# DYSCO course on low-rank approximation and its applications

# Exact identification

Ivan Markovsky

Vrije Universiteit Brussel

# Plan

- 1. Introduction
- 2. Computational tools
- 3. Behavioral approach
- 4. System identification
- 5. Subspace methods
- 6. Generalizations

Outline

Exact modeling

Algorithms

Exercises



Exact modeling

Algorithms

Exercises

# Identification problems



•  $\mathscr{U}$  — data space  $(\mathbb{R}^q)^{\mathbb{N}}$ : functions from  $\mathbb{N}$  to  $\mathbb{R}^q$ 

•  $\mathscr{D}$  — data: set of finite vector-valued time series  $\mathscr{D} = \{ w^1, \dots, w^N \}, \quad w^i = (w^i(1), \dots, w^i(T_i))$ 

•  $\mathscr{B}$  — model: subset of the data space  $\mathscr{U}$ 

*M* — model class: set of models

#### Work plan

1. define a modeling problem

(What is 
$$\mathscr{D} \mapsto \mathscr{B}$$
?)

- 2. find an algorithm that solves the problem
- 3. implement the algorithm (How to compute  $\mathscr{B}$ ?)
- 4. use the software in applications

#### Notes

- all user choices are set in the problem formulation
- hyper-parameters do not appear in the solutions
- the methods are completely automatic

# The problem

user choices (options) specify

prior knowledge, assumptions, and/or prejudices about what the true or desirable model is

- model class imposes hard constraints, e.g., bound on the model complexity
- fitting criteria impose soft constraints e.g., small distance from data to model
- real-life problems are vaguely formulated

"A well defined problem is a half solved problem."

## Some user choices

#### Model class

linear nonlinear static dynamic time-invariant time-varying

Fitting criterion

exact approximate deterministic stochastic

# Exact identification

we'll consider the simplest (non static) problem: exact identification of an LTI model

*i.e.*,  $\mathscr{M} = \mathscr{L}$  and the fitting criterion is exact match

#### Why exact identification?

- ▶ from simple to complex:
   exact → approx. → stoch. → approx. stoch.
- exact identification is ingredient of the other problems
- exact identification leads to effective heuristic approximation methods (subspace methods)

#### Exact identification in $\mathcal{L}^q$

- given data D
- find  $\widehat{\mathscr{B}} \in \mathscr{L}^q$ , such that  $\mathscr{D} \subset \widehat{\mathscr{B}}$
- nonunique solution always exists

# Exact identification in $\mathscr{L}^{q}_{m,\ell}$

- ▶ given (m, ℓ) and data D
- find  $\widehat{\mathscr{B}} \in \mathscr{L}^{q}_{\mathrm{m},\ell}$ , such that  $\mathscr{D} \subset \widehat{\mathscr{B}}$
- solution may not exist

Most powerful unfalsified model  $\mathscr{B}_{mpum}(\mathscr{D})$ 

- given data D
- ▶ find the smallest (m,  $\ell$ ), s.t.  $\exists \ \widehat{\mathscr{B}} \in \mathscr{L}^{q}_{m,\ell}, \ \mathscr{D} \subset \widehat{\mathscr{B}}$
- J. C. Willems. From time series to linear system—Part II.
   Exact modelling. *Automatica*, 22(6):675–694, 1986

#### Why complexity minimization?

- makes the solution unique
- Occam's razor: "simpler = better"

# Identifiability question

Is it possible to recover the data generating system B from exact data

$$W \in \overline{\mathscr{B}} \in \mathscr{L}^q$$

- Under what conditions  $\mathscr{B}_{mpum}(w) = \overline{\mathscr{B}}$ ?
- the answer is given by the Fundamantal lemma
- ► we will assume that upper bounds n<sub>max</sub>, ℓ<sub>max</sub> of the order n and lag ℓ of B are known

## Hankel matrix

• consider the case  $\mathscr{D} = w$  (single trajectory)

► main tool  

$$\mathscr{H}_{L}(w) := \begin{bmatrix} w(1) & w(2) & w(3) & \cdots & w(T-L+1) \\ w(2) & w(3) & w(4) & \cdots & w(T-L+2) \\ w(3) & w(4) & w(5) & \cdots & w(T-L+3) \\ \vdots & \vdots & \vdots & \vdots \\ w(L) & w(L+1) & w(L+2) & \cdots & w(T) \end{bmatrix}$$

• if  $w \in \mathscr{B} \in \mathscr{L}^q$ , then image  $(\mathscr{H}_L(w)) \subset \mathscr{B}|_L$ 

► extra conditions on w and ℬ are needed for image (ℋ<sub>L</sub>(w)) = ℬ|<sub>L</sub>

#### Persistency of excitation (PE)

- *u* is PE of order *L* if  $\mathcal{H}_L(u)$  is full row rank
- system theoretic interpretation:

$$u \in (\mathbb{R}^m)^T$$
 is PE  $\iff$  there is no  $\mathscr{B} \in \mathscr{L}_{m-1,L}$ , of order  $L$   $\iff$  such that  $u \in \mathscr{B}$ 

#### Lemma

1.  $\mathscr{B} \in \mathscr{L}^{q}_{m,\ell}$  controllable and

 2. w ∈ ℬ admits I/O partition (u, y) with u PE of order L+pl ⇒ image (ℋ(w)) = ℬ|L



Exact modeling

#### Algorithms

Exercises

▶ main idea: any  $w \in \mathscr{B}|_L$  can be obtained from  $w \in \mathscr{B}$ 

 $w = \mathscr{H}_L(w)g$ , for some g

 $g \sim$  input and initial conditions, *cf.*, image repr.

#### Algorithms

- $w \mapsto \text{kernel parameter } R$
- $w \mapsto \text{impulse response } H$
- $w \mapsto \text{state/space parameters} (A, B, C, D)$ 
  - $w \mapsto R \mapsto (A, B, C, D)$  or  $w \mapsto H \mapsto (A, B, C, D)$
  - $w \mapsto$  observability matrix  $\mapsto (A, B, C, D)$
  - $w \mapsto$  state sequence  $\mapsto (A, B, C, D)$

### $w \mapsto R$

under the assumptions of the lemma

image 
$$(\mathscr{H}_{\ell+1}(w)) = \mathscr{B}|_{\ell+1}$$

▶ leftker  $(\mathscr{H}_{\ell+1}(w))$  defines a kernel repr. of  $\mathscr{B}$ 

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \mathscr{H}_{\ell+1}(w) = 0, \quad R_i \in \mathbb{R}^{g \times q}$$

kernel representation

$$\mathscr{B} = \ker (R(\sigma)), \quad \text{with} \quad R(z) = \sum_{i=0}^{\ell} R_i z^i$$

0

recursive computation (exploiting Hankel structure)

## $w\mapsto H$

impulse response (matrix values trajectory)

$$\boldsymbol{W} = \left(\underbrace{\boldsymbol{0},\ldots,\boldsymbol{0}}_{\ell}, \begin{bmatrix} I\\ H(0) \end{bmatrix}, \begin{bmatrix} 0\\ H(1) \end{bmatrix}, \ldots, \begin{bmatrix} 0\\ H(t) \end{bmatrix}\right)$$

• by the lemma,  $W = \mathscr{H}_{\ell+t}(w)G$ 

• define 
$$\mathscr{H}_{\ell+t}(u) =: \begin{bmatrix} U_p \\ U_f \end{bmatrix}$$
 and  $\mathscr{H}_{\ell+t}(y) =: \begin{bmatrix} Y_p \\ Y_f \end{bmatrix}$ 

we have

$$\begin{bmatrix} U_{p} \\ Y_{p} \\ U_{f} \end{bmatrix} G = \begin{bmatrix} 0 \\ 0 \\ \begin{bmatrix} I_{m} \\ 0 \end{bmatrix} \end{bmatrix} \stackrel{\text{2ero ini. conditions}}{\leftarrow} \text{ impulse input}$$
(1)  
$$Y_{f} \quad G = H$$
(2)

# **Block algorithm**

- input:  $u, y, \ell_{max}$ , and t
- solve (2) and let G<sub>p</sub> be a solution
- compute  $H = Y_f G_p$
- output: the first t samples of the impulse response H

Exerise: implement and test the algorithm

## Refinements

- solve (2) efficiently exploiting the Hankel structure
- do the computations iteratively for pieces of H
- automatically choose t, for a sufficient decay of H
- Exerise: try the improvements
- application for noisy data

E. Reynders, R. Pintelon, and G. De Roeck. Consistent impulse-response estimation and system realization from noisy data. *IEEE Trans. Signal Proc.*, 56:2696–2705, 2008

 $w \mapsto (A, B, C, D)$ 

•  $w \mapsto H(0:2\ell)$  or  $R(\xi) \xrightarrow{\text{realization}} (A, B, C, D)$ 

•  $w \mapsto \text{obs.}$  matrix  $\mathscr{O}_{\ell+1}(A, C) \xrightarrow{(3)} (A, B, C, D)$ 

 $\mathscr{O}_{\ell+1}(\mathsf{A},\mathsf{C})\mapsto (\mathsf{A},\mathsf{C}), \quad (u,y,\mathsf{A},\mathsf{C})\mapsto (\mathsf{B},\mathsf{C},x_{\mathsf{ini}})$  (3)

•  $w \mapsto$  state sequence  $x \xrightarrow{(4)} (A, B, C, D)$ 

$$\begin{bmatrix} \sigma x \\ y \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix}$$
(4)

$$\mathscr{O}_{\ell_{\mathsf{max}}+1}(A,C)\mapsto (A,B,C,D)$$

- *C* is the first block entry of  $\mathcal{O}_{\ell_{\max}+1}(A, C)$
- A is given by the shift equation

$$(\sigma^* \mathscr{O}_{\ell_{\max}+1}(A, C)) A = (\sigma \mathscr{O}_{\ell_{\max}+1}(A, C))$$

( $\sigma$  /  $\sigma^*$  removes first / last block entry)

Once C and A are known, the system of equations

$$y(t) = CA^{t}x(1) + \sum_{\tau=1}^{t-1} CA^{t-1-\tau}Bu(\tau) + D\delta(t+1)$$

is linear in D, B, x(1)

## $w \mapsto$ observability matrix

- ▶ columns of  $\mathcal{O}_t(A, C)$  are n indep. free resp. of  $\mathscr{B}$
- under the conditions of the lemma,

$$\begin{bmatrix} \mathscr{H}_t(u) \\ \mathscr{H}_t(y) \end{bmatrix} G = \begin{bmatrix} 0 \\ Y_0 \end{bmatrix} \quad \begin{array}{c} \leftarrow & \text{zero inputs} \\ \leftarrow & \text{free responses} \\ \end{bmatrix}$$

- ▶ lin. indep. free responses  $\implies$  *G* maximal rank
- rank revealing factorization

$$Y_0 = \mathscr{O}_t(A, C) \underbrace{\begin{bmatrix} x_{\mathrm{ini},1} & \cdots & x_{\mathrm{ini},j} \end{bmatrix}}_{X_{\mathrm{ini}}}$$

#### $w \mapsto$ state sequence

- sequential free responses  $\implies Y_0$  block-Hankel
- then  $X_{ini}$  is a state sequence of  $\mathscr{B}$
- computation of sequential free responses

$$\begin{bmatrix} U_{p} \\ Y_{p} \\ U_{f} \end{bmatrix} G = \begin{bmatrix} U_{p} \\ Y_{p} \\ 0 \end{bmatrix} \begin{cases} \text{sequential ini. conditions} \\ \leftarrow \text{ zero inputs} \end{cases}$$
(5)  
$$Y_{f} \quad G = Y_{0}$$

rank revealing factorization

$$Y_0 = \mathcal{O}_t(A, C) \begin{bmatrix} x(1) & \cdots & x(n_{\max} + m + 1) \end{bmatrix}$$

## Refinements

- solve (5) efficiently exploiting the Hankel structure
- iteratively compute pieces of  $Y_0 \sim$  iterative algorithm
- requires smaller persistency of excitation of u
- could be more efficient
   (solve a few smaller systems of eqns than one big)

## References

#### N4SID methods

P. Van Overschee and B. De Moor. *Subspace Identification for Linear Systems: Theory, Implementation, Applications.* Kluwer, Boston, 1996

MOESP methods

M. Verhaegen and P. Dewilde. Subspace model identification, Part 1: The output-error state-space model identification class of algorithms. *Int. J. Control*, 56:1187–1210, 1992

# **MOESP-type algorithms**

project the rows of  $\mathscr{H}_{n_{max}}(y)$  on row span<sup> $\perp$ </sup> ( $\mathscr{H}_{n_{max}}(u)$ )

$$Y_0 := \mathscr{H}_{n_{max}}(y) \Pi_u^{\perp}$$

where

$$\Pi_{\boldsymbol{u}}^{\perp} := \left(I - \mathscr{H}_{n_{\max}}^{\top}(\boldsymbol{u}) \left(\mathscr{H}_{n_{\max}}(\boldsymbol{u}) \mathscr{H}_{n_{\max}}^{\top}(\boldsymbol{u})\right)^{-1} \mathscr{H}_{n_{\max}}(\boldsymbol{u})\right)$$

Observe that  $\Pi_u^{\perp}$  is maximal rank and

$$\begin{bmatrix} \mathscr{H}_{n_{\max}}(u) \\ \mathscr{H}_{n_{\max}}(y) \end{bmatrix} \Pi_{u}^{\perp} = \begin{bmatrix} \mathbf{0} \\ Y_{\mathbf{0}} \end{bmatrix}$$

 $\implies$  the orthogonal projection computes free responses

## Comments

- T n<sub>max</sub> + 1 free responses are computed via the orth. proj. while n<sub>max</sub> such responses suffice for the purpose of exact identification
- the orth. proj. is a geometric operation, whose system theoretic meaning is not revealed
- the condition for rank(Y<sub>0</sub>) = n, given in the MOESP literature

$$\mathsf{rank}\left(\begin{bmatrix} X_{\mathsf{ini}}\\ \mathscr{H}_{\mathsf{n}_{\mathsf{max}}}(u) \end{bmatrix}\right) = \mathsf{n} + \mathsf{n}_{\mathsf{max}}\mathsf{m}$$

is not verifiable from the data  $(u, y) \implies$  can not be checked whether the computation gives  $\mathscr{O}(A, C)$ 

# N4SID-type algorithms

splitting of the data into "past" and "future"

$$\mathscr{H}_{2n_{max}}(u) =: \begin{bmatrix} U_p \\ U_f \end{bmatrix}, \qquad \mathscr{H}_{2n_{max}}(y) =: \begin{bmatrix} Y_p \\ Y_f \end{bmatrix}$$
  
and define  $W_p := \begin{bmatrix} U_p \\ Y_p \end{bmatrix}$ 

oblique projection

$$Y_{0} := Y_{f} / U_{f} W_{p} := Y_{f} \underbrace{\begin{bmatrix} W_{p}^{\top} & U_{f}^{\top} \end{bmatrix} \begin{bmatrix} W_{p} W_{p}^{\top} & W_{p} U_{f}^{\top} \\ U_{f} W_{p}^{\top} & U_{f} U_{f}^{\top} \end{bmatrix}^{+} \begin{bmatrix} W_{p} \\ 0 \end{bmatrix}}_{\Pi_{obl}}$$

of the rows of  $Y_f$  along row span( $U_f$ ) onto row span( $W_p$ )

# N4SID-type algorithms

Observe that

$$\begin{bmatrix} \boldsymbol{W}_{p} \\ \boldsymbol{U}_{f} \\ \boldsymbol{Y}_{f} \end{bmatrix} \boldsymbol{\Pi}_{obl} = \begin{bmatrix} \boldsymbol{W}_{p} \\ \boldsymbol{0} \\ \boldsymbol{Y}_{0} \end{bmatrix}$$

(in fact  $\Pi_{obl}$  is the least-norm, least-squares solution)

 $\implies$  the oblique proj. computes sequential free responses

## Comments

- T 2n<sub>max</sub> + 1 sequential free responses are computed via the oblique projection while n<sub>max</sub> + m + 1 such responses suffice for exact ident.
- The oblique proj.\ is a geometric operation, whose system theoretic meaning is not revealed
- The conditions for rank(Y<sub>0</sub>) = n, given in the N4SID literature,
  - 1. u persistently exciting of order  $2n_{max}$  and
  - 2. row span( $X_{ini}$ )  $\cap$  row span( $U_f$ ) = {0}

are not verifiable from the data (u, y)

## Summary

- $\blacktriangleright$  transitions among representations  $\approx$  system theory
- exact identification aims at  $\mathscr{B}_{mpum}(w)$
- $\mathcal{H}_t(w)$  plays key role in both analysis and comput.
- under controllability and u persistently exciting

image 
$$(\mathscr{H}_t(w)) = \mathscr{B}|_t$$

 subspace algorithms can be viewed as construction of special responses from data



Exact modeling

**Algorithms** 

Exercises