DYSCO course on low-rank approximation and its applications

Exercises

Ivan Markovsky

Vrije Universiteit Brussel

Outline

[Introduction](#page-1-0)

[Computational tools](#page-19-0)

[Behavioral approach](#page-25-0)

[Approximate identification](#page-44-0)

[Exact identification](#page-57-0)

Line fitting

problem: give a condition on the data

$$
\mathscr{D} = \{d_1, \ldots, d_N\} \subset \mathbb{R}^2
$$

that is equivalent to the condition that

the points $d_1,\ldots,d_\mathcal{N}$ are on a line in \mathbb{R}^2

Solution

the points *dⁱ* = (*aⁱ* ,*bi*), *i* = 1,...,*N* lie on a line m there is (*R*1,*R*2,*R*3) 6= 0, such that *R*1*aⁱ* +*R*2*bⁱ* +*R*³ = 0, for *i* = 1,...,*N* m there is (*R*1,*R*2,*R*3) 6= 0, such that -*R*¹ *R*² *R*³ *a*¹ ··· *a^N b*¹ ··· *b^N* 1 ··· 1 = 0 m rank *a*¹ ··· *a^N b*¹ ··· *b^N* 1 ··· 1 ≤ 2

Note

- $\triangleright \mathscr{B} = \{ d | Rd = 0 \}$ linear static model
- $\blacktriangleright \mathscr{B} = \{\boldsymbol{d} \mid \boldsymbol{R} \begin{bmatrix} a \\ 1 \end{bmatrix}$ $\binom{d}{1} = 0$ } — affine static model
- \blacktriangleright in exact modeling

affine fitting \mathbb{I} data centering + linear modeling

 \triangleright HW: is the same true in approximate modeling?

Conic section fitting

◮ conic section (with parameters *S* = *S* [⊤], *u*, *v*)

 $\mathscr{B}(\mathcal{S}, u, v) = \{ d \in \mathbb{R}^2 \mid d^\top \mathcal{S} d + u^\top d + v = 0 \}$

1. give a condition on the data

$$
\mathscr{D} = \{ d_1, \ldots, d_N \} \subset \mathbb{R}^2
$$

that is equivalent to the condition that *d*1,...,*d^N* are lying on a conic section

2. find a conic section fitting the points

$$
d_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad d_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad d_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad d_4 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

Solution

the points $d_i = (a_i, b_i), i = 1, \ldots, N$ lie on a conic section $\mathbbm{1}$ ∃ *S* = *S* [⊤], *u*, *v*, at least one of them nonzero, such that $d_i^{\top} S d_i + u^{\top} d_i + v = 0$, for $i = 1, \ldots, N$ $\mathbbm{1}$ there is $(s_{11}, s_{12}, s_{22}, u_1, u_2, v) \neq 0$, such that $[s_{11} \ 2s_{12} \ u_1 \ s_{22} \ u_2 \ v]$ $\sqrt{ }$ a_1^2 a_1^2 \cdots a_N^2 *N* a_1b_1 \cdots a_Nb_N *a*¹ ··· *a^N* b_1^2 b_1^2 \cdots b_N^2 *N b*¹ ··· *b^N* $1 \quad \cdots \quad 1$ 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $= 0$

the points $d_i = (a_i, b_i), i = 1, \ldots, N$ lie on a conic section

$$
f = [e(a, b) [a.^2; a.^*b; a; b.^2; b;ones(size(a))];
$$

 \blacktriangleright finding exact models

 $R = null(f(d(1, :), d(2, :)))')$;

\blacktriangleright plotting a model

function $H = plot_model(th, f, ax, c)$ $H = \text{explot}(\mathcal{C}(a, b) \th \t f(a, b), ax);$ for $h = H'$, set $(h, 'color', c, 'linear'$

\blacktriangleright show results

plot(d(1, :), d(2, :), 'o', 'markersize', 12 $ax = 2 * axis;$ for $i = 1$:size(R, 1) hold on, plot_model($R(i, :), f, ax, c(i))$; end

Subspace clustering

► union of two lines (with parameters $R^1, R^2 \in \mathbb{R}^{1 \times 2}$)

$$
\mathscr{B}(R^1,R^2)=\{d\in\mathbb{R}^2\mid (R^1d)(R^2d)=0\}
$$

1. give a condition on the data

$$
\mathscr{D} = \{\, d_1, \ldots, d_N\,\} \subset \mathbb{R}^2
$$

that is equivalent to the condition that d_1 ,...,*d_N* are lying on a union of two lines

2. find a union of two lines model fitting the points

$$
d_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad d_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad d_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad d_4 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

Solution

the points $\pmb{\mathit{d}}_i \in \mathbb{R}^2, \, i=1,\dots,N$ lie on a union of two lines $\mathbbm{1}$ there are $R^1\neq 0$ and $R^2\neq 0, \,$ v, such that $(R^1 d_i)(R^2 d_i) = 0$, for $i = 1, \ldots, N$ $\mathbbm{1}$ there are $\begin{bmatrix} R_1^1 & R_2^1 \end{bmatrix}$ $\left[P_{1}^{2} \right] \neq 0$ and $\left[R_{1}^{2} \right]$ R_{2}^{2} $\binom{2}{2} \neq 0$, such that $\left[R_1^1 R_1^2 \quad R_1^1 R_2^2 + R_2^1 R_1^2 \quad R_2^1 R_2^2\right]$ $\frac{2}{2}$ $\overline{1}$ $\overline{1}$ a_1^2 a_1^2 \cdots a_N^2 *N* a_1b_1 \cdots a_Nb_N b_1^2 b_1^2 \cdots b_N^2 *N* Ĭ. $\Big| = 0$

► if $d_i \in \mathbb{R}^2$, $i = 1,...,N$ lie on a union of two lines, then

$$
\text{rank}\left(\begin{bmatrix} a_1^2 & \cdots & a_N^2 \\ a_1b_1 & \cdots & a_Nb_N \\ b_1^2 & \cdots & b_N^2 \end{bmatrix}\right) \leq 2
$$

- \triangleright in this case, the rank condition is only necessary
- \triangleright in additional, a basis for the left kernel is

$$
\begin{bmatrix} 1 & \alpha + \beta & \alpha \beta \end{bmatrix}
$$
, for some α and β

 \triangleright union of two lines fitting is a special case of the [Generalized principal component analysis](http://www.vision.jhu.edu/gpca.htm)

 \blacktriangleright HW: how to "extract" R^1 and R^2 from ker(*D*)

Recursive sequences

▶
$$
w = (w(1), \ldots, w(T))
$$
 is recursive of order ℓ if

$$
R_0 w(t) + R_1 w(t+1) + \cdots + R_\ell w(t+\ell) = 0,\n\text{for } t = 1, ..., T - \ell \text{ and some } R_0, R_1, ..., R_\ell \in \mathbb{R}
$$

- 1. give a condition on *w* that is equivalent to *w* is a recursive of order *ℓ*
- 2. find the minimal recursive order of

(1,2,4,7,13,24,44,81)

Solution

w is recursive of order ℓ \Leftrightarrow $\exists R \in \mathbb{R}^{1 \times (\ell+1)}$ s.t. $R\mathcal{H}_{\ell+1}(w) = 0$ \implies rank $(\mathscr{H}_{\ell+1}(w)) \leq \ell$

where

$$
\mathscr{H}_{\ell+1}(w) := \begin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \\ w(2) & w(3) & \cdots & w(T-\ell+1) \\ \vdots & \vdots & & \vdots \\ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}
$$

• for
$$
\ell = 1, 2, \ldots
$$
, if rank $(\mathcal{H}_{\ell+1}(w)) = \ell$, stop

$$
\blacktriangleright \ell_{min} = 3 \text{ and } R = \begin{bmatrix} 1 & 1 & 1 & -1 \end{bmatrix}
$$

Polynomial common divisor

 \blacktriangleright the polynomials

$$
p(z) = p_0 + p_1 z + \cdots + p_{\ell_p} z^{\ell_p}
$$

$$
q(z) = q_0 + q_1 z + \cdots + q_{\ell_q} z^{\ell_q}
$$

have a common divisor

$$
c(z)=c_0+c_1z+\cdots+c_{\ell_c}z^{\ell_c}
$$

iff $p = ca$ and $q = cb$ for some polynomials a and b

 \triangleright give a condition on p, q that is equivalent to *p*,*q* have a common divisor of degree ℓ*^c*

Solution

 $p \in \mathbb{R}[z]$ and $q \in \mathbb{R}[z]$ have common divisor \iff $c \in \mathbb{R}[z]$, deg $(c) = \ell_c$

 $\exists a \in \mathbb{R}[z]$, deg(*a*) = $\ell_p - \ell_c$ $\exists b \in \mathbb{R}[z]$, deg $(b) = \ell_a - \ell_c$ such that $p = ca$ and $q = cb$

$$
\iff \quad qa - pb = 0
$$
\n
$$
\iff \left[S_{\ell_a}(q) \quad S_{\ell_b}(p) \right] \begin{bmatrix} a \\ -b \end{bmatrix} = 0
$$
\n
$$
\iff \left[S_{\ell_a}(q) \quad S_{\ell_b}(p) \right] \quad \text{is rank} \quad \text{deficient}
$$

Outline

[Introduction](#page-1-0)

[Computational tools](#page-19-0)

[Behavioral approach](#page-25-0)

[Approximate identification](#page-44-0)

[Exact identification](#page-57-0)

Least squares contour alignment

given contours $\mathscr{C}_1,\mathscr{C}_2$, specified by matching points $\rho^{(i)}\leftrightarrow q^{(i)}$

Problem

 \triangleright find a transformation (rotation + scaling + translation)

$$
\mathscr{A}_{a,\theta,s}(p) = s \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} p + a
$$

that minimizes the LS distance between

$$
\min_{a\in\mathbb{R}^2,\theta\in[0,2\pi),s\in\mathbb{R}_+}\ \sum_{i=1}^N\| \rho^{(i)}-\mathscr{A}_{a,\theta,s}(q^{(i)})\|_2^2
$$

 \mathscr{C}_1 and $\mathscr{A}_{a,\theta,s}(\mathscr{C}_2)$

 \triangleright apply the solution on the data in the example

Data in the example

Hint

 \triangleright use the change of variables

$$
\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = s \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \theta \\ s \end{bmatrix} = \begin{bmatrix} \sin^{-1} (b_2/\sqrt{b_1^2 + b_2^2}) \\ \sqrt{b_1^2 + b_2^2} \end{bmatrix}
$$

 \blacktriangleright to obtain an equivalent problem

$$
(a_1, a_2, b_1, b_2) \in \mathbb{R}^4 \left(\begin{bmatrix} p_1^{(1)} \\ p_2^{(1)} \\ \vdots \\ p_k^{(N)} \end{bmatrix} - \begin{bmatrix} 1 & 0 & q_1^{(1)} & -q_2^{(1)} \\ 0 & 1 & q_2^{(1)} & q_1^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & q_1^{(N)} & -q_2^{(N)} \\ 0 & 1 & q_2^{(N)} & q_1^{(N)} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{bmatrix} \right)_{12}
$$

Orthogonal Procrustes problem

- \triangleright HW: alignment by reflection + scaling + translation
- \blacktriangleright rigid transformation =

rotation $+$ reflection $+$ scaling $+$ translation

 \triangleright contour alignment by rigid transformation is related to the orthogonal Procrustes problem:

 \triangleright given $m \times n$ real matrices C_1 and C_2

 $\textsf{minimize over } Q \quad \lVert C_1 - QC_2 \rVert_{\textsf{F}} \quad \textsf{subject to} \quad Q^\top Q = R$

 \blacktriangleright solution: $Q = UV^\top,$ where $U\Sigma V^\top$ is the SVD of $C_1^\top C_2$

Outline

[Introduction](#page-1-0)

[Computational tools](#page-19-0)

[Behavioral approach](#page-25-0)

[Approximate identification](#page-44-0)

[Exact identification](#page-57-0)

Check whether *w* ? ∈ B

\n- $$
w = (u_d, y_d) = ((0, 1), (0, 1), (0, 1), (0, 1))
$$
\n
\n- $w = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1]$ \n
\n- $\mathcal{B} = \ker(R(\sigma))$, where $R(z) = [1 \ -1] + [-1 \ 1]z$ \n
\n- $R = [1 \ -1 \ -1 \ 1]$, $e11 = 1$, f \n
\n

 $w \stackrel{?}{\in} \ker (R(\sigma))$

$$
\iff R(\sigma)w = 0
$$

\n
$$
\iff R_0w(t) + R_1w(t+1) + \dots + R_\ell w(t+\ell) = 0
$$

\nfor $t = 1, ..., T-\ell$

$w \stackrel{?}{\in} \ker (R(\sigma))$

$$
\iff \mathscr{M}_{\mathcal{T}}(R) \text{vec}(w) = 0
$$

$$
\iff R\mathscr{H}_{\ell+1}(w) = 0
$$

where

$$
\underbrace{\begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix}}_{B} \underbrace{\begin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \\ w(2) & w(3) & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}}_{\mathscr{H}_{\ell+1}(w)\in\mathbb{R}^{q(\ell+1)\times(T-\ell)}} = 0
$$

- **Example 6** compute $e = ||R\mathcal{H}_{\ell+1}(w)||$ and check if $e < \varepsilon$ $W = [0 0 0 0; 1 1 1 1];$ $R = [1 -1 -1 1];$ ell = 1; $norm(R * blkhank(w, ell + 1))$
- \triangleright blkhank constructs a block-Hankel matrix $\mathcal{H}_1(w)$

function H = blkhank(w, i, j)
\n[q, T] = size(w);
\nif T < q, w = w'; [q, T] = size(w); end
\nif nargin
$$
\langle 3, j = T - i + 1
$$
; end
\nH = zeros(i \star q, j);
\nfor ii = 1:i
\nH(((ii - 1) \star q + 1):(ii \star q), :) ...
\n= w(:, ii:(ii + j - 1));

end

Homework

 \blacktriangleright use image representation to check

$$
w \stackrel{?}{\in} \text{image}\left(P(\sigma)\right)
$$

 \blacktriangleright use state space representation to check

$$
w\stackrel{?}{\in}\mathscr{B}(A,B,C,D)
$$

Affine time-invariant system

► an LTI system $\mathscr{B} \in \mathscr{L}_{m,\ell}$ admits a kernel repr.

$$
\mathscr{B} = \ker (R(\sigma)) := \{ w \mid R(\sigma)w = 0 \}
$$

for some $R(z) = R_0 z^0 + R_1 z^1 + \cdots + R_\ell z^\ell$

 \blacktriangleright show that

$$
\mathscr{B}_c := \{ w \mid R(\sigma)w = c \}
$$

is an affine time-invariant system, *i.e.*, $\mathscr{B}_c = \mathscr{B} + w_0$ for LTI model $\mathscr{B} \in \mathscr{L}_{m,\ell}$ and trajectory w_p

 \triangleright find \mathscr{B} and *w*_p, s.t. $\mathscr{B} + w_p = \{ w \mid (0.5 + \sigma)w = 1 \}$

 \triangleright using the matrix representation of $R(\sigma)$

$$
w \in \mathscr{B}_{c} \iff \mathscr{M}_{T}(R)w = \mathbf{1}_{T-\ell} \otimes c =: \mathbf{c}
$$

$$
\iff \mathscr{M}_{T}(R)(w - w_{p}) = 0
$$

$$
\iff \quad w - w_{p} \in \ker(R(\sigma)) = \mathscr{B}
$$

▶ therefore,
$$
\mathcal{B}_c = \mathcal{B} + w_p
$$
, where $\mathcal{B} \in \mathcal{L}_{m,\ell}$ and

$$
\mathcal{M}_T(R)w_p = c
$$

► *e.g.*, the least-norm solution

$$
\mathsf{w}_p = \mathscr{M}_\mathcal{T}^\top(R) \big(\mathscr{M}_\mathcal{T}(R) \mathscr{M}_\mathcal{T}^\top(R) \big)^{-1} \mathbf{c}
$$

 \triangleright HW: find input/state/output representation of \mathscr{B}_c

- in the case of $\{w \mid (0.5 + \sigma)w = 1\}$
- \triangleright sylv(R, T) constructs the matrix $\mathcal{M}_T(R)$

function S = sylv(R, T) nR = length(R); q = 2; n = (nR / q) - 1; S = zeros(T - n, q * T); for i = 1:T - n S(i, (1:nR) + (i - 1) * q) = R; end

Transfer function \mapsto kernel representation

ightharpoonup M_{tf}(*H*) is specified by a transfer function

$$
H(z) = \frac{q(z)}{p(z)} = \frac{q_0 + q_1 z^1 + \dots + q_\ell z^\ell}{p_0 + p_1 z^1 + \dots + p_\ell z^\ell}
$$

 \blacktriangleright find *R*, such that

$$
\mathcal{B}_{\mathsf{tf}}(H) = \mathsf{ker}(R)
$$

 \triangleright write a function $tf2ker$ converting H (tf object) to R

►
$$
H(z) = q(z)/p(z)
$$
 $\stackrel{?}{\leftrightarrow} R(z)$
\n► $y(z) = H(z)u(z)$ $\leftrightarrow p(\sigma)y = q(\sigma)u$
\n
$$
\underbrace{[q(\sigma) - p(\sigma)]}_{B(\sigma)} \begin{bmatrix} u \\ y \end{bmatrix} = 0
$$

- ► note: *z* may correspond to σ^{-1} as well as σ
- ▶ does $\mathcal{B}_{tf}(H)$ assume zero initial conditions? \triangleright if so,

$$
\mathscr{B}_{\text{tf}}(H) = \{w \mid R(\sigma)(0 \wedge w) = 0\}
$$

 \triangleright otherwise,

$$
\mathscr{B}_{\text{tf}}(H) = \text{ker} (R(\sigma))
$$

▶ note: MATLAB uses descending order of coefficients

function R = tf2ker(H) [Q P] = tfdata(tf(H), 'v'); R = vec(fliplr([Q; -P]))';

Specification of initial conditions

 \triangleright initial conditions are explicitly specified in I/S/O repr.

\triangleright in MATLAB

LSIM(SYS,U,T,X0) specifies the initial state vector X0 at time T(1) (for state-space models only).

- \triangleright in transfer function representation initial conditions are often set to 0
- \triangleright explain how to specify initial conditions in a representation free manner
- what is the link to $x_{\text{ini}} = x(1)$ in I/S/O repr?
- \triangleright assuming that $\mathscr B$ is controllable
- \triangleright initial conditions can be specified by prefix trajectory

$$
w_{ini}=\left(w_{ini}(1),\ldots,w_{ini}(T_{ini})\right)
$$

i.e., by $w_{\text{ini}} \wedge w \in \mathscr{B}$

 \triangleright the link between w_{ini} and x_{ini} is given by

$$
y_{\text{ini}} = \mathscr{O}_{\ell}(A, C) A^{-\ell} x_{\text{ini}} + \mathscr{T}_{\ell}(A, B, C, D) u_{\text{ini}}
$$

function $x0 = \text{inistate}(w, sys)$ $l = size(sys, 'order');$ $x0 = obsv(sys)$ $(w(1:1, 2) ...$ $-$ lsim(sys, $w(1:1, 1))$);

Output matching

- \blacktriangleright given v_f and \mathscr{B}
- ► find u_f , such that $(u_f, y_f) \in \mathscr{B}$

Setup

► random SISO unstable system \mathscr{B}

clear all, $n = 3$; $Br = drss(n)$; $[Qr, Pr] = tfdata(Br, 'v');$ $B = ss(tf(fliplr(Qr), filiplr(Pr), -1));$

 \blacktriangleright reference output

 $T = 100$; $yf = ones(T, 1)$;

- $→$ $M_T(R)w = 0$ $⇒$ $M_T(P)u = M_T(P)y$ $R = tf2ker(B); M = sylv(R, T);$ $Mu = M(:, 1:2:end); My = - M(:, 2:2:end);$
- \triangleright many solutions (why?); compute a particular one

 $uf = pinv(Mu) * My * vf;$

$$
\blacktriangleright \; \left(\textit{u}_f, \textit{y}_f \right) \stackrel{?}{\in} \mathsf{ker} \left(\textit{R}(\sigma) \right)
$$

► $(u_f, y_f) \stackrel{?}{\in}$ image $(P(σ))$

$$
\blacktriangleright (u_f, y_f) \stackrel{?}{\in} \mathscr{B}(A, B, C, D)
$$

 \blacktriangleright where is the problem?

- \blacktriangleright the system is anti-stable
- ► the test $w \in \mathcal{B}(A, B, C, D)$ is ill-conditioned
- \triangleright do backwards in time simulation

▶ particular (least squares) input

Outline

[Introduction](#page-1-0)

[Computational tools](#page-19-0)

[Behavioral approach](#page-25-0)

[Approximate identification](#page-44-0)

[Exact identification](#page-57-0)

Misfit computation using image repr.

 \blacktriangleright given

- \blacktriangleright data $w = (w(1), \ldots, w(T))$ and
- **Example 1** LTI system $\mathscr{B} = \text{image}(P(\sigma))$
- \triangleright derive a method for computing

$$
\mathsf{misfit}(w,\mathscr{B}):=\min_{\widehat{w}\in\mathscr{B}}\|w-\widehat{w}\|_2
$$

 \triangleright *i.e.*, find the orthogonal projection of *w* on \mathscr{B}

w $\stackrel{?}{\in}$ image $(P(\sigma))$

 \iff there is *v*, such that $w = P(\sigma)v$

$$
\iff \text{there is } v, \text{ such that for } t = 1, \dots, T
$$

$$
w(t) = P_0 v(t) + P_1 v(t+1) + \dots + P_\ell v(t+\ell)
$$

⇐⇒ there is solution *v* of the system

Solution

 \triangleright we showed that

 $\widehat{w} \in \text{ker}(R(\sigma)) \quad \Longleftrightarrow \quad \widehat{w} = \mathscr{M}_\mathcal{T}(P)v$, for some *v*

 \triangleright then the misfit computation problem

$$
\mathsf{misfit}(w,\mathscr{B}):=\min_{\widehat{w}\in\mathscr{B}}\|w-\widehat{w}\|
$$

becomes

minimize over *v* $\|w - \mathcal{M}_T(P)v\|$

- \triangleright this is a standard least-norm problem
- projector on $\mathscr{B} = \text{image}(P)$

$$
\Pi_{\textsf{image}(P)} \mathrel{\mathop:}= \mathscr{M}_\mathcal{T}(P) \bigl(\mathscr{M}_\mathcal{T}^\top(P)\mathscr{M}_\mathcal{T}(P)\bigr)^{-1} \mathscr{M}_\mathcal{T}^\top(P)
$$

 \blacktriangleright misfit

$$
\mathsf{misfit}(w,\mathscr{B}) := \sqrt{w^\top \big(I\!-\!\Pi_{\mathsf{image}(P)}\big)w}
$$

and optimal approximation

$$
\widehat{\mathbf{W}} = \Pi_{\text{image}(P)} \mathbf{W}
$$

HW: misfit computation with $\mathscr{B} = \text{ker}(R(\sigma))$

Misfit computation using I/S/O repr.

 \blacktriangleright given

- \blacktriangleright data $w = (w(1), \ldots, w(T))$ and
- ► LTI system $\mathscr{B} = \mathscr{B}(A, B, C, D)$
- \triangleright derive a method for computing

$$
\mathsf{misfit}(w,\mathscr{B}):=\min_{\widehat{w}\in\mathscr{B}}\|w-\widehat{w}\|_2
$$

 \triangleright *i.e.*, find the orthogonal projection of *w* on \mathscr{B}

w $\stackrel{?}{\in}$ $\mathscr{B}(A,B,C,D)$

 $B(A, B, C, D) = \{ (u, v) | \sigma x = Ax + Bu, v = Cx + Du \}$ $(u_d, y_d) \in \mathscr{B}(A, B, C, D) \quad \iff \quad \exists x_{\text{ini}} \in \mathbb{R}^n, \text{ such that}$ $y =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ *C CA CA*² . . . *CAT*−¹ ׀ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\overbrace{B-(A C)}$ $\mathscr{O}_\mathcal{T}(A,C)$ $x_{\text{ini}} +$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ *D CB D CAB CB D* *CAT*−1*B* ··· *CAB CB D* 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ *u*

Solution

 \triangleright we showed that

 $\hat{w} \in \mathscr{B}(A, B, C, D) \iff \hat{y} = \mathscr{O}_T(A, C)\hat{x}_{\text{ini}} + \mathscr{T}_T(H)\hat{u}$

 \triangleright then the misfit computation problem

$$
\min_{\widehat{x}_{\text{ini}},\widehat{u}} \quad \left\| \begin{bmatrix} u_d \\ y_d \end{bmatrix} - \begin{bmatrix} 0 & I \\ \mathscr{O}_T(A,C) & \mathscr{T}_T(H) \end{bmatrix} \begin{bmatrix} \widehat{x}_{\text{ini}} \\ \widehat{u} \end{bmatrix} \right\|
$$

 \triangleright exploiting the structure in the problem \rightsquigarrow EIV Kalman filter

Latency computation

 \blacktriangleright given

- ► data *w* and
- **Example 1** Bext = ker $(R(\sigma))$ $(w_{\mathsf{ext}} := \left[\begin{smallmatrix} \widehat{\boldsymbol{e}} \\ w \end{smallmatrix}\right])$
- \blacktriangleright find an algorithm for computing

minimize over *e* $\|\hat{\boldsymbol{e}}\|$ subject to $(\hat{\boldsymbol{e}}, \boldsymbol{w}) \in \mathscr{B}_{ext}$

 \blacktriangleright HW: latency computation with $\mathscr{B}_{ext} = \mathscr{B}(A, B, C, D)$ (this is the ordinary Kalman filter)

Solution

- **P** partition $R = \begin{bmatrix} R_e & R_w \end{bmatrix}$ conformably with $w_{\text{ext}} = \begin{bmatrix} e \\ w \end{bmatrix}$
- \triangleright by analogy with the derivation on page 47, we have

$$
\begin{bmatrix} e \\ w \end{bmatrix} \in \text{ker}\left(R(\sigma)\right) \iff \begin{bmatrix} \mathcal{M}_T(R_e) & \mathcal{M}_T(R_w) \end{bmatrix} \begin{bmatrix} e \\ w \end{bmatrix} = 0
$$

 \triangleright the latency computation problem is

 $\lim_{M \to \infty}$ ||e||₂ subject to $\mathcal{M}_\mathcal{T}(R_e)e = -\mathcal{M}_\mathcal{T}(R_w)$ w *e*

 \triangleright the solution is given by

$$
\widehat{\mathbf{e}} = -\underbrace{(\mathcal{M}_{\mathcal{T}}(R_{\mathbf{e}})^{\top} \mathcal{M}_{\mathcal{T}}(R_{\mathbf{e}}))^{-1} \mathcal{M}_{\mathcal{T}}(R_{\mathbf{e}})^{\top}}_{\mathcal{M}_{\mathcal{T}}(R_{\mathbf{e}})^{+}} \mathcal{M}_{\mathcal{T}}(R_{\mathbf{w}})w
$$

Software

▶ mosaic-Hankel low-rank approximation

<http://slra.github.io/software.html>

- \triangleright [sysh, info, wh] = ident(w, m, ell, opt)
	- \triangleright sysh I/S/O representation of the identified model
	- \rightarrow opt.sys0 I/S/O repr. of initial approximation
	- \rightarrow opt.wini initial conditions
	- \rightarrow opt.exct exact variables
	- ► info.Rh parameter *R* of kernel repr.
	- \rightarrow info. M misfit
- \triangleright [M, wh, xini] = misfit(w, sysh, opt)

\blacktriangleright [demo file](http://homepages.vub.ac.be/~imarkovs/ident-demo.html)

Variable permutation

 \triangleright verify that permutation of the variables doesn't change the optimal misfit

 $T = 100$; $n = 2$; $B0 = drss(n)$; $u = \text{randn}(T, 1); y = \text{lsim}(B0, u) + 0.001 * \text{ran}$ $[B1, \text{info1}] = \text{ident}([u \ y], 1, n); \text{disp}(\text{info1.M})$ 2.9736e-05 $[B2, info2] = ident([y u], 1, n); disp(info2.M)$ 2.9736e-05 $disp(norm(B1 - inv(B2)))$ 5.8438e-12

Output error identification

 \triangleright verify that the results of oe and ide nt coincide

 $T = 100$; $n = 2$; $B0 = d r s s(n)$; $u = \text{randn}(T, 1); y = \text{lsim}(B0, u) + 0.001 * \text{ran}(T)$ opt = oeOptions('InitialCondition', 'estimate'); $B1 =$ oe(iddata(y, u), $[n + 1 n 0]$, opt); $B2 =$ ident([u y], 1, n, struct('exct', 1)); $norm(B1 - B2)$ / $norm(B1)$

 $ans =$

1.4760e-07

Outline

[Introduction](#page-1-0)

[Computational tools](#page-19-0)

[Behavioral approach](#page-25-0)

[Approximate identification](#page-44-0)

[Exact identification](#page-57-0)

Identification without PE input

- \blacktriangleright given exact data $w = (\iota_{d},y_{d}) \in \mathscr{B} \in \mathscr{L}^{2}_{1,\ell}$
- \triangleright assuming controllability and PE of u_d of order 2 $\ell + 1$
- \blacktriangleright leftker $\left(\mathscr{H}_{\ell+1}(w) \right)$ completely specifies \mathscr{B} (the model is identifiable from the data)
- what "goes wrong" when u_d is not PE of order $\ell + 1$?
- \triangleright verify it numerically

Solution

- ► *u_d* not PE \implies $\exists R_u \in \mathbb{R}^{1 \times (\ell+1)} \neq 0$, $R_u \mathscr{H}_{\ell+1}(u_d) = 0$
- **Figure 1** then, left ker $(\mathscr{H}_{\ell+1}(w))$ contains R , ker $(R) = \mathscr{B}$ and input annihilator $\begin{bmatrix} R_u & 0 \end{bmatrix}$
- \blacktriangleright HW: how to distinguish *R* from $[R_u \space 0]$?

Spurious poles

- ► given exact data $w \in \mathscr{B} \in \mathscr{L}^{\mathcal{P}}_{0,\ell}$ (autonomous system)
- ◮ assume that *w* is PE of maximal order, *i.e.*, $rank(\mathcal{H}_{\ell+1}(w)) = \ell$
- the roots of $P \neq 0$, $P\mathcal{H}_{\ell+1}(w) = 0$ are the poles of \mathcal{B}
- **consider now left ker** $(\mathcal{H}_{\ell+2}(w))$ (ℓ is over-specified)
- what are the roots of $P \neq 0$, $P\mathcal{H}_{\ell+2}(w) = 0$?
- **•** how to recover \mathscr{B} from leftker $(\mathscr{H}_{\ell+2}(w))$?

Solution

► the roots of $P \in \mathbb{R}^{1 \times (\ell+2)}$ are the poles of $\mathscr B$ $+$ an additional pole (called spurious)

► dim (left ker
$$
(\mathcal{H}_{\ell+2}(w))
$$
) = 2 \rightsquigarrow two independent
annihilators

ightheir common divisor is an annihilator of $\mathscr B$

Identification from short record(s)

- \triangleright what is the minimum number T_{min} of sequential samples needed for identification of a model in \mathscr{L}^q_m $_{\mathfrak{m},\ell}$ from $N = 1$ trajectory?
- what is the minimum number T'_{min} of sequential samples for identification of a model in $\mathscr{L}^q_{m,\ell}$ if $\mathsf{N}'>1$ trajectories with $\mathcal{T}'_{\mathsf{min}}$ samples can be used?

MPUM for noisy data

► consider "noisy data"

$$
w = \overline{w} + \widetilde{w}, \qquad \text{where} \quad \overline{w} \in \overline{\mathscr{B}} \in \mathscr{L}_{m,\ell}
$$

and \tilde{w} is white noise

- ightharpoonup under the usual assumptions $\mathscr{B}_{\text{mnum}}(\overline{w}) = \overline{\mathscr{B}}$
- \triangleright what is $\mathscr{B}_{\text{mnum}}(w)$ for the noisy data?
- ► suggest modifications of exact identification methods that make them suitable for approximation

Solution

 \triangleright a.s., there is no exact model of bounded complexity

$$
\mathscr{B}_{\mathsf{mpum}}(w)|_{\mathcal{T}} \stackrel{\text{a.s.}}{=} (\mathbb{R}^q)^{\mathcal{T}} \qquad \text{(a trivial model)}
$$

 \blacktriangleright the requirement that $\widehat{\mathscr{B}}$ is unfalsified is too restrictive

- \triangleright subspace identification methods: replace
	- ► "kernel" by "approx. kernel" obtained from the SVD
	- ► "rank revealing factorization" by "low-rank approx."
	- ► "solution (of a system)" by "LS approximation"

Impulse response estimation

- implement the method $w \rightarrow H$
- ► compare it with impulseest