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Orthonormal set of vectors
◮ consider a finite set of vectors Q := {q1, . . . ,qk } ⊂ R

n

◮ Q is orthogonal :⇐⇒ 〈qi ,qj〉 := q⊤
i qj = 0, for all i 6= j

◮ Q is normalized :⇐⇒ ‖qi‖2
2 := 〈qi ,qi〉= 1, i = 1, . . . ,k

◮ Q is orthonormal :⇐⇒ Q is orthogonal + normalized

◮ Q :=
[
q1 · · · qk

]
orthonormal ⇐⇒ Q⊤Q = Ik

◮ properties:
◮ orthonormal vectors are independent

◮ multiplication preserves inner product and norm

〈Qz,Qy〉 = z⊤Q⊤Qy = z⊤y = 〈z,y〉
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Orthogonal projectors
◮ consider an orthonormal set Q := {q1, . . . ,qk }

◮ Q is an orthonormal basis for L := span(Q)⊆ R
n

◮ Q⊤Q = Ik , however, for k < n, QQ⊤ 6= In

◮ Πspan(Q) := QQ⊤ is orthogonal projector on span(Q)

ΠL x = argmin
y

‖x −y‖2 subject to y ∈ L

◮ Properties:
◮ Π = Π2, Π =Π⊤ (necessary and sufficient conditions)
◮ Π⊥ := (I −Π) is orthogonal projector on

(
span(Π)

)⊥ ⊆ R
n— orth. complement of span(Π)
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Orthonormal basis for Rn

◮ orthonormal set Q := {q1, . . . ,qn } ⊂ R
n of n vectors

◮ Q :=
[
q1 · · · qn

]
is orthogonal and Q⊤Q = In

◮ it follows that Q−1 = Q⊤ and

QQ⊤ =
n

∑
i=1

qiq
⊤
i = In

◮ expansion in orthonormal basis x = QQ⊤x
◮ x̃ := Q⊤x coordinates of x in the basis Q

◮ x = Qx̃ reconstruct x from the coordinates a

◮ geometrically multiplication by Q (and Q⊤) is rotation
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Gram-Schmidt (G-S) procedure

◮ given independent set {a1, . . . ,ak } ⊂ R
n

◮ G-S produces orthonormal set {q1, . . . ,qk } ⊂ R
n

span(a1, . . . ,ar ) = span(q1, . . . ,qr ), for all r ≤ k

◮ G-S procedure: Let q1 := a1/‖a1‖2. For i = 2, . . . ,k

1. orthogonalized ai w.r.t. q1, . . . ,qi−1:

vi := (I −Πspan(q1,...,qi−1))ai︸ ︷︷ ︸
projection of ai on

(
span(q1, . . . ,qi−1)

)⊥

2. normalize the result: qi := vi/‖vi‖2
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QR decomposition

G-S gives as a byproduct scalars rji , j ≤ i , i = 1, . . . ,k

ai = (q⊤
1 ai )q1+ · · ·+(q⊤

i−1ai)qi−1 +‖vi‖2qi

= r1iq1+ · · ·+ riiqi

in a matrix form G-S produces the matrix decomposition

[
a1 a2 · · · ak

]
︸ ︷︷ ︸

A

=
[
q1 q1 · · · qk

]
︸ ︷︷ ︸

Q




r11 r12 · · · r1k

0 r22 · · · r2k
...

. . .
. . .

...
0 · · · 0 rkk




︸ ︷︷ ︸
R

with orthonormal Q ∈ R
n×k and upper triangular R ∈ R

k×k
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◮ If {a1, . . . ,ak } are dependent

vi := (I −Πspan(q1,...,qi−1)
)ai = 0 for some i

◮ conversely, if vi = 0 for some i , ai is linearly

dependent on {a1, . . . ,ai−1 }

◮ Modified G-S procedure: when vi = 0, skip to ai+1

=⇒ *R is in upper staircase form,* e.g.,




× × × × × × ×
× × × × × ×

× × × ×
×




(empty elements

are zeros)
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Full QR

A =
[
Q1 Q2

]
︸ ︷︷ ︸
orthogonal

[
R1

0

]
colspan(A) = colspan(Q1)(
colspan(A)

)⊥
= colspan(Q2)

◮ procedure for finding Q2

complete A to full rank matrix, e.g.,

Am :=
[
A I

]
, and apply G-S on Am

◮ application:

complete an orthonormal matrix Q1 ∈ R
n×k

to an orthogonal matrix Q =
[
Q1 Q2

]
∈ R

n×n

(by computing the full QR of
[
Q1 I

]
)
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Geometric fact motivating the SVD

The image of a unit ball under linear map is a hyperellips.

[
1.00 1.50

0 1.00

]

︸ ︷︷ ︸
A

=

[
0.89 −0.45

0.45 0.89

]

︸ ︷︷ ︸
U

[
2.00 0

0 0.50

]

︸ ︷︷ ︸
Σ

[
0.45 −0.89

0.89 0.45

]

︸ ︷︷ ︸
V⊤
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A−→
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-1.5
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1

1.5

σ1u1
σ2u2
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Singular value decomposition

any m×n matrix A of rank r has a reduced SVD

A =
[
u1 · · · ur

]
︸ ︷︷ ︸

U1




σ1

. . .

σr




︸ ︷︷ ︸
Σ1

[
v1 · · · vr

]⊤
︸ ︷︷ ︸

V⊤
1

with U1 and V1 orthonormal

◮ σ1 ≥ ·· · ≥ σr are called singular values

◮ u1, . . . ,ur are called left singular vectors

◮ v1, . . . ,vr are called right singular vectors

The SVD is both computational and analytical tool
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Full SVD A = UΣV⊤

where U ∈ R
m×m and V ∈ R

n×n are orthogonal and

Σ =

r n− r[
Σ1 0

0 0

]
r

m− r
where Σ1 = diag(σ1, . . . ,σr )

the singular values of A are

σ(A) :=
(
σ1, . . . ,σr , 0, . . . ,0︸ ︷︷ ︸

min(n−r ,m−r)

)

◮ σmin(A) — smallest singular value of A

◮ σmax(A) — largest singular value of A
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Proof of existence of an SVD

◮ constructive, based on induction, assume m ≥ n

◮ end of induction: vector A ∈ R
m×1 has reduced SVD

A=UΣV⊤, with U :=A/‖A‖2, Σ := ‖A‖2, V := 1

◮ inductive step: let σi := ‖Ai‖2, ∃ ui ∈ R
m and vi ∈ R

n

Aivi =: σiui , where ‖ui‖2 = 1, with ‖vi‖2 = 1

◮ complete ui and vi to orthogonal matrices (QR)

Ui :=
[
ui ⋆

]
and Vi :=

[
vi ⋆

]
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◮ for certain w ∈ R
n−1 and Ai+1 ∈ R

(n−1)×(n−1)

U⊤
i AiVi =

[
σi w⊤

0 Ai+1

]

◮ next we show that w = 0

σ2
i = ‖Ai‖2

2 = max
v

‖Aiv‖2
2

‖v‖2
2

≥ ‖Ai [
σi
w ]‖2

2

‖ [σi
w ]‖2

2

=
1

σ2
i +w⊤w

∥∥∥∥
[

σ2
i +w⊤w

Ai+1w

]∥∥∥∥
2

2

≥ 1

σ2
i +w⊤w

(σ2
i +w⊤w)2 = σ2

i +w⊤w

◮ σ2
i ≥ σ2

i +w⊤w =⇒ w = 0
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Low-rank approximation
given

◮ a matrix A ∈ R
m×n, m ≥ n, and

◮ an integer r , 0 < r < n,

find

Â := argmin
Â

‖A− Â‖ subject to rank(Â)≤ r

◮ Interpretation: Â∗ is optimal rank-r approx. of A w.r.t.

‖A‖2
F :=

m

∑
i=1

n

∑
j=1

a2
ij or ‖A‖2 := max

x

‖Ax‖2

‖x‖2

◮ Â∗ is optimal in any unitarily invariant norm
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Solution via truncated SVD

Â∗ := argmin
Â

‖A− Â‖F subject to rank(Â)≤ r (LRA)

Theorem Let A = UΣV⊤ be the SVD of A and define

U =:

r r −n[
U1 U2

]
n , Σ=:

r r −n[
Σ1 0

0 Σ2

]
r

r −n
, V =:

r r −n[
V1 V2

]
n

A solution to (LRA) is

Â∗ = U1Σ1V⊤
1

It is unique if and only if σr 6= σr+1
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Numerical rank

◮ distance of A to the manifold of rank-r matrices√
∑n

i=r+1 σ2
i = min

Â
‖A− Â‖F subject to rank(Â)≤ r

σr+1 = min
Â

‖A− Â‖2 subject to rank(Â)≤ r

◮ σmin(A) is the distance of A to rank deficiency

◮ numerical rank: rank(A,ε) := # of singular values > ε

◮ rank(A,ε) depends on an a priori given tolerance ε
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Pseudo-inverse A+ := V1Σ
−1
1 U⊤

1 ∈ R
n×m

rank(A) = n = m =⇒ A+ = A−1

rank(A) = n =⇒ A+ = (A⊤A)−1A⊤

rank(A) = m =⇒ A+ = A⊤(AA⊤)−1

◮ A+y is least squares-least norm solution of Ax = y

◮ the pseudo-inverse depends on the rank of A

◮ in practice, the numerical rank rank(A,ε) is used

◮ the SVD, gives reliable way of solving Ax = y
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Condition number κ(A) := σmax(A)/σmin(A)

◮ κ(A) is eccentricity of hyperellipsoid A{x | ‖x‖2 = 1}

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
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-0.5

0

0.5

1

1.5

σ1u1
σ2u2

◮ κ(A) — sensitivity of A+y to perturbations in y , A

◮ for large κ(A) (≥ 1000) A is called ill-conditioned
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Least squares
◮ overdetermined system of linear equations Ax = b

◮ given A ∈ R
m×n, m > n and b ∈ R

m, find x ∈ R
n

◮ for “most” A and b, there is no solution x

◮ Least squares approximation:

choose x that minimizes 2-norm of the residual

e(x) := b−Ax

◮ least squares approximate solution

x̂ls := argmin
x

‖b−Ax︸ ︷︷ ︸
e(x)

‖2
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Geometric interpretation: project b onto the image of A

(b̂ls := Ax̂ls is the projection)

els := b̂ls−Ax̂ls

R
m

b

els

b̂ls

colspan(A)
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Another geometric interpretation of the LS approximation:

R
n+1

R
n

R
1

[
x̂ls
−1

]

els,i null([ x̂⊤
ls −1 ])

(ai ,bi)

(ai , b̂ls,i)
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Ax̂ls = b̂ls ⇐⇒
[
A b̂ls

][
x̂ls

−1

]
= 0

⇐⇒
[
ai b̂ls,i

][
x̂ls

−1

]
= 0, for i = 1, . . . ,m

(ai is the i th row of A)

◮

[
ai

b̂ls,i

]
lies on subspace perpendicular to span(

[
x̂ls
−1

]
)

◮ “data point”
[

ai
bi

]
=
[

ai

b̂ls,i

]
+
[

0
els,i

]

◮ approx. error
[

0
els,i

]
is the vertical distance
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Notes

◮ assuming m ≥ n = rank(A), i.e., A is full column rank,

x̂ls = (A⊤A)−1A⊤b

is the unique least squares approximate solution

◮ x̂ls is a linear function of b

◮ if A is square, x̂ls = A−1b

◮ x̂ls is an exact solution if Ax = b has an exact solution

◮ b̂ls := Ax̂ls = A(A⊤A)−1A⊤b is LS approx. of b
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Projector onto the span of A

◮ the m×m matrix

Πcolspan(A) := A(A⊤A)−1A⊤

is the orthogonal projector onto L := colspan(A)

◮ the columns of A are an arbitrary basis for L

◮ if the columns of Q form an orthonormal basis for L

Πcolspan(Q) := QQ⊤
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Orthogonality principle
the least squares residual vector

els := b−Ax̂ls =
(
Im −A(A⊤A)−1A⊤)
︸ ︷︷ ︸

Π
(colspan(A))⊥

b

is orthogonal to colspan(A)

〈els,Ax̂ls〉= b⊤(Im−A(A⊤A)−1A⊤)Ax̂ls = 0, for all b ∈R
m

b

els

b̂ls

colspan(A)
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Least squares via QR decomposition
Let A = QR be the reduced QR decomposition of A.

(A⊤A)−1A⊤ = (R⊤Q⊤QR)−1R⊤Q⊤

= (R⊤Q⊤QR)−1R⊤Q⊤ = R−1Q⊤

x̂ls = R−1Q⊤b and b̂ls := Axls = QQ⊤b

we have a sequence of LS problems (A =:
[
a1 · · · an

]
)

Aix i = b, where Ai :=
[
a1 · · · ai

]
, for i = 1, . . . ,n

Ri — leading i × i submatrix of R and Qi :=
[
q1 · · · qi

]

x̂ i
ls = R−1

i Q⊤
i b

31 / 71



Least norm solution

underdetermined system Ax = b, with full rank A ∈ R
m×n

The set of solutions is

{x ∈ R
n | Ax = b}= {xp +z | z ∈ null(A)}

where xp is a particular solution, i.e., Axp = b.

Least norm problem

xln := argmin
x

‖x‖2 subject to Ax = b
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Geometric interpretation:

◮ xln is the projection of 0 onto the solution set

◮ orthogonality principle xln ⊥ null(A)

R
n

xln

‖xln‖2

0

null(A)+xp
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Derivation via Lagrange multipliers
consider the least norm problem with A full rank

min
x

‖x‖2
2 subject to Ax = b

introduce Lagrange multipliers λ ∈ R
m

L(x ,λ ) = xx⊤+λ⊤(Ax −b)

the optimality conditions are

∇xL(x ,λ ) = 2x +A⊤λ = 0

∇λ L(x ,λ ) = Ax −b = 0

substituting x =−A⊤λ/2 into the second eqn.

λ =−2(AA⊤)−1b =⇒ xln = A⊤(AA⊤)−1b
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Solution via QR decomposition

Let A⊤ = QR be the reduced QR decomposition of A⊤.

A⊤(AA⊤)−1 = QR(R⊤Q⊤QR)−1 = Q(R⊤)−1

is a right inverse of A. Then

xln = Q(R⊤)−1b
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Weighted least squares

◮ weighted 2-norm, defined by W ∈ R
m×m, W > 0

‖e‖2
W := e⊤We

◮ weighted least squares approximation problem

x̂W ,ls := argmin
x

‖b−Ax‖W

◮ orthogonality principle holds with inner product

〈e,b〉W := e⊤Wb

◮ solution

x̂W ,ls = (A⊤WA)−1A⊤Wb
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Recursive least squares

◮ let a⊤
i be the i th row of A

A =




— a⊤
1 —
...

— a⊤
m —




‖b−Ax‖2
2 =

m

∑
i=1

(bi −a⊤
i x)2

x̂ls = x̂ls(m) :=

(
m

∑
i=1

aia
⊤
i

)−1(
m

∑
i=1

aibi

)

◮ (ai ,bi) correspond to a measurement

◮ often the (ai ,bi)’s come sequentially (e.g., in time)
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Recursive comput. of x̂ls(m) =

(
m

∑
i=1

aia
⊤
i

)−1(
m

∑
i=1

aibi

)

◮ P(0) = 0 ∈ R
n×n, q(0) = 0 ∈ R

n

◮ For m = 0,1, . . .
◮ P(m+1) := P(m)+am+1a⊤

m+1

q(m+1) := q(m)+am+1bm+1

◮ xls(m) = P−1(m)q(m)

Notes:

◮ the algorithm requires inversion of an n×n matrix

◮ P(m) invertible =⇒ P(m′) invertible, for all m′ > m
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Rank-1 update formula:

(P +aa⊤)−1 = P−1 − 1

1+a⊤P−1a
(P−1a)(P−1a)⊤

Notes:

◮ O(n2) method for computing P−1(m+1) from P−1(m)

◮ standard methods based on dense LU, QR, or SVD

for computing P−1(m+1) require O(n3) operations
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Multiobjective least squares

◮ least squares minimizes J1(x) := ‖b−Ax‖2
2

◮ consider second cost function J2(x) := ‖z −Bx‖2
2

◮ usually minx J1(x) and minx J2(x) are competing

◮ common example: J2(x) := ‖x‖2
2 — small x

◮ feasible objectives:

{(α,β )∈R
2 | ∃ x ∈R

n subject to J1(x) =α, J2(x) = β }

◮ trade-off curve: boundary of the feasible objectives

◮ the corresponding x is called Pareto optimal
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Set of Pareto optimal solutions

Example:

green area — feasible

white area — infeasible

black line — marginally

feasible

Pareto optimal solutions

↔ points on the line 0.1 0.2 0.3 0.4 0.5

0.6

0.8

1

1.2

1.4

1.6

J2
J

1

x̂(µ) = argminx J1(x)+µJ2(x) is Pareto optimal.

varying µ ∈ [0,∞), x̂(µ) sweeps the Pareto solutions
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Regularized least squares

◮ Tychonov regularization

x̂tych(µ) = argmin
x

‖b−Ax‖2
2+µ‖x‖2

2

◮ solution

x̂tych(µ) = (A⊤A+µIn)
−1A⊤b

◮ exists for any µ > 0, independent of size / rank of A

◮ trade-off between
◮ fitting accuracy J1(x) = ‖b−Ax‖2, and
◮ solution size J2(x) = ‖x‖2
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Quadratically constrained least squares

◮ consider biobjective LS problem minx J1(x) and J2(x)

◮ scalarization approach:

x̂tych(µ) = argmin
x

J1(x)+µJ2(x)

where µ is trade-off parameter

◮ constrained optimization approach:

x̂constr(γ) = argmin
x

J1(x) subject to J2(x)≤ γ

where γ is upper bound on the J2 objective
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Regularized least squares

◮ Tychonov regularization is scalarization with
◮ fitting accuracy J1(x) = ‖b−Ax‖2, and
◮ solution size J2(x) = ‖x‖2

◮ the constrained optimization approach leads to

x̂constr(γ) = argmin
x

‖b−Ax‖2
2 subject to ‖x‖2

2 ≤ γ2

◮ least squares minimization over the ball*

Uγ2 := {x | ‖x‖2
2 ≤ γ2 }

◮ solution involves scalar nonlinear equation
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Secular equation

◮ if ‖A+b‖2
2 ≤ γ2, then x̂constr(γ) = ‖A+b‖2

2

◮ if ‖A+b‖2
2 > γ2, then x̂constr(γ) ∈ Uγ2

◮ the Lagrangian of

minimizex ‖b−Ax‖2
2 subject to ‖x‖2

2=γ2

is ‖b−Ax‖2
2 +µ(‖x‖2

2 − γ2), µ — Lagrange multiplier

◮ necessary and sufficient optimality condition

x⊤
tych(µ)xtych(µ) = γ2, where xtych(µ) := (A⊤A+µI)−1b

46 / 71



◮ secular equation (nonlinear equation in µ)

b⊤(A⊤A+µI)−2b = γ2

◮ has unique positive solution because
◮ ‖xtych(µ)‖ is monotonically decreasing on µ ∈ [0,∞)

(by assumption ‖xtych(0)‖2
2 > γ2)

◮ ‖xtych(∞)‖2
2 = 0
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Total least squares (TLS)
◮ LS minimizes 2-norm of the eqn. error e(x) := b−Ax

min
x ,e

‖e‖2 subject to Ax = b−e

◮ alternatively, e can be viewed as a correction on b

◮ the TLS method is motivated by the asymmetry

both A and b are given data, but only b is corrected

◮ TLS problem:

min
x ,∆A,∆b

∥∥[∆A ∆b
]∥∥

F
subject to (A+∆A)x = b+∆b

◮ ∆A — correction on A, ∆b — correction on b

◮ Frobenius matrix norm: ‖C‖F :=
√

∑m
i=1 ∑n

j=1 c2
ij
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Geometric interpretation of the TLS criterion

◮ with n = 1, x ∈ R, a =

[ a1
...

am

]
, b =

[
b1
...

bm

]

Geometric interpretation:

fit a line L (x) passing through 0 to the points

[
a1
b1

]
, . . . ,

[am
bm

]

◮ LS minimizes ∑ vertical distances2 from
[

ai
bi

]
to L (x)

◮ TLS minimizes ∑ orth. distances2 from
[

ai
bi

]
to L (x)
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Geometric interpretation of the TLS criterion

R
n+1

R
n

R
1

[
x̂tls
−1

]

null([ x̂⊤
tls −1 ])

(ai ,bi)

(âi , b̂tls,i)
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Solution of the TLS problem

Let
[
A b

]
= UΣV⊤ be the reduced SVD of

[
A b

]
and

Σ=

[σ1

. . .
σn+1

]
, U =

[
u1 · · · un+1

]
, V =

[
v1 · · · vn+1

]

TLS solution of Ax = b exists iff vn+1,n+1 6= 0 and is

unique iff σn 6= σn+1.

In the case when unique TLS solution exists, it is given by

x̂tls =− 1

vn+1,n+1
vn+1(1 : n)

The TLS correction is
[
∆Atls ∆btls

]
=−σn+1un+1v⊤

n+1

=
[
A b

]
vn+1v⊤

n+1.
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Link to low-rank approximation

◮ TLS approx.
[
Âtls b̂tls

]
:=
[
A b

]
−
[
∆Atls ∆btls

]
is

optimal (in the Frobenius norm) LRA of
[
A b

]

◮ TLS approx. solution of Ax = b, x ∈ R
n is equivalent

to LRA of D :=
[
A b

]
by rank-n matrix D̂ with

[
0 · · · 0 1

]
6∈ kernel(D̂) (∗)

◮ generically, the condition (∗) is satisfied

◮ in nongeneric cases, the TLS solution does not exist

◮ note that the LRA always exists
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Statistical properties of TLS

◮ errors-in-variables (EIV) model

A = A+ Ã and b = b+ b̃

◮ true values A, b satisfy Ax = b, for some x ∈ R
n

◮ perturbations Ã, b̃ are zero mean element-wise i.i.d.

◮ under additional mild assumptions the TLS approx.

solution x̂ is a consistent estimator of the true value x

◮ measurement errors model
◮ A, b — measured data
◮ x / x̂ — true/estimated model parameters
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Estimation error e = x − x̂
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Notes

◮ TLS problem vs EIV model
◮ TLS approx. can be used without EIV model
◮ EIV model shows the correct testbed TLS approx.

◮ distinguish
◮ corrections ∆A, ∆b in the TLS problem, and
◮ noise/perturbations Ã, b̃ in the EIV model
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Confidence bounds

◮ assume that Ã, b̃ are i.i.d. normal with variance ξ 2

◮ the estimation error e is asymptorically normal

❀ confidence bounds for x̂

◮ the asymptotic error e := x − x̂ covariance matrix is

Ve = ξ 2(1+ x̂⊤x̂)(A⊤A−mξ 2I)−1

◮ the noise variance ξ 2 can be estimated from the data

ξ̂ 2 =
1

m
σ2

n+1
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95% confidence ellipsoid
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Weighted total least squares problem

◮ replace the Frobenius norm by the weighted 2-norm

‖D‖W :=
√

vec⊤(D)W vec(D)

◮ W = inverse noise (vec([Ã b̃])) covariance matrix

◮ in general, WTLS doesn’t have analytic solution

◮ special cases ❀ structure of W
◮ column/row-wise weighting
◮ element-wise weighting
◮ generalized TLS
◮ restricted TLS
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Hierarchy of WTLS problems

1. fully weighted W ≥ 0

2. column-wise weighted

W = diag(W1, . . . ,Wm), Wi ∈ R
(n+1)×(n+1)
+

3. element-wise weighted

W = diag(w), w ∈ R
m(n+1)
+

4. column-wise GTLS: case 2, with Wi ’s equal

5. column-wise scaled: case 3, with Wi — diagonal

61 / 71



Relative error TLS

◮ consider the element-wise weighted case

‖D‖w = ‖D‖Σ := ‖Σ⊙D‖F

(⊙ — element-wise product)

◮ Σij = 1/dij ❀ approximation in relative error sense

eij =
dij − d̂ij

dij
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GTLS problem

◮ TLS approximation with criterion

‖D‖Σl,Σr
:= ‖ΣlDΣr‖F

◮ link to WTLS

‖Σl(D− D̂)Σr‖2
F =

∥∥vec(Σl(D− D̂)Σr)
∥∥2

=
∥∥(Σr ⊗Σl)vec(D− D̂)

∥∥2

= vec⊤(D− D̂)
(
Wr ⊗Wl

)
vec(D− D̂)

where
√

Wr = Σr and
√

Wl = Σl

◮ WTLS problem with weight matrix W = Wr ⊗Wl
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Element-wise GTLS

◮ element-wise weighted total least squares

‖D‖w = ‖D‖Σ := ‖Σ⊙D‖F

◮ element-wise generalized total least squares

Wr = diag(wr) and Wl = diag(wl)

◮ ❀ rank-1 matrix Σ = wlw
⊤
r
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GTLS solution

◮

√
Wr =Σr, w.l.o.g. we can choose Σr upper triangular,

e.g., the Cholesky factor of Wr

◮ modified data matrix: Dm := ΣlDΣr

◮ TLS approximation of Dm: D̂m,tls and x̂m,tls

◮ partition Σr as
[
Σr,11 Σr,12

0 Σr,22

]
, with Σr,11 ∈ R

n×n

◮ GTLS solution

x̂gtls =
Σr,11x̂tls−Σr,11

Σr,22
, D̂gtls =

(
Σl

)−1
D̂m,tls

(
Σr

)−1
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Singular weight matrix

◮ consider the element-wise weighted case

‖D‖w = ‖D‖Σ := ‖Σ⊙D‖F

◮ Σ is a matrix of element-wise nonnegative weights

◮ σij = 0 =⇒ the solution doesn’t depend on dij

◮ zero weights allow us to consider missing data
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Restricted total least squares problem

◮ impose structured correction ∆D

minimize ‖E‖F

subject to (A+∆b)x = b+∆b

and
[
∆A ∆b

]
= LER

◮ link to WTLS: RTLS is a GTLS problem with

Wl = (LL⊤)+ and Wr = (RR⊤)+

(A+ is the pseudo-inverse of A)
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Structured total least squares

◮

T. Abatzoglou, J. Mendel, and G. Harada. The constrained

total least squares technique and its application to

harmonic superresolution. IEEE Trans. Signal Proc.,

39:1070–1087, 1991

minimize over x , ∆A, ∆b
∥∥[∆A ∆b

]∥∥
F

subject to (A+∆A)x = b+∆b and[
∆A ∆b

]
has the same structure as

[
A b

]

◮ types of structures
◮ linear: Hankel/Toeplitz, Sylvester
◮ nonlinear: Vandermonde
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Link to structured low-rank approximation

◮ STLS is equivalent to structured low-rank approx.

minimize over ∆D
∥∥∆D

∥∥
F

subject to rank(D+∆D)≤ r and

∆D has the same structure as D

with D :=
[
A b

]
, r = n, and

[
0 · · · 0 1

]
6∈ kernel(D̂) (∗)

◮ generically, the condition (∗) is satisfied

◮ in nongeneric cases, the STLS solution does not exist
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History of the problem

◮ Errors-in-variables system identification

M. Aoki and P. Yue. On a priori error estimates of some

identification methods. IEEE Trans. Automat. Control,

15(5):541–548, 1970

◮ Sum-of-exponetials estimation

Y. Bresler and A. Macovski. Exact maximum likelihood

parameter estimation of superimposed exponential signals

in noise. IEEE Trans. Acust., Speech, Signal Proc.,

34:1081–1089, 1986

J. Cadzow. Signal enhancement—A composite property

mapping algorithm. IEEE Trans. Signal Proc., 36:49–62,

1988
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◮ Rimmanian SVD algorithm

B. De Moor. Structured total least squares and L2

approximation problems. Linear Algebra Appl.,

188–189:163–207, 1993

◮ Structured total least norm algorithm

J. Rosen, H. Park, and J. Glick. Total least norm

formulation and solution of structured problems. SIAM J.

Matrix Anal. Appl., 17:110–126, 1996

◮ Variable projection algorithm

I. Markovsky, S. Van Huffel, and R. Pintelon.

Block-Toeplitz/Hankel structured total least squares. SIAM

J. Matrix Anal. Appl., 26(4):1083–1099, 2005
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