DYSCO course on low-rank approximation and its applications

Introduction

Ivan Markovsky

Vrije Universiteit Brussel

Outline

[About the course](#page-2-0)

[Historical review](#page-9-0)

[Applications](#page-17-0)

[Demos](#page-39-0)

[Exercises](#page-0-0)

Outline

[About the course](#page-2-0)

[Historical review](#page-9-0)

[Applications](#page-17-0)

[Demos](#page-39-0)

[Exercises](#page-0-0)

Subject areas

"You can learn only what you have already half known." R. Vaccaro

- \blacktriangleright numerical linear algebra
	- \triangleright (generalized) least norm and least squares
	- ▶ structured (Hankel/Toeplitz) matrices
	- \triangleright variable projections method
- \triangleright optimization
	- \triangleright penalty methods for nonlinear optimization
	- \rightarrow optimization on a manifold
	- \triangleright convex relaxations
- \blacktriangleright statistics
	- \triangleright errors-in-variables models
	- \triangleright maximum likelihood
	- \triangleright bias correction
- \blacktriangleright dynamical system
	- \triangleright realization theory, system identification
	- \triangleright behavioral approach
- \triangleright computer algebra
	- \triangleright approximate common divisors
	- \triangleright polynomial factorizations
- \triangleright computer vision
	- \blacktriangleright image deblurring (blind deconvolution)
	- $\overline{}$ image compression

Aim

"If you try to say everything, you end up saying nothing." P. Stewart

- \triangleright main goal: recognize and exploit common features, methods, and algorithms across different applications
- \triangleright low-rank approx. is a unifying problem; related to
	- \triangleright total least squares (numerical linear algebra)
	- \triangleright principal component analysis (statistics)
	- \triangleright factor analysis (psychometrics)
	- \blacktriangleright latent semantic analysis (natural language proc.)

 \blacktriangleright

Plan

- 2. Computational tools (QR, SVD, LS, TLS)
- 3. Behavioral approach $(TLS \rightarrow LRA)$
- 4. System identification (modeling from data)
-
-

1. Introduction (this lecture) 5. Subspace methods (exact modeling) 6. Generalizations (missing data, . . .)

Exercises and evaluation

"I hear, I forget; I see, I remember;

I do, I understand." Chinese philosopher

- \triangleright analytic/computer exercises are part of the course
	- \triangleright bring a laptop
	- \triangleright try all problems
- \triangleright need evaluation? (contact me in the break)
	- \triangleright work on an individual project, related to the course and feasible to complete in two weeks
	- ◮ submit < 10 pages *report* by 21 March and give a 10-minutes *presentation* on 21 March

Materials

 \blacktriangleright lecture slides available from after the lectures

<http://homepages.vub.ac.be/~imarkovs/dysco>

 \blacktriangleright references to the literature

Outline

[About the course](#page-2-0)

[Historical review](#page-9-0)

[Applications](#page-17-0)

[Demos](#page-39-0)

[Exercises](#page-0-0)

"There are repeated patterns in the history of science that teach us how to overcome modern problems. Those who are not aware of the history are missing much." P. Stewart

 \triangleright G. W. Stewart. On the early history of the singular value decomposition. *SIAM Review*, 35(4):551–566, 1993

Eugenio Beltrami (1835–1900)

- ◮ considered bilinear forms: *f*(*x*,*y*) = *x* [⊤]*Ay*
- ► problem: represent *f* as a sum of squares via $\widetilde{\mathbf{y}} = \mathbf{U}^\top \mathbf{x}$ and $\widetilde{\mathbf{y}} = \mathbf{V}^\top \mathbf{y},$ *i.e.*,

$$
f(x,y) = x^{\top}Ay = \tilde{x}^{\top}U^{\top}AV\tilde{y} = \tilde{x}^{\top}\Sigma\tilde{y}
$$
, with Σ diagonal

 \blacktriangleright equivalent problem is

A = *U*Σ*V* [⊤], with *U*, *V* orthogonal and Σ diagonal \rightsquigarrow singular value decomposition \approx low-rank approx.

Camille Jordan (1838–1922)

► problem:

 $maximize$ $x^{\top}Ay$ subject to $x^{\top}x = 1$ and $y^{\top}y = 1$

 \triangleright the solution is given by the extreme singular values and corresponding singular vectors of *A*

J. Sylvester (1814–1897), E. Schmidt (1876–1959), H. Weyl (1885–1955)

- \triangleright generalization to infinite dimensional spaces (integrals rather than sums)
- ► "the fundamental theorem"

For any \hat{A} *with* rank(\hat{A}) \leq *r*, $||A-\hat{A}||_2 > \sigma_{r+1}(A)$ *.*

Harold Hotelling (1895–1973)

 \triangleright principal component analysis problem (1933)

If x is a random vector with zero mean and dispersion D, with eigenvalue decomposition D = *V*Σ 2*V* [⊤]*, the components of V* [⊤]*x are uncorrelated with variances* σ_i^2 *i . Then the V*b *factor, obtained from the SVD of X, is an estimate of V.*

G. Golub (1932–2007) and W. Kahan (1933–)

- \triangleright computation of the SVD by a two step procedure:
	- 1. reduction to a bidiagonal matrix (in $O(mn^2)$ for $m > n$)
	- 2. compute the SVD of the bidiagonal matrix (by a variant of the QR algorithm for EVD)
- \triangleright step 2 requires iterative algorithms
- ◮ convergence to machine precision is fast
- \triangleright in fact, the first step is more expensive

Rudolf Kalman (1930–) and others

 \blacktriangleright realization theory

rank(Hankel matrix) = order of a minimal realization

- ► B. Moore. Principal component analysis in linear systems: Controllability, observability and model reduction. *IEEE Trans. Automat. Control*, 26(1):17–31, 1981
- \triangleright nuclear norm heuristic for rank minimization problems

Outline

[About the course](#page-2-0)

[Historical review](#page-9-0)

[Applications](#page-17-0)

[Demos](#page-39-0)

[Exercises](#page-0-0)

"For applicable control engineering research, three things need to be present:

- 1. *a real and pressing set of problems,*
- 2. *intuitively graspable theoretical approaches to design, which can be underpinned by sound mathematics, and*
- 3. *good interactive software which can be used to turn designs into practical applications." A. MacFarlane*
- ▶ A. MacFarlane. Multivariable feedback: a personal reminiscence. *International Journal of Control*, 86(11):1903–1923, 2013
- \triangleright next set of problems (Section 1.3 of the [book\)](http://homepages.vub.ac.be/~imarkovs/book/book-2x1.pdf)

Applications

- 1. Direction of arrival estimation (signal processing)
- 2. Latent semantic analysis (language processing)
- 3. Recommender systems (machine learning)
- 4. Multidimensional scaling (computer vision)
- 5. Conic section fitting (computer vision)
- 6. System realization (systems and control)
- 7. System identification (systems and control)
- 8. Greatest common divisor (computer algebra)

Direction of arrival estimation

► setup: α antennas and $m < \alpha$ distant sources

- $\triangleright \ell_k$ source intensity (a function of time)
- $\blacktriangleright\;\;{\sf w}(t)=\rho_{k}\ell_{k}(t-\tau_{k})$ array's response to k th source
- $\triangleright \tau_k$ pure delay
- \triangleright p_k depends on the array geometry and the source locations (assumed constant in time)
- \triangleright assuming that the array responds linearly to a mixture of sources, we have

$$
D = [w(1) \cdots w(T)]
$$

=
$$
\sum_{k=1}^{m} p_k \underbrace{[\ell_k(1-\tau_k) \cdots \ell_k(T-\tau_k)]}_{\ell_k} = PL
$$

$$
\text{ where } \textit{P} := \begin{bmatrix} p_1 & \cdots & p_m \end{bmatrix} \text{ and } \textit{L} := \begin{bmatrix} \ell_1 \\ \vdots \\ \ell_m \end{bmatrix}
$$

Example 1 rank(D) = # of sources

Computational problem

- \triangleright with exact data D, the direction of arrival problem is *rank revealing factorization PL of D*
- ► P, L carry information about the source locations
- in practice, D is full rank and we aim to *approximate D by* \widehat{D} *of rank* $\leq m < \max(q, N)$
- \blacktriangleright this is

unstructured low-rank approximation problem

Notes

- \triangleright the rank constraint m is a hyper parameter
- \triangleright determining its value is part of the problem
- ► from \widehat{D} , we need to obtain P , L, such that $\widehat{D} = PL$
- \triangleright this is the (simple) problem of exact modeling (rank-revealing factorization)
- ► some algorithms return *P*, *L* as a byproduct
- \triangleright we separate the issues of
	- 1. solution methods (optimization algorithms)
	- 2. problem formulation (low-rank approximation)

Latent semantic analysis

- ◮ *N* documents involve *q* terms and m concepts
- \blacktriangleright p_k term frequencies related to the *k*th concept
- $\triangleright \ell_{ki}$ relevance of the *k*th concept to the *j*th document
- \triangleright the term frequencies related to the documents are

$$
D = \sum_{k=1}^{m} p_k \underbrace{\begin{bmatrix} \ell_{k1} & \cdots & \ell_{kN} \end{bmatrix}}_{\ell_k} = \begin{bmatrix} p_1 & \cdots & p_m \end{bmatrix} \begin{bmatrix} \ell_1 \\ \vdots \\ \ell_m \end{bmatrix} = PL
$$

Example 1 rank(D) = # of concepts

Recommender systems

- ► *q* items are rated by *N* users
- \blacktriangleright d_{ii} rating of the *i*th item by the *j*th user
- ightharpoontrianglerightarrow not all ratings are available \sim missing data in D
- ► assumption: m "typical" users, where $m \ll min(q, N)$
- \blacktriangleright p_k ratings of the items by the *k*th typical user

► the *j*th user is a linear combination of typical users

$$
d_j=\sum_{k=1}^m p_k \ell_{kj}
$$

$$
\ell_k := \begin{bmatrix} \ell_{k1} & \cdots & \ell_{kN} \end{bmatrix}
$$
 - weights for the *j*th user

 \blacktriangleright model for the ratings

$$
D=\sum_{k=1}^m p_k \ell_k=P L
$$

ightharpoonup rank(D) = number of "typical" users

Matrix completion problems

 \triangleright exact matrix completion

minimize over \widehat{D} rank(\widehat{D}) subject to $\;\;\; D_{ij}=D_{ij}\;\;$ for all $(i,j),$ where D_{ij} is given

 \triangleright approximate matrix completion

minimize over \widehat{D} and ΔD rank(\widehat{D}) + λ $\|\Delta D\|_F$ subject to $\quad_{ij}=D_{ij}+\Delta D_{ij} \quad$ for all $(i,j),$ where D_{ij} is given

Multidimensional scaling

- ► consider *N* points: $\mathscr{X} := \{x_1, \ldots, x_N\} \subset \mathbb{R}^2$
- ► $d_{ij} := ||x_i x_j||_2^2$ squared distance from x_i to x_j
- \blacktriangleright distance matrix: $D = \begin{bmatrix} d_{ij} \end{bmatrix}$ of the pair-wise distances
- **Example 1** rank(D) \leq 4, indeed

$$
d_{ij} = (x_i - x_j)^{\top} (x_i - x_j) = x_i^{\top} x_i - 2x_i^{\top} x_j + x_j^{\top} x_j
$$

$$
d_{ij}=(x_i-x_j)^\top (x_i-x_j)=x_i^\top x_i-2x_i^\top x_j+x_j^\top x_j
$$

 \blacktriangleright approximate modeling:

bilinearly structured low-rank approximation

Conic section fitting

 \blacktriangleright data:

$$
\{d_1,\ldots,d_N\}\subset\mathbb{R}^2, \qquad \text{where} \quad d_j=\begin{bmatrix} a_j \\ b_j \end{bmatrix}
$$

► model:

$$
\mathscr{B}(S, u, v) := \{ d \in \mathbb{R}^2 \mid d^\top S d + u^\top d + v = 0 \}
$$

\blacktriangleright linear relation in the model parameters

$$
d^{\top}Sd + u^{\top}d + v = [s_{11} \quad 2s_{12} \quad u_1 \quad s_{22} \quad u_2 \quad v]
$$

$$
\begin{bmatrix} a^2 \\ ab \\ a \\ b^2 \\ b \\ 1 \end{bmatrix}
$$

► parameter vector

$$
\theta := \begin{bmatrix} s_{11} & 2s_{12} & u_1 & s_{22} & u_2 & v \end{bmatrix}
$$

 \triangleright extended data vector (feature map)

$$
d_{ext} := [a^2 \ ab \ a \ b^2 \ b \ 1]^T
$$

 \blacktriangleright exact modeling

$$
d \in \mathscr{B}(\theta) = \mathscr{B}(S, u, v) \qquad \Longleftrightarrow \qquad \theta d_{\text{ext}} = 0
$$

 \blacktriangleright approximate modeling:

quadratically structured low-rank approximation

System realization

► problem:

impulse response 7→ *state space representation*

 \blacktriangleright let *H* be an impulse response of nth order discrete-time linear time-invariant system

 \triangleright partial realization problem

Stochastic realization

- \triangleright stochastic system: white \longrightarrow deterministic system white noise *y*
- $▶$ data: $R(τ) :=$ **E** $(y(t)y[⊤](t τ))$ autocorrelation
- ► problem:

autocorrelation R 7→ *state space representation*

 \blacktriangleright main result:

rank $(\mathscr{H}(R)) =$ order of minimal realization of R

System identification

► problem:

general trajectory 7→ *representation of the system*

 \blacktriangleright data:

$$
w = \begin{bmatrix} u \\ y \end{bmatrix}, \quad \begin{array}{l} u = (u(1), \ldots, u(T)) \quad \text{input} \\ y = (y(1), \ldots, y(T)) \quad \text{output} \end{array}
$$

 \blacktriangleright link to low-rank approximation

$$
\mathop{\sf rank}\left(\mathscr{H}_{n_{\sf max}+1}(w)\right)\leq \mathop{\sf rank}\left(\mathscr{H}_{n_{\sf max}+1}(u)\right)\\ +\mathop{\sf order\ of\ the\ system}
$$

persistency of excitation: $\mathcal{H}(u)$ is full row rank

Greatest common divisor

 \triangleright the GCD of the polynomials

$$
p(z) = p_0 + p_1 z + \cdots + p_n z^n
$$

$$
q(z) = q_0 + q_1 z + \cdots + q_m z^m
$$

is polynomial *c* of maximal degree dividing *p* and *q*

$$
p = rc
$$
 and $q = sc$

 \blacktriangleright main result:

$$
degree(c) = n + m - rank(\mathcal{S}(p, q))
$$

$$
\mathcal{S}(p, q) - (n + m) \times (n + m)
$$
 Sylvester matrix

The Sylvester matrix of *p* and *q*

an $(m+n) \times (m+n)$ structured matrix

Other applications

- \blacktriangleright Factor analysis (psychometrics)
- \blacktriangleright Multivariate calibration (chemometrics)
- \triangleright Microarray data analysis (bioinformatics)
- \blacktriangleright Fundamental matrix estimation (computer vision)
- \triangleright Factorizability of multivariable polynomials

One problem, many applications

Outline

[About the course](#page-2-0)

[Historical review](#page-9-0)

[Applications](#page-17-0)

[Demos](#page-39-0)

[Exercises](#page-0-0)

IQ test

- ► extend the sequence: 0, 1, 1, 2, 3, 5, 8, \dots
- ► extend the sequence: 0, 1, 1, 2, 5, 9, 18, \dots
- \triangleright more interesting is to find a systematic solution
- \triangleright the key ingredient is rank deficiency of a matrix

"Behind every data modeling problem there is a (hidden) low-rank approximation problem: the model imposes relations on the data which render a matrix constructed from exact data rank deficient."

Time series interpolation

- \triangleright from extrapolation to interpolation
- ► data: classic Box & Jenkins airline data monthly airline passenger numbers 1949–1960
- \blacktriangleright aim: estimate missing values
	- \triangleright missing values in "the future": extrapolation
	- \triangleright other missing values: interpolation
	- \triangleright take into account the time series nature of the data

Autonomous LTI model

 \triangleright using all 144 data points to identify a model

solid line $-$ data, dashed $-$ fit by 6th order model

Missing data estimation

 \blacktriangleright [5:10 20:30 50:70 100:140] are missing

► piecewise cubic interpolation, 6th order LTI model

Modeling as data compression

- \triangleright the model is a concise representation of the data
- **► exact model** \leftrightarrow **lossless compression (***e.g.***, zip)**
- **► approximate model** \leftrightarrow **lossy compression (***e.g.***, mp3)**

Example: compression of a random vector

 \blacktriangleright data: $1 \times n$ vector, generated by randn

 \triangleright compression in mat format

Example: low-rank matrix compression

- data: random 100×100 matrix *D* of rank 5
- \triangleright stored in four different ways

 \triangleright in 2 and 4, we compute a rank revealing factorization

$$
D=PL
$$

► can we do better than storing P and L (compressed)?

Example: trajectory of an LTI system

- \triangleright data: impulse response of a random 3rd order system
- \triangleright stored in four different ways

 \triangleright in 3 and 4, we have parameterized the system

Low-rank approximation of images

 \triangleright an image is a matrix of gray values (integers 0–255)

- \rightarrow \Rightarrow an image can be approximate by lower rank
- \triangleright the basis of many methods for image processing
- \triangleright note that SVD does not respect the 0–255 bounds

Original 512×512 image

Rank 100 approximation

Rank 80 approximation

Rank 60 approximation

Rank 40 approximation

Outline

[About the course](#page-2-0)

[Historical review](#page-9-0)

[Applications](#page-17-0)

[Demos](#page-39-0)

[Exercises](#page-0-0)