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Outline

From Ax = b to low-rank approximation
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. - ?
Line fitting <+ Ax ~ b
» classic problem: fit the points
2 :={d,...,dy} €R?
by a line passing through the origin
» classic solution: find approx. solution x € R of
a b1
an by
where d; = (a,-, b,’)

» the fitting line is
B(x):={(a,b)eR? | ax=b} (%)
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Line fitting <> Ax ~ b

» another solution: find approx. solution x’ € R of

b4 a
. X/ =
by an
» the fitting line is
B(x'):={(ab)cR? | a=bx'} (%)

» if exact solution exists, X’ = 1/x, unless x =0

» exceptions:
» horizontal line (x = 0)
» vertical line (x' =0)



Approximation criteria

» solving approximately the overdetermined systems
Ax=B and A=Bx
where
A:=col(ay,...,a19) and B:=col(by,...,bqo)
in the least squares sense ~- different solutions

» — the data modeling criterion depends on the
(arbitrary) choice of model representation



Input/output representation

» Ax = b and A= bx’ define lines in R?
B(x):={(a,b)cR? | ax=b}
B(X'):={(a,b)cR? | a=bx"}

» (x) and (xx) define a line & by functions

» a— bin (x)

» b ain (xx)

» input/output representations
» in (%), ais input, bis output (a causes b)
» in (xx), bis input, ais output (b causes a)

(%)
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Input/output representation

v

we are interested in .#Z — set of lines through 0

v

separately (x), (xx) don’t represent all lines through 0

v

I/O representation: any % € . is representable as
% =2(x,M)={N[] | ax=b}

for some x € R and a permutation matrix I

v

link to system of linear equations
2 #(x,[}9) < Ax=B

2c #(x,[9]]) <= BX=A
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Kernel representation

» any % € ./ can be represented as
% =ker(R):={decR?| Rd = Rja+ R:b=0}
for some nonzero vector R € R'*?
» Rd =0 defines a relation between aand b
» 2 C ker(R) implies that

R[dy - dy]=0
D
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Image representation

» any % € ./ can be represented as
# =image(P) ={d=Pl|lcR}
for some vector P ¢ R2*1
» 2 C image(P) implies that
[di -+ dy]=PL

for some L e RT*N
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Summary

» common feature of the representations considered

dxeR Ax=B —
Ix eR BxX'=A —
3 x € R, M permut. [x —=1]ND=0 <= }rank(D)="1
JRcR™2 R+£0 RD=0 —
JPecR2! L eRMN D=PL —

» representation free characterization of the exact data

2 C # and
A is a line through 0

)
rank(D) = 1
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Low-rank approximation
» representation free formulation
» exact modeling problem:

J exact model for 9 <= D is rank deficient

» approximate modeling problem:

minimize over 2 error(2,9)

subject to d exact model for 7

0
minimize over D error(D, ﬁ)
subject to D is rank deficient
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Generalizations

1. multivariable data fitting % = RY

» linear static model <« subspace
» model complexity <> subspace dimension
» rank(D) < upper bound on the model complexity

2. nonlinear static modeling

» 9 +— D — nonlinear function

» nonlinearly structured low-rank approximation
3. linear time-invariant dynamical models

» 2 +— Hankel matrix D

» Hankel structured low-rank approximation

4. nonlinear dynamic (2. +3.)
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Structure . «— Model class .#

unstructured

Hankel

g x 1 Hankel

g x N Hankel

mosaic Hankel

[Hankel unstructured]
block-Hankel Hankel-block

linear static

scalar LTI

g-variate LTI

N equal length traj.

N general traj.

finite impulse response
2D linear shift-invariant
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Related frameworks

» behavioral approach in systems and control theory

» representation free: model = set (the behavior)
» No a priori separation of inputs and outputs

» errors-in-variables modeling
» all variables are perturbed by noise

» maximum likelihood estimation « LRA

» principal component analysis
» another statistical setting for LRA

» factor analysis
» factors < latent variables in image repr.
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Outline

Low-rank <> behavioral approach
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Behavioral approach

» Jan C. Willems (1939-2013)
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Outline

Linear static models representations
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Linear static model

"Good definition should formalize sensible intuition.”
Jan Willems

» linear static model with g variables = subspace of R

» model complexity <> subspace dimension
(the more the model can fit, the less useful it is)

» linear static models with complexity at most m — .an’o

» any & € zq admits kernel, image, and input/output
representatlons
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Representations

» kernel representation with parameter R € RP*9
ker(R):={d | Rd=0}
» image representation with parameter P € R9*™
image(P) :={d=Pl|LcR"}
» input/output representation
Byo(X,N) :={d =" { ] lueR™, y=X"u}

with parameters X € R™P and permutation matrix I
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Nonuniqueness of the parameters

» columns of P are generators of the model %

rows of R are annihilators of &

v

v

the parameters R and P are not unique due to

» addition of linearly dependent generators/annihilators
» change of basis transformation

ker(R) = ker(UR), for all U € RP*P, det(U) # 0

image(P) =image(PV), forall V e R™™, det(V) #0

v

the smallest number of generators m := dim(%4)

v

max. number of annihilators p := q —dim(%)
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Inputs and outputs

» input is a "free" variable

Mcol(u,y) e Zand uinput <= ueR"

v

output is bound by input and model

v

fact: m:= dim(%) — number of inputs

v

p := g —m — number of outputs

v

generically any 1/O partition is possible

v

choosing a partition amounts to choosing full rank
p X p submatrix of R or full rank m x m submatrix of P
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Transition among representations

% = ker(R) AP=0 2 =image(P)

X=(PoP ")’

X=—(Rs'R)T

R=[XT —qn" PT=[1 XN’

(for details, see Section 2.1)
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Outline

Linear time-invariant model representations
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Dynamical models

» observations are trajectories: functions .7 — RY
» universal set: (R9)7 — set of functions

» the time axis .7 is Z (discrete) or R (continuous)
» dynamic model 4 is a subset of (R9)”

» linearity: wyve 8 — aw+BveRB, Va,p

» shift operator: (o*w)(t) .= w(t+ 1), forall te 7

» time-invariance: 6% = 4, forall t € .7
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Controllability

w
1 \ :
1 \ .
Il \\
1 \ .
' wWe g Wi
1 \ :
Wp . /\/

>0

< > t

T To

for all wp, w; € £, 3 we, such that wo Awe Aw; € #
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Complexity of an LTI model

> static model % € .7, — complexity =m
(increasing m requires increasing # of var. q)

» LTI dynamic model has two aspects:

» multivariable — number of inputs m
» dynamics — time memory span /¢

» complexity of an LTI model is ordered pair (m, /)
» notation:
» 9 — all LTI models with g variables

» 9 — at most m inputs
> .9, — complexity bounded by (m, )
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Restriction of the behavior on an interval

v

wp A ws — concatenation of w, and w

Blr={we RN |3 wp, w;, such that woAwAW; € B}

v

for e £9and T >0, #|7 is a subspace

dim(#|1) < Tm+pl

v

complexity of Z ~ dim(Z| 1)

v

therefore, (m,¢) specifies the complexity
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Representations
» kernel representation with par. R(z) € R9%9[Z]
ker(R)={w | R(c)w=Row+Riow+---+R,c‘w=0}
» image representation with par. P(z) € R979(Z]
image(P)={w = P(o)v | forsome v}
» input/state/output representation

PB(A,B,C,D,N):={w=Tcol(u,y) |
3 x, such that ox = Ax+ Buand y = Cx+ Du }

(default I = 1, in which case it is skipped)
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v

v

v

v

v

any 4 € #9 admits kernel and I/S/O representations
any controllable % € .9 admits image representation
lag of # — minimal ¢, for which kernel repr. exists
minimal rowdim(R) = number of outputs

minimal coldim(P) = number of inputs

(for details, see Section 2.2)
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Nonuniqueness of I/S/O representation

v

choice of an input/output partition

v

redundant states (nonminimality of representation)

v

change of state space basis

%B(A,B,C,D)=2(T AT, T'B,CT,D),
for any nonsingular matrix T € R**"

v

minimal representation — smallest n = order of #

33/42



Transition among representations

v

using different representations is a powerful idea

problems are trivial, given suitable representations

v

cf., matrix factorizations in numerical linear algebra

v

v

the problem becomes to transform representations
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Links among I/O model representations

data

identification————> model

Bisio(A,B,C,D) |

realization——

1. H@z =C(lz—A)'B+D 7. H(0) =D, H(t) = CA'~1B (discrete-time),
2. realization of a transfer function o H(tl)_ =Cel Bf(cor_ltinutl)us-time), fot>0
3. 7 or Laplace transform oA (t . realization of an impulse response

. P © 9. simulation with inputiy andx(0) =0
4. inverse transform dfi(2) 10. exact identification
5. convolutionyg = H x ug 11. simulation with inputiy andx(0) = Xin;
6. exact identification 12. exact identification
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Outline

Solution methods
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Problems with analytic solutions

» unstructured, unweighted (|| - IIr == || vec(+)]|2)

minimize over D ||D—D|r
- (LRA)
subjectto rank(D) <r

» unstructured, with left/right weighting matrices

minimize over D || W(D— D)W

subjectto rank(D) <r

» circulant structure
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Truncated SVD

Theorem
Let D= UX V" be the (thin) SVD of D ¢ R9*N and define

Foa=r qu_Or r ra-r
U=[U; U] q, zz:{(; ZJ g_ro V=V VeI N

An optimal low-rank approximation (a solution of (LRA)) is
D' =Us4 V|, % =ker(Uj)=image(U).

It is unique if and only if 6y # G, 1.
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> B depends only on the left singular vectors

» in general

» structures other than circular
» norms other than 2-norm R
» weights other than "left/right" multiplication of D— D

lead to hard non-convex optimization problems

» there are many (heuristic) solution methods
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Overview of algorithms

» global solution methods

» SDP relaxations of rational function min. problem
» systems of polynomial equations (computer algebra)
» branch-and-bound, simulating annealing, ...

» local optimization methods

» variable projections
» alternating projections
» variations (parameterization + optimization method)

» convex relaxations / multistage methods

» subspace methods
» nuclear norm heuristic
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Summary

v

linear static model = subspace

v

model representations
» input/output (a function, system AX = B)
» kernel (implicit function, relation)
» image (introduces latent variables)

v

representation invariant problem formulation ~» LRA

v

different representations ~» different solution methods
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"... most linear resistors let us treat current as a
function of voltage or voltage as a function of
current, since R is neither zero nor infinite. But in
the two limiting cases - the short circuit and the
open circuit - that’s not true. To fit these cases
neatly in a unified framework, we shouldn’t think
of the relation between current and voltage as
defining a function. It’s just a relation!"

John Baez
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http://math.ucr.edu/home/baez/week294.html
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