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Identification problems

data
D ⊂U

identification−−−−−−−−→ model
B ∈M

I U — data space (Rq)N: functions from N to Rq

I D — data: set of finite vector-valued time series

D = {w1, . . . ,wN }, w i =
(
w i(1), . . . ,w i(Ti)

)
I B — model: subset of the data space U

I M — model class: set of models
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Work plan

1. define a modeling problem (What is D 7→B?)

2. find an algorithm that solves the problem

3. implement the algorithm (How to compute B?)

4. use the software in applications

Notes
I all user choices are set in the problem formulation

I hyper-parameters do not appear in the solutions

I the methods are completely automatic
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The problem

I user choices (options) specify

prior knowledge, assumptions, and/or prejudices
about what the true or desirable model is

I model class — imposes hard constraints,
e.g., bound on the model complexity

I fitting criteria — impose soft constraints
e.g., small distance from data to model

I real-life problems are vaguely formulated

"A well defined problem is a half solved problem."
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Some user choices

Model class

linear nonlinear
static dynamic
time-invariant time-varying

Fitting criterion

exact approximate
deterministic stochastic
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Exact identification
we’ll consider the simplest (non static) problem:

exact identification of an LTI model

i.e., M = L and the fitting criterion is exact match

Why exact identification?
I from simple to complex:

exact 7→ approx. 7→ stoch. 7→ approx. stoch.

I exact identification is ingredient of the other problems

I exact identification leads to effective heuristic
approximation methods (subspace methods)
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Exact identification in L q

I given data D

I find B̂ ∈L q, such that D ⊂ B̂

I nonunique solution always exists

Exact identification in L q
m,`

I given (m, `) and data D

I find B̂ ∈L q
m,`, such that D ⊂ B̂

I solution may not exist
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Most powerful unfalsified model Bmpum(D)

I given data D

I find the smallest (m, `), s.t. ∃ B̂ ∈L q
m,`, D ⊂ B̂

I J. C. Willems. From time series to linear system—Part II.
Exact modelling. Automatica, 22(6):675–694, 1986

Why complexity minimization?
I makes the solution unique

I Occam’s razor: "simpler = better"
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Identifiability question

I Is it possible to recover the data generating system B
from exact data

w ∈B ∈L q

I Under what conditions Bmpum(w) = B?

I the answer is given by the Fundamantal lemma

I we will assume that upper bounds nmax, `max of the
order n and lag ` of B are known
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Hankel matrix

I consider the case D = w (single trajectory)

I main tool

HL(w) :=


w(1) w(2) w(3) · · · w(T −L + 1)
w(2) w(3) w(4) · · · w(T −L + 2)
w(3) w(4) w(5) · · · w(T −L + 3)
...

...
...

...
w(L) w(L + 1) w(L + 2) · · · w(T )


I if w ∈B ∈L q, then image

(
HL(w)

)
⊂B|L

I extra conditions on w and B are needed for
image

(
HL(w)

)
= B|L
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Persistency of excitation (PE)
I u is PE of order L if HL(u) is full row rank

I system theoretic interpretation:

u ∈ (Rm)T is PE
of order L

⇐⇒ there is no B ∈Lm−1,L,
such that u ∈B

Lemma
1. B ∈L q

m,` controllable and

2. w ∈B admits I/O partition (u,y) with u PE of order
L +p`

=⇒ image
(
HL(w)

)
= B|L
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I main idea: any w ∈B|L can be obtained from w ∈B

w = HL(w)g, for some g

g ∼ input and initial conditions, cf., image repr.

Algorithms
I w 7→ kernel parameter R

I w 7→ impulse response H

I w 7→ state/space parameters (A,B,C,D)
I w 7→ R 7→ (A,B,C,D) or w 7→ H 7→ (A,B,C,D)
I w 7→ observability matrix 7→ (A,B,C,D)
I w 7→ state sequence 7→ (A,B,C,D)
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w 7→ R

I under the assumptions of the lemma

image
(
H`+1(w)

)
= B|`+1

I leftker
(
H`+1(w)

)
defines a kernel repr. of B[

R0 R1 · · · R`

]
H`+1(w) = 0, Ri ∈ Rg×q

I kernel representation

B = ker
(
R(σ)

)
, with R(z) =

`

∑
i=0

Riz i

I recursive computation (exploiting Hankel structure)

17 / 33



w 7→ H
I impulse response (matrix values trajectory)

W =
(

0, . . . ,0︸ ︷︷ ︸
`

,
[

I
H(0)

]
,
[

0
H(1)

]
, . . . ,

[
0

H(t)

])
I by the lemma, W = H`+t(w)G

I define H`+t(u) =:
[

Up
Uf

]
and H`+t(y) =:

[
Yp
Yf

]
I we haveUp

Yp
Uf

G =

 0
0[
Im
0

]

}

zero ini. conditions

← impulse input
(1)

Yf G = H (2)
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Block algorithm

I input: u, y, `max, and t

I solve (2) and let Gp be a solution

I compute H = YfGp

I output: the first t samples of the impulse response H

I Exerise: implement and test the algorithm
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Refinements
I solve (2) efficiently exploiting the Hankel structure

I do the computations iteratively for pieces of H

I automatically choose t , for a sufficient decay of H

I Exerise: try the improvements

I application for noisy data

E. Reynders, R. Pintelon, and G. De Roeck. Consistent
impulse-response estimation and system realization from
noisy data. IEEE Trans. Signal Proc., 56:2696–2705, 2008
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w 7→ (A,B,C,D)

I w 7→ H(0 : 2`) or R(ξ )
realization−−−−−−−→ (A,B,C,D)

I w 7→ obs. matrix O`+1(A,C)
(3)−−−→ (A,B,C,D)

O`+1(A,C) 7→ (A,C), (u,y,A,C) 7→ (B,C,x ini) (3)

I w 7→ state sequence x
(4)−−−→ (A,B,C,D)[

σx
y

]
=

[
A B
C D

][
x
u

]
(4)
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O`max+1(A,C) 7→ (A,B,C,D)

I C is the first block entry of O`max+1(A,C)

I A is given by the shift equation(
σ
∗O`max+1(A,C)

)
A =

(
σO`max+1(A,C)

)
(σ / σ∗ removes first / last block entry)

I Once C and A are known, the system of equations

y(t) = CAtx(1) +
t−1

∑
τ=1

CAt−1−τBu(τ) + Dδ (t + 1)

is linear in D, B, x(1)
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w 7→ observability matrix

I columns of Ot(A,C) are n indep. free resp. of B

I under the conditions of the lemma,[
Ht(u)
Ht(y)

]
G =

[
0

Y0

]
← zero inputs
← free responses

I lin. indep. free responses =⇒ G maximal rank

I rank revealing factorization

Y0 = Ot(A,C)
[
xini,1 · · · xini,j

]︸ ︷︷ ︸
Xini
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w 7→ state sequence
I sequential free responses =⇒ Y0 block-Hankel

I then Xini is a state sequence of B

I computation of sequential free responsesUp
Yp
Uf

G =

Up
Yp
0

 }
sequential ini. conditions

← zero inputs
(5)

Yf G = Y0

I rank revealing factorization

Y0 = Ot(A,C)
[
x(1) · · · x(nmax +m+ 1)

]
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Refinements

I solve (5) efficiently exploiting the Hankel structure

I iteratively compute pieces of Y0 ; iterative algorithm

I requires smaller persistency of excitation of u

I could be more efficient

(solve a few smaller systems of eqns than one big)
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MOESP-type algorithms

project the rows of Hnmax(y) on rowspan⊥
(
Hnmax(u)

)
Y0 := Hnmax(y)Π⊥u

where

Π⊥u :=
(

I−H >
nmax(u)

(
Hnmax(u)H >

nmax(u)
)−1

Hnmax(u)
)

Observe that Π⊥u is maximal rank and[
Hnmax(u)
Hnmax(y)

]
Π⊥u =

[
0

Y0

]
=⇒ the orthogonal projection computes free responses
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Comments
I T −nmax + 1 free responses are computed via the

orth. proj. while nmax such responses suffice for the
purpose of exact identification

I the orth. proj. is a geometric operation, whose
system theoretic meaning is not revealed

I the condition for rank(Y0) = n, given in the MOESP
literature

rank
([

Xini
Hnmax(u)

])
= n+nmaxm

is not verifiable from the data (u,y) =⇒ can not be
checked whether the computation gives O(A,C)
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N4SID-type algorithms

I splitting of the data into "past" and "future"

H2nmax(u) =:
[

Up
Uf

]
, H2nmax(y) =:

[
Yp
Yf

]
and define Wp :=

[
Up
Yp

]
I oblique projection

Y0 := Yf/Uf
Wp := Yf

[
W>

p Uf
>
][WpW>

p WpU>f
UfW>

p UfUf
>

]+[
Wp
0

]
︸ ︷︷ ︸

Πobl

of the rows of Yf along rowspan(Uf) onto rowspan(Wp)
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N4SID-type algorithms

Observe that Wp
Uf
Yf

Πobl =

Wp
0

Y0


(in fact Πobl is the least-norm, least-squares solution)

=⇒ the oblique proj. computes sequential free
responses
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Comments

I T −2nmax + 1 sequential free responses are
computed via the oblique projection while
nmax +m+ 1 such responses suffice for exact ident.

I The oblique proj.\ is a geometric operation, whose
system theoretic meaning is not revealed

I The conditions for rank(Y0) = n, given in the N4SID
literature,

1. u persistently exciting of order 2nmax and
2. rowspan(Xini)∩ rowspan(Uf) = {0}

are not verifiable from the data (u,y)
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Summary

I transitions among representations ≈ system theory

I exact identification aims at Bmpum(w)

I Ht(w) plays key role in both analysis and comput.

I under controllability and u persistently exciting

image
(
Ht(w)

)
= B|t

I subspace algorithms can be viewed as construction
of special responses from data
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