
DYSCO course on low-rank approximation and its applications

Homework

Ivan Markovsky

1 Total least squares

1.1 Unconstrained problem, equivalent to total least squares

Assignment PROB

A total least squares approximate solution xtls of the linear system of equations Ax ≈ b is a solution to the following
optimization problem

minimize over x, Â, and b̂
∥∥∥[A b

]
−
[
Â b̂

]∥∥∥2

F
subject to Âx = b̂. (TLS)

Show that (TLS) is equivalent to the unconstrained optimization problem

minimize ftls(x), where ftls(x) :=
‖Ax−b‖2

2

‖x‖2
2 +1

. (TLS’)

Give an interpretation of the function ftls.

Solution SOL

The total least squares approximation problem (TLS) is minx ftls(x), where

ftls(x) = min
Â,b̂

∥∥[A b
]
−
[
Â b̂

]∥∥2
F subject to Âx = b̂ ( ftls)

or with the change of variables ∆A := A− Â and ∆b := b− b̂,

ftls(x) = min
∆A,∆b

∥∥[∆A ∆b
]∥∥2

F subject to Ax−b = ∆Ax−∆b. ( f ′tls)

Define
∆b := Ax−b, ∆D :=

[
∆A ∆b

]>
, and r =

[
x> −1

]
in order to write ( f ′tls) as a standard linear least norm problem

min
∆D

∥∥∆D
∥∥2

F subject to r∆D = ∆b>.

The least norm solution for ∆D is

∆D∗ =
r>∆b
rr>

,

so that, we have

ftls(x) = ‖∆D∗‖2
F = trace

(
(∆D∗)>D∗

)
=

∆b>∆b
rr>

=
‖Ax−b‖2

‖x‖2 +1
.

ftls(x) is the sum of squared orthogonal distances from the data points to the model Bi/o(x), defined by x.
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1.2 Lack of total least squares solution

Assignment PROB

Using the formulation (TLS’), derived in Problem 1.1, show that the total least squares line fitting problem

minimize over x ∈ R, â ∈ RN , and b̂ ∈ RN
N

∑
j=1

∥∥∥∥d j−
[

â j

b̂ j

]∥∥∥∥2

2

subject to â jx = b̂ j, for j = 1, . . . ,N

(tls)

has no solution for the data

d1 =

[
−2
1

]
, d2 =

[
−1
4

]
, d3 =

[
0
6

]
, d4 =

[
1
4

]
, d5 =

[
2
1

]
,

d6 =

[
2
−1

]
, d7 =

[
1
−4

]
, d8 =

[
0
−6

]
, d9 =

[
−1
−4

]
, d10 =

[
−2
−1

]
.

(data)

Solution SOL

The total least squares line fitting method, applied to the data in (data) leads to the overdetermined system of equations

col(−2,−1,0,1,2,2,1,0,−1,−2)︸ ︷︷ ︸
a

x = col(1,4,6,4,1,−1,−4,−6,−4,−1)︸ ︷︷ ︸
b

.

Therefore, using the (TLS’) formulation, the problem is to minimize the function

ftls(x) =
(ax−b)>(ax−b)

x2 +1
= · · · substituting a and b with

their numerical values
· · ·= 20

x2 +7
x2 +1

.

The first derivative of ftls is
d
dx

ftls(x) =−
240x

(x2 +1)2 ,

so that ftls has a unique stationary point at x = 0. The second derivative of ftls at x = 0 is negative, so that the stationary
point is a maximum. This proves that the function ftls has no minimum and therefore the total least squares problem
has no solution.

Figure 1 shows the plot of ftls over the interval [−6.3,6.3]. It can be verified that the infimum of ftls is 20 and ftls
has asymptotes

ftls(x)→ 20 for x→±∞,

i.e., the infimum is achieved asymptotically as x tends to infinity and to minus infinity.

1.3 Quadratically constrained problem, equivalent to rank-1 approximation

Assignment PROB

Show that

minimize over P ∈ R2×1 and L ∈ R1×N ‖D− D̂‖2
F

subject to D̂ = PL.
(lraP)

is equivalent to the quadratically constrained optimization problem

minimize flra(P) subject to P>P = 1, (lra′P)

where
flra(P) = trace

(
D>(I−PP>)D

)
.

Explain how to find all solutions of (lraP) from a solution of (lra′P). Assuming that a solution to (lra′P) exists, is it
unique?
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Figure 1: Cost function of the total least squares problem (TLS’) in Problem 1.2.

Solution SOL

Consider the rank-1 approximation problem (lraP) and observe that for a fixed parameter P ∈R2×1, it becomes a least
squares problem in the parameter L ∈ R1×N

minimize over L ‖D−PL‖2
F

Assuming that P is full column rank (i.e., P 6= 0), the solution is unique and is given by

L∗ = (P>P)−1P>D.

Then the minimum flra(P) = ‖D−PL∗‖2
F is given by

flra(P) = trace
(

D>
(
I−P(P>P)−1P>

)
D
)
.

The function flra, however, depends only on the direction of P, i.e.,

flra(P) = flra(αP), for all α 6= 0.

Therefore, without loss of generality we can assume that ‖P‖2 = 1. This argument and the derivation of flra show
that problem (lra′P) is equivalent to problem (lraP). All solutions of (lraP) are obtained from a solution P′∗ of (lra′P)
by multiplication with a nonzero scalar and vice verse a solution P∗ of (lraP) is reduced to a solution of (lra′P) by
normalization P∗/‖P∗‖. A solution to (lra′P), however, is still not unique because if P′∗ is a solution so is −P′∗.

1.4 Analytic solution of a rank-1 approximation problem

Assignment PROB

Show that for the data (data),

flra(P) = P>
[

140 0
0 20

]
P.

Using geometric or analytic arguments, conclude that the minimum of flra for a P on the unit circle is 20 and is
achieved for

P∗,1 =
[

0
1

]
and P∗,2 =

[
0
−1

]
. (∗)
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Solution SOL

We have

flra(P) = trace
(
D>(I−PP>)D

)
= trace

(
(I−PP>)DD>

)
= · · · substituting the data and using P>P = p2

1 + p2
2 = 1 · · ·

= trace
([

p2
2 −p1 p2

−p1 p2 p2
1

][
20 0
0 140

])
= 140p2

1 +20p2
2 = 140sin2(θ)+20cos2(θ).

From the analytic expression of flra it is easy to see that

20≤ flra
(
P(θ)

)
≤ 140

and the minimum is achieved for (∗), which in the context of the line fitting problem correspond to the vertical line
passing through the origin.

1.5 Analytic solution of two-variate rank-1 approximation problem

Assignment PROB

Find an analytic solution of the Frobenius norm rank-1 approximation of a 2×N matrix.

Solution SOL

A solution is given by the eigenvalue decomposition of the 2×2 matrix

S := DD> =

[
s1 s12
s21 s2

]
=

[
∑

N
j=1 d2

1 j ∑
N
j=1 d1 jd2 j

∑
N
j=1 d1 jd2 j ∑

N
j=1 d2

2 j

]
.

Let λ1 and λ2 be the eigenvalues of S. We have

λ1 +λ2 = s1 + s2 =⇒ λ2 = s1 + s2−λ1

λ1λ2 = s1s2− s2
12

Substituting the expression for λ2 in the second equation, we have

λ
2
1 − (s1 + s2)λ1 +(s1s2− s2

12) = 0,

so that

λ1,2 =
1
2

(
s1 + s2±

√
(s1− s2)2 +4s2

12

)
.

Let λmin be the smaller eigenvalue. (It corresponds to the minus sign.)
Next, we solve for an eigenvector v, corresponding to λmin:

(s−λminI)v = 0

ms1− s2 +
√

(s1− s2)2 +4s2
12 2s12

2s12 s2− s1 +
√

(s1− s2)2 +4s2
12

v = 0.

Provided, s12 6= 0, i.e., the rows of D are not perpendicular,

v = α

[
x
−1

]
, where x :=

s2− s1 +
√
(s1− s2)2 +4s2

12

2s12
, (∗)
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and α is an arbitrary nonzero constants.
In this case, parameters of kernel and image representations of the optimal model are

R =
[
x −1

]
, and P =

[
1
x

]
.

(We fixed α = 1.) Finally, the optimal approximation D̂ of D is

D̂ = P(P>P)−1P>D =
x

1+ x2

[1
x d11 +d21 · · · 1

x d1N + xd2N

d11 + xd21 · · · d1N + xd2N

]
.

Note that in the case s12 6= 0, alternative formulas for the eigenvector v, corresponding to λmin can be derived.

1.6 Analytic solution of scalar total least squares

Assignment PROB

Find an analytic expression for the total least squares solution of the system ax≈ b, where a,b ∈ Rm.

Solution SOL

In the case when a is not perpendicular to b, the total least squares solution exists and is unique. In this case, it is
given by (∗) (derived in Problem 1.5). In the case when a⊥ b, but ‖a‖> ‖b‖, the total least squares solution is x = 0.
Otherwise, a total least squares solution does not exists.

2 Exact identification

2.1 State space identification of an LTI autonomous model

Assignment PROB

Given a trajectory y =
(
y(1),y(2), . . . ,y(T )

)
of an autonomous linear time-invariant system B of order n, find a state

space representation Bi/s/o(A,C) of B. Modify your procedure, so that it does not require prior knowledge of the
system order n but only an upper bound nmax for it.

Solution SOL

Realization of H : N→ Rp×m is equivalent to exact modeling of the time series

wd,1 = (ud,1,yd,1) := (δe1,h1), . . . ,wd,m = (ud,m,yd,m) := (δem,hm).

Consider the impulse response H of the system

Bi/s/o
(
A,
[
b1 · · · bm

]
,C,•

)
and the responses y1, . . . ,ym of the autonomous system Bi/s/o(A,C) due to the initial conditions b1, . . . ,bm. It is easy to
verify that

σH =
[
y1 · · · ym

]
.

Thus, with the obvious substitution
B =

[
x1

0 · · · xm0
]
,

where x1
0, . . . ,x

m
0 are the initial conditions generating the responses h1, . . . ,hm, realization algorithms can be used for

exact identification of an autonomous system and vice verse; algorithms for identification of an autonomous systems
can be used for realization.
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2.2 Identification of of a general LTI model

Assignment PROB

In Lecture 5, we outlined the following algorithms for exact system identification:

1. wd 7→ R(z), where B̂ := ker
(
R(z)

)
is the identified model,

2. wd 7→ H, where H contains the first samples of the impulse response of~B̂,

3. wd 7→ O`max+1(A,C) 7→ (A,B,C,D), where (A,B,C,D) is an input/state/output representation of~B̂, and

4. wd 7→
(
xd(1), . . . ,xd(nmax +m+1)

)
7→ (A,B,C,D).

Implement algorithms 1 and 4 and apply them on the data available from

http://homepages.vub.ac.be/~imarkovs/dysco/exactid_data.mat

The computed model parameters R̂(z) and (Â, B̂,Ĉ, D̂) define models B̂1 and B̂2. Verify that the models B̂1 and B̂2
are exact for wd, i.e., wd ∈ B̂1 and wd ∈ B̂2, and are equivalent, i.e., B̂1 = B̂2.

Solution SOL

According to the fundamental lemma of lecture 5, B̂1 = B̂2 = B provided 1) the data is exact, 2) the input is
persistently exciting of order `max+nmax, and 3) B is controllable. Conditions 1 and 3 are not verifiable from the data
but are given as a prior knowledge. In order to check condition 2, we need to verify that H`max+nmax(ud) is full row
rank. For the data in the example, we have

>> rank(blkhank(u,10))
ans = 10

so condition 2 is satisfied and therefore by the assumptions stated in the exercise, B̂1 = B̂2 = B.
The model parameters obtained by w2r with the data given in exactid_data are

R =
[
0.0427 −0.0053 −0.2618 −0.0076 0.8329 −0.2461 −0.0000 0.4187

]
.

In order to validate that wd ∈ B̂1 := ker
(
R(σ)

)
, we need to check that[

R0 R1 · · · R`

]
H`+1(wd) = 0.

In Matlab,

>> norm(r * blkhank(w,l+1))
ans = 5.2619e-015

which in the finite precision arithmetic can be considered as 0 and confirms that wd ∈ B̂1.
In order to validate that wd ∈ B̂2 := Bi/s/o(A,B,C,D), we need to find an initial state xini that makes the system

yd−


C

CA
CA2

...
CAT−1


︸ ︷︷ ︸

OT (A,C)

xini +


D

CB D
CAB CB D
...

. . .
. . .

. . .

CAT−1B · · · CAB CB D


︸ ︷︷ ︸

TT (A,B,C,D)

ud = 0 (1)

as compatible as possible. If the residual is 0 (there is an exact solution), then wd ∈ B̂2. Otherwise, wd 6∈ B̂2. An
inefficient but straightforward procedure for computing an xini is to form explicitly the extended observability matrix
OT (A,C), compute the zero initial conditions response yf := TT (A,B,C,D)ud, and solve the system

yd− yf = OT (A,C)xini

in the least squares sense. For a Matlab implementation of this procedure, see the function inistate. For the data
in the example, we have
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>> [xini,res] = inistate(w(:,1),w(:,2),sys); res
ans = 4.3175e-014

which confirms that wd ∈ B̂2.
Finally, in order to verify that B̂1 = B̂2, (assuming that the systems are stable) we check ‖B̂1− B̂2‖∞

>> norm(sysh1-sysh2,’inf’)
ans = 2.1356e-014

3 Approximate identification

3.1 A simple method for approximate system identification

Assignment PROB

Modify the algorithms developed in Section 2, so that they can be used as approximate identification methods. (You
can assume that the system is single input single output and the order is known.)

Solution SOL

A trivial modification in wn2r—replacement of exact by approximate computation of left kernel—makes wn2r an
approximate identification method. The modification based on replacement of null by lra in wn2r is used as
initial approximation in the optimization based method ident_siso and in Problem 3.1. In the single input single
output case, the resulting function is

function R = wn2r_approx_siso(w, n)
R = lra(blkhank(w, n + 1), 2 * n + 1);

3.2 Algorithms for approximate system identification

Assignment PROB

1. Download the file flutter.dat from DAISY.

2. Download and install the slra package.

3. Partition the data set into identification (e.g., first 60%) and validation (e.g., remaining 40%) parts.

4. Apply the functions developed in Problem 3.1 on the identification part of the data. In this and all steps below
use model order n= 3.

5. Apply the approximate identification method ident from the slra package on the identification part of the
data.

6. A classical method for system identification is the prediction error method (PEM) and a popular implementation
of the PEM method is the function pem from the System Identification Toolbox of Matlab. Similarly to the
misfit minimization methods, PEM is based on local optimization, starting from an initial approximation. Apply
the function pem on the identification part of the data.

7. A validation function from the System Identification Toolbox is compare. Using the functions compare and
misfit, validate the models identified by all methods.

8. Repeat steps 3–5 for different partitions of the data into identification and validation parts. Comment on the
results.
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Solution SOL

1. Since a least squares problem of dimension 2T × (T + `) is solved by general purpose methods, the computa-
tional complexity of misfit2 is O(T 3) flops. The efficient implementation of (??) that exploits the banded
structure of the TT (M) matrix has computational complexity O(T ) flops. The plot of the trajectory ŵ of (??)
that best fits the data wd in the misfit sense is given in Figure 2. The misfit is 9.5017.
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Figure 2: Best fit of the flutter data by the model ??.

2. and 3. Applied on the identification part of the data (first 600 samples) and initialized by the model (??), the
gtls function computes a model that achieves misfit 1.9 with respect to he validation part of the data (remain-
ing 424 samples). Using the default settings, the pem function, computes a model that achieves misfit 4.67 on
the validation data.

Figure 3 shows the best, in the sense (??), fit of the validation data by the gtls and pem models. The
corresponding fit in the output error sense, computed by the compare function, is given in Figure 4. In this
particular example gtls achieves better model than pem in both the misfit sense as well as in the output errors
sense. There is no guarantee, however, that the same happens on other data sets or even on the same data when
different partitioning of the data and/or different initial approximations are used.

There are two main reasons for the dependence of the results on the simulation setting:

• The misfit and output error minimization problems are nonconvex and the gtls and pem compute only
locally optimal solutions. These solutions are sensitive to the initial approximations.

• Even if a globally optimal minimum of the misfit and output error minimization problems are found, the
corresponding models may (will almost certainly) not be optimal on the validation data.

Good fit on the identification data would indeed correspond to a good fit on the validation data, if the data were
generated by an LTI model, which is in the considered model class. In practice, however, this is likely to hold
only approximately. Therefore, for data which is not well approximated by an LTI model the mismatch between
the identification and validation fits may be significant.

Despite item 1 above, experimental evidence may suggest that certain optimization methods are “more robust”
to the initial approximation in finding better (or even global) minimum point. On the average such methods
give better results than other methods. The Nelder-Mead optimization method needs weak assumptions (in
particular smoothness of the cost function is not required) however is rather inefficient. The pem function uses
algorithms for nonlinear least squares (e.g., the Levenberg–Marquardt algorithm), which assume smoothness
and are more efficient, however, such algorithms tend to be less robust.
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Figure 3: Best fit in the misfit sense (misfit function) of the validation data (solid line) by the GTLS (dashed line)
and PEM (dashed-dotted line) models.
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Figure 4: Best fit in the output error sense (compare function) of the validation data by the GTLS and PEM models.
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