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Line fitting

problem: give a condition on the data

D = {d1, . . . ,dN } ⊂ R
2

that is equivalent to the condition that

the points d1, . . . ,dN are on a line in R
2
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Solution

the points di = (ai ,bi), i = 1, . . . ,N lie on a line

m

there is (R1,R2,R3) 6= 0, such that

R1ai +R2bi +R3 = 0, for i = 1, . . . ,N

m

there is (R1,R2,R3) 6= 0, such that

[
R1 R2 R3

]



a1 · · · aN

b1 · · · bN

1 · · · 1


= 0

m

rank






a1 · · · aN

b1 · · · bN

1 · · · 1




≤ 2
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Note

◮ B = {d | Rd = 0} — linear static model

◮ B = {d | R
[

d
1

]
= 0} — affine static model

◮ in exact modeling

affine fitting

m

data centering + linear modeling

◮ HW: is the same true in approximate modeling?
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Conic section fitting
◮ conic section (with parameters S = S⊤, u, v )

B(S,u,v) = {d ∈ R
2 | d⊤Sd +u⊤d +v = 0}

1. give a condition on the data

D = {d1, . . . ,dN } ⊂ R
2

that is equivalent to the condition that

d1, . . . ,dN are lying on a conic section

2. find a conic section fitting the points

d1 =

[
−1

−1

]
, d2 =

[
1

−1

]
, d3 =

[
1

1

]
, d4 =

[
−1

1

]
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Solution

the points di = (ai ,bi), i = 1, . . . ,N lie on a conic section

m

∃ S = S⊤, u, v , at least one of them nonzero, such that

d⊤
i Sdi +u⊤di +v = 0, for i = 1, . . . ,N

m

there is (s11,s12,s22,u1,u2,v) 6= 0, such that

[
s11 2s12 u1 s22 u2 v

]




a2
1 · · · a2

N
a1b1 · · · aNbN

a1 · · · aN

b2
1 · · · b2

N
b1 · · · bN

1 · · · 1



= 0
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Solution (continued)

the points di = (ai ,bi), i = 1, . . . ,N lie on a conic section

m

rank







a2
1 · · · a2

N
a1b1 · · · aNbN

a1 · · · aN

b2
1 · · · b2

N
b1 · · · bN

1 · · · 1







≤ 5

f = @(a, b) [a .^ 2; a .* b; a; b .^ 2; b;

ones(size(a))];
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Solution (continued)
◮ finding exact models

R = null(f(d(1, :), d(2, :))’)’;

◮ plotting a model

function H = plot_model(th, f, ax, c)

H = ezplot(@(a, b) th * f(a, b), ax);

for h = H’, set(h, ’color’, c, ’linewidth’,

◮ show results

plot(d(1, :), d(2, :), ’o’, ’markersize’, 12)

ax = 2 * axis;

for i = 1:size(R, 1)

hold on, plot_model(R(i, :), f, ax, c(i));

end
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Solution (continued)

-2 -1 0 1 2
-2

-1

0

1

2

a

b
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Subspace clustering
◮ union of two lines (with parameters R1,R2 ∈ R

1×2)

B(R1,R2) = {d ∈ R
2 | (R1d)(R2d) = 0}

1. give a condition on the data

D = {d1, . . . ,dN } ⊂ R
2

that is equivalent to the condition that

d1, . . . ,dN are lying on a union of two lines

2. find a union of two lines model fitting the points

d1 =

[
−1

−1

]
, d2 =

[
1

−1

]
, d3 =

[
1

1

]
, d4 =

[
−1

1

]
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Solution

the points di ∈ R
2, i = 1, . . . ,N lie on a union of two lines

m

there are R1 6= 0 and R2 6= 0, v , such that

(R1di)(R
2di) = 0, for i = 1, . . . ,N

m

there are
[
R1

1 R1
2

]
6= 0 and

[
R2

1 R2
2

]
6= 0, such that

[
R1

1R2
1 R1

1R2
2 +R1

2R2
1 R1

2R2
2

]



a2
1 · · · a2

N
a1b1 · · · aNbN

b2
1 · · · b2

N


= 0
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Solution (continued)

◮ if di ∈ R
2, i = 1, . . . ,N lie on a union of two lines, then

rank






a2
1 · · · a2

N
a1b1 · · · aNbN

b2
1 · · · b2

N




≤ 2

◮ in this case, the rank condition is only necessary

◮ in additional, a basis for the left kernel is

[
1 α +β αβ

]
, for some α and β

◮ union of two lines fitting is a special case of the

Generalized principal component analysis
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Solution (continued)

-2 -1 0 1 2
-2

-1

0

1

2

a

b

◮ HW: how to "extract" R1 and R2 from ker(D)
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Recursive sequences

◮ w =
(
w(1), . . . ,w(T )

)
is recursive of order ℓ if

R0w(t)+R1w(t +1)+ · · ·+Rℓw(t + ℓ) = 0,

for t = 1, . . . ,T − ℓ and some R0,R1, . . . ,Rℓ ∈ R

1. give a condition on w that is equivalent to

w is a recursive of order ℓ

2. find the minimal recursive order of

(1,2,4,7,13,24,44,81)
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Solution

w
is recursive

of order ℓ
⇐⇒ ∃ R ∈ R

1×(ℓ+1) s.t. RHℓ+1(w) = 0

=⇒ rank
(
Hℓ+1(w)

)
≤ ℓ

where

Hℓ+1(w) :=




w(1) w(2) · · · w(T − ℓ)
w(2) w(3) · · · w(T − ℓ+1)
...

...
...

w(ℓ+1) w(ℓ+2) · · · w(T )




◮ for ℓ= 1,2, . . ., if rank
(
Hℓ+1(w)

)
= ℓ, stop

◮ ℓmin = 3 and R =
[
1 1 1 −1

]
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Polynomial common divisor

◮ the polynomials

p(z) = p0 +p1z + · · ·+pℓp
zℓp

q(z) = q0 +q1z + · · ·+qℓq
zℓq

have a common divisor

c(z) = c0+c1z + · · ·+cℓc
zℓc

iff p = ca and q = cb for some polynomials a and b

◮ give a condition on p,q that is equivalent to

p,q have a common divisor of degree ℓc
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Solution

c(z) = a(z)b(z) ⇐⇒




c0

c1
...

cℓc


=




a0

a1 a0
... a1

. . .

aℓa

...
. . . a0

aℓa
a1

. . .
...

aℓa







b0

b1
...

bℓb




⇐⇒ : c = Sℓb
(a)b ⇐⇒ c = Sℓa

(b)a
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Solution (continued)

p ∈ R[z] and q ∈ R[z]
have common divisor

c ∈ R[z], deg(c) = ℓc

⇐⇒
∃ a ∈ R[z], deg(a) = ℓp − ℓc

∃ b ∈ R[z], deg(b) = ℓq − ℓc

such that p = ca and q = cb

⇐⇒ qa−pb = 0

⇐⇒
[
Sℓa

(q) Sℓb
(p)

][ a

−b

]
= 0

⇐⇒
[
Sℓa

(q) Sℓb
(p)

]
is rank

deficient
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Least squares contour alignment

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-1

0

1

2

given contours C1,C2, specified by matching points p(i) ↔ q(i)

C1

p(3) p(2) p(1)

p(4) p(5) p(6)

C2

q(3)

q(2)

q(1) q(6)

q(5)

q(4)
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Problem

◮ find a transformation (rotation + scaling + translation)

Aa,θ ,s(p) = s

[
cosθ −sinθ
sinθ cosθ

]
p+a

that minimizes the LS distance between

min
a∈R2,θ∈[0,2π),s∈R+

N

∑
i=1

‖p(i)−Aa,θ ,s(q
(i))‖2

2

C1 and Aa,θ ,s(C2)

◮ apply the solution on the data in the example
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Data in the example

p = [1 0 -1 -1 0 1

1 1 1 -1 -1 -1];

q = [2.5 2.6 2.5 3.5 3.4 3.5

1.5 1.0 0.5 0.5 1.0 1.5];
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Hint

◮ use the change of variables

[
b1

b2

]
= s

[
cosθ
sinθ

]
and

[
θ
s

]
=


sin−1(b2/

√
b2

1 +b2
2)√

b2
1 +b2

2




◮ to obtain an equivalent problem

min
(a1,a2,b1,b2)∈R4

∥∥∥∥∥∥∥∥∥∥∥∥∥




p
(1)
1

p
(1)
2
...

p
(N)
1

p
(N)
2




−




1 0 q
(1)
1 −q

(1)
2

0 1 q
(1)
2 q

(1)
1

...
...

...
...

1 0 q
(N)
1 −q

(N)
2

0 1 q
(N)
2 q

(N)
1







a1

a2

b1

b2




∥∥∥∥∥∥∥∥∥∥∥∥∥
2
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Orthogonal Procrustes problem

◮ HW: alignment by reflection + scaling + translation

◮ rigid transformation =

rotation + reflection + scaling + translation

◮ contour alignment by rigid transformation is related to
the orthogonal Procrustes problem:

◮ given m×n real matrices C1 and C2

minimize over Q ‖C1−QC2‖F subject to Q⊤Q = I

◮ solution: Q = UV⊤, where UΣV⊤ is the SVD of C⊤
1 C2
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Check whether w
?
∈ B

◮ w = (ud ,yd ) =
(
(0,1), (0,1), (0,1), (0,1)

)

w = [0 0 0 0; 1 1 1 1];

◮ B = ker
(
R(σ)

)
, where R(z) =

[
1 −1

]
+
[
−1 1

]
z

R = [1 -1 -1 1]; ell = 1;

27 / 66



w
?
∈ ker

(
R(σ)

)

⇐⇒ R(σ)w = 0

⇐⇒ R0w(t)+R1w(t +1)+ · · ·+Rℓw(t + ℓ) = 0

for t = 1, . . . ,T − ℓ

⇐⇒




R0 R1 · · · Rℓ

R0 R1 · · · Rℓ

. . .
. . .

. . .

R0 R1 · · · Rℓ




︸ ︷︷ ︸
MT (R)∈Rp(T−ℓ)×qT




w(1)
w(2)
...

w(T )




︸ ︷︷ ︸
vec(w)

= 0
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w
?
∈ ker

(
R(σ)

)

⇐⇒ MT (R)vec(w) = 0

⇐⇒ RHℓ+1(w) = 0

where

[
R0 R1 · · · Rℓ

]
︸ ︷︷ ︸

R




w(1) w(2) · · · w(T − ℓ)
w(2) w(3) · · ·
...

...
...

w(ℓ+1) w(ℓ+2) · · · w(T )




︸ ︷︷ ︸
Hℓ+1(w)∈Rq(ℓ+1)×(T−ℓ)

= 0
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◮ compute e = ‖RHℓ+1(w)‖ and check if e < ε

w = [0 0 0 0; 1 1 1 1];

R = [1 -1 -1 1]; ell = 1;

norm(R * blkhank(w, ell + 1))

◮ blkhank constructs a block-Hankel matrix HL(w)

function H = blkhank(w, i, j)

[q, T] = size(w);

if T < q, w = w’; [q, T] = size(w); end

if nargin < 3, j = T - i + 1; end

H = zeros(i * q, j);

for ii = 1:i

H(((ii - 1) * q + 1):(ii * q), :) ...

= w(:, ii:(ii + j - 1));

end
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Homework

◮ use image representation to check

w
?
∈ image

(
P(σ)

)

◮ use state space representation to check

w
?
∈ B(A,B,C,D)
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Affine time-invariant system

◮ an LTI system B ∈ Lm,ℓ admits a kernel repr.

B = ker
(
R(σ)

)
:= {w | R(σ)w = 0}

for some R(z) = R0z0 +R1z1+ · · ·+Rℓz
ℓ

◮ show that

Bc := {w | R(σ)w = c }

is an affine time-invariant system, i.e., Bc = B+wp

for LTI model B ∈ Lm,ℓ and trajectory wp

◮ find B and wp, s.t. B+wp = {w | (0.5+σ)w = 1}
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◮ using the matrix representation of R(σ)

w ∈ Bc ⇐⇒ MT (R)w = 1T−ℓ⊗c =: c

⇐⇒ MT (R)(w −wp) = 0

⇐⇒ w −wp ∈ ker
(
R(σ)

)
= B

◮ therefore, Bc = B+wp, where B ∈ Lm,ℓ and

MT (R)wp = c

◮ e.g., the least-norm solution

wp = M
⊤
T (R)

(
MT (R)M⊤

T (R)
)−1

c

◮ HW: find input/state/output representation of Bc
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◮ in the case of {w | (0.5+σ)w = 1}

◮ sylv(R, T) constructs the matrix MT (R)

function S = sylv(R, T)

nR = length(R); q = 2;

n = (nR / q) - 1;

S = zeros(T - n, q * T);

for i = 1:T - n

S(i, (1:nR) + (i - 1) * q) = R;

end
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Transfer function 7→ kernel representation

◮ what model Btf(H) is specified by a transfer function

H(z) =
q(z)

p(z)
=

q0 +q1z1 + · · ·+qℓz
ℓ

p0 +p1z1 + · · ·+pℓzℓ

◮ find R, such that

Btf(H) = ker(R)

◮ write a function tf2ker converting H (tf object) to R
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◮ H(z) = q(z)/p(z)
?
↔ R(z)

◮ y(z) = H(z)u(z) ↔ p(σ)y = q(σ)u

[
q(σ) −p(σ)

]
︸ ︷︷ ︸

R(σ)

[
u

y

]
= 0

◮ note: z may correspond to σ−1 as well as σ

◮ does Btf(H) assume zero initial conditions?
◮ if so,

Btf(H) = {w | R(σ)(0∧w) = 0
)

◮ otherwise,

Btf(H) = ker
(
R(σ)

)
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◮ note: MATLAB uses descending order of coefficients

function R = tf2ker(H)

[Q P] = tfdata(tf(H), ’v’);

R = vec(fliplr([Q; -P]))’;
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Specification of initial conditions

◮ initial conditions are explicitly specified in I/S/O repr.

◮ in MATLAB

LSIM(SYS,U,T,X0) specifies the initial

state vector X0 at time T(1)

(for state-space models only).

◮ in transfer function representation initial conditions

are often set to 0

◮ explain how to specify initial conditions in a

representation free manner

◮ what is the link to xini = x(1) in I/S/O repr?
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◮ assuming that B is controllable

◮ initial conditions can be specified by prefix trajectory

wini =
(
wini(1), . . . ,wini(Tini)

)

i.e., by wini∧w ∈ B

◮ the link between wini and xini is given by

yini = Oℓ(A,C)A−ℓxini+Tℓ(A,B,C,D)uini

function x0 = inistate(w, sys)

l = size(sys, ’order’);

x0 = obsv(sys) \ (w(1:l, 2) ...

- lsim(sys, w(1:l, 1)));
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Output matching

◮ given yf and B

◮ find uf, such that (uf,yf) ∈ B

Setup

◮ random SISO unstable system B

clear all, n = 3;

Br = drss(n); [Qr, Pr] = tfdata(Br, ’v’);

B = ss(tf(fliplr(Qr), fliplr(Pr), -1));

◮ reference output

T = 100; yf = ones(T, 1);

40 / 66



◮ MT (R)w = 0 =⇒ MT (P)u = MT (P)y

R = tf2ker(B); M = sylv(R, T);

Mu = M(:, 1:2:end); My = - M(:, 2:2:end);

◮ many solutions (why?); compute a particular one

uf = pinv(Mu) * My * yf;
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◮ (uf,yf)
?
∈ ker

(
R(σ)

)

◮ (uf,yf)
?
∈ image

(
P(σ)

)

◮ (uf,yf)
?
∈ B(A,B,C,D)

◮ where is the problem?
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◮ the system is anti-stable

◮ the test w ∈ B(A,B,C,D) is ill-conditioned

◮ do backwards in time simulation
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◮ particular (least squares) input

0 20 40 60 80 100
-5

0

5

10

15x 10
-16

t

u
f

◮ HW: find all inputs
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Misfit computation using image repr.

◮ given
◮ data w =

(
w(1), . . . ,w(T )

)
and

◮ LTI system B = image
(
P(σ)

)

◮ derive a method for computing

misfit(w ,B) := min
ŵ∈B

‖w − ŵ‖2

◮ i.e., find the orthogonal projection of w on B

46 / 66



w
?
∈ image

(
P(σ)

)

⇐⇒ there is v , such that w = P(σ)v

⇐⇒ there is v , such that for t = 1, . . . ,T

w(t) = P0v(t)+P1v(t +1)+ · · ·+Pℓv(t + ℓ)

⇐⇒ there is solution v of the system




w(1)
w(2)
...

w(T )


=




P0 P1 · · · Pℓ

P0 P1 · · · Pℓ

. . .
. . .

. . .

P0 P1 · · · Pℓ




︸ ︷︷ ︸
MT+ℓ(P)




v(1)
v(2)
...

v(T + ℓ)
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Solution

◮ we showed that

ŵ ∈ ker
(
R(σ)

)
⇐⇒ ŵ = MT (P)v , for some v

◮ then the misfit computation problem

misfit(w ,B) := min
ŵ∈B

‖w − ŵ‖

becomes

minimize over v ‖w −MT (P)v‖
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◮ this is a standard least-norm problem

◮ projector on B = image(P)

Πimage(P) := MT (P)
(
M

⊤
T (P)MT (P)

)−1
M

⊤
T (P)

◮ misfit

misfit(w ,B) :=
√

w⊤
(
I−Πimage(P)

)
w

and optimal approximation

ŵ = Πimage(P)w

◮ HW: misfit computation with B = ker
(
R(σ)

)
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Misfit computation using I/S/O repr.

◮ given
◮ data w =

(
w(1), . . . ,w(T )

)
and

◮ LTI system B = B(A,B,C,D)

◮ derive a method for computing

misfit(w ,B) := min
ŵ∈B

‖w − ŵ‖2

◮ i.e., find the orthogonal projection of w on B
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w
?
∈ B(A,B,C,D)

B(A,B,C,D) = {(u,y) | σx = Ax +Bu, y = Cx +Du }

(ud ,yd) ∈ B(A,B,C,D) ⇐⇒ ∃ xini ∈ R
n, such that

y =




C

CA

CA2

...

CAT−1




︸ ︷︷ ︸
OT (A,C)

xini+




D

CB D

CAB CB D
...

. . .
. . .

. . .

CAT−1B · · · CAB CB D




u
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Solution

◮ we showed that

ŵ ∈ B(A,B,C,D) ⇐⇒ ŷ = OT (A,C)x̂ini+TT (H)û

◮ then the misfit computation problem

min
x̂ini,û

∥∥∥∥
[
ud

yd

]
−

[
0 I

OT (A,C) TT (H)

][
x̂ini

û

]∥∥∥∥

◮ exploiting the structure in the problem

❀ EIV Kalman filter
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Latency computation

◮ given
◮ data w and
◮ LTI system Bext = ker

(
R(σ)

)
(wext :=

[
ê
w

]
)

◮ find an algorithm for computing

minimize over e ‖ê‖ subject to (ê,w) ∈ Bext

◮ HW: latency computation with Bext = B(A,B,C,D)
(this is the ordinary Kalman filter)
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Solution
◮ partition R =

[
Re Rw

]
conformably with wext = [ e

w ]

◮ by analogy with the derivation on page 47, we have

[
e

w

]
∈ ker

(
R(σ)

)
⇐⇒

[
MT (Re) MT (Rw)

][e

w

]
= 0

◮ the latency computation problem is

min
e

‖e‖2 subject to MT (Re)e =−MT (Rw)w

◮ the solution is given by

ê =−
(
MT (Re)

⊤
MT (Re)

)−1
MT (Re)

⊤

︸ ︷︷ ︸
MT (Re)+

MT (Rw )w
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Software

◮ mosaic-Hankel low-rank approximation

http://slra.github.io/software.html

◮ [sysh,info,wh] = ident(w, m, ell, opt)

◮ sysh — I/S/O representation of the identified model
◮ opt.sys0 — I/S/O repr. of initial approximation
◮ opt.wini — initial conditions
◮ opt.exct — exact variables
◮ info.Rh — parameter R of kernel repr.
◮ info.M — misfit

◮ [M, wh, xini] = misfit(w, sysh, opt)

◮ demo file
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Variable permutation

◮ verify that permutation of the variables doesn’t

change the optimal misfit

T = 100; n = 2; B0 = drss(n);

u = randn(T, 1); y = lsim(B0, u) + 0.001 * randn(T,

[B1, info1] = ident([u y], 1, n); disp(info1.M)

2.9736e-05

[B2, info2] = ident([y u], 1, n); disp(info2.M)

2.9736e-05

disp(norm(B1 - inv(B2)))

5.8438e-12
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Output error identification

◮ verify that the results of oe and ident coincide

T = 100; n = 2; B0 = drss(n);

u = randn(T, 1); y = lsim(B0, u) + 0.001 * randn(T,

opt = oeOptions(’InitialCondition’, ’estimate’);

B1 = oe(iddata(y, u), [n + 1 n 0], opt);

B2 = ident([u y], 1, n, struct(’exct’, 1));

norm(B1 - B2) / norm(B1)

ans =

1.4760e-07
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Identification without PE input

◮ given exact data w = (ud ,yd) ∈ B ∈ L 2
1,ℓ

◮ assuming controllability and PE of ud of order 2ℓ+1

◮ leftker
(
Hℓ+1(w)

)
completely specifies B

(the model is identifiable from the data)

◮ what "goes wrong" when ud is not PE of order ℓ+1?

◮ verify it numerically
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Solution

◮ ud not PE =⇒ ∃Ru ∈ R
1×(ℓ+1) 6= 0, RuHℓ+1(ud ) = 0

◮ then, leftker
(
Hℓ+1(w)

)
contains R, ker(R) = B and

input annihilator
[
Ru 0

]

◮ HW: how to distinguish R from
[
Ru 0

]
?
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Spurious poles

◮ given exact data w ∈ B ∈ L
p

0,ℓ (autonomous system)

◮ assume that w is PE of maximal order, i.e.,

rank
(
Hℓ+1(w)

)
= ℓ

◮ the roots of P 6= 0, PHℓ+1(w) = 0 are the poles of B

◮ consider now leftker
(
Hℓ+2(w)

)
(ℓ is over-specified)

◮ what are the roots of P 6= 0, PHℓ+2(w) = 0?

◮ how to recover B from leftker
(
Hℓ+2(w)

)
?
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Solution

◮ the roots of P ∈ R
1×(ℓ+2) are the poles of B

+ an additional pole (called spurious)

◮ dim
(

leftker
(
Hℓ+2(w)

))
= 2 ❀

two independent

annihilators

◮ their common divisor is an annihilator of B
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Identification from short record(s)

◮ what is the minimum number Tmin of sequential

samples needed for identification of a model in L
q
m,ℓ

from N = 1 trajectory?

◮ what is the minimum number T ′
min of sequential

samples for identification of a model in L
q
m,ℓ if N ′ > 1

trajectories with T ′
min samples can be used?
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MPUM for noisy data

◮ consider "noisy data"

w = w + w̃ , where w ∈ B ∈ Lm,ℓ

and w̃ is white noise

◮ under the usual assumptions Bmpum(w) = B

◮ what is Bmpum(w) for the noisy data?

◮ suggest modifications of exact identification methods

that make them suitable for approximation
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Solution

◮ a.s., there is no exact model of bounded complexity

Bmpum(w)|T
a.s.
= (Rq)T (a trivial model)

◮ the requirement that B̂ is unfalsified is too restrictive

◮ subspace identification methods: replace
◮ "kernel" by "approx. kernel" obtained from the SVD
◮ "rank revealing factorization" by "low-rank approx."
◮ "solution (of a system)" by "LS approximation"
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Impulse response estimation

◮ implement the method w → H

◮ compare it with impulseest
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