleright different representations \rightsquigarrow different solution methods

"... most linear resistors let us treat current as a function of voltage or voltage as a function of current, since R is neither zero nor infinite. But in the two limiting cases - the short circuit and the open circuit - that's not true. To fit these cases neatly in a unified framework, we shouldn't think of the relation between current and voltage as defining a function. It's just a relation!"

John Baez