
Lecture 1: Review of linear algebra

• Linear functions and linearization

• Inverse matrix, least-squares and least-norm solutions

• Subspaces, basis, and dimension

• Change of basis and similarity transformations

• Eigenvalues and eigenvectors
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Notation

• R — real numbers, Z — integers, N — natural numbers

• R
n — n-dimensional real vector space

• R
m×n — space of real m×n matrices

• LHS := RHS — the LHS is defined by the RHS

• A⊤ — the transposed of A
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Linear functions

• f : R
n → R

m — function mapping vectors in R
n to vectors in R

m

Interpretation of y = f (x): x given input, y corresponding outputreplacements

x yf

• f is a linear function if and only if superposition holds:

f (αx +βv) = α f (x)+β f (v), for all α ,β ∈ R, x ,v ∈ R
n

• f is linear ⇐⇒ ∃ A ∈ R
m×n, such that f (x) = Ax , for all x ∈ R

n

A is a matrix representing the linear function f

Q: How can you find a matrix representation of a linear function f ,
if you are allowed to evaluate f at points x ∈ R

n of your choice?
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Examples of linear functions

• Scalar function of a scalar argument

y = tan(α)x , where α ∈ [0,2π)

x

y

α

• Identity function x = f (x), for all x ∈ R
n

is a linear function represented by the identity matrix

In :=




1
. . .

1


 ∈ R

n×n
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Matrix–vector multiplication

Partition A ∈ R
m×n elementwise, column-wise, and row-wise

A =




a11 · · · a1n
...

...
am1 · · · amn


 =




| |
c1 · · · cn

| |


 =




— r1 —
...

— rm —




The matrix–vector product y = Ax can be written as




y1
...

ym


 =




∑n
j=1 a1jxj

...

∑n
j=1 amjxj


 =

n

∑
j=1

cjxj =




r1x
...

rmx




Interpretation: aij gain factor from the j th input xj to the i th output yi .
(e.g., aij = 0 means that j th input has no influence on i th output.)
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Linearlization
Consider a differentiable function f : R

n → R
m. Then for given x0 ∈ R

n

y = f (x0 + x̃) ≈ f (x0)︸ ︷︷ ︸
y0

+Ax̃ where A =
[
aij

]
=

[ ∂ fi
∂xj

∣∣∣∣
x0

]
.

When the input deviation x̃ = x −x0 is “small”, the output deviation

ỹ := y −y0

is approximately a linear function of x̃ , ỹ = Ax̃

f

x0

y0

x

y Linear approximation
of f : x 7→ y at x = x0
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Rank of a matrix and inversion

• the set of vectors {v1, . . . ,vn } is independent if

α1v1 + · · ·+αnvn = 0 only if α1 = · · · = αn = 0

• rank of a matrix — number of lin. indep. columns (or rows)

• A ∈ R
m×n is full row rank (f.r.r.) if rank(A) = m

Interpretation: A not f.r.r. — there are redundant outputs

• Inversion problem: given y ∈ R
m, find x , such that y = Ax .

Interpretation: design an input that achieves a desired output.

• When is the inversion problem solvable? Is the solution unique?
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Inversion problem
Given y ∈ R

m, find x , such that y = Ax .

Solution may not exist, be unique, or there may be ∞ many solutions.
(Why it is not possible to have a finite number of solutions?)

Interpretations:

• Control: x is a control input, y is a desired outcome

• Estimation: x is a vector of parameters, y is a set of measurements

Typically

in control, the solution is nonunique and we aim to find the “best” one.

in estimation, there is no solution and we aim to find the “best” approximation.
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Inverse of a matrix

If m = n = rank(A), then there exists a matrix A−1, such that

AA−1 = A−1A = Im.

Then for all y ∈ R
m

y = (AA−1)︸ ︷︷ ︸
I

y = A(A−1y)︸ ︷︷ ︸
x

= Ax .

The inversion problem is solvable and the solution is unique.

Q: Can you find a matrix representation of a linear function f , from
given values y1, . . . ,yn of f at given points x1, . . . ,xn? If so, how?
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Vector and matrix norms
Mathematical formalisation of the geometric notion of size or distance.

Norm is a function ‖x‖ : x 7→ R that satisfies the following properties:

• Nonnegativity: ‖x‖ ≥ 0 for all x

• Definiteness: ‖x‖ = 0 ⇐⇒ x = 0

• Homogeneity: ‖αx‖ = |α |‖x‖ for all x and α

• Triangle inequality: ‖x +y‖ ≤ ‖x‖+‖y‖

Examples:

• Vector 2-norm: ‖x‖2 :=
√

x2
1 + · · ·+x2

n =
√

x⊤x , for all x ∈ R
n

• Frobenius matrix norm: ‖A‖F :=
√

∑m
i=1 ∑n

j=1 a2
ij , for all A ∈ R

m×n

Unit ball: U = {x | ‖x‖ ≤ 1}
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Least-squares solution

Assumption m ≥ n = rank(A), i.e., A is full column rank.
The inversion problem typically has no solution.

The least-squares solution

xls = (A⊤A)−1A⊤y =: A+y

minimizes the approximation error

‖y −Ax︸ ︷︷ ︸
e

‖2 :=
√

e2
1 + · · ·+e2

m =
√

e⊤e.

The matrix

A+ := (A⊤A)−1A⊤ (if m > n = rank(A))

is called pseudo-inverse of A.
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Notes

• xls is a linear function of y (given by the pseudo inverse matrix A+)

• If A is square xls = A−1y (in other words A+ = A−1)

• xls is an exact solution if Ax = y has an exact solution

• ŷ = Axls = A(A⊤A)−1A⊤y is a least-squares approximation of y

• Statistical interpretation: assume that

y = Ax0 +e

where e is zero mean Gaussian random vector with covariance σ2I

Then xls is the best linear unbiased estimator for x0.
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Least-norm solution

Assumption n ≥ m = rank(A), i.e., A is full row rank.
The inversion problem has infinitely many solution.

The least-norm solution

xln = A⊤(AA⊤)−1y =: A+y

minimizes the 2-norm of the solution x , i.e.,

minimize ‖x‖2 subject to Ax = y

The matrix

A+ := A⊤(AA⊤)−1 (if n > m = rank(A))

is called pseudo-inverse of A.
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Set of all solutions

{x | Ax = y } = {xp +z | Az = 0}

where xp is a particular solution, i.e., Axp = y .

Note that xln = A⊤(AA⊤)−1y is a particular solution

Axln = (AA⊤)(AA⊤)−1y = y .

Moreover, xln is the minimum 2-norm solution.
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Inner product

• The inner product of two vectors a,b ∈ R
n is defined as

〈a,b〉 := a⊤b =
n

∑
k=1

akbk .

• Matrix–matrix product H = GF , F : R
p×n, G : R

n×m gives pm inner
products between the rows of G and the columns of F

H = GF =




— g1 —
...

— gm —






| |
f1 · · · fp
| |


 =



〈g1, f1〉 · · · 〈g1, fp〉

...
...

〈gm, f1〉 · · · 〈gm, fp〉




• The Gram matrix of the vectors f1, . . . , fm is defined by



f⊤1
...

f⊤m




[
f1 · · · fm

]
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Cauchy-Schwarz inequality

|x⊤y | ≤ ‖x‖‖y‖
equality holds if and only if x = αy , for some α ∈ R or x = 0.

Application: optimization of a linear function over the unit ball

Given y ∈ R
n

maximize x⊤y subject to ‖x‖ ≤ 1

The solution follows from the Cauchy-Schwarz inequality

xopt =
y
‖y‖
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Angle between vectors

The angle between the vectors x ,y ∈ R
n is defined as

∠(x ,y) = cos−1 x⊤y
‖x‖‖y‖

• x 6= 0 and y are aligned if y = αx , for some α ≥ 0
In this case, ∠(x ,y) = 0.

• x 6= 0 and y are opposite if y = −αx , for some α ≥ 0
In this case, ∠(x ,y) = π.

• x and y are orthogonal (denoted x ⊥ y ) if x⊤y = 0
In this case, ∠(x ,y) = π/2.

Q: Given y ∈ R
n, which x minimize |x⊤y | subject to ‖x‖ ≥ 1?
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Subspace, basis, and dimension

• V ⊂ R
n is a subspace of a vector space R

n if V is a vector space

v ,w ∈ V =⇒ αv +βw ∈ V , for all α ,β ∈ R

• The set {v1, . . . ,vn } is a basis of V if

• v1, . . . ,vn span V , i.e.,

V = span(v1, . . . ,vn) := {α1v1 + · · ·+αnvn | α1, . . . ,αn ∈ R}

• {v1, . . . ,vn } is an independent set of vectors.

• dim(V ) — number of basis vectors (does not depend on the basis)
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Null space of a matrix (kernel)

• kernel of A — the set of vectors mapped to zero by f (x) := Ax

ker(A) := {x ∈ R
n | Ax = 0}

• y = A(x + x̃), for all x̃ ∈ ker(A)

Interpretation: ker(A) is the uncertainty in finding x , given y .

Interpretation: ker(A) is the freedom in the x ’s that achieve y .

• ker(A) = {0} ⇐⇒ f (x) := Ax is one-to-one

• ker(A) = {0} ⇐⇒ A is full column rank
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Range of a matrix (image)

• image of A — the set of all vectors obtainable by f (x) := Ax

image(A) := {Ax | x ∈ R
n }

• image(A) = span of the columns of A

• image(A) = set of vectors y for which Ax = y has a solution

• image(A) = R
m ⇐⇒ f (x) := Ax is onto (image(f ) = R

m)

• image(A) = R
m ⇐⇒ A is full row rank
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Change of basis

• standard basis vectors in R
n — the columns e1, . . . ,en of In

• Elements of x ∈ R
n are coordinates of x w.r.t. standard basis.

• A new bases is given by the columns t1, . . . , tn of T ∈ R
n×n.

• The coordinates of x in the new basis are x̃1, . . . , x̃n, such that

x = x̃1t1 + · · ·+ x̃ntn = T x̃ =⇒ x̃ = T−1x

• T−1 transforms standard basis coordinates x into T -coordinates
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Similarity transformation

• Consider linear operator f : R
n → R

n, given by f (x) = Ax , A ∈ R
n×n.

• Change standard basis to basis defined by columns of T ∈ R
n×n.

• The matrix representation of f changes to T−1AT :

x = T x̃ , y = T ỹ =⇒ ỹ = (T−1AT )x̃

• A 7→ T−1AT — similarity transformation of A
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Eigenvalues and eigenvectors

λ ∈ C is eigenvalue of A ∈ R
n×n : ⇐⇒ there is v 6= 0, s.t. Av = λv

: ⇐⇒ λ In −A is singular

Any nonzero v ∈ C
n such that Av = λv is called an eigenvector of A

associate with the eigenvalue λ .

Meaning of λ and v : the action of A in the direction defined by v is
equivalent to scalar multiplication by λ

Characteristic polynomial of A: pA(λ ) := det(λ In −A), deg(pA) = n

λ is an eigenvalue of A if and only if λ is a root of pA

Geometric multiplicity of λ : dim
(
(λ In −A)

)

Algebraic multiplicity of λ : multiplicity of the root λ of pA
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Eigenvalue decomposition

Suppose {v1, . . . ,vn } is a lin. indep. set of eigenvectors of A ∈ R
n×n

Avi = λivi , for i = 1, . . . ,n

written in a matrix form is

A
[
v1 · · · vn

]
︸ ︷︷ ︸

V

=
[
v1 · · · vn

]
︸ ︷︷ ︸

V




λ1
. . .

λn




︸ ︷︷ ︸
Λ

V is nonsingular, so that

AV = V Λ =⇒ V−1AV = Λ
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Diagonalization by similarity transformation

• V is nonsingular since by assumption {v1, . . . ,vn } is lin. indep.

• similarity transformation with T = V−1 diagonalizes A

Conversely if there is a nonsingular V ∈ C
n×n, such that

V−1AV = Λ

then Avi = λivi and {v1, . . . ,vn } is a lin. indep. set of eigenvectors

A is diagonalizable if

• there is nonsingular T , such that TAT−1 is diagonal

• there is a set of n lin. indep. eigenvectors of A

if A is not diagonalizable, it is called defective
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Jordan canonical form

Distinct eigenvalues =⇒ diagonalizable matrix (converse not true)

Prototypical example of a defective matrix:




λ 1

λ
. . .

. . . 1
λ




Defective matrices have an eigenvalue which algebraic multiplicity is
higher than the corresponding geometric multiplicity.

Jordan form: generalization of TAT−1 = Λ for defective matrices
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Eigenvalues and eigenvectors of symmetric matrix

Theorem: A symmetric matrix A has real eigenvalues and a full set of
eigenvectors, that can be chosen to form an orthonormal set.

Symmetric matrix =⇒
• real eigenvalues

• orthonormal eigenvectors
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Summary

• f is linear if superposition holds f (αx +βv) = αf (x)+β f (v)

• f is linear ⇐⇒ there is matrix A, such that f (x) = Ax

• image (column span, range) of A — image(A) := {Ax | x ∈ R
n }

• kernel (null space) of A — ker(A) := {x ∈ R
n | Ax = 0}

• V ⊂ R
n is subspace of R

n if αv +βw ∈ V for all v ,w ∈ V

• basis of a subspace — set of linearly indep. vectors that span V

• dimension of a subspace — the number of basis vectors

• image(A) and ker(A) are subspaces
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• rank of A — number of linearly independent rows (or columns)

• dim
(

image(A)
)

= rank(A), coldim(A)−dim(ker(A)) = rank(A)

• A is full row rank if rank(A) = rowdim(A)

• A is full column rank if rank(A) = coldim(A)

• A is full rank if either full row or column rank

• A is nonsingular if A is square and full rank

• inversion problem: given y = Ax , find x

• A+ is left inverse of A if A+A = I

• solution of the inversion problem: x = A+y , A+A = I

Linear algebra with applications (L1) Review of linear algebra 29 / 32



• left inverse exists iff A is full column rank

• least-squares left inverse Als = (A⊤A)−1A⊤

• A+ is right inverse of A if AA+ = I

• right inverse exists iff A is full row rank

• least-norm right inverse Aln = A⊤(AA⊤)−1

• A−1 is inverse of A if A−1A = A−1A = I

• for A to have inverse, A should be square and full rank

• 2-norm of a vector ‖x‖ =
√

x⊤x , unit ball {x | ‖x‖ ≤ 1}

• inner product of a,b ∈ R
n — 〈a,b〉 := a⊤b
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• Cauchy-Schwarz inequality: |a⊤b| ≤ ‖a‖‖b‖

• a,b ∈ R
n are orthogonal if 〈a,b〉 = 0

• similarity transformation — A 7→ T−1AT , T nonsingular

• eigenvalue decomposition — A = T−1ΛT , Λ diagonal

• characteristic polynomial of A — pA(λ ) := det(λ I −A)

• symmetric matrix A = A⊤ =⇒ real eigenvalues
orthonormal eigenvectors
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