Linear algebra with applications Ivan Markovsky

- Why is linear algebra useful?
- Numerical methods for matrix computations
- Applications of linear algebra in:
- System and control theory
- Signal processing
- Machine learning

Topics

1. Review of linear algebra
2. Numerical linear algebra: matrix factorizations
3. Some optimization problems with analytic solution
4. Applications (in estimation, control, and signal processing

References

- G. Strang, Linear algebra and its applications
- N. Trefethen \& Bau, Numerical linear algebra
- G. Golub \& Van Loan, Matrix computations
- S. Boyd, EE263: Linear dynamical systems (online)

Journals

- SIAM Journal on Matrix Analysis and Applications
- Linear Algebra and Its Applications
- Journal of Computational and Applied Mathematics
- Numerical Linear Algebra with Applications
- NA digest mailing list

Some net resources

- NA digest mailing list
- Netlib repository
- Decision tree for optimization software

Numerical analysis

Common misconception: numerical analysis is about
analysis of rounding errors
Indeed

- perturbation analysis
- stability, cost, and convergence analysis
are important topics in numerical computing, however,

The core of numerical analysis is
development of algorithms

Numerical linear algebra software

Should you write numerical linear algebra code?
No, whenever possible use existing (high quality) libraries for linear algebra computation instead of writing your own implementation.

In special cases (e.g., structured matrix, real-time implementation) writing linear algebra code or modifying existing one is needed.

This course teaches

1. how to use linear algebra and optimization (What is available?)
2. basic understanding of numerical methods (How does it work?)
3. pitfalls in using the methods
(When it does not work?)

Vectors and matrices

Data structure point of view: 1D and 2D arrays of numbers, a table

Convention: vectors are denoted by lowercase letters (e.g., v) and matrices are denoted by uppercase letters (e.g., M)

Use indexes to retrieving data from a vector/matrix:

- $v_{i}($ or $v(i))$ - the i th element of v
- $M_{i j}($ or $M(i, j))$ - the element in the i th row and the j th column

Dimensions of a vector/matrix: \# of rows and \# of columns

Slices: $\quad v_{i_{1}: i_{2}}\left(\operatorname{or} v\left(i_{1}: i_{2}\right)\right)$ and $M_{i_{1}: i_{2}, j_{1}: j_{2}}\left(\operatorname{or} M\left(i_{1}: i_{2}, j_{1}: j_{2}\right)\right)$

Example: diet design

 food ingredientsNutrients/food ingredients table:

	food ingredients		
	x_{1}	...	x_{n}
$\stackrel{y}{\square}$	a_{11}		$a_{1 n}$
-			
$\xrightarrow{\text { ¢ }} y_{m}$	$a_{m 1}$		$a_{m n}$

$A=\left[a_{i j}\right] \in \mathbb{R}^{m \times n}, \quad a_{i j}$ - amount of nutrient i in 1 unit of food j
Diet recipe: a vector $x \in \mathbb{R}^{n}$, with x_{j} being the amount of ingredient j
$y=A x$ - nutrients amounts resulting of recipe x
Diet design:
find a diet x that achieves desired nutrients amounts $y_{\text {spec }}$ find the cheapest diet that achieves $y_{\text {spec }}$ find an x achieving the closest nutrients amounts to $y_{\text {spec }}$

Example: adjacency matrix of a graph

Graph \mathscr{G} with n nodes and undirected edges, e.g.,

The adjacency matrix $A \in\{0,1\}^{n \times n}$ of \mathscr{G} has 1 in the (i, j) th entry, if the i th node is connected to the j th node by an edge, and 0 otherwise, e.g.,

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

A completely describes \mathscr{G} and vice verse, $A \leftrightarrow \mathscr{G}$. Moreover, questions related to properties of \mathscr{G} can be answered by matrix operations on A.

For example, the entries of $A^{2}=A A$ have interpretation in terms of \mathscr{G}.

$$
A^{2}=A A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

- $a_{i_{1} k} a_{k i_{2}}=1$ when there is an edge between i_{1} and k and an edge between k and i_{2}, i.e., a path with length 2 between i_{1} and i_{2}
- $\left(A^{2}\right)_{i_{1} i_{2}}=\sum_{k=1}^{n} a_{i_{1} k} a_{k i_{2}}=\#$ of paths with length 2 between i_{1} and i_{2}
- $\left(A^{k}\right)_{i_{1} i_{2}}=\#$ of paths with length k between i_{1} and i_{2}

