DYSCO course on low-rank approximation and its applications

Exercises

Ivan Markovsky

Vrije Universiteit Brussel

Outline

[Introduction](#page-1-0)

[Computational tools](#page-7-0)

[Behavioral approach](#page-13-0)

[Approximate identification](#page-19-0)

[Exact identification](#page-26-0)

Line fitting

problem: give a condition on the data

$$
\mathscr{D} = \{d_1, \ldots, d_N\} \subset \mathbb{R}^2
$$

that is equivalent to the condition that

the points $d_1,\ldots,d_\mathcal{N}$ are on a line in \mathbb{R}^2

Conic section fitting

◮ conic section (with parameters *S* = *S* [⊤], *u*, *v*)

 $\mathscr{B}(\mathcal{S}, u, v) = \{\, \boldsymbol{d} \in \mathbb{R}^2 \mid \boldsymbol{d}^\top \mathcal{S} \boldsymbol{d} + \boldsymbol{u}^\top \boldsymbol{d} + v = 0 \,\}$

1. give a condition on the data

$$
\mathscr{D} = \{d_1, \ldots, d_N\} \subset \mathbb{R}^2
$$

that is equivalent to the condition that *d*1,...,*d^N* are lying on a conic section

2. find a conic section fitting the points

$$
d_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad d_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad d_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad d_4 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

Subspace clustering

► union of two lines (with parameters $R^1, R^2 \in \mathbb{R}^{1 \times 2}$)

$$
\mathscr{B}(R^1,R^2)=\{d\in\mathbb{R}^2\mid (R^1d)(R^2d)=0\}
$$

1. give a condition on the data

$$
\mathscr{D} = \{\, d_1, \ldots, d_N\,\} \subset \mathbb{R}^2
$$

that is equivalent to the condition that d_1 ,...,*d_N* are lying on a union of two lines

2. find a union of two lines model fitting the points

$$
d_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad d_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad d_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad d_4 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

Recursive sequences

▶
$$
w = (w(1), \ldots, w(T))
$$
 is recursive of order ℓ if

$$
R_0 w(t) + R_1 w(t+1) + \cdots + R_\ell w(t+\ell) = 0,\n\text{for } t = 1, ..., T - \ell \text{ and some } R_0, R_1, ..., R_\ell \in \mathbb{R}
$$

- 1. give a condition on *w* that is equivalent to *w* is a recursive of order *ℓ*
- 2. find the minimal recursive order of

(1,2,4,7,13,24,44,81)

Polynomial common divisor

 \blacktriangleright the polynomials

$$
p(z) = p_0 + p_1 z + \cdots + p_{\ell_p} z^{\ell_p}
$$

$$
q(z) = q_0 + q_1 z + \cdots + q_{\ell_q} z^{\ell_q}
$$

have a common divisor

$$
c(z)=c_0+c_1z+\cdots+c_{\ell_c}z^{\ell_c}
$$

iff $p = ca$ and $q = cb$ for some polynomials a and b

 \triangleright give a condition on p, q that is equivalent to *p*,*q* have a common divisor of degree ℓ*^c*

Outline

[Introduction](#page-1-0)

[Computational tools](#page-7-0)

[Behavioral approach](#page-13-0)

[Approximate identification](#page-19-0)

[Exact identification](#page-26-0)

Least squares contour alignment

given contours $\mathscr{C}_{1},\mathscr{C}_{2},$ specified by matching points $\rho^{(i)}\leftrightarrow q^{(i)}$

Problem

 \triangleright find a transformation (rotation + scaling + translation)

$$
\mathscr{A}_{a,\theta,s}(p) = s \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} p + a
$$

that minimizes the LS distance between

$$
\min_{a\in\mathbb{R}^2,\theta\in[0,2\pi),s\in\mathbb{R}_+}\ \sum_{i=1}^N\| \rho^{(i)}-\mathscr{A}_{a,\theta,s}(q^{(i)})\|_2^2
$$

 \mathscr{C}_1 and $\mathscr{A}_{a,\theta,s}(\mathscr{C}_2)$

 \triangleright apply the solution on the data in the example

Data in the example

Hint

 \triangleright use the change of variables

$$
\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = s \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \theta \\ s \end{bmatrix} = \begin{bmatrix} \sin^{-1} (b_2/\sqrt{b_1^2 + b_2^2}) \\ \sqrt{b_1^2 + b_2^2} \end{bmatrix}
$$

 \blacktriangleright to obtain an equivalent problem

$$
(a_1, a_2, b_1, b_2) \in \mathbb{R}^4 \left(\begin{bmatrix} p_1^{(1)} \\ p_2^{(1)} \\ \vdots \\ p_k^{(N)} \end{bmatrix} - \begin{bmatrix} 1 & 0 & q_1^{(1)} & -q_2^{(1)} \\ 0 & 1 & q_2^{(1)} & q_1^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & q_1^{(N)} & -q_2^{(N)} \\ 0 & 1 & q_2^{(N)} & q_1^{(N)} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{bmatrix} \right)_{12}
$$

Orthogonal Procrustes problem

- \triangleright HW: alignment by reflection + scaling + translation
- \blacktriangleright rigid transformation =

rotation $+$ reflection $+$ scaling $+$ translation

 \triangleright contour alignment by rigid transformation is related to the orthogonal Procrustes problem:

 \triangleright given $m \times n$ real matrices C_1 and C_2

 $\textsf{minimize over } Q \quad \lVert C_1 - QC_2 \rVert_{\textsf{F}} \quad \textsf{subject to} \quad Q^\top Q = R$

 \blacktriangleright solution: $Q = UV^\top,$ where $U\Sigma V^\top$ is the SVD of $C_1^\top C_2$

Outline

[Introduction](#page-1-0)

[Computational tools](#page-7-0)

[Behavioral approach](#page-13-0)

[Approximate identification](#page-19-0)

[Exact identification](#page-26-0)

Check whether *w* ? ∈ B

\n- $$
w = (u_d, y_d) = ((0, 1), (0, 1), (0, 1), (0, 1))
$$
\n
\n- $w = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1]$ \n
\n- $\mathcal{B} = \ker(R(\sigma))$, where $R(z) = [1 \ -1] + [-1 \ 1]z$ \n
\n- $R = [1 \ -1 \ -1 \ 1]$, $e11 = 1$, f \n
\n

Affine time-invariant system

► an LTI system $\mathscr{B} \in \mathscr{L}_{m,\ell}$ admits a kernel repr.

$$
\mathscr{B} = \ker (R(\sigma)) := \{ w \mid R(\sigma)w = 0 \}
$$

for some $R(z) = R_0 z^0 + R_1 z^1 + \cdots + R_\ell z^\ell$

 \blacktriangleright show that

$$
\mathscr{B}_c := \{ w \mid R(\sigma)w = c \}
$$

is an affine time-invariant system, *i.e.*, $\mathscr{B}_c = \mathscr{B} + w_0$ for LTI model $\mathscr{B} \in \mathscr{L}_{m,\ell}$ and trajectory w_p

 \triangleright find \mathscr{B} and *w*_p, s.t. $\mathscr{B} + w_p = \{ w \mid (0.5 + \sigma)w = 1 \}$

Transfer function \mapsto kernel representation

ightharpoonup M_{tf}(*H*) is specified by a transfer function

$$
H(z) = \frac{q(z)}{p(z)} = \frac{q_0 + q_1 z^1 + \dots + q_\ell z^\ell}{p_0 + p_1 z^1 + \dots + p_\ell z^\ell}
$$

 \blacktriangleright find *R*, such that

$$
\mathcal{B}_{\mathsf{tf}}(H) = \mathsf{ker}(R)
$$

 \triangleright write a function $tf2ker$ converting H (tf object) to R

Specification of initial conditions

 \triangleright initial conditions are explicitly specified in I/S/O repr.

\triangleright in MATLAB

LSIM(SYS,U,T,X0) specifies the initial state vector X0 at time T(1) (for state-space models only).

- \triangleright in transfer function representation initial conditions are often set to 0
- \triangleright explain how to specify initial conditions in a representation free manner
- what is the link to $x_{\text{ini}} = x(1)$ in I/S/O repr?

Output matching

- \blacktriangleright given v_f and \mathscr{B}
- ► find u_f , such that $(u_f, y_f) \in \mathscr{B}$

Setup

► random SISO unstable system \mathscr{B}

clear all, $n = 3$; $Br = drss(n)$; $[Qr, Pr] = tfdata(Br, 'v');$ $B = ss(tf(fliplr(Qr), filiplr(Pr), -1));$

 \blacktriangleright reference output

 $T = 100$; $yf = ones(T, 1)$;

Outline

[Introduction](#page-1-0)

[Computational tools](#page-7-0)

[Behavioral approach](#page-13-0)

[Approximate identification](#page-19-0)

[Exact identification](#page-26-0)

Misfit computation using image repr.

 \blacktriangleright given

- \blacktriangleright data $w = (w(1), \ldots, w(T))$ and
- **Example 1** LTI system $\mathscr{B} = \text{image}(P(\sigma))$
- \triangleright derive a method for computing

$$
\mathsf{misfit}(w,\mathscr{B}):=\min_{\widehat{w}\in\mathscr{B}}\|w-\widehat{w}\|_2
$$

 \triangleright *i.e.*, find the orthogonal projection of *w* on \mathscr{B}

Misfit computation using I/S/O repr.

 \blacktriangleright given

- \blacktriangleright data $w = (w(1), \ldots, w(T))$ and
- ► LTI system $\mathscr{B} = \mathscr{B}(A, B, C, D)$
- \triangleright derive a method for computing

$$
\mathsf{misfit}(w,\mathscr{B}):=\min_{\widehat{w}\in\mathscr{B}}\|w-\widehat{w}\|_2
$$

 \triangleright *i.e.*, find the orthogonal projection of *w* on \mathscr{B}

Latency computation

 \blacktriangleright given

- ► data *w* and
- **Example 1** Bext = ker $(R(\sigma))$ $(w_{\mathsf{ext}} := \left[\begin{smallmatrix} \widehat{\boldsymbol{e}} \\ w \end{smallmatrix}\right])$
- \blacktriangleright find an algorithm for computing

minimize over *e* $\|\hat{\boldsymbol{e}}\|$ subject to $(\hat{\boldsymbol{e}}, \boldsymbol{w}) \in \mathscr{B}_{ext}$

 \blacktriangleright HW: latency computation with $\mathscr{B}_{ext} = \mathscr{B}(A, B, C, D)$ (this is the ordinary Kalman filter)

Software

▶ mosaic-Hankel low-rank approximation

<http://slra.github.io/software.html>

- \triangleright [sysh, info, wh] = ident(w, m, ell, opt)
	- \triangleright sysh I/S/O representation of the identified model
	- \rightarrow opt.sys0 I/S/O repr. of initial approximation
	- \rightarrow opt.wini initial conditions
	- \rightarrow opt.exct exact variables
	- ► info.Rh parameter *R* of kernel repr.
	- \rightarrow info. M misfit
- \triangleright [M, wh, xini] = misfit(w, sysh, opt)

\blacktriangleright [demo file](http://homepages.vub.ac.be/~imarkovs/ident-demo.html)

Variable permutation

 \triangleright verify that permutation of the variables doesn't change the optimal misfit

 $T = 100$; $n = 2$; $B0 = drss(n)$; $u = \text{randn}(T, 1); y = \text{lsim}(B0, u) + 0.001 * \text{ran}$ $[B1, \text{info1}] = \text{ident}([u \ y], 1, n); \text{disp}(\text{info1.M})$ 2.9736e-05 $[B2, info2] = ident([y u], 1, n); disp(info2.M)$ 2.9736e-05 $disp(norm(B1 - inv(B2)))$ 5.8438e-12

Output error identification

 \triangleright verify that the results of oe and ide nt coincide

 $T = 100$; $n = 2$; $B0 = d r s s(n)$; $u = \text{randn}(T, 1); y = \text{lsim}(B0, u) + 0.001 * \text{ran}(T)$ opt = oeOptions('InitialCondition', 'estimate'); $B1 =$ oe(iddata(y, u), $[n + 1 n 0]$, opt); $B2 =$ ident([u y], 1, n, struct('exct', 1)); $norm(B1 - B2)$ / $norm(B1)$

 $ans =$

1.4760e-07

Outline

[Introduction](#page-1-0)

[Computational tools](#page-7-0)

[Behavioral approach](#page-13-0)

[Approximate identification](#page-19-0)

[Exact identification](#page-26-0)

Identification without PE input

- \blacktriangleright given exact data $w = (\iota_{d},y_{d}) \in \mathscr{B} \in \mathscr{L}^{2}_{1,\ell}$
- \triangleright assuming controllability and PE of u_d of order 2 $\ell + 1$
- \blacktriangleright leftker $\left(\mathscr{H}_{\ell+1}(w) \right)$ completely specifies \mathscr{B} (the model is identifiable from the data)
- what "goes wrong" when u_d is not PE of order $\ell + 1$?
- \triangleright verify it numerically

Spurious poles

- ► given exact data $w \in \mathscr{B} \in \mathscr{L}^{\mathcal{P}}_{0,\ell}$ (autonomous system)
- ◮ assume that *w* is PE of maximal order, *i.e.*, $rank(\mathcal{H}_{\ell+1}(w)) = \ell$
- the roots of $P \neq 0$, $P\mathcal{H}_{\ell+1}(w) = 0$ are the poles of \mathcal{B}
- **consider now left ker** $(\mathcal{H}_{\ell+2}(w))$ (ℓ is over-specified)
- what are the roots of $P \neq 0$, $P\mathcal{H}_{\ell+2}(w) = 0$?
- **•** how to recover \mathscr{B} from leftker $(\mathscr{H}_{\ell+2}(w))$?

Identification from short record(s)

- \triangleright what is the minimum number T_{min} of sequential samples needed for identification of a model in \mathscr{L}^q_m $_{\mathfrak{m},\ell}$ from $N = 1$ trajectory?
- what is the minimum number T'_{min} of sequential samples for identification of a model in $\mathscr{L}^q_{m,\ell}$ if $\mathsf{N}'>1$ trajectories with $\mathcal{T}'_{\mathsf{min}}$ samples can be used?

MPUM for noisy data

► consider "noisy data"

$$
w = \overline{w} + \widetilde{w}, \qquad \text{where} \quad \overline{w} \in \overline{\mathscr{B}} \in \mathscr{L}_{m,\ell}
$$

and \tilde{w} is white noise

- ightharpoonup under the usual assumptions $\mathscr{B}_{\text{mnum}}(\overline{w}) = \overline{\mathscr{B}}$
- \triangleright what is $\mathscr{B}_{\text{mnum}}(w)$ for the noisy data?
- ► suggest modifications of exact identification methods that make them suitable for approximation

Impulse response estimation

- implement the method $w \rightarrow H$
- ► compare it with impulseest