
DYSCO course on low-rank

approximation and its applications

Behavioral approach

Ivan Markovsky

Vrije Universiteit Brussel

1 / 42



Plan

1. Introduction

2. Computational tools

3. Behavioral approach

4. System identification

5. Subspace methods

6. Generalizations

2 / 42



Outline

From Ax = b to low-rank approximation

Low-rank ↔ behavioral approach

Exercises

Linear static models representations

Linear time-invariant model representations

Solution methods

3 / 42



Outline

From Ax = b to low-rank approximation

Low-rank ↔ behavioral approach

Exercises

Linear static models representations

Linear time-invariant model representations

Solution methods

4 / 42



Line fitting
?
↔ Ax ≈ b

◮ classic problem: fit the points

D := {d1, . . . ,dN } ∈ R
2

by a line passing through the origin

◮ classic solution: find approx. solution x ∈ R of



a1
...

aN


x =




b1
...

bN




where di = (ai ,bi )

◮ the fitting line is

B(x) := {(a,b) ∈ R
2 | ax = b} (∗)
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Line fitting
?
↔ Ax ≈ b

◮ another solution: find approx. solution x ′ ∈ R of




b1
...

bN


x ′ =




a1
...

aN




◮ the fitting line is

B(x ′) := {(a,b) ∈ R
2 | a = bx ′ } (∗∗)

◮ if exact solution exists, x ′ = 1/x , unless x = 0

◮ exceptions:
◮ horizontal line (x = 0)
◮ vertical line (x ′ = 0)
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Approximation criteria

◮ solving approximately the overdetermined systems

Ax = B and A = Bx ′

where

A := col(a1, . . . ,a10) and B := col(b1, . . . ,b10)

in the least squares sense ❀ different solutions

◮ =⇒ the data modeling criterion depends on the

(arbitrary) choice of model representation
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Input/output representation

◮ Ax = b and A = bx ′ define lines in R
2

B(x) := {(a,b) ∈ R
2 | ax = b} (∗)

B(x ′) := {(a,b) ∈ R
2 | a = bx ′ } (∗∗)

◮ (∗) and (∗∗) define a line B by functions
◮ a 7→ b in (∗)
◮ b 7→ a in (∗∗)

◮ input/output representations
◮ in (∗), a is input, b is output (a causes b)
◮ in (∗∗), b is input, a is output (b causes a)
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Input/output representation

◮ we are interested in M — set of lines through 0

◮ separately (∗), (∗∗) don’t represent all lines through 0

◮ I/O representation: any B ∈ M is representable as

B = B(x ,Π) = {Π[a
b ] | ax = b}

for some x ∈ R and a permutation matrix Π

◮ link to system of linear equations

D ⊂ B(x ,
[

1 0
0 1

]
) ⇐⇒ Ax = B

D ⊂ B(x ,
[

0 1
1 0

]
) ⇐⇒ Bx ′ = A
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Kernel representation

◮ any B ∈ M can be represented as

B = ker(R) := {d ∈ R
2 | Rd = R1a+R2b = 0}

for some nonzero vector R ∈ R
1×2

◮ Rd = 0 defines a relation between a and b

◮ D ⊂ ker(R) implies that

R
[
d1 · · · dN

]
︸ ︷︷ ︸

D

= 0
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Image representation

◮ any B ∈ M can be represented as

B = image(P) := {d = Pℓ | ℓ ∈ R}

for some vector P ∈ R
2×1

◮ D ⊂ image(P) implies that

[
d1 · · · dN

]
= PL

for some L ∈ R
1×N
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Summary
◮ common feature of the representations considered

∃ x ∈ R Ax = B =⇒
∃ x ′ ∈ R Bx ′ = A =⇒
∃ x ∈ R,Π permut.

[
x −1

]
ΠD = 0 ⇐⇒

∃ R ∈ R
1×2,R 6= 0 RD = 0 ⇐⇒

∃ P ∈R
2×1,L ∈R

1×N D = PL ⇐⇒





rank(D) = 1

◮ representation free characterization of the exact data

D ⊂ B and

B is a line through 0

m

rank(D) = 1
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Low-rank approximation

◮ representation free formulation

◮ exact modeling problem:

∃ exact model for D ⇐⇒ D is rank deficient

◮ approximate modeling problem:

minimize over D̂ error(D ,D̂)

subject to ∃ exact model for D̂

m

minimize over D̂ error(D, D̂)

subject to D̂ is rank deficient
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Generalizations

1. multivariable data fitting U = R
q

◮ linear static model ↔ subspace
◮ model complexity ↔ subspace dimension
◮ rank(D) ↔ upper bound on the model complexity

2. nonlinear static modeling
◮ D 7→ D — nonlinear function
◮ nonlinearly structured low-rank approximation

3. linear time-invariant dynamical models
◮ D 7→ Hankel matrix D
◮ Hankel structured low-rank approximation

4. nonlinear dynamic (2.+3.)
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Structure S ↔ Model class M

unstructured linear static

Hankel scalar LTI

q×1 Hankel q-variate LTI

q×N Hankel N equal length traj.

mosaic Hankel N general traj.[
Hankel unstructured

]
finite impulse response

block-Hankel Hankel-block 2D linear shift-invariant
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Related frameworks

◮ behavioral approach in systems and control theory
◮ representation free: model = set (the behavior)
◮ no a priori separation of inputs and outputs

◮ errors-in-variables modeling
◮ all variables are perturbed by noise
◮ maximum likelihood estimation ↔ LRA

◮ principal component analysis
◮ another statistical setting for LRA

◮ factor analysis
◮ factors ↔ latent variables in image repr.
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Behavioral approach

◮ Jan C. Willems (1939–2013)
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Linear static model

"Good definition should formalize sensible intuition."

Jan Willems

◮ linear static model with q variables = subspace of Rq

◮ model complexity ↔ subspace dimension

(the more the model can fit, the less useful it is)

◮ linear static models with complexity at most m — L
q
m,0

◮ any B ∈ L
q
m,0 admits kernel, image, and input/output

representations
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Representations

◮ kernel representation with parameter R ∈ R
p×q

ker(R) := {d | Rd = 0}

◮ image representation with parameter P ∈ R
q×m

image(P) := {d = Pℓ | ℓ ∈ R
m }

◮ input/output representation

Bi/o(X ,Π) := {d = Π

[
u

y

]
| u ∈ R

m, y = X⊤u }

with parameters X ∈ R
m×p and permutation matrix Π
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Nonuniqueness of the parameters

◮ columns of P are generators of the model B

◮ rows of R are annihilators of B

◮ the parameters R and P are not unique due to
◮ addition of linearly dependent generators/annihilators
◮ change of basis transformation

ker(R) = ker(UR), for all U ∈ R
p×p, det(U) 6= 0

image(P)= image(PV ), for all V ∈ R
m×m, det(V ) 6= 0

◮ the smallest number of generators m := dim(B)

◮ max. number of annihilators p := q−dim(B)
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Inputs and outputs

◮ input is a "free" variable

Πcol(u,y) ∈ B and u input ⇐⇒ u ∈ R
m

◮ output is bound by input and model

◮ fact: m := dim(B) — number of inputs

◮ p := q−m — number of outputs

◮ generically any I/O partition is possible

◮ choosing a partition amounts to choosing full rank

p×p submatrix of R or full rank m×m submatrix of P
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Transition among representations

B = ker(R) oo RP=0 //

X=−(R−1
o Ri)

⊤

!!❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈

B = image(P)

X=(PoP−1
i )⊤

||③③
③③
③③
③③
③③
③③
③③
③③
③③
③③
③③
③③
③③
③

B = Bi/o(X ,Π)

R=[X⊤ −I]Π⊤

aa❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈

P⊤=[I X ]Π⊤

<<③③③③③③③③③③③③③③③③③③③③③③③③③③③

Π⊤P =:

[
Pi

Po

]
m

p
and RΠ =:

m p[
Ri Ro

]

(for details, see Section 2.1)
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Dynamical models

◮ observations are trajectories: functions T 7→ R
q

◮ universal set: (Rq)T — set of functions

◮ the time axis T is Z (discrete) or R (continuous)

◮ dynamic model B is a subset of (Rq)T

◮ linearity: w ,v ∈ B =⇒ αw +βv ∈ B, ∀ α,β

◮ shift operator: (σ τw)(t) := w(t + τ), for all t ∈ T

◮ time-invariance: σ τB = B, for all τ ∈ T

27 / 42



Controllability

t

w

wp

wc
wf

T1 T2

≥ ℓ

for all wp, wf ∈ B, ∃ wc, such that wp ∧wc∧wf ∈ B
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Complexity of an LTI model

◮ static model B ∈ L
q
m,0 — complexity = m

(increasing m requires increasing # of var. q)

◮ LTI dynamic model has two aspects:
◮ multivariable — number of inputs m
◮ dynamics — time memory span ℓ

◮ complexity of an LTI model is ordered pair (m, ℓ)

◮ notation:
◮ L q — all LTI models with q variables
◮ L

q
m — at most m inputs

◮ L
q
m,ℓ — complexity bounded by (m, ℓ)
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Restriction of the behavior on an interval

◮ wp ∧wf — concatenation of wp and wf

B|T := {w ∈ (Rq)T | ∃ wp, wf, such that wp∧w∧wf ∈B}

◮ for B ∈ L q and T > 0, B|T is a subspace

dim(B|T ) ≤ Tm+pℓ

◮ complexity of B ∼ dim(B|T )

◮ therefore, (m, ℓ) specifies the complexity
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Representations

◮ kernel representation with par. R(z) ∈ R
g×q[z]

ker(R) = {w | R(σ)w =R0w+R1σw+· · ·+Rℓσ
ℓw = 0}

◮ image representation with par. P(z) ∈ R
q×g[z]

image(P) = {w = P(σ)v | for some v }

◮ input/state/output representation

B(A,B,C,D,Π) := {w = Πcol(u,y) |

∃ x , such that σx = Ax +Bu and y = Cx +Du }

(default Π = I, in which case it is skipped)
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◮ any B ∈ L q admits kernel and I/S/O representations

◮ any controllable B ∈L q admits image representation

◮ lag of B — minimal ℓ, for which kernel repr. exists

◮ minimal rowdim(R) = number of outputs

◮ minimal coldim(P) = number of inputs

(for details, see Section 2.2)
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Nonuniqueness of I/S/O representation

◮ choice of an input/output partition

◮ redundant states (nonminimality of representation)

◮ change of state space basis

B(A,B,C,D) = B(T−1AT ,T−1B,CT ,D),

for any nonsingular matrix T ∈ R
n×n

◮ minimal representation =⇒ smallest n= order of B
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Transition among representations

◮ using different representations is a powerful idea

◮ problems are trivial, given suitable representations

◮ cf., matrix factorizations in numerical linear algebra

◮ the problem becomes to transform representations
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Links among I/O model representations
data identification ✴� model

❇i/s/o✭A❀B❀C❀D✮

11

t✁
7

⑧✂

1

☛✄

w ❂ ✭u❀y✮ ✷ ❇

12

✹☎

10 ✲✆

6

✫✝

❇i/o
✞
H✭z✮

✟

9
♠✠

4

☛✄

2

❑✡

❇i/o✭H✮

8

❞☞

5

❢✌

3

❑✡

re
al

iz
at

io
n

❖✍
❄❃ ✎❁✽✾ ✿✏

●❋ ❊❉❅❆ ✑❈

❄❃ ✎❁✽✾ ✿✏

❄❃ ✎❁✽✾ ✿✏

1. H✭z✮ ❂C✭Iz✒A✮✓1B✰D

2. realization of a transfer function

3. Z or Laplace transform ofH✭t✮
4. inverse transform ofH✭z✮
5. convolutionyd ❂ H ✔ud

6. exact identification

7. H✭0✮ ❂ D, H✭t✮ ❂CAt✓1B (discrete-time),
H✭t✮ ❂CeAt B (continuous-time), fort ✕ 0

8. realization of an impulse response
9. simulation with inputud andx✭0✮ ❂ 0

10. exact identification
11. simulation with inputud andx✭0✮ ❂ xini
12. exact identification
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Problems with analytic solutions

◮ unstructured, unweighted (‖ · ‖F := ‖vec(·)‖2)

minimize over D̂ ‖D− D̂‖F

subject to rank(D̂)≤ r
(LRA)

◮ unstructured, with left/right weighting matrices

minimize over D̂ ‖Wl(D− D̂)Wr‖F

subject to rank(D̂)≤ r

◮ circulant structure
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Truncated SVD

Theorem
Let D = UΣV⊤ be the (thin) SVD of D ∈ R

q×N and define

U =:

r q− r[
U1 U2

]
q , Σ=:

r q− r[
Σ1 0

0 Σ2

]
r

q− r
, V =:

r q− r[
V1 V2

]
N

An optimal low-rank approximation (a solution of (LRA)) is

D̂∗ = U1Σ1V⊤
1 , B̂

∗ = ker(U⊤
2 ) = image(U1).

It is unique if and only if σr 6= σr+1.
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◮ B̂∗ depends only on the left singular vectors

◮ in general
◮ structures other than circular
◮ norms other than 2-norm
◮ weights other than "left/right" multiplication of D− D̂

lead to hard non-convex optimization problems

◮ there are many (heuristic) solution methods
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Overview of algorithms

◮ global solution methods
◮ SDP relaxations of rational function min. problem
◮ systems of polynomial equations (computer algebra)
◮ branch-and-bound, simulating annealing, . . .

◮ local optimization methods
◮ variable projections
◮ alternating projections
◮ variations (parameterization + optimization method)

◮ convex relaxations / multistage methods
◮ subspace methods
◮ nuclear norm heuristic
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Summary

◮ linear static model = subspace

◮ model representations
◮ input/output (a function, system AX = B)
◮ kernel (implicit function, relation)
◮ image (introduces latent variables)

◮ representation invariant problem formulation ❀ LRA

◮ different representations ❀ different solution methods
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". . . most linear resistors let us treat current as a

function of voltage or voltage as a function of

current, since R is neither zero nor infinite. But in

the two limiting cases - the short circuit and the

open circuit - that’s not true. To fit these cases

neatly in a unified framework, we shouldn’t think

of the relation between current and voltage as

defining a function. It’s just a relation!"

John Baez
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http://math.ucr.edu/home/baez/week294.html
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