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Why missing data?

◮ sensor failures

measurements are accidentally corrupted

◮ compressive sensing

measurements are intentionally skipped

◮ model-free signal processing

missing data is what we aim to find
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Exact identification with missing data

◮ the given data is exact

◮ data generating system is unknown but LTI

◮ problem is to interpolate the missing data

(cf., polynomial interpolation)

◮ special case: partial realization
◮ given data — finite impulse response h(1), . . . ,h(T )
◮ missing data — extension h(T +1), . . .
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Example: exact SYSID with missing data
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◦ — 6th order autonomous LTI system’s trajectory

× — missing data locations
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Example: exact SYSID with missing data
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◦ — 6th order autonomous LTI system’s trajectory

◦ — interpolated data
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The problem

◮ notation:
Idata — given/specified elements of w

w |Idata
— selects the elements Idata of w

◮ given: data Idata and w |Idata

◮ find: LTI system B̂ of minimal order and ŵ , such that

ŵ |Idata
= w |Idata

and ŵ ∈ B̂
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Equivalence to matrix completion

◮ the problem is equivalent to

minimize over ŵ rank
(
HL(ŵ)

)

subject to ŵ |Idata
= w |Idata

where

HL(w) :=




w(1) w(2) · · · w(T −L+1)
w(2) w(3) · · · w(T −L+2)
w(3) w(4) · · · w(T −L+3)
...

...
...

w(L) w(L+1) · · · w(T )




◮ Hankel structured low-rank matrix completion
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Special case: partial realization

◮ Idata = (1, . . . ,T )

◮ w |Idata
=
(
h(1), . . . ,h(T )

)

minimize

over the ?’s
rank




h(1) h(2) h(3) · · · h(T )

h(2) h(3) . .
.

h(T ) ?

h(3) . .
.

. .
.

. .
.

?
... h(T ) . .

.
. .
. ...

h(T ) ? ? · · · ?



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Types of methods

◮ convex relaxations (nuclear norm heuristic)

minimize over ŵ ‖HL(ŵ)‖∗

subject to ŵ |Idata
= w |Idata

replaces rank with the nuclear norm ‖ · ‖∗

◮ subspace methods

◮ local optimization based methods
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Nuclear norm heuristic

◮ Hankel matrix nuclear norm minimization

minimize over ŵ ‖HL(ŵ)‖∗

subject to ŵ |Idata
= w |Idata

◮ is a semidefinite optimization problem

minimize over ŵ , U, V trace(U)+ trace(V )

subject to ŵ |Idata
= w |Idata

,

[
U H ⊤

L (ŵ)
HL(ŵ) V

]
� 0

◮ O(T 2) optimization variables (T — # of data points)
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CVX code

function wh = hmc(w)

[T, q] = size(w); Idata = find(~isnan(w));

L = ceil((T + 1) / (q + 1));

cvx_begin sdp;

variable wh(size(w));

minimize norm_nuc(hankel(hh(1:L), hh(L:end)));

subject to

wh(Idata) == w(Idata);

cvx_end
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Numerical example: partial realization

rand(’seed’, 0); r = 3; T = 10;

sys0 = drss(r);

h0 = impulse(sys0, 2 * T); h0 = h0(2:end);

h = h0; h((T + 1):end) = NaN;

hh = hmc(h, T); err = norm(h0 - hh)

sv = svd(hankel(hh(1:T), hh(T:end)));

format long, first_sv = sv(1:(r + 1))
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Output of CVX

Calling SDPT3: 210 variables, 91 equality constraints

-----------------------------------------------------

...

number of iterations = 12

Total CPU time (secs) = 0.23

...

err =

9.250411145054003e-10

first_sv =

0.798479261343370

0.400697013978696

0.014660904007509

0.000000000297693
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Subspace method by example

◮ order: ℓ= 2, complete trajectory: w̄

◮ =⇒ RH3(w̄) = 0, for some R ∈ R
1×3

◮ data: w = (1,2,NaN,4,5,NaN,7,8,NaN,10,11)

◮ R can not be found from H3(w)




1 2 NaN 4 5 NaN 7 8 NaN

2 NaN 4 5 NaN 7 8 NaN 10

NaN 4 5 NaN 7 8 NaN 10 11



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◮ consider the matrix H4(w)



1 2 NaN 4 5 NaN 7 8

2 NaN 4 5 NaN 7 8 NaN

NaN 4 5 NaN 7 8 NaN 10

4 5 NaN 7 8 NaN 10 11




◮ and select the columns in blue and red

H̃1 =




1 4 7

2 5 8

NaN NaN NaN

4 7 10


 H̃2 =




2 5 8

NaN NaN NaN

4 7 10

5 8 11




◮ removing the rows of NaN’s

[
1 −3/2 1/2

]
︸ ︷︷ ︸

R1




1 4 7

2 5 8

4 7 10


= 0

[
1 −3 2

]
︸ ︷︷ ︸

R2




2 5 8

4 7 10

5 8 11


= 0
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◮ we have

[
1 −3/2 0 1/2

]
︸ ︷︷ ︸

R̃1

H̃1 = 0,
[
1 0 −3 2

]
︸ ︷︷ ︸

R̃2

H̃2 = 0

◮ by construction
[

R̃1

R̃2

]
H4(w̄) = 0, so that

R̃(z) =

[
R̃1(z)

R̃2(z)

]
=

[
z0 −3/2z1 +1/2z3

z0−3z2 +2z3

]

is a (nonminimal) kernel repr. of the system
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◮ a minimal representation is given by

R(z) := GCD
(
R̃1(z), R̃2(z)

)
= z0 −2z1 +z2

◮ once R is computed, it is trivial to complete the data

w̄ = (1 2 NaN 4 5 NaN 7 8 NaN 10 11)
ŵ = (1 2 3 4 5 6 7 8 9 10 11)
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Current/future work

◮ I. Markovsky. Exact identification with missing data. In

Proc. of the 52nd IEEE Conference on Decision and

Control, pages 151–155, Florence, Italy, 2013

◮ generalization to MIMO systems ❀ O(T ) method

◮ reduction to minimal representation

◮ in case of noisy data, it is model reduction

◮ possible approach: approximate common divisor

21 / 75



Exact identification with missing data

◮ the problem is equivalent to finding ŵ , such that

‖w |Ig
− ŵ |Ig

‖= 0
︸ ︷︷ ︸

exact data

and rank
(
HL(ŵ)

)
≤ r︸ ︷︷ ︸

of an LTI system

where r is bound on the model complexity and

HL(w) :=




w(1) w(2) · · · w(T −L+1)
w(2) w(3) · · · w(T −L+2)
w(3) w(4) · · · w(T −L+3)
...

...
...

w(L) w(L+1) · · · w(T )




◮ Hankel structured low-rank matrix completion
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Approx. identification with missing data

◮ given w and r

minimize over ŵ ‖w |Ig
− ŵ |Ig

‖
︸ ︷︷ ︸
approximation error

subject to rank
(
HL(ŵ)

)
≤ r︸ ︷︷ ︸

ŵ is trajectory of

bounded complexity LTI system

◮ approx. Hankel structured low-rank matrix completion
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Main idea

◮ element-wise nonnegative weights wi(t) ↔ vi(t)

◮ weighted cost function

‖w − ŵ‖v :=

√√√√ T

∑
t=1

q

∑
i=1

vi(t)
(
wi(t)− ŵi(t)

)2

◮ zero weight vi(t) = 0 ↔ missing value wi(t)

◮ vi(t) =
1

"variance of the noise on wi(t)"

◮ zero weight ↔ infinite noise variance
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Problem

◮ with vi(t) =

{
1, if wi(t) is given

0, if wi(t) is missing

‖w |Ig
− ŵ |Ig

‖= ‖w − ŵ‖v

◮ and the problem is

minimize over ŵ ‖w − ŵ‖v

subject to rank
(
HL(ŵ)

)
≤ r

(SLRA)

◮ weighted Hankel structured low-rank approximation
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Nuclear norm heruistic

◮ replacing rank with ‖ · ‖∗, the problem is relaxed to

minimize ‖WlH (ŵ)Wr‖∗+λ‖w − ŵ‖2
2

◮ fast solution method:

Z. Liu, A. Hansson, and L. Vandenberghe. Nuclear norm

system identification with missing inputs and outputs.

Control Lett., 62:605–612, 2013
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Parameter optimization

◮ using the kernel parameterization

rank
(
HL(ŵ)

)
≤ r ⇐⇒

RHL(ŵ) = 0

R ∈ R
p×qL full row rank (f.r.r.)

q — # of variables

p := qL− r — co-rank (rank deficiency)

◮ (SLRA) becomes

minimize over ŵ and R ‖w − ŵ‖v

subject to RS (p̂) = 0 and R f.r.r.
(SLRAR)
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VARPRO-like solution method

◮ (SLRAR ) is separable in p̂ and R, i.e.,

minimize over f.r.r. R ∈ R
p×qL f (R) (OUTER)

where

f (R) := min
ŵ

‖w − ŵ‖v s.t. RHL(ŵ) = 0 (INNER)

◮ (INNER) is a (generalized) least norm problem

◮ p̂ is eliminated (projected out) of (SLRAR )
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Evaluation of f (R) with missing data

f = min
x ,y

x⊤x subject to Ax +By = c (GLN)

Lemma under the following assumptions

A1. B is full column rank

A2. 1 ≤ dim(c)−dim(y)≤ dim(x)

A3. Ā := B⊥A is full row rank

(GLN) has a unique solution

f = c⊤(B⊥)⊤(ĀĀ⊤)−1B⊥c,

x = Ā⊤(ĀĀ⊤)−1B⊥c, y = B+(c−Ax)
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Proof
Under A1 and A2, rank(B) = ny and

TB =

[
B+

B⊥

]
B =

[
T+B

T⊥B

]
=

[
Iny

0

]
, det(T ) 6= 0

Then [
B+Ax

B⊥Ax

]
+

[
y

0

]
=

[
B+c

B⊥c

]
.

The first equation

y = B+(c−Ax)

uniquely determines y , given x . The second equation

B⊥Ax = B⊥c (∗)

defines a linear constraint for x only.
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Proof

By assumption A2, (∗) is an underdetermined system of

linear equations. Therefore, (GLN) is equivalent to the

following standard weighted least norm problem

f = min
x

x⊤x subject to B⊥Ax = B⊥c. (GLN’)

By assumption A3 the solution is unique.
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About the assumptions

◮ A1 and A3 ensure uniqueness of y

◮ otherwise, y ∈ B+(c−Ax)+null(B)

◮ A2 ensures feasibility with a nontrivial solution

◮ with m = ny , (GLN) has trivial solution f = 0

◮ with m−ny > nx , (GLN) generically has no solution
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Examples

1. autonomous system identification with missing data
◮ 2nd order, T = 50, y = ȳ +white noise
◮ periodically missing data with period 3

2. data-driven simulation (as missing data estimation)

3. data-driven control (as missing data estimation)

◮ I. Markovsky and K. Usevich. Structured low-rank

approximation with missing data. SIAM J. Matrix Anal.

Appl., pages 814–830, 2013

◮ I. Markovsky. Approximate identification with missing data.

In Proc. of the 52nd IEEE Conference on Decision and

Control, pages 156–161, Florence, Italy, December 2013
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Autonomous system identification
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Model-free simulation

◮ second order SISO system, defined by

y(t) = 1.456y(t −1)−0.81y(t −2)+u(t)−u(t −1)

◮ w1 is noisy trajectory generated from random input

◮ w2 is the impulse response estimate h̄, i.e.,

u2 = (0, . . . ,0︸ ︷︷ ︸
ℓ

,1,0, . . . ,0︸ ︷︷ ︸
pulse input

)

y2 = (0, . . . ,0︸ ︷︷ ︸
ℓ

, ĥ(0), ĥ(1), . . . , ĥ(T2− ℓ−1)︸ ︷︷ ︸
impulse response — missing data

)
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Model-free control
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Classical LTI optimal tracking control

◮ given:
◮ system B ∈ L

◮ desired output yr

◮ find: input u, such that

min
(u,y)∈B

‖yr−y‖

◮ there are different algorithms to solve the problem

(Riccati equation, spectral factorization, . . . )

◮ they depend on the representation of the model B

(state-space, transfer function, . . . )
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Model-free LTI optimal tracking control
◮ given:

◮ trajectory w1 (of a system B̄ ∈ Lm,ℓ)
◮ desired output yr = y2

◮ find: input û2, such that

minimize ‖w1− ŵ1‖2

︸ ︷︷ ︸
misfit
error

+‖yr − ŷ2‖2

︸ ︷︷ ︸
tracking

error

subject to ŵ1, ŵ2 ∈ B̂ ∈ Lm,ℓ

(MFT)

◮ B̂ in (MFT) is needed to define the problem

◮ in a model-free method, B̂ is not identified explicitly
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Solution by SLRA with missing data

◮ (MFT) is equivalent to

minimize over ŵ and B̂ ‖w − ŵ‖α

subject to ŵ ⊂ B̂ ∈ Lm,ℓ

the control input u2 is missing data

◮ this leads to mosaic-Hankel SLRA with missing data

minimize over ŵ ‖w − ŵ‖α

subject to rank
(
Hℓ+1(ŵ)

)
≤ qℓ+m

◮ the only truly model free solution methods I know of

are based on the nuclear norm heuristic
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Outline

y

data

lifting
−−−−−→ y ′

︸ ︷︷ ︸
pre-processing
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LTI

model
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computation
−−−−−−−−−−→
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model︸ ︷︷ ︸
post-processing

1. O(TpL2) algorithm for LPTV system realization
◮ T — # of samples
◮ p — # of outputs (dim(y))
◮ L — upper bound of the order

2. algorithm for LPTV maximum likelihood identification

I. Markovsky, J. Goos, K. Usevich, and R. Pintelon.

Realization and identification of autonomous linear

periodically time-varying systems. Automatica, 2014
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Autonomous LPTV systems

◮ state space representation (σ — shift operator)

B(A,C) := {y | σx = Ax , y = Cx , x(1) = xini ∈ R
n }

A and C are functions of time

◮ change of basis, i.e.,

B = B(A,C) = B(Â, Ĉ),
Â = σVAV−1

Ĉ = CV−1

◮ P-periodicity

A = σPA, C = σPC, V = σPV
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Problem formulation

realization

◮ given: y =
(
y(1), . . . ,y(T )

)
, period P, and order n

◮ find: Â, Ĉ, such that y ∈ B(Â, Ĉ)

identification

◮ given: y =
(
y(1), . . . ,y(T )

)
, period P, and order n

minimize over ŷ and B̂ ‖y − ŷ‖2

subject to ŷ ∈ B̂ ∈ L0,n,P

L0,n,P — set of autonomous LPTV systems with

order at most n and period P (0 = no inputs)
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“lifting” operator

(
y(1), . . . ,y(T )

)
= y 7→ y ′ =

(
y ′(1), . . . ,y ′(T ′)

)
, T ′ := ⌊T/P⌋

y ′ = liftP(y) =







y(1)
...

y(P)


 ,




y(P +1)
...

y(2P)


 , . . . ,




y((T ′−1)P)
...

y(T ′P)







Theorem 1

◮ B(A,C) — LPTV of order n, period P, with p outputs

◮ liftP
(
B(A,C)

)
— LTI of order n, with p′ := pP outputs
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Notation
◮ block-Hankel matrix

HL(y) :=




y(1) y(2) y(3) · · · y(T −L+1)

y(2) y(3) . .
.

y(T −L+1)

y(3) . .
. ...

...
y(L) y(L+1) · · · y(T )




◮ extended observability matrix

OL(A,C) :=




C(1)
C(2)A(1)

C(3)A(2)A(1)
...

C(L)A(L−1)A(L−2) · · ·A(1)



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Identification of the lifted system

◮ liftP
(
B(A,C)

)
admits nth order repr. B(Φ,Ψ)

◮ y ′ 7→ (Φ̂, Ψ̂) is classical realization problem

◮ can be solved, e.g., by Kung’s method

HL(y
′)︸ ︷︷ ︸

Hankel

= O(Φ̂, Ψ̂)︸ ︷︷ ︸
O

O(Φ̂⊤, x̂⊤
ini)︸ ︷︷ ︸

C

O ∈ R
Lp′×n

C ∈ R
n×(T ′−L)

◮ Φ̂⊤ is a solution of the shift equation

OΦ̂ = O

◮ Ψ̂ is the first block-element of O
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Computation of the model parameters

Theorem 2

◮ define Â =
(
Â1, . . . , ÂP

)
and Ĉ =

(
Â1, . . . , ÂP

)
via

Â1 = . . .= ÂP−1 = In, ÂP := Φ̂

col(Ĉ1, . . . , ĈP) := Ψ̂, Ĉi ∈ R
p×n

(note that Ψ̂ = ÂP ÂP−1 · · · Â2Â1)

◮ B(Φ̂, Ψ̂) (LTI) is equivalent to B(Â, Ĉ) (LPTV), i.e.,

B(Φ̂, Ψ̂) = liftP
(
B(Â, Ĉ)

)
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Summary

LPTV LTI

exact

identified

B(A,C) liftP
(
B(A,C)

)

B(Φ̂, Ψ̂)B(Â, Ĉ)

Theorem 1

Kung

Theorem 2
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Modified method

◮ using the “transposed” lifted sequence

y ′⊤ :=
(
y ′⊤(1), . . . ,y ′⊤(T ′)

)
, y ′⊤(t) ∈ R

1×p′

◮ the Hankel matrix factorization becomes

HL(y
′⊤)︸ ︷︷ ︸

Hankel

=OL(Φ̂
⊤,x⊤

ini)︸ ︷︷ ︸
O

·O⊤
T ′−L+1(Φ̂, Ψ̂)︸ ︷︷ ︸

C

O ∈ R
L×n

C ∈ R
n×p(T−L)

◮ Φ̂⊤ is a solution of the shift equation

OΦ̂⊤ = O

◮ Ψ̂⊤ is the first block element of C
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Identification

◮ the SYSID problem is equivalent to

minimize over ŷ ‖y − ŷ‖2

subject to rank
(
Hn+1

(
liftP(ŷ

⊤)
))

≤ n
(SLRA)

◮ (SLRA) is Hankel structured low-rank approximation

◮ existing methods can be used; we use VARPRO

method, based on the kernel representation

rank
(
Hn+1

(
liftP(ŷ

⊤)
))

≤ n ⇐⇒

∃ R1×(n+1), RHn+1

(
liftP(ŷ

⊤)
)
= 0, RR⊤ = 1
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Simulation setup

◮ the data is generated by an output error model

y = ȳ + ỹ , where ȳ ∈ B̄ ∈ L0,n,P and ỹ ∼ N(0,s2Ip)

split into identification (3/4) and validation (1/4) parts

◮ B̄ is Mathieu oscillator—spring-mass-damper system

with time-periodic spring stiffness

Āτ =

[
0 1

ā1 ā2,τ

]
, C̄τ =

[
1 0

]

◮ in the example P = 3 and T ′ = 20
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The data and its approximation
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Average approximation error
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Joint work with K. Usevich
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Problem formulation

◮ Grassmann manifold

G
q
m := {B | B is m-dim. subspace of Rq }

the set of static linear models with complexity m

◮ L
q
m,0 — static linear models with bounded complexity

◮ optimization on a manifold

minimize over B ∈ G
q
m f (B) (GO)

◮ f (B) can be error of fit between data D and model B
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Parameterizations

◮ optimize over a basis P of B, B = image(P)

minimize over f.c.r. P ∈ R
q×m f

(
image(P)

)

◮ optimize over a basis R of B⊥, B = image(R⊥)

minimize over f.r.r. R ∈ R
(q−m)×q f

(
image(R⊥)

)

◮ how to impose the "f.c.r." / "f.r.r." constraints?

◮ related issue: nonuniqueness of the basis

B= image(P) = image(PU), for all nonsingular U ∈ R
m×m

◮ there is a smaller number of "effective parameters"
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Solution approaches

◮ w.l.g. take P and R orthonormal:

P⊤P = I and RR⊤ = Iq−m

❀ optimization with quadratic equality constraints

◮ fix a full rank block, e.g., I:

P =

[
I

X

]
and R =

[
I Y

]

X ∈ R
(q−m)×m and Y ∈ R

m×(q−m) are free variables

◮ covers almost all subspaces, but not the whole G
q
m
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Switching permutations

◮ introduce a permutation matrix Π, such that

P = Π

[
I

X

]
and R =

[
I Y

]
Π

◮ the optimization is then over X / Y and Π

◮ due to choice of Π, this is combinatorial problem

◮ in practice any fix permutation is almost always

sufficient to solve the problem

◮ ‖X‖ may be large at the solution

61 / 75



Practical algorithm

◮ monitor ‖X‖ throughout the iterations

◮ select adaptively different permutations

◮ details: K. Usevich and I. Markovsky. Optimization on a

Grassmann manifold with application to system

identification. Automatica, 2014

◮ implementation:

http://slra.github.io/software.html
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Penalty method for orthonormal bases

Theorem
For any γ > 0, the local minima of

minimize over R ∈ R
(q−m)×q f

(
ker(R)

)
s.t. RR⊤= Iq−m

coincide with the local minimal of

minimize over R ∈ R
(q−m)×q f

(
ker(R)

)
+γ‖RR⊤−Iq−m‖

2
F.

◮ details and implementation:

http://slra.github.io/software.html
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Other methods in system identification

◮ local coordinates

T. McKelvey, A. Helmersson, and T. Ribarits. Data driven

local coordinates for multivariable linear systems and their

application to system identification. Automatica,

40:1629–1635, 2004

◮ pseudo-inverse of the Jacobian matrix

R. Pintelon and J. Schoukens. System Identification: A

Frequency Domain Approach. IEEE Press, Piscataway,

NJ, second edition, 2012
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Linearly structured matrices

D = S (p) = p1S1+ · · ·+pnpSnp

◮ image representation D = PL

◮ how to impose the structure via the factors P, L?

◮ for Hankel matrices,

P,L have Vandermonde structure

◮ for general S ,

the structure of P and L is an open problem
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Penalty method

◮ orthogonal projection on image(S )

ΠS (D) = S
(
ΠS vec(D)

)

where S =
[
vec(S1) · · · vec(Snp)

]

◮ penalty method

min
P,L

‖D−ΠS (PL)‖+λ‖PL−ΠS (PL)‖

◮ ‖D−ΠS (PL)‖ — approximation error term
◮ ‖PL−ΠS (PL)‖ — distance to structured matrix

◮ for λ = ∞ the penalized problem recovers the

structured low-rank solution
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Alternating projections method
◮ solve iteratively

◮ minL ‖p−ΠS vec(PL)‖+λ‖PL−ΠS (PL)‖
◮ minP ‖p−ΠS vec(PL)‖+λ‖PL−ΠS (PL)‖

◮ each problem is a linear least squares problem

◮ start with small λ and initial L,P obtained from the

unstructured LRA

◮ increase λ in the course of the optimization

(homotopy method)

◮ M. Ishteva, K. Usevich, and I. Markovsky. Regularized

structured low-rank approximation. Technical report, Vrije

Univ. Brussel, 2013. Submitted on 02/08/2013 to SIAM J.

Matrix Anal. Appl.
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Model reduction methods

◮ Balanced model reduction

B. Moore. Principal component analysis in linear systems:

Controllability, observability and model reduction. IEEE

Trans. Automat. Control, 26(1):17–31, 1981

◮ Proper orthogonal decomposition:

heruistic method for nonlinear state space models

σx = f (x ,u)
y = h(x ,u)

with potentially very large dim(x) = n

71 / 75



Proper orthogonal decomposition

◮ approximate the matrix of state "snapshots"

X :=
[
x(t1) · · · x(tN)

]
∈ R

n×N

by a rank-r ≪ n matrix, using, e.g., the truncated SVD

X = UΣV⊤ ≈ UrΣr V
⊤
r

◮ reduced state: x̂ = U⊤
r x , evolves in Rr

◮ reduced order system:

σ x̂ = U⊤
r f (Ur x̂ ,u), y = h(Ur x̂ ,u)

◮ issues: choice of snapshots, error bounds, . . .
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Low-rank approximation at MTNS 2014

◮ Mathematical Theory of Networks and Systems

http://fwn06.housing.rug.nl/mtns2014

◮ mini-course with lectures by
◮ M. Isheva on the "factorization approach"
◮ K. Usevich on "Grassmann manifold minimization"

◮ invited sessions (under review!) on
◮ matrix problems/methods for LRA
◮ tensor problems/methods for LRA
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Reproducible research

“An article about computational science in a

scientific publication is not the scholarship itself,

it is merely advertising of the scholarship. The

actual scholarship is the complete software

development environment and the complete set

of instructions which generated the figures.”

◮ J. Buckheit and D. Donoho. Wavelets and statistics,

chapter "Wavelab and reproducible research".

Springer-Verlag, Berlin, New York, 1995

◮ Can others (easily) redo your simulations?
◮ Can you (easily) redo the simulations?

◮ Tools: org-mode (emacs), publish (matlab), and git

74 / 75

http://orgmode.org/
https://github.com/


Literate programming
"At first, I thought programming was primarily

analogous to musical composition—to the

creation of intricate patterns, which are meant to

be performed. But lately I have come to realize

that a far better analogy is available:

Programming is best regarded as the process of

creating works of literature, which are meant to

be read."

◮ D. Knuth. Literate programming. Cambridge University

Press, 1992

◮ Tools: noweb (any language), sweave (R), . . .

N. Ramsey. Literate programming simplified. IEEE

Software, 11:97–105, 1994
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