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Subject areas

"You can learn only what you

have already half known." R. Vaccaro

◮ numerical linear algebra
◮ (generalized) least norm and least squares
◮ structured (Hankel/Toeplitz) matrices
◮ variable projections method

◮ optimization
◮ penalty methods for nonlinear optimization
◮ optimization on a manifold
◮ convex relaxations
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◮ statistics
◮ errors-in-variables models
◮ maximum likelihood
◮ bias correction

◮ dynamical system
◮ realization theory, system identification
◮ behavioral approach

◮ computer algebra
◮ approximate common divisors
◮ polynomial factorizations

◮ computer vision
◮ image deblurring (blind deconvolution)
◮ image compression
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Aim

"If you try to say everything,

you end up saying nothing." P. Stewart

◮ main goal: recognize and exploit common features,

methods, and algorithms across different applications

◮ low-rank approx. is a unifying problem; related to
◮ total least squares (numerical linear algebra)
◮ principal component analysis (statistics)
◮ factor analysis (psychometrics)
◮ latent semantic analysis (natural language proc.)
◮ . . .
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Plan

1. Introduction (this lecture)

2. Computational tools (QR, SVD, LS, TLS)

3. Behavioral approach (TLS → LRA)

4. System identification (modeling from data)

5. Subspace methods (exact modeling)

6. Generalizations (missing data, . . . )
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Exercises and evaluation

"I hear, I forget;

I see, I remember;

I do, I understand." Chinese philosopher

◮ analytic/computer exercises are part of the course
◮ bring a laptop
◮ try all problems

◮ need evaluation? (contact me in the break)
◮ work on an individual project, related to the course

and feasible to complete in two weeks
◮ submit < 10 pages report by 21 March and give a

10-minutes presentation on 21 March
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Materials

◮ books

◮ lecture slides available from after the lectures

http://homepages.vub.ac.be/~imarkovs/dysco

◮ references to the literature
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"There are repeated patterns in the history of

science that teach us how to overcome modern

problems. Those who are not aware of the

history are missing much." P. Stewart

◮ G. W. Stewart. On the early history of the singular value

decomposition. SIAM Review, 35(4):551–566, 1993
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Eugenio Beltrami (1835–1900)

◮ considered bilinear forms: f (x ,y) = x⊤Ay

◮ problem: represent f as a sum of squares via

orthogonal transformations x̃ = U⊤x and ỹ = V⊤y ,

i.e.,

f (x ,y) = x⊤Ay = x̃⊤U⊤AVỹ = x̃⊤Σỹ , with Σ diagonal

◮ equivalent problem is

A = UΣV⊤, with U, V orthogonal and Σ diagonal

❀ singular value decomposition ≈ low-rank approx.
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Camille Jordan (1838–1922)

◮ problem:

maximize x⊤Ay subject to x⊤x = 1 and y⊤y = 1

◮ the solution is given by the extreme singular values

and corresponding singular vectors of A
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J. Sylvester (1814–1897), E. Schmidt

(1876–1959), H. Weyl (1885–1955)

◮ generalization to infinite dimensional spaces

(integrals rather than sums)

◮ "the fundamental theorem"

For any Â with rank(Â)≤ r , ‖A− Â‖2 ≥ σr+1(A).
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Harold Hotelling (1895–1973)

◮ principal component analysis problem (1933)

If x is a random vector with zero mean and

dispersion D, with eigenvalue decomposition

D = VΣ2V⊤, the components of V⊤x are

uncorrelated with variances σ2
i . Then the V̂

factor, obtained from the SVD of X, is an

estimate of V .
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G. Golub (1932–2007) and W. Kahan (1933–)

◮ computation of the SVD by a two step procedure:

1. reduction to a bidiagonal matrix (in O(mn2) for m > n)

2. compute the SVD of the bidiagonal matrix

(by a variant of the QR algorithm for EVD)

◮ step 2 requires iterative algorithms

◮ convergence to machine precision is fast

◮ in fact, the first step is more expensive
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Rudolf Kalman (1930–) and others

◮ realization theory

rank(Hankel matrix) = order of a minimal realization

◮ B. Moore. Principal component analysis in linear systems:

Controllability, observability and model reduction. IEEE

Trans. Automat. Control, 26(1):17–31, 1981

◮ nuclear norm heuristic for rank minimization problems
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"For applicable control engineering research,

three things need to be present:

1. a real and pressing set of problems,

2. intuitively graspable theoretical approaches

to design, which can be underpinned by

sound mathematics, and

3. good interactive software which can be used

to turn designs into practical applications."

A. MacFarlane

◮ A. MacFarlane. Multivariable feedback: a personal

reminiscence. International Journal of Control,

86(11):1903–1923, 2013

◮ next set of problems (Section 1.3 of the book)
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Applications

1. Direction of arrival estimation (signal processing)

2. Latent semantic analysis (language processing)

3. Recommender systems (machine learning)

4. Multidimensional scaling (computer vision)

5. Conic section fitting (computer vision)

6. System realization (systems and control)

7. System identification (systems and control)

8. Greatest common divisor (computer algebra)
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Direction of arrival estimation

◮ setup: q antennas and m< q distant sources
1 Introductio

❵1
✎

✁
✁
✁

❵♠
✎

w1
� � � wq

◮ ℓk — source intensity (a function of time)

◮ w(t) = pkℓk (t − τk ) — array’s response to k th source

◮ τk — pure delay
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◮ pk depends on the array geometry and the source

locations (assumed constant in time)

◮ assuming that the array responds linearly to a

mixture of sources, we have

D =
[
w(1) · · · w(T )

]

=
m

∑
k=1

pk

[
ℓk(1− τk ) · · · ℓk (T − τk )

]
︸ ︷︷ ︸

ℓk

= PL

where P :=
[
p1 · · · pm

]
and L :=

[
ℓ1
...
ℓm

]

◮ rank(D) = # of sources
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Computational problem

◮ with exact data D, the direction of arrival problem is

rank revealing factorization PL of D

◮ P,L carry information about the source locations

◮ in practice, D is full rank and we aim to

approximate D by D̂ of rank ≤ m< max(q,N)

◮ this is

unstructured low-rank approximation problem
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Notes

◮ the rank constraint m is a hyper parameter

◮ determining its value is part of the problem

◮ from D̂, we need to obtain P,L, such that D̂ = PL

◮ this is the (simple) problem of exact modeling

(rank-revealing factorization)

◮ some algorithms return P,L as a byproduct

◮ we separate the issues of

1. solution methods (optimization algorithms)

2. problem formulation (low-rank approximation)
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Latent semantic analysis

◮ N documents involve q terms and m concepts

◮ pk — term frequencies related to the k th concept

◮ ℓkj — relevance of the k th concept to the j th

document

◮ the term frequencies related to the documents are

D =
m

∑
k=1

pk

[
ℓk1 · · · ℓkN

]
︸ ︷︷ ︸

ℓk

=
[
p1 · · · pm

]


ℓ1
...

ℓm


= PL

◮ rank(D) = # of concepts
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Recommender systems

◮ q items are rated by N users

◮ dij — rating of the i th item by the j th user

◮ not all ratings are available ❀ missing data in D

◮ assumption: m “typical” users, where m≪ min(q,N)

◮ pk — ratings of the items by the k th typical user
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◮ the j th user is a linear combination of typical users

dj =
m

∑
k=1

pk ℓkj

ℓk :=
[
ℓk1 · · · ℓkN

]
— weights for the j th user

◮ model for the ratings

D =
m

∑
k=1

pkℓk = PL

◮ rank(D) = number of “typical” users
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Matrix completion problems

◮ exact matrix completion

minimize over D̂ rank(D̂)

subject to D̂ij = Dij for all (i , j), where Dij is given

◮ approximate matrix completion

minimize over D̂ and ∆D rank(D̂)+λ‖∆D‖F

subject to D̂ij = Dij +∆Dij for all (i , j), where Dij is given
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Multidimensional scaling

◮ consider N points: X := {x1, . . . ,xN } ⊂ R
2

◮ dij := ‖xi −xj‖
2
2 — squared distance from xi to xj

◮ distance matrix: D =
[
dij

]
of the pair-wise distances

◮ rank(D)≤ 4, indeed

dij = (xi −xj)
⊤(xi −xj) = x⊤

i xi −2x⊤
i xj +x⊤

j xj
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dij = (xi −xj)
⊤(xi −xj) = x⊤

i xi −2x⊤
i xj +x⊤

j xj

D =




1
...

1



[
x⊤

1 x1 · · · x⊤
N xN

]

︸ ︷︷ ︸
rank ≤1

−2




x⊤
1
...

x⊤
N



[
x1 · · · xN

]

︸ ︷︷ ︸
rank ≤2

+




x⊤
1 x1
...

x⊤
N xN



[
1 · · · 1

]

︸ ︷︷ ︸
rank ≤1

◮ approximate modeling:

bilinearly structured low-rank approximation
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Conic section fitting
◮ data:

{d1, . . . ,dN } ⊂ R
2, where dj =

[
aj

bj

]

◮ model:

B(S,u,v) := {d ∈ R
2 | d⊤Sd +u⊤d +v = 0}

◮ linear relation in the model parameters

d⊤Sd +u⊤d +v =
[
s11 2s12 u1 s22 u2 v

]




a2

ab

a

b2

b

1



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◮ parameter vector

θ :=
[
s11 2s12 u1 s22 u2 v

]

◮ extended data vector (feature map)

dext :=
[
a2 ab a b2 b 1

]⊤

◮ exact modeling

d ∈ B(θ) = B(S,u,v) ⇐⇒ θdext = 0

◮ approximate modeling:

quadratically structured low-rank approximation
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System realization
◮ problem:

impulse response 7→ state space representation

◮ let H be an impulse response of nth order

discrete-time linear time-invariant system

◮ then

rank




H(1) H(2) H(3) · · ·

H(2) H(3) . .
.

H(3) . .
.

...




︸ ︷︷ ︸
H (H)

= n

◮ partial realization problem
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Stochastic realization

◮ stochastic system:
deterministic

system
white

noise
y

◮ data: R(τ) := E
(
y(t)y⊤(t − τ)

)
autocorrelation

◮ problem:

autocorrelation R 7→ state space representation

◮ main result:

rank
(
H (R)

)
= order of minimal realization of R
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System identification

◮ problem:

general trajectory 7→ representation of the system

◮ data:

w =

[
u

y

]
,

u =
(
u(1), . . . ,u(T )

)
— input

y =
(
y(1), . . . ,y(T )

)
— output

◮ link to low-rank approximation

rank
(
Hnmax+1(w)

)
≤ rank

(
Hnmax+1(u)

)

+order of the system

◮ persistency of excitation: H (u) is full row rank
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Greatest common divisor

◮ the GCD of the polynomials

p(z) = p0+p1z + · · ·+pnzn

q(z) = q0 +q1z + · · ·+qmzm

is polynomial c of maximal degree dividing p and q

p = rc and q = sc

◮ main result:

degree(c) = n+m− rank
(
S (p,q)

)

S (p,q) — (n+m)× (n+m) Sylvester matrix
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The Sylvester matrix of p and q

S (p,q) :=




p0 q0

p1 p0 q1 q0
... p1

. . .
... q1

. . .

pn

...
. . . p0 qm

...
. . . q0

pn p1 qm q1

. . .
...

. . .
...

pn qm




an (m+n)× (m+n) structured matrix
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Other applications

◮ Factor analysis (psychometrics)

◮ Multivariate calibration (chemometrics)

◮ Microarray data analysis (bioinformatics)

◮ Fundamental matrix estimation (computer vision)

◮ Factorizability of multivariable polynomials
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One problem, many applications

systems and control

model

reduction

system

identification

signal processing

spectral

estimation

image

deblurring

structured low-rank approximation

approx.

GCD

approx.

factorization

computational mathematics

dim.

reduction
clustering

machine learning
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IQ test

◮ extend the sequence: 0, 1, 1, 2, 3, 5, 8, . . .

◮ extend the sequence: 0, 1, 1, 2, 5, 9, 18, . . .

◮ more interesting is to find a systematic solution

◮ the key ingredient is rank deficiency of a matrix

"Behind every data modeling problem there is a

(hidden) low-rank approximation problem: the

model imposes relations on the data which render

a matrix constructed from exact data rank deficient."
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Time series interpolation

◮ from extrapolation to interpolation

◮ data: classic Box & Jenkins airline data

monthly airline passenger numbers 1949–1960

◮ aim: estimate missing values
◮ missing values in "the future": extrapolation
◮ other missing values: interpolation
◮ take into account the time series nature of the data

42 / 55



Autonomous LTI model
◮ using all 144 data points to identify a model
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◮ solid line — data, dashed — fit by 6th order model
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Missing data estimation
◮ [5:10 20:30 50:70 100:140] are missing
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◮ piecewise cubic interpolation, 6th order LTI model

44 / 55



Modeling as data compression

◮ the model is a concise representation of the data

◮ exact model ↔ lossless compression (e.g., zip)

◮ approximate model ↔ lossy compression (e.g., mp3)
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Example: compression of a random vector

◮ data: 1×n vector, generated by randn

◮ compression in mat format

length n 1 223 334 556 667 1000

1. original size 8 1784 2672 4448 5336 8000

2. mat file size 178 1945 2798 4490 5341 7893
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Example: low-rank matrix compression

◮ data: random 100×100 matrix D of rank 5

◮ stored in four different ways

representation size

1. all elements of D 80000

2. D in mat format 75882

3. all elements of P and L 8024

4. P and L in mat format 7767

◮ in 2 and 4, we compute a rank revealing factorization

D = PL

◮ can we do better than storing P and L (compressed)?
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Example: trajectory of an LTI system

◮ data: impulse response of a random 3rd order system

◮ stored in four different ways

representation size

1. impulse response h 192

2. h in mat format 377

3. model parameters θ 56

4. θ in mat format 233

◮ in 3 and 4, we have parameterized the system
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Low-rank approximation of images

◮ an image is a matrix of gray values (integers 0–255)

◮ typical singular values plot:

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

◮ =⇒ an image can be approximate by lower rank

◮ the basis of many methods for image processing

◮ note that SVD does not respect the 0–255 bounds
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Original 512×512 image
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Rank 100 approximation
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Rank 80 approximation
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Rank 60 approximation
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Rank 40 approximation

54 / 55



Outline

About the course

Historical review

Applications

Demos

Exercises

55 / 55


	About the course
	Historical review
	Applications
	Demos
	Exercises

