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|dentification problems

data identification model
—
DCUY Bec M

% — data space (R9)": functions from N to RY

v

9 — data: set of finite vector-valued time series

v

g (Wi Wy, W= (W), wi(T))

v

% — model: subset of the data space %

» ./ — model class: set of models



Work plan
1. define a modeling problem (What is 2 +— %7?)

2. find an algorithm that solves the problem
3. implement the algorithm (How to compute #7?)

4. use the software in applications

Notes

» all user choices are set in the problem formulation
» hyper-parameters do not appear in the solutions

» the methods are completely automatic
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The problem
» user choices (options) specify

prior knowledge, assumptions, and/or prejudices
about what the true or desirable model is

» model class — imposes hard constraints,
e.g., bound on the model complexity

» fitting criteria — impose soft constraints
e.g., small distance from data to model

» real-life problems are vaguely formulated

"A well defined problem is a half solved problem."



Some user choices

Model class

linear
static
time-invariant

Fitting criterion

exact
deterministic

nonlinear
dynamic
time-varying

approximate
stochastic



Exact identification

we’ll consider the simplest (non static) problem:
exact identification of an LTI model

ie., # =¥ and the fitting criterion is exact match

Why exact identification?

» from simple to complex:

exact — approx. — stoch. — approx. stoch.
» exact identification is ingredient of the other problems

» exact identification leads to effective heuristic
approximation methods (subspace methods)



Exact identification in .£9
» given data 2

» find % ¢ 9 such that 2 C 7

» nonunique solution always exists

Exact identification in .27,
» given (m,/) and data
» find % ¢ .,iﬂnfg, such that 2 c &
» solution may not exist
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Most powerful unfalsified model Bmpum(2)

» given data ¥

» find the smallest (m,¢), s.t. 3 % € L3, 9cC P

» J. C. Willems. From time series to linear system—~Part Il.

Exact modelling. Automatica, 22(6):675—694, 1986

Why complexity minimization?

» makes the solution unique

» Occam’s razor: "simpler = better"
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|dentifiability question

v

Is it possible to recover the data generating system %
from exact data o
weBecL9

Under what conditions ZBmpum(w) = %7?

v

v

the answer is given by the Fundamantal lemma

we will assume that upper bounds nmax, £max of the
order n and lag ¢ of % are known

v
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Hankel matrix

» consider the case 2 = w (single trajectory)

» main tool
fw(1)  w(2) w@) - w(T—-L+1)]
w(2)  w(3) w(4) - w(T-L+2)
A (w) = |W@B) w4 w(5) - w(T—L+3)
_W(:L) W(L:+1) W(L:-|—2) W(:T) |

» if we % e 29, thenimage (/4 (w)) C 4|,

» extra conditions on w and % are needed for
image (4 (w)) = 4|,
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Persistency of excitation (PE)

» uis PE of order L if 7 (u) is full row rank

» system theoretic interpretation:

ue (RMis PE . thereisnoZe %y,
of order L such that ue #
Lemma

1. Be Zﬁg controllable and
2. w € % admits I/O partition (u, y) with u PE of order
L+pl
— image (1 (w)) = 4|,
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» main idea: any w € #|, can be obtained from w € &
w=#1(w)g, for some g
g ~ input and initial conditions, cf., image repr.
Algorithms
» w — kernel parameter R

» w— impulse response H

» w > state/space parameters (A, B, C, D)
» w— R— (AB,C,D)orw— H— (A B,C,D)
» w— observability matrix — (A, B, C, D)
» w— state sequence — (A,B,C,D)
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w— R

» under the assumptions of the lemma
image (/741(w)) = B4
> leftker (7, 1(w)) defines a kernel repr. of 2
[Ro Ry -+ R H1(w)=0, RicRI

» kernel representation
é .
% =ker(R(c)), with R(z)=) Rz
i=0

» recursive computation (exploiting Hankel structure)
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w— H
» impulse response (matrix values trajectory)

W = (O,...,O, [H(Io)] ) [H%)} REEE [H?t)b

1

» by the lemma, W = 77.+(w)G

> define /4. (u) = [ﬁﬂ and A 1(y) = [m

» we have
U 0 zero ini. conditions
Yo|G = | 0 ' (1)
U [gn] +~ impulse input

Y, G = H 2)
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Block algorithm

v

input: u, ¥, fmax, and t

v

solve (2) and let Gp be a solution

v

compute H = Y;Gp

v

output: the first t samples of the impulse response H

v

Exerise: implement and test the algorithm
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Refinements

» solve (2) efficiently exploiting the Hankel structure
» do the computations iteratively for pieces of H

» automatically choose t, for a sufficient decay of H
» Exerise: try the improvements

» application for noisy data

E. Reynders, R. Pintelon, and G. De Roeck. Consistent
impulse-response estimation and system realization from
noisy data. IEEE Trans. Signal Proc., 56:2696—2705, 2008
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— (A,B,C,D)

» Wi H(0: 2¢) or R(E) 222210, (A B, C, D)

» W+ obs. matrix 0,,1(A,C) —— 9, (A,B,C,D)
ﬁ€+1 (A,C) = (A7 C)a (U7 yaAv C) = (B7 CaXini) (3)

» w > state sequence x —M—)+ (A,B,C,D)

V]-le ol X
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ﬁgmax+1 (A, C) — (A, B, C, D)
» C s the first block entry of 7y, .. +1(A, C)

» Ais given by the shift equation
(G*ﬁfmam“I (A’ C))A = (Gﬁémaﬂr1 (A’ C))
(o / o* removes first / last block entry)
» Once C and A are known, the system of equations

y(t) = CAx(1) + tf CA1-"Bu(t)+ DS(t+1)
7=1

is linear in D, B, x(1)
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w — observability matrix

» columns of 03(A, C) are n indep. free resp. of #

» under the conditions of the lemma,

J4(U) G 0 < zero inputs
)|~ | Yo + free responses

» lin. indep. free responses — G maximal rank

» rank revealing factorization

Yo = Oi(A, C)\[Xinij Xiﬂi»/l

Xini
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w — state sequence

» sequential free responses = Yj block-Hankel
» then Xi,; is a state sequence of #

» computation of sequential free responses

Up Up C e .
Y.|G = | % } sequential ini. conditions (5)
U 0| « zeroinputs

\/f G - YO

» rank revealing factorization

Yo=0O1AC)[x(1) - X(nmax+m+1)]
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Refinements

v

solve (5) efficiently exploiting the Hankel structure

v

iteratively compute pieces of Yy ~ iterative algorithm

v

requires smaller persistency of excitation of u

could be more efficient

v

(solve a few smaller systems of eqns than one big)
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MOESP-type algorithms

project the rows of &, .. (y) on rowspan™ (4, (u))

max

MG 1= (1= Ao (0) (Ao () Ho ()™ (1)

Observe that M is maximal rank and

it

— the orthogonal projection computes free responses
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Comments

» T —nmax + 1 free responses are computed via the
orth. proj. while nmax such responses suffice for the
purpose of exact identification

» the orth. proj. is a geometric operation, whose
system theoretic meaning is not revealed

» the condition for rank(Yy) = n, given in the MOESP
literature

X
rank ( {%m:('(u)}> = n+ Nmaxm

is not verifiable from the data (u,y) = can not be
checked whether the computation gives ¢ (A, C)
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N4SID-type algorithms

» splitting of the data into "past" and "future”
U Y,
A W)= |G| Ao )= ¥
and define W, := [l\fg]

» oblique projection

WoW, W, Uq i {Wp]

Yo:=Yi/uWo =i [WF’T UfT] {Uf W|oT Uil " 0

J/

Mopl

of the rows of Y; along rowspan(U;) onto rowspan( W)
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N4SID-type algorithms

Wo Wo
U [Nop=| O
Y Yo

(in fact Mgy, is the least-norm, least-squares solution)

Observe that

— the oblique proj. computes sequential free
responses
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Comments

» T —2nmax + 1 sequential free responses are
computed via the oblique projection while
nmax +m—+ 1 such responses suffice for exact ident.

» The oblique proj.\ is a geometric operation, whose
system theoretic meaning is not revealed

» The conditions for rank(Yp) = n, given in the N4SID
literature,
1. u persistently exciting of order 2nmax and
2. rowspan(Xi,) Nnrowspan(U;) = {0}
are not verifiable from the data (u, y)
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Summary

» transitions among representations ~ system theory

» exact identification aims at Zmpum(w)

» J(w) plays key role in both analysis and comput.

» under controllability and u persistently exciting
image (4 (w)) = B

» subspace algorithms can be viewed as construction
of special responses from data
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