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QR decomposition



Orthonormal set of vectors
» consider a finite set of vectors 2 :={qy,...,qx} CR"

v

2 is orthogonal : <= (q;,qj) :=q;' q;=0, for all i #

v

2is normalized : <= ||qi[|5:=(qi,q))=1,i=1,...,k

v

2 is orthonormal : <= 2 is orthogonal + normalized

» Q:=[q1 -+ qx] orthonormal < Q'Q= I

v

properties:
» orthonormal vectors are independent

» multiplication preserves inner product and norm

(Qz,Qy)=z'Q"Qy=z"y=(z,y)
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Orthogonal projectors
» consider an orthonormal set 2 :={qy,...,q« }

v

2 is an orthonormal basis for £ := span(2) C R"

Q" Q = I, however, for k < n, QQ" # I,

v

> NMspan(2) = QQ' is orthogonal projector on span(2)

I‘ng:argmyion—yHg subjectto ye.Z

v

Properties:

» =02 N=nN" (necessary and sufficient conditions)
» 1+ := (/—1) is orthogonal projector on

(span(l‘l))L C R"— orth. complement of span(I)

/71



Orthonormal basis for R”

» orthonormal set 2 :={qy,...,qn} C R" of nvectors
» Q:=[q1 -+ Qn]isorthogonaland QT Q= I,

it follows that @ ' = Q" and

v

n
QQ' =Y qiq/ =
i=1

v

expansion in orthonormal basis x = QQ " x

» X := Q" x coordinates of x in the basis 2
» X = Qx reconstruct x from the coordinates a

geometrically multiplication by Q (and Q") is rotation

v



Gram-Schmidt (G-S) procedure

» given independent set { ay,...,ax} CR"
» G-S produces orthonormal set {gy,...,qx } CR”
span(ay,...,ar) =span(q,...,qr), forallr<k

» G-S procedure: Let gy := ay/||a1||2- Fori=2,... k
1. orthogonalized a; w.r.t. qi,...,Qi_1:

Vii= (1- nspan(q1 ~~~~~ qm))a"

projection of a; on (span(gy,...,qi1 ))L

2. normalize the result: g; := v;/||vi||2
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QR decomposition

G-S gives as a byproduct scalars rj, j </, i=1,...,k

ai=(qy a)q1+-+(aq_1a)qi—1 + | vill2G;
=nigi+ -+ 154

in a matrix form G-S produces the matrix decomposition

i1 nHz - Nk
0 r2 -+
la & - al=lg o - al|. .|
A Q 0 - 0 n«k
R

with orthonormal Q € R"*K and upper triangular R € Rk*k



» If {ay,...,a¢} are dependent

Vi := (I = Nspan(qy,...q._;))@ =0 for some i

» conversely, if v; =0 for some /, g; is linearly
dependenton { ay,...,a;_1}

» Modified G-S procedure: when v; =0, skip to a;, 1
= *Ris in upper staircase form,* e.g.,

X X X

X X

(empty elements
are zeros)

X X X
X X X
X X X
X X X X
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Full QR

A=[Q Q) [Fﬁ] colspan(A)L = colspan(Qy)
M 0 (colspan(A))~ = colspan(Qy)
orthogonal

» procedure for finding Qo

complete A to full rank matrix, e.g.,
Am:=[A ], and apply G-S on An,

» application:
complete an orthonormal matrix Q; € R™k
to an orthogonal matrix Q = [Q; Q] € R™"

(by computing the full QR of [Qy /])
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SVD decomposition
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Geometric fact motivating the SVD

The image of a unit ball under linear map is a hyperellips.
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Singular value decomposition
any m x n matrix A of rank r has a reduced SVD
01
-
A:[u_| ur} [V'I Vr}
~—_———
Uy Or vy
~—_——
Xy
with U; and V4 orthonormal
» o1 > --- > o are called singular values

» Uy,...,Ur are called left singular vectors

» Vq,...,V, are called right singular vectors
The SVD is both computational and analytical tool
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Ful SVD A=UzV'
where U € R™™ and V € R"™" are orthogonal and

r n—r

Y1 O r ,
Y = { 01 O} o where Y =diag(oy,...,0r)
the singular values of A are

o(A):=(0o1,...,0r,, 0,...,0 )
——
min(n—r,m—r)

» Omin(A) — smallest singular value of A
» Omax(A) — largest singular value of A
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Proof of existence of an SVD

» constructive, based on induction, assume m > n
» end of induction: vector A € R™*! has reduced SVD
A=UzV', with U:=A/|Al2, T:=|Al2, V:=1
» inductive step: let o; := ||Aj||2, 3 uje R™ and v; € R”
Ajvi=:oju;, where |lujlo=1, with [vj|2=1
» complete u; and v; to orthogonal matrices (QR)

U= [u «] and Vi=1[vi *]
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» for certain w € R"~" and A1 € R(™-1)x(n=1)

.
UTA V= [ w }
0 AH—1

» next we show that w =20

IAVIE _ IA/I5113

of = || Aill3 = max

vz — TS
ol Il
2"‘W—r I+1W 2

1

> (of tw W) =0 +w'w
(7,-+W w

> 02>02+w'w = w=0
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Low-rank approximation
given
» a matrix Ae R™" m>n, and

» anintegerr,0 <r<n,
find

A= argmAinHA—Z\H subject to rank(?\)gr
A

» Interpretation: A*is optimal rank-r approx. of A w.r.t.

) |AX|[2
Z or  [|A]z:=max TP
1j=1

A||E =

||M3

» A* is optimal in any unitarily invariant norm
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Solution via truncated SVD

A :=argmin||A—A|r subjectto rank(A)<r (LRA)
A

Theorem Let A= ULV be the SVD of A and define

r r—n
r r—n r r—n

Y4 0 r
U:Z[U1 UQ] n., 222{01 22:| r—n’ V:Z[V1 Vz] n

A solution to (LRA) is
A= Uz V|
It is unique if and only if o, # 6,4
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Numerical rank

» distance of A to the manifold of rank-r matrices

7,4 0% =miny IA—A|r subjectto rank(A)<r

Ori1= mjn|\A—7\|\2 subject to rank(?\) <r
A

» omin(A) is the distance of A to rank deficiency
» numerical rank: rank(A, €) := # of singular values > ¢

» rank(A, ) depends on an a priori given tolerance ¢
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Pseudo-inverse A" = V1Z1—1U1T c RMxm

rank(A) =n=m — At = A1
rank(A) = n =  At=(ATAAT
rank(A) = m — At =AT(AAT)!

Aty is least squares-least norm solution of Ax = y

v

v

the pseudo-inverse depends on the rank of A

v

in practice, the numerical rank rank(A, €) is used

v

the SVD, gives reliable way of solving Ax =y
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Condition number k(A) := omax(A)/ Omin(A)

» k(A) is eccentricity of hyperellipsoid A{ x | ||x|2=1}

1.5f

1

0.5r

oF
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» Kk(A) — sensitivity of Aty to perturbations in y, A

» for large x(A) (> 1000) A is called ill-conditioned
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Least squares and least norm problems
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Least squares
overdetermined system of linear equations Ax = b

v

v

given Ac R™" ' m>nand be R™, find x e R"

v

for “most” A and b, there is no solution x

v

Least squares approximation:

choose x that minimizes 2-norm of the residual

e(x) :=b—Ax

v

least squares approximate solution

s := argmin| b— Ax
e(x)
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Geometric interpretation:  project b onto the image of A
(b := AXis is the projection)

eis == bis — AXis

RM €ls colspan(A)
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Another geometric interpretation of the LS approximation:

R (ai, b)

R+ &si null(fxg -1])

(aj, bis.i)

Rn
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Xis

Asis=bs = |A bg]|™| =0

= la byl {f“"

(aj is the ith row of A)

=0, fori=1,....m

> [ i } lies on subspace perpendicular to span( [Xls b

» “data point” [gj} = [5‘:71} + [efi,,-]

> approx. error [e&,} is the vertical distance
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Notes

» assuming m > n = rank(A), i.e., Ais full column rank,
Xs=(ATA)TATb

is the unique least squares approximate solution

v

Xis is a linear function of b

if Ais square, X =A"'b

v

Xis is an exact solution if Ax = b has an exact solution

v

by := AXis = A(ATA) AT b is LS approx. of b

v
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Projector onto the span of A

» the m x m matrix
I_lcolspan(A) = A(ATA)AAT
is the orthogonal projector onto . := colspan(A)

» the columns of A are an arbitrary basis for .Z

» if the columns of Q form an orthonormal basis for .

I_lcolspan(Q) =QQ"
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Orthogonality principle

the least squares residual vector

8 :=b— Axis = (In—AATA) AT b

[ J/

-~

I_I(colspan(A))J—
is orthogonal to colspan(A)

(15, AXis) = b (Im—A(ATA)TAT) Axs =0, forall beR™

b

Q

\\\\els colspan(A)

Bls
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Least squares via QR decomposition
Let A= QR be the reduced QR decomposition of A.

(ATA)TAT=(RTQ"QR)'RTQT
—(R"TQ"QR) 'RTQ" =R Q"

Xs=R 'Q"b and bg:=Axs=QQ"b

we have a sequence of LS problems (A=:[a; --- an])
Ax'=b, where A:=[a; - a], fori=1,...,n
R; — leading i x i submatrix of Rand Q;:= [qy --- qi]

Xs=R"Qb
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Least norm solution

underdetermined system Ax = b, with full rank A € R™*"

The set of solutions is
{xeR"|Ax=b}={x+2z]|zenull(A)}

where X is a particular solution, i.e., Ax, = b.

Least norm problem

Xin ::arnginHXHz subjectto Ax=0b
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Geometric interpretation:
» Xin is the projection of 0 onto the solution set

» orthogonality principle xi, L null(A)

null(A) + xp

Rn

[Xinll2

\
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Derivation via Lagrange multipliers
consider the least norm problem with A full rank

min Ix||5 subjectto Ax=b
introduce Lagrange multipliers A € R™
L(x,A)=xx" +A"(Ax—b)
the optimality conditions are

Vil(x,2)=2x+A"A =0
V,L(X, ) = AX—b=0

substituting x = —A' 1 /2 into the second eqn.
A=-2AA""Tb — x,=AT(AA") b
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Solution via QR decomposition

Let A" = QR be the reduced QR decomposition of AT.
ATAAY T=QR(R"QTQR) ' =Q(R")
is a right inverse of A. Then

Xn=Q(R") b
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Weighted and regularized least squares problems
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Weighted least squares
» weighted 2-norm, defined by W e R™™ W >0
lel}y = e e
» weighted least squares approximation problem
% 1s = argmin||b— Ax||w
» orthogonality principle holds with inner product
(e,byy :=e' Wb

» solution
Xwis = (AT WA TAT Wb

37/71



Recursive least squares

» let a! be the ith row of A
— a —
A: .
— g —

m
Ib—Ax| =Y (bj—a/ x)?
i=

- () (£

» (a;, b;) correspond to a measurement

» often the (a;, b;)’s come sequentially (e.g., in time)
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—1 m
Recursive comput. of Xig(m (Z a;a; ) (Z a,-b,-)

» P(0)=0€R™" q(0)=0€eR"

» Form=0,1,...
» P(m+1):= P(m) + am;1a),,

q(m+1):=q(m)+ am+1bm1
> xs(m) = P~1(m)q(m)

Notes:
» the algorithm requires inversion of an n x n matrix

» P(m) invertible — P(m') invertible, for all m" > m
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Rank-1 update formula:

1

™nl_pt1.
(Praa’) =P 1+a'P1a

(Pla)P'a)T

Notes:
» O(n?) method for computing P~1(m+1) from P~1(m)

» standard methods based on dense LU, QR, or SVD
for computing P~ (m+-1) require O(n®) operations

40/71



Multiobjective least squares

>

least squares minimizes J;(x) := ||b— Ax||3

consider second cost function J(x) := ||z — Bx||3
usually miny J;(x) and miny J>(x) are competing
common example: Ja(x) := || x||3 — small x

feasible objectives:

{(a,B) €R?|Ix € R" subject to J;(x) = o, Ja(X) =B}
trade-off curve: boundary of the feasible objectives

the corresponding x is called Pareto optimal
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Set of Pareto optimal solutions

1.6

Example:
1.4f

green area — feasible
1.2

white area — infeasible =<
1,
black line — marginally
feasible 08
Pareto optimal solutions 06/
VRN points on the line 0.1 0.2 03 04 05

X(u) = argminy Jy(x) + udo(x) is Pareto optimal.

varying u € [0,), X(u) sweeps the Pareto solutions
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Regularized least squares

» Tychonov regularization

Syon(12) = argmin b — Ax|2 1| x|

» solution
Xiych(1) = (ATA+ul) "ATb

» exists for any u > 0, independent of size / rank of A
» trade-off between

» fitting accuracy Jy(x) = ||b— Ax||2, and
» solution size Jo(x) = || x]|2
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Quadratically constrained least squares

» consider biobjective LS problem miny J;(x) and J>(x)
» scalarization approach:
Xiyon(14) = argmin Jy (x) + pda(x)
where u is trade-off parameter

» constrained optimization approach:
Xconstr(Y) = arg mXin Ji(x) subjectto Jo(x) <y

where v is upper bound on the J, objective
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Regularized least squares

v

Tychonov regularization is scalarization with
» fitting accuracy Ji(x) = ||b— Ax||2, and
» solution size Jo(x) = || x]|2

v

the constrained optimization approach leads to

Sconste(7) = argmin|b— Ax|3subjectto || <

v

least squares minimization over the ball*

Up = {x||x|I3 <7}

v

solution involves scalar nonlinear equation

45/71



Secular equation
> if |ATb[|5 <97, then Xeonste(7) = | A b|3
> if |ATb[|3 > 77, then Xeonstr(7) € %
» the Lagrangian of
minimizey ||b— Ax||3 subjectto |x|5=7°
is ||b— Ax||3 -+ u(||x||5 — ¥?), o — Lagrange multiplier
» necessary and sufficient optimality condition

Xt;ch(u)xtych(.u)zyz7 where  Xyen(p) = (ATA+ul)"'b

46/71



» secular equation (nonlinear equation in )
b"(ATA+uh2b=y?

» has unique positive solution because
> || Xyen(1)]| is monotonically decreasing on u € [0, )
(by assumption ”Xtych(o)”g > P)
> |Xyen ()3 =0
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Exercise
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Total least squares problems
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Total least squares (TLS)

» LS minimizes 2-norm of the eqn. error e(x) := b— Ax

min|le|lz subjectto Ax=b-e
» alternatively, e can be viewed as a correction on b
» the TLS method is motivated by the asymmetry

both A and b are given data, but only b is corrected

» TLS problem:

min ||[[AA Ab]||- subjectto (A+AA)x=b+Ab
X,AAADb

» AA— correction on A, Ab — correction on b
> Frobenius matrix norm: ||Cll¢ := /X4 XL c,.?
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Geometric interpretation of the TLS criterion

a b1
> withn:1,xeR,a:[;],b: [ :]

am b.m
Geometric interpretation:
fit a line £ (x) passing through 0 to the points

5] [50]

» LS minimizes ¥ vertical distances? from [ij] to .Z(x)

» TLS minimizes ¥ orth. distances? from [ij] to .Z(x)
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Geometric interpretation of the TLS criterion

R1
(@i, bi)
R+ null([%; 1)
(/a\iv BﬂS,i)
Rn
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Solution of the TLS problem
Let [A b] = ULV be the reduced SVD of [A b] and

O1
z:{ }, U=[u - Upa], V=[v - Vpy]
On+1

TLS solution of Ax = b exists iff v;,,1 ,.1 # 0 and is
unique iff op # op1 1.
In the case when unique TLS solution exists, it is given by

1

Vn+1,n+1

Xis = — Vay1(1:0)

The TLS correctionis [AAys Abys] = —0Cni1Uns1V,,
=[A b]Vpi1v,, 4.
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Link to low-rank approximation

>

TLS approx. [7\us an] =[A b] - [AAys Abys] is
optimal (in the Frobenius norm) LRA of [A b]

TLS approx. solution of Ax = b, x € R” is equivalent
to LRA of D:= [A b] by rank-n matrix D with

[0 --- 0 1] ¢kernel(D) (+)
generically, the condition (x) is satisfied
in nongeneric cases, the TLS solution does not exist

note that the LRA always exists
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Statistical properties of TLS
» errors-in-variables (EIV) model

A=A+A and b=b+b

v

true values A, b satisfy Ax = b, for some X € R”

perturbations A, b are zero mean element-wise i.i.d.

v

v

under additional mild assumptions the TLS approx.
solution X is a consistent estimator of the true value X

measurement errors model

» A, b— measured data
» X / X — true/estimated model parameters

v
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Estimation error e = X — x

——empirical || .
0.04 -~ theoretical ||

500 1000 1500 2000
m
empirical — solid line, theoretical — dotted line
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Notes

» TLS problem vs EIV model

» TLS approx. can be used without EIV model
» EIV model shows the correct testbed TLS approx.

» distinguish

> corrections AA, Ab in the TLS problem, and
» noise/perturbations A, b in the EIV model
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Confidence bounds

» assume that A, b are i.i.d. normal with variance &2

» the estimation error e is asymptorically normal
~» confidence bounds for X

» the asymptotic error e := X — X covariance matrix is
Ve =E2(1+X"X)(ATA—mé2)1
» the noise variance £2 can be estimated from the data

~ 1
2 2
&= EGnH
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95% confidence ellipsoid

0.37y

0.36f

<!
0.35f

0.34y

028 029 03 031 032 033
X1
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Weighted total least squares problem

» replace the Frobenius norm by the weighted 2-norm

|Dllw = \/vecT (D)W vec(D)

» W = inverse noise (vec([A b])) covariance matrix
» in general, WTLS doesn’t have analytic solution

» special cases ~» structure of W
» column/row-wise weighting
» element-wise weighting
» generalized TLS
» restricted TLS
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Hierarchy of WTLS problems

1. fully weighted W >0
2. column-wise weighted
W =diag(Ws,..., W), W, e R
3. element-wise weighted
W =diag(w), weRTY
4. column-wise GTLS: case 2, with W’s equal

5. column-wise scaled: case 3, with W; — diagonal
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Relative error TLS

» consider the element-wise weighted case
IDllw =|D||z :==[[=© Dl|¢
(® — element-wise product)

» X =1/dj; ~ approximation in relative error sense
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GTLS problem

» TLS approximation with criterion
IDlls, 5, = [I=1D%|[F
» link to WTLS

IS(D— D)2 = | vec(x(D - D)x H
= ||(Zr© %) vec(D - D) H
—vec' (D — D)(W, @ W) vec(D - D)

where v W, =X, and vW, =X

» WTLS problem with weight matrix W = W, @ W,
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Element-wise GTLS

» element-wise weighted total least squares
IDllw = ||IDl[z =[x © Dl
» element-wise generalized total least squares
W, =diag(wy) and W, =diag(w)

» ~s rank-1 matrix ¥ = wjw,"
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GTLS solution

» VW, =%, wl.o.g. we can choose ¥, upper triangular,
e.g., the Cholesky factor of W,

modified data matrix: Dy := ¥,DX%,

v

TLS approximation of Dp: 5m7t|s and Xm s

v

v

partition ¥, as [ZB“ é;ﬂ , With X, 11 € R™"

GTLS solution

v

X 11Xs — Zr 11 -

) /D\gtls = (ZI)_1 /D\m,tls (Zr)

Xqtls =
gtls
Zr,22
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Singular weight matrix

v

consider the element-wise weighted case

IDlw=[Dls =X DllF

v

Y is a matrix of element-wise nonnegative weights

v

oj =0 = the solution doesn't depend on dj;

v

zero weights allow us to consider missing data
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Restricted total least squares problem

» impose structured correction AD

minimize || E||f
subjectto (A+Ab)x =b+ Ab
and [AA Ab]=LER

» link to WTLS: RTLS is a GTLS problem with
Wi =(LL")* and W,=(RR")*

(AT is the pseudo-inverse of A)
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Structured total least squares

T. Abatzoglou, J. Mendel, and G. Harada. The constrained
total least squares technique and its application to
harmonic superresolution. IEEE Trans. Signal Proc.,
39:1070-1087, 1991

minimize over x, AA, Ab ||[[AA Ab]
subjectto (A+AA)x=b+ Aband
[AA Ab] has the same structure as [A b]

Ie

» types of structures

» linear: Hankel/Toeplitz, Sylvester
» nonlinear: Vandermonde
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Link to structured low-rank approximation

» STLS is equivalent to structured low-rank approx.

minimize over AD HADHF
subjectto rank(D+ AD) < r and
AD has the same structure as D

with D:=[A b], r=n, and
[0 -~ 0 1] Zkernel(D) (+)
» generically, the condition (x) is satisfied

» in nongeneric cases, the STLS solution does not exist
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History of the problem

» Errors-in-variables system identification

M. Aoki and P. Yue. On a priori error estimates of some
identification methods. IEEE Trans. Automat. Control,
15(5):541-548, 1970

» Sum-of-exponetials estimation

Y. Bresler and A. Macovski. Exact maximum likelihood
parameter estimation of superimposed exponential signals
in noise. IEEE Trans. Acust., Speech, Signal Proc.,
34:1081-1089, 1986

J. Cadzow. Signal enhancement—A composite property
mapping algorithm. IEEE Trans. Signal Proc., 36:49-62,
1988
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» Rimmanian SVD algorithm

B. De Moor. Structured total least squares and Lo
approximation problems. Linear Algebra Appl.,
188-189:163—-207, 1993

» Structured total least norm algorithm

J. Rosen, H. Park, and J. Glick. Total least norm
formulation and solution of structured problems. SIAM J.
Matrix Anal. Appl., 17:110-126, 1996

» Variable projection algorithm

I. Markovsky, S. Van Huffel, and R. Pintelon.
Block-Toeplitz/Hankel structured total least squares. SIAM
J. Matrix Anal. Appl., 26(4):1083—-1099, 2005
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