DYSCO course on low-rank approximation and its applications

Computational tools

Ivan Markovsky

Vrije Universiteit Brussel

Plan

- 1. Introduction
- 2. Computational tools
- 3. Behavioral approach
- 4. System identification
- 5. Subspace methods
- 6. Generalizations

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Outline

QR decomposition

- SVD decomposition
- Least squares and least norm problems
- Weighted and regularized least squares problems
- Exercise
- Total least squares problems

Orthonormal set of vectors

- consider a finite set of vectors $\mathscr{Q} := \{q_1, \ldots, q_k\} \subset \mathbb{R}^n$
- ► \mathscr{Q} is orthogonal : $\iff \langle q_i, q_j \rangle := q_i^\top q_j = 0$, for all $i \neq j$
- \mathscr{Q} is normalized : $\iff ||q_i||_2^2 := \langle q_i, q_i \rangle = 1, i = 1, ..., k$
- \mathcal{Q} is orthonormal : $\iff \mathcal{Q}$ is orthogonal + normalized

•
$$Q := \begin{bmatrix} q_1 & \cdots & q_k \end{bmatrix}$$
 orthonormal $\iff Q^\top Q = I_k$

- properties:
 - orthonormal vectors are independent
 - multiplication preserves inner product and norm

$$\langle Qz, Qy \rangle = z^{\top} Q^{\top} Qy = z^{\top} y = \langle z, y \rangle$$

Orthogonal projectors

• consider an orthonormal set $\mathscr{Q} := \{q_1, \ldots, q_k\}$

• \mathscr{Q} is an orthonormal basis for $\mathscr{L} := \operatorname{span}(\mathscr{Q}) \subseteq \mathbb{R}^n$

•
$$Q^{\top}Q = I_k$$
, however, for $k < n$, $QQ^{\top} \neq I_n$

Π_{span(𝔅)} := QQ[⊤] is orthogonal projector on span(𝔅)

$$\Pi_{\mathscr{L}} x = \arg\min_{y} \|x - y\|_2 \quad \text{subject to} \quad y \in \mathscr{L}$$

- Properties:
 - $\Pi = \Pi^2$, $\Pi = \Pi^{\top}$ (necessary and sufficient conditions)
 - $\Pi^{\perp} := (I \Pi)$ is orthogonal projector on

 $(\operatorname{span}(\Pi))^{\perp} \subseteq \mathbb{R}^{n}$ — orth. complement of $\operatorname{span}(\Pi)$

Orthonormal basis for \mathbb{R}^n

- orthonormal set $\mathscr{Q} := \{q_1, \ldots, q_n\} \subset \mathbb{R}^n$ of *n* vectors
- $Q := \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix}$ is orthogonal and $Q^\top Q = I_n$
- it follows that $Q^{-1} = Q^{\top}$ and

$$QQ^{\top} = \sum_{i=1}^{n} q_i q_i^{\top} = I_n$$

- expansion in orthonormal basis $x = QQ^{\top}x$
 - $\widetilde{x} := Q^{\top} x$ coordinates of x in the basis \mathscr{Q}
 - $x = Q\tilde{x}$ reconstruct x from the coordinates a
- geometrically multiplication by Q (and Q^{\top}) is rotation

Gram-Schmidt (G-S) procedure

- given independent set $\{a_1, \ldots, a_k\} \subset \mathbb{R}^n$
- ► G-S produces orthonormal set $\{q_1, ..., q_k\} \subset \mathbb{R}^n$

 $\operatorname{span}(a_1,\ldots,a_r) = \operatorname{span}(q_1,\ldots,q_r), \text{ for all } r \leq k$

► G-S procedure: Let q₁ := a₁/||a₁||₂. For i = 2,...,k
 1. orthogonalized a_i w.r.t. q₁,...,q_{i-1}:

$$v_i := \underbrace{(I - \prod_{\text{span}(q_1, \dots, q_{i-1})}) a_i}_{\text{projection of } a_i \text{ on } (\text{span}(q_1, \dots, q_{i-1}))^{\perp}}$$

2. normalize the result: $q_i := v_i / ||v_i||_2$

QR decomposition

G-S gives as a byproduct scalars r_{jj} , $j \le i$, i = 1, ..., k

$$a_i = (q_1^{\top} a_i)q_1 + \dots + (q_{i-1}^{\top} a_i)q_{i-1} + ||v_i||_2 q_i$$

= $r_{1i}q_1 + \dots + r_{ii}q_i$

in a matrix form G-S produces the matrix decomposition

$$\underbrace{\begin{bmatrix}a_1 & a_2 & \cdots & a_k\end{bmatrix}}_{A} = \underbrace{\begin{bmatrix}q_1 & q_1 & \cdots & q_k\end{bmatrix}}_{Q} \underbrace{\begin{bmatrix}r_{11} & r_{12} & \cdots & r_{1k}\\0 & r_{22} & \cdots & r_{2k}\\\vdots & \ddots & \ddots & \vdots\\0 & \cdots & 0 & r_{kk}\end{bmatrix}}_{R}$$

with orthonormal $Q \in \mathbb{R}^{n \times k}$ and upper triangular $R \in \mathbb{R}^{k \times k}$

• If $\{a_1, \ldots, a_k\}$ are dependent

$$v_i := (I - \Pi_{\operatorname{span}(q_1, \dots, q_{i-1})})a_i = 0$$
 for some i

- ► conversely, if v_i = 0 for some i, a_i is linearly dependent on { a₁,..., a_{i-1} }
- ▶ Modified G-S procedure: when $v_i = 0$, skip to a_{i+1} $\implies *R$ is in upper staircase form,* *e.g.*,

(empty elements are zeros)

Full QR

$$A = \underbrace{\begin{bmatrix} Q_1 & Q_2 \end{bmatrix}}_{\text{orthogonal}} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} \quad \begin{array}{c} \text{colspan}(A) &= \text{colspan}(Q_1) \\ (\text{colspan}(A))^{\perp} &= \text{colspan}(Q_2) \end{array}$$

procedure for finding Q₂ complete A to full rank matrix, e.g., A_m := [A I], and apply G-S on A_m

application:
 complete an orthonormal matrix Q₁ ∈ ℝ^{n×k}
 to an orthogonal matrix Q = [Q₁ Q₂] ∈ ℝ^{n×n}
 (by computing the full QR of [Q₁ I])

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Geometric fact motivating the SVD

The image of a unit ball under linear map is a hyperellips.

Singular value decomposition

any $m \times n$ matrix A of rank r has a reduced SVD

with U_1 and V_1 orthonormal

- $\sigma_1 \geq \cdots \geq \sigma_r$ are called singular values
- ► u₁,..., u_r are called left singular vectors

*v*₁,...,*v_r* are called right singular vectors
 The SVD is both computational and analytical tool

Full SVD $A = U\Sigma V^{\top}$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal and

$$\Sigma = \begin{bmatrix} r & n-r \\ \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{array}{c} r \\ m-r \end{array} \quad \text{where} \quad \Sigma_1 = \text{diag}(\sigma_1, \dots, \sigma_r)$$

the singular values of A are

$$\boldsymbol{\sigma}(\boldsymbol{A}) := \left(\sigma_1, \ldots, \sigma_r, \underbrace{0, \ldots, 0}_{\min(n-r, m-r)}\right)$$

• $\sigma_{\min}(A)$ — smallest singular value of A

•
$$\sigma_{\max}(A)$$
 — largest singular value of A

Proof of existence of an SVD

- constructive, based on induction, assume $m \ge n$
- ▶ end of induction: vector $A \in \mathbb{R}^{m \times 1}$ has reduced SVD

$$A = U\Sigma V^{\top}$$
, with $U := A/||A||_2$, $\Sigma := ||A||_2$, $V := 1$

▶ inductive step: let $\sigma_i := ||A_i||_2$, $\exists u_i \in \mathbb{R}^m$ and $v_i \in \mathbb{R}^n$

 $A_i v_i =: \sigma_i u_i$, where $||u_i||_2 = 1$, with $||v_i||_2 = 1$

complete u_i and v_i to orthogonal matrices (QR)

$$U_i := \begin{bmatrix} u_i & \star \end{bmatrix}$$
 and $V_i := \begin{bmatrix} v_i & \star \end{bmatrix}$

▶ for certain $w \in \mathbb{R}^{n-1}$ and $A_{i+1} \in \mathbb{R}^{(n-1) \times (n-1)}$

$$U_i^{\top} A_i V_i = \begin{bmatrix} \sigma_i & \mathbf{w}^{\top} \\ \mathbf{0} & A_{i+1} \end{bmatrix}$$

• next we show that w = 0

$$\sigma_{i}^{2} = \|A_{i}\|_{2}^{2} = \max_{v} \frac{\|A_{i}v\|_{2}^{2}}{\|v\|_{2}^{2}} \ge \frac{\|A_{i}[\overset{\sigma_{i}}{w}]\|_{2}^{2}}{\|[\overset{\sigma_{i}}{w}]\|_{2}^{2}}$$
$$= \frac{1}{\sigma_{i}^{2} + w^{\top}w} \left\| \begin{bmatrix} \sigma_{i}^{2} + w^{\top}w \\ A_{i+1}w \end{bmatrix} \right\|_{2}^{2}$$
$$\ge \frac{1}{\sigma_{i}^{2} + w^{\top}w} (\sigma_{i}^{2} + w^{\top}w)^{2} = \sigma_{i}^{2} + w^{\top}w$$

$$\bullet \ \sigma_i^2 \ge \sigma_i^2 + w^\top w \implies w = 0$$

Low-rank approximation given

• a matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and

find

$$\widehat{A} := \arg\min_{\widehat{A}} \|A - \widehat{A}\|$$
 subject to $\operatorname{rank}(\widehat{A}) \le r$

• Interpretation: \hat{A}^* is optimal rank-*r* approx. of *A* w.r.t.

$$\|A\|_{\mathsf{F}}^2 := \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2$$
 or $\|A\|_2 := \max_x \frac{\|Ax\|_2}{\|x\|_2}$

• \widehat{A}^* is optimal in any unitarily invariant norm

Solution via truncated SVD

$$\widehat{A}^* := rg\min_{\widehat{A}} \|A - \widehat{A}\|_{\mathsf{F}}$$
 subject to $\operatorname{rank}(\widehat{A}) \le r$ (LRA)

Theorem Let $A = U\Sigma V^{\top}$ be the SVD of A and define

$$U =: \begin{bmatrix} r & r-n \\ U_1 & U_2 \end{bmatrix} n , \quad \Sigma =: \begin{bmatrix} r & r-n \\ \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} r , \quad V =: \begin{bmatrix} r & r-n \\ V_1 & V_2 \end{bmatrix} n$$

A solution to (LRA) is

 $\widehat{A}^* = U_1 \Sigma_1 V_1^{\top}$

It is unique if and only if $\sigma_r \neq \sigma_{r+1}$

Numerical rank

distance of A to the manifold of rank-r matrices

$$\begin{split} \sqrt{\sum_{i=r+1}^{n} \sigma_{i}^{2}} &= \min_{\widehat{A}} \|A - \widehat{A}\|_{\mathsf{F}} \quad \text{subject to} \quad \operatorname{rank}(\widehat{A}) \leq r \\ \sigma_{r+1} &= \min_{\widehat{A}} \|A - \widehat{A}\|_{\mathsf{2}} \quad \text{subject to} \quad \operatorname{rank}(\widehat{A}) \leq r \end{split}$$

- $\sigma_{\min}(A)$ is the distance of A to rank deficiency
- numerical rank: rank(A, ε) := # of singular values > ε
- ▶ rank(A, ε) depends on an a priori given tolerance ε

Pseudo-inverse $A^+ := V_1 \Sigma_1^{-1} U_1^{\top} \in \mathbb{R}^{n \times m}$

- \implies $A^+ = A^{-1}$ $\operatorname{rank}(A) = n = m$ $\implies A^+ = (A^\top A)^{-1} A^\top$ rank(A) = n $\implies A^+ = A^\top (AA^\top)^{-1}$ rank(A) = m
- A^+y is least squares-least norm solution of Ax = y
- the pseudo-inverse depends on the rank of A
- in practice, the numerical rank rank (A, ε) is used
- the SVD, gives reliable way of solving Ax = y

Condition number $\kappa(A) := \sigma_{\max}(A) / \sigma_{\min}(A)$

• $\kappa(A)$ is eccentricity of hyperellipsoid $A\{x \mid ||x||_2 = 1\}$

- $\kappa(A)$ sensitivity of A^+y to perturbations in y, A
- ▶ for large $\kappa(A)$ (≥ 1000) A is called ill-conditioned

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Least squares

- overdetermined system of linear equations Ax = b
- ▶ given $A \in \mathbb{R}^{m \times n}$, m > n and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$
- ▶ for "most" A and b, there is no solution x
- Least squares approximation:

choose x that minimizes 2-norm of the residual

$$e(x) := b - Ax$$

least squares approximate solution

$$\widehat{x}_{\mathsf{ls}} := \arg\min_{x} \|\underbrace{b - Ax}_{e(x)}\|_2$$

Geometric interpretation:

project *b* onto the image of *A* $(\widehat{b}_{ls} := A\widehat{x}_{ls} \text{ is the projection})$ $e_{ls} := \widehat{b}_{ls} - A\widehat{x}_{ls}$

Another geometric interpretation of the LS approximation:

$$\begin{aligned} A\widehat{x}_{\mathsf{IS}} &= \widehat{b}_{\mathsf{IS}} &\iff \begin{bmatrix} A & \widehat{b}_{\mathsf{IS}} \end{bmatrix} \begin{bmatrix} \widehat{x}_{\mathsf{IS}} \\ -1 \end{bmatrix} &= 0 \\ &\iff \begin{bmatrix} a_i & \widehat{b}_{\mathsf{IS},i} \end{bmatrix} \begin{bmatrix} \widehat{x}_{\mathsf{IS}} \\ -1 \end{bmatrix} &= 0, \quad \text{for } i = 1, \dots, m \\ &(a_i \text{ is the } i \text{th row of } A) \end{aligned}$$

•
$$\begin{bmatrix} a_i \\ \hat{b}_{ls,i} \end{bmatrix}$$
 lies on subspace perpendicular to span $(\begin{bmatrix} \hat{x}_{ls} \\ -1 \end{bmatrix})$

Notes

▶ assuming $m \ge n = \operatorname{rank}(A)$, *i.e.*, A is full column rank,

$$\widehat{x}_{\mathsf{ls}} = (A^{ op}A)^{-1}A^{ op}b$$

is the unique least squares approximate solution

- \hat{x}_{ls} is a linear function of *b*
- if A is square, $\hat{x}_{ls} = A^{-1}b$
- \hat{x}_{ls} is an exact solution if Ax = b has an exact solution

•
$$\widehat{b}_{ls} := A \widehat{x}_{ls} = A (A^{\top} A)^{-1} A^{\top} b$$
 is LS approx. of b

Projector onto the span of A

• the $m \times m$ matrix

$$\Pi_{\operatorname{colspan}(A)} := A(A^{\top}A)^{-1}A^{\top}$$

is the orthogonal projector onto $\mathcal{L} := \operatorname{col}\operatorname{span}(A)$

- the columns of A are an arbitrary basis for \mathcal{L}
- if the columns of Q form an orthonormal basis for \mathscr{L}

 $\Pi_{\operatorname{colspan}(Q)} := QQ^{\top}$

Orthogonality principle

the least squares residual vector

$$e_{ls} := b - A\widehat{x}_{ls} = \underbrace{\left(I_m - A(A^{\top}A)^{-1}A^{\top}\right)}_{\Pi_{(colspan(A))^{\perp}}}b$$

is orthogonal to colspan(A)

$$\langle \boldsymbol{e}_{ls}, \boldsymbol{A} \widehat{\boldsymbol{x}}_{ls} \rangle = \boldsymbol{b}^{\top} (\boldsymbol{I}_m - \boldsymbol{A} (\boldsymbol{A}^{\top} \boldsymbol{A})^{-1} \boldsymbol{A}^{\top}) \boldsymbol{A} \widehat{\boldsymbol{x}}_{ls} = \boldsymbol{0}, \quad \text{for all } \boldsymbol{b} \in \mathbb{R}^m$$

Least squares via QR decomposition Let A = QR be the reduced QR decomposition of A.

$$(A^{\top}A)^{-1}A^{\top} = (R^{\top}Q^{\top}QR)^{-1}R^{\top}Q^{\top}$$
$$= (R^{\top}Q^{\top}QR)^{-1}R^{\top}Q^{\top} = R^{-1}Q^{\top}$$

 $\widehat{x}_{ls} = R^{-1}Q^{\top}b$ and $\widehat{b}_{ls} := Ax_{ls} = QQ^{\top}b$

we have a sequence of LS problems $(A =: \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix})$

$$oldsymbol{A}^i x^i = oldsymbol{b}, \hspace{1em} ext{where} \hspace{1em} oldsymbol{A}^i := egin{bmatrix} a_1 & \cdots & a_i \end{bmatrix}, \hspace{1em} ext{for} \hspace{1em} i = 1, \dots, n$$

 R_i — leading $i \times i$ submatrix of R and $Q_i := \begin{bmatrix} q_1 & \cdots & q_i \end{bmatrix}$

$$\widehat{x}_{\mathsf{ls}}^i = R_i^{-1} Q_i^{\top} b$$

Least norm solution

underdetermined system Ax = b, with full rank $A \in \mathbb{R}^{m \times n}$

The set of solutions is

$$\{x \in \mathbb{R}^n \mid Ax = b\} = \{x_p + z \mid z \in \mathsf{null}(A)\}$$

where x_p is a particular solution, *i.e.*, $Ax_p = b$.

Least norm problem

$$x_{\text{ln}} := \arg\min_{x} \|x\|_2$$
 subject to $Ax = b$

Geometric interpretation:

- x_{In} is the projection of 0 onto the solution set
- orthogonality principle $x_{ln} \perp null(A)$

Derivation via Lagrange multipliers consider the least norm problem with A full rank

$$\min_{x} \|x\|_2^2 \quad \text{subject to} \quad Ax = b$$

introduce Lagrange multipliers $\lambda \in \mathbb{R}^m$

$$L(x,\lambda) = xx^{\top} + \lambda^{\top}(Ax - b)$$

the optimality conditions are

$$abla_{\mathbf{x}} L(\mathbf{x}, \lambda) = 2\mathbf{x} + \mathbf{A}^{ op} \lambda = 0$$

 $abla_{\lambda} L(\mathbf{x}, \lambda) = \mathbf{A}\mathbf{x} - \mathbf{b} = 0$

substituting $x = -A^{\top}\lambda/2$ into the second eqn.

$$\lambda = -2(AA^{\top})^{-1}b \implies x_{\text{ln}} = A^{\top}(AA^{\top})^{-1}b$$

Solution via QR decomposition

Let $A^{\top} = QR$ be the reduced QR decomposition of A^{\top} .

$$A^ op (AA^ op)^{-1} = QR(R^ op Q^ op QR)^{-1} = Q(R^ op)^{-1}$$

is a right inverse of A. Then

 $x_{\rm ln} = Q(R^{\rm T})^{-1}b$

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Weighted least squares

▶ weighted 2-norm, defined by $W \in \mathbb{R}^{m \times m}$, W > 0

$$\|e\|_W^2 := e^\top W e$$

weighted least squares approximation problem

$$\widehat{x}_{W,\mathsf{ls}} := \arg\min_{x} \|b - Ax\|_{W}$$

orthogonality principle holds with inner product

$$\langle \boldsymbol{e}, \boldsymbol{b}
angle_{\boldsymbol{W}} := \boldsymbol{e}^{\top} \boldsymbol{W} \boldsymbol{b}$$

solution

$$\widehat{x}_{W,ls} = (A^{\top}WA)^{-1}A^{\top}Wb$$

Recursive least squares

• let a_i^{\top} be the *i*th row of A

$$\widehat{x}_{\mathsf{ls}} = \widehat{x}_{\mathsf{ls}}(m) := \left(\sum_{i=1}^{m} a_i a_i^{\mathsf{T}}\right)^{-1} \left(\sum_{i=1}^{m} a_i b_i\right)$$

- ► (a_i, b_i) correspond to a measurement
- ▶ often the (*a_i*, *b_i*)'s come sequentially (*e.g.*, in time)

Recursive comput. of $\widehat{x}_{ls}(m) = \left(\sum_{i=1}^{m} a_i a_i^{\top}\right)^{-1} \left(\sum_{i=1}^{m} a_i b_i\right)$ $\blacktriangleright P(0) = 0 \in \mathbb{R}^{n \times n}, \ q(0) = 0 \in \mathbb{R}^n$

For
$$m = 0, 1, ...$$

 $P(m+1) := P(m) + a_{m+1}a_{m+1}^{\top}$
 $q(m+1) := q(m) + a_{m+1}b_{m+1}$
 $x_{ls}(m) = P^{-1}(m)q(m)$

Notes:

- the algorithm requires inversion of an $n \times n$ matrix
- P(m) invertible $\implies P(m')$ invertible, for all m' > m

Rank-1 update formula:

$$(P + aa^{\top})^{-1} = P^{-1} - \frac{1}{1 + a^{\top}P^{-1}a}(P^{-1}a)(P^{-1}a)^{\top}$$

Notes:

- $O(n^2)$ method for computing $P^{-1}(m+1)$ from $P^{-1}(m)$
- ► standard methods based on dense LU, QR, or SVD for computing P⁻¹(m+1) require O(n³) operations

Multiobjective least squares

- least squares minimizes $J_1(x) := \|b Ax\|_2^2$
- consider second cost function $J_2(x) := ||z Bx||_2^2$
- usually $\min_x J_1(x)$ and $\min_x J_2(x)$ are competing
- common example: $J_2(x) := ||x||_2^2$ small x
- feasible objectives:

 $\{(\alpha,\beta)\in\mathbb{R}^2\mid \exists x\in\mathbb{R}^n \text{ subject to } J_1(x)=\alpha, J_2(x)=\beta\}$

- trade-off curve: boundary of the feasible objectives
- the corresponding x is called Pareto optimal

Set of Pareto optimal solutions

 $\widehat{x}(\mu) = \operatorname{arg\,min}_{x} J_{1}(x) + \mu J_{2}(x)$ is Pareto optimal.

varying $\mu \in [0,\infty), \, \widehat{x}(\mu)$ sweeps the Pareto solutions

Regularized least squares

Tychonov regularization

$$\widehat{x}_{tych}(\mu) = \arg\min_{x} \|b - Ax\|_{2}^{2} + \mu \|x\|_{2}^{2}$$

solution

$$\widehat{x}_{tych}(\mu) = (A^{\top}A + \mu I_n)^{-1}A^{\top}b$$

- exists for any $\mu > 0$, independent of size / rank of A
- trade-off between
 - fitting accuracy $J_1(x) = ||b Ax||_2$, and
 - solution size $J_2(x) = ||x||_2$

Quadratically constrained least squares

- consider biobjective LS problem $\min_x J_1(x)$ and $J_2(x)$
- scalarization approach:

$$\widehat{x}_{tych}(\mu) = \operatorname*{arg\,min}_{x} J_1(x) + \mu J_2(x)$$

where μ is trade-off parameter

constrained optimization approach:

 $\widehat{x}_{constr}(\gamma) = \arg\min_{x} J_1(x)$ subject to $J_2(x) \le \gamma$

where γ is upper bound on the J_2 objective

Regularized least squares

- Tychonov regularization is scalarization with
 - Fitting accuracy $J_1(x) = ||b Ax||_2$, and
 - solution size $J_2(x) = ||x||_2$
- the constrained optimization approach leads to

$$\widehat{x}_{\text{constr}}(\gamma) = \arg\min_{x} \|b - Ax\|_2^2$$
 subject to $\|x\|_2^2 \le \gamma^2$

least squares minimization over the ball*

$$\mathscr{U}_{\gamma^2} := \{ x \mid \|x\|_2^2 \le \gamma^2 \}$$

solution involves scalar nonlinear equation

Secular equation

- if $\|A^+b\|_2^2 \leq \gamma^2$, then $\widehat{x}_{\text{constr}}(\gamma) = \|A^+b\|_2^2$
- if $\|A^+b\|_2^2 > \gamma^2$, then $\widehat{x}_{constr}(\gamma) \in \mathscr{U}_{\gamma^2}$
- the Lagrangian of

minimize_x $\|b - Ax\|_2^2$ subject to $\|x\|_2^2 = \gamma^2$ is $\|b - Ax\|_2^2 + \mu(\|x\|_2^2 - \gamma^2)$, μ — Lagrange multiplier

necessary and sufficient optimality condition

 $x_{\text{tych}}^{\top}(\mu)x_{\text{tych}}(\mu) = \gamma^2$, where $x_{\text{tych}}(\mu) := (A^{\top}A + \mu I)^{-1}b$

• secular equation (nonlinear equation in μ)

$$b^{\top} (A^{\top} A + \mu I)^{-2} b = \gamma^2$$

has unique positive solution because

 ||x_{tych}(μ)|| is monotonically decreasing on μ ∈ [0,∞) (by assumption ||x_{tych}(0)||²₂ > γ²)

$$||x_{\text{tych}}(\infty)||_2^2 = 0$$

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Total least squares (TLS)

- ► LS minimizes 2-norm of the eqn. error e(x) := b Ax $\min_{x,e} ||e||_2$ subject to Ax = b - e
- alternatively, e can be viewed as a correction on b
- the TLS method is motivated by the asymmetry

both A and b are given data, but only b is corrected

TLS problem:

 $\min_{x,\Delta A,\Delta b} \left\| \begin{bmatrix} \Delta A & \Delta b \end{bmatrix} \right\|_{\mathsf{F}} \quad \text{subject to} \quad (A + \Delta A)x = b + \Delta b$

- ΔA correction on A, Δb correction on b
- Frobenius matrix norm: $||C||_{\mathsf{F}} := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}^2}$

Geometric interpretation of the TLS criterion

• with
$$n = 1, x \in \mathbb{R}, a = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}, b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Geometric interpretation:

fit a line $\mathcal{L}(x)$ passing through 0 to the points

$$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}, \dots, \begin{bmatrix} a_m \\ b_m \end{bmatrix}$$

- ► LS minimizes $\sum \text{ vertical distances}^2$ from $\begin{vmatrix} a_i \\ b_i \end{vmatrix}$ to $\mathscr{L}(x)$
- ► TLS minimizes $\sum_{i=1}^{n} \operatorname{orth}_{i}$. distances² from $\begin{bmatrix} a_i \\ b_i \end{bmatrix}$ to $\mathscr{L}(x)$

Geometric interpretation of the TLS criterion

Solution of the TLS problem

Let $\begin{bmatrix} A & b \end{bmatrix} = U\Sigma V^{\top}$ be the reduced SVD of $\begin{bmatrix} A & b \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_{n+1} \end{bmatrix}, \quad U = \begin{bmatrix} u_1 & \cdots & u_{n+1} \end{bmatrix}, \quad V = \begin{bmatrix} v_1 & \cdots & v_{n+1} \end{bmatrix}$

TLS solution of Ax = b exists iff $v_{n+1,n+1} \neq 0$ and is unique iff $\sigma_n \neq \sigma_{n+1}$.

In the case when unique TLS solution exists, it is given by

$$\widehat{x}_{t|s} = -\frac{1}{v_{n+1,n+1}}v_{n+1}(1:n)$$

The TLS correction is $\begin{bmatrix} \Delta A_{tls} & \Delta b_{tls} \end{bmatrix} = -\sigma_{n+1} u_{n+1} v_{n+1}^\top$ = $\begin{bmatrix} A & b \end{bmatrix} v_{n+1} v_{n+1}^\top$.

Link to low-rank approximation

- ► TLS approx. $\begin{bmatrix} \widehat{A}_{tls} & \widehat{b}_{tls} \end{bmatrix} := \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} \Delta A_{tls} & \Delta b_{tls} \end{bmatrix}$ is optimal (in the Frobenius norm) LRA of $\begin{bmatrix} A & b \end{bmatrix}$
- ► TLS approx. solution of Ax = b, $x \in \mathbb{R}^n$ is equivalent to LRA of $D := \begin{bmatrix} A & b \end{bmatrix}$ by rank-*n* matrix \widehat{D} with

$$\begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \notin \text{kernel}(\widehat{D})$$
 (*)

- generically, the condition (*) is satisfied
- in nongeneric cases, the TLS solution does not exist
- note that the LRA always exists

Statistical properties of TLS

errors-in-variables (EIV) model

$$A = \overline{A} + \widetilde{A}$$
 and $b = \overline{b} + \widetilde{b}$

- true values \overline{A} , \overline{b} satisfy $\overline{A}\overline{x} = \overline{b}$, for some $\overline{x} \in \mathbb{R}^n$
- perturbations \widetilde{A} , \widetilde{b} are zero mean element-wise i.i.d.
- under additional mild assumptions the TLS approx. solution \hat{x} is a consistent estimator of the true value \overline{x}
- measurement errors model
 - A, b measured data
 - \overline{x} / \widehat{x} true/estimated model parameters

Estimation error $e = \overline{x} - \hat{x}$

Notes

TLS problem vs EIV model

- ► TLS approx. can be used without EIV model
- EIV model shows the correct testbed TLS approx.
- distinguish
 - corrections ΔA , Δb in the TLS problem, and
 - noise/perturbations \widetilde{A} , \widetilde{b} in the EIV model

Confidence bounds

- assume that \widetilde{A} , \widetilde{b} are i.i.d. normal with variance ξ^2
- ► the estimation error *e* is asymptorically normal \sim confidence bounds for \hat{x}
- the asymptotic error $e := \overline{x} \hat{x}$ covariance matrix is

$$V_e = \xi^2 (1 + \widehat{x}^\top \widehat{x}) (A^\top A - m\xi^2 I)^{-1}$$

• the noise variance ξ^2 can be estimated from the data

$$\widehat{\xi}^2 = \frac{1}{m} \sigma_{n+1}^2$$

95% confidence ellipsoid

Weighted total least squares problem

replace the Frobenius norm by the weighted 2-norm

$$\|D\|_W := \sqrt{\operatorname{vec}^{\top}(D)W\operatorname{vec}(D)}$$

- $W = \text{inverse noise (vec}([\widetilde{A} \ \widetilde{b}]))$ covariance matrix
- in general, WTLS doesn't have analytic solution
- ► special cases ~→ structure of W
 - column/row-wise weighting
 - element-wise weighting
 - generalized TLS
 - restricted TLS

Hierarchy of WTLS problems

- 1. fully weighted $W \ge 0$
- 2. column-wise weighted

$$W = \operatorname{diag}(W_1, \ldots, W_m), \quad W_i \in \mathbb{R}^{(n+1) \times (n+1)}_+$$

3. element-wise weighted

$$W = \operatorname{diag}(w), \quad w \in \mathbb{R}^{m(n+1)}_+$$

- 4. column-wise GTLS: case 2, with W_i 's equal
- 5. column-wise scaled: case 3, with W_i diagonal

Relative error TLS

consider the element-wise weighted case

$$\|D\|_w = \|D\|_{\Sigma} := \|\Sigma \odot D\|_{\mathsf{F}}$$

 $(\odot - element-wise product)$

• $\Sigma_{ij} = 1/d_{ij} \rightarrow$ approximation in relative error sense

$$oldsymbol{e}_{ij}=rac{oldsymbol{d}_{ij}-\widehat{oldsymbol{d}}_{ij}}{oldsymbol{d}_{ij}}$$

GTLS problem

TLS approximation with criterion

$$\|D\|_{\Sigma_{\mathsf{I}},\Sigma_{\mathsf{r}}} := \|\Sigma_{\mathsf{I}}D\Sigma_{\mathsf{r}}\|_{\mathsf{F}}$$

link to WTLS

$$\begin{split} \|\Sigma_{\mathsf{I}}(D-\widehat{D})\Sigma_{\mathsf{r}}\|_{\mathsf{F}}^{2} &= \left\|\operatorname{vec}(\Sigma_{\mathsf{I}}(D-\widehat{D})\Sigma_{\mathsf{r}})\right\|^{2} \\ &= \left\|(\Sigma_{\mathsf{r}}\otimes\Sigma_{\mathsf{I}})\operatorname{vec}(D-\widehat{D})\right\|^{2} \\ &= \operatorname{vec}^{\top}(D-\widehat{D})\left(W_{\mathsf{r}}\otimes W_{\mathsf{I}}\right)\operatorname{vec}(D-\widehat{D}) \end{split}$$

where $\sqrt{\textit{W}_{r}} = \Sigma_{r}$ and $\sqrt{\textit{W}_{l}} = \Sigma_{l}$

• WTLS problem with weight matrix $W = W_r \otimes W_l$

Element-wise GTLS

element-wise weighted total least squares

$$\|D\|_w = \|D\|_{\Sigma} := \|\Sigma \odot D\|_{\mathsf{F}}$$

element-wise generalized total least squares

$$W_{\rm r} = {\rm diag}(w_{\rm r})$$
 and $W_{\rm l} = {\rm diag}(w_{\rm l})$

• \rightarrow rank-1 matrix $\Sigma = w_{\rm I} w_{\rm r}^{\rm T}$

GTLS solution

► $\sqrt{W_r} = \Sigma_r$, w.l.o.g. we can choose Σ_r upper triangular, *e.g.*, the Cholesky factor of W_r

- modified data matrix: $D_{m} := \Sigma_{I} D \Sigma_{r}$
- ► TLS approximation of D_m : $\hat{D}_{m,tls}$ and $\hat{x}_{m,tls}$

• partition
$$\Sigma_{r}$$
 as $\begin{bmatrix} \Sigma_{r,11} & \Sigma_{r,12} \\ 0 & \Sigma_{r,22} \end{bmatrix}$, with $\Sigma_{r,11} \in \mathbb{R}^{n \times n}$

GTLS solution

$$\widehat{x}_{gtls} = \frac{\sum_{r,11} \widehat{x}_{tls} - \sum_{r,11}}{\sum_{r,22}}, \quad \widehat{D}_{gtls} = (\Sigma_l)^{-1} \widehat{D}_{m,tls} (\Sigma_r)^{-1}$$

Singular weight matrix

consider the element-wise weighted case

$$\|D\|_{w} = \|D\|_{\Sigma} := \|\Sigma \odot D\|_{\mathsf{F}}$$

- Σ is a matrix of element-wise nonnegative weights
- $\sigma_{ij} = 0 \implies$ the solution doesn't depend on d_{ij}
- zero weights allow us to consider missing data

Restricted total least squares problem

• impose structured correction ΔD

minimize
$$||E||_{\mathsf{F}}$$

subject to $(A + \Delta b)x = b + \Delta b$
and $[\Delta A \ \Delta b] = LER$

Ink to WTLS: RTLS is a GTLS problem with

$$W_{\rm I} = (LL^{\top})^+$$
 and $W_{\rm r} = (RR^{\top})^+$

 $(A^+$ is the pseudo-inverse of A)

Structured total least squares

T. Abatzoglou, J. Mendel, and G. Harada. The constrained total least squares technique and its application to harmonic superresolution. *IEEE Trans. Signal Proc.*, 39:1070–1087, 1991

minimize over x, ΔA , $\Delta b \| [\Delta A \ \Delta b] \|_{F}$ subject to $(A + \Delta A)x = b + \Delta b$ and $[\Delta A \ \Delta b]$ has the same structure as $[A \ b]$

types of structures

- linear: Hankel/Toeplitz, Sylvester
- nonlinear: Vandermonde

Link to structured low-rank approximation

STLS is equivalent to structured low-rank approx.

minimize over $\Delta D \|\Delta D\|_{\mathsf{F}}$ subject to rank $(D + \Delta D) \leq r$ and ΔD has the same structure as D

with
$$D := \begin{bmatrix} A & b \end{bmatrix}$$
, $r = n$, and
 $\begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \notin \text{kernel}(\widehat{D})$ (*)

- generically, the condition (*) is satisfied
- in nongeneric cases, the STLS solution does not exist

History of the problem

Errors-in-variables system identification

M. Aoki and P. Yue. On a priori error estimates of some identification methods. *IEEE Trans. Automat. Control*, 15(5):541–548, 1970

Sum-of-exponetials estimation

Y. Bresler and A. Macovski. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. *IEEE Trans. Acust., Speech, Signal Proc.*, 34:1081–1089, 1986

J. Cadzow. Signal enhancement—A composite property mapping algorithm. *IEEE Trans. Signal Proc.*, 36:49–62, 1988

Rimmanian SVD algorithm

B. De Moor. Structured total least squares and L_2 approximation problems. *Linear Algebra Appl.*, 188–189:163–207, 1993

- Structured total least norm algorithm
 J. Rosen, H. Park, and J. Glick. Total least norm formulation and solution of structured problems. SIAM J. Matrix Anal. Appl., 17:110–126, 1996
- Variable projection algorithm

I. Markovsky, S. Van Huffel, and R. Pintelon. Block-Toeplitz/Hankel structured total least squares. *SIAM J. Matrix Anal. Appl.*, 26(4):1083–1099, 2005