Lecture 2: Numerical linear algebra

- QR factorization
- Eigenvalue decomposition
- Singular value decomposition
- Conditioning of a problem
- Floating point arithmetic and stability of an algorithm

Orthonormal set of vectors

Consider a finite set of vectors $\mathscr{Q}:=\left\{q_{1}, \ldots, q_{k}\right\} \subset \mathbb{R}^{n}$

- \mathscr{Q} is normalized $: \Longleftrightarrow\left\|q_{i}\right\|=1, i=1, \ldots, k$
- \mathscr{Q} is orthogonal $: \Longleftrightarrow q_{i} \perp q_{j}$, for all $i \neq j$
- \mathscr{Q} is orthonormal $: \Longleftrightarrow \mathscr{Q}$ is orthogonal and normalized
with $Q:=\left[\begin{array}{lll}q_{1} & \cdots & q_{k}\end{array}\right], \quad \mathscr{Q}$ orthonormal $\Longleftrightarrow Q^{\top} Q=I_{k}$
Properties:
- orthonormal vectors are independent (show this)
- multiplication with Q preserves norm, $\|Q z\|^{2}=z^{\top} Q^{\top} Q z=\|z\|^{2}$
- multiplication with Q preserves inner product, $\langle Q z, Q y\rangle=\langle z, y\rangle$

Orthogonal projectors

Consider an orthonormal matrix $Q \in \mathbb{R}^{n \times k}$ and $\mathscr{L}:=\operatorname{span}(Q) \subseteq \mathbb{R}^{n}$.
The columns of Q form an orthonormal basis for \mathscr{L}.
$Q^{\top} Q=I_{k}$, however, for $k<n, Q Q^{\top} \neq I_{n}$.
$\Pi_{\text {span }(Q)}:=Q Q^{\top}$ is an orthogonal projector on $\operatorname{span}(Q)$, i.e.,

$$
\Pi_{\mathscr{L} X} x=\arg \min _{y}\|x-y\|_{2} \quad \text { subject to } \quad y \in \mathscr{L}
$$

Properties: $\Pi=\Pi^{2}, \Pi=\Pi^{\top}$ (necessary and sufficient for Π orth. proj.)
$\Pi^{\perp}:=(I-\Pi)$ is also an orth. proj., it projects on
$(\operatorname{span}(\Pi))^{\perp} \subseteq \mathbb{R}^{n} \quad-\quad$ the orthogonal complement of $\operatorname{span}(\Pi)$

Orthonormal basis for \mathbb{R}^{n}

orthonormal set $\mathscr{Q}:=\left\{q_{1}, \ldots, q_{k}\right\} \subset \mathbb{R}^{n}$ of $k=n$ vectors
then $Q:=\left[\begin{array}{lll}q_{1} & \cdots & q_{n}\end{array}\right]$ is called orthogonal and satisfies $Q^{\top} Q=I_{n}$ It follows that $Q^{-1}=Q^{\top}$ and

$$
Q Q^{\top}=\sum_{i=1}^{n} q_{i} q_{i}^{\top}=I_{n}
$$

Expansion in orthonormal basis $x=Q Q^{\top} x$

- $a:=Q^{\top} x$ coordinates of x in the basis \mathscr{Q}
- $x=$ Qa reconstruct x from the coordinates a

Geometrically multiplication by Q (and Q^{\top}) is rotation.

Gram-Schmidt (G-S) procedure

Given independent set $\left\{a_{1}, \ldots, a_{k}\right\} \subset \mathbb{R}^{n}$, G-S produces orthonormal set $\left\{q_{1}, \ldots, q_{k}\right\} \subset \mathbb{R}^{n}$ such that

$$
\operatorname{span}\left(a_{1}, \ldots, a_{r}\right)=\operatorname{span}\left(q_{1}, \ldots, q_{r}\right), \quad \text { for all } r \leq k
$$

G-S procedure: Let $q_{1}:=a_{1} /\left\|a_{1}\right\|$. At the i th step $i=2, \ldots, k$

- orthogonalized a_{i} w.r.t. q_{1}, \ldots, q_{i-1} :

$$
v_{i}:=\underbrace{\left(I-\Pi_{\operatorname{span}\left(q_{1}, \ldots, q_{i-1}\right)}\right) a_{i}}_{\text {projection of } a_{i} \text { on }\left(\operatorname{span}\left(q_{1}, \ldots, q_{i-1}\right)\right)^{\perp}}
$$

- normalize the result: $q_{i}:=v_{i} /\left\|v_{i}\right\|$
(A modified version of the G-S procedure is used in practice.)

QR factorization

G-S procedure gives as a byproduct scalars $r_{j i}, j \leq i, i=1, \ldots, k$, s.t.

$$
\begin{aligned}
a_{i} & =\left(q_{1}^{\top} a_{i}\right) q_{1}+\cdots+\left(q_{i-1}^{\top} a_{i}\right) q_{i-1}+\left\|q_{i}\right\| q_{i} \\
& =r_{1 i} q_{1}+\cdots+r_{i i} q_{i}
\end{aligned}
$$

in a matrix form G-S produces the matrix factorization

with orthonormal $Q \in \mathbb{R}^{n \times k}$ and upper triangular $R \in \mathbb{R}^{k \times k}$

If $\left\{a_{1}, \ldots, a_{k}\right\}$ are dependent, $v_{i}:=\left(I-\Pi_{\text {span }\left(q_{1}, \ldots, q_{i-1}\right)}\right) a_{i}=0$ for some i
Conversely, if $v_{i}=0$ for some i, a_{i} is linearly dependent on $\left\{a_{1}, \ldots, a_{i-1}\right\}$
Modified G-S procedure: when $v_{i}=0$, skip to the next input vector a_{i+1}
$\Longrightarrow R$ is in upper staircase form, e.g.,

(empty elements are zeros)

Which vectors a_{i} are dependent on $\left\{a_{1}, \ldots, a_{i-1}\right\}$ in this example?

Full QR

$$
A=\underbrace{\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]}_{\text {orthogonal }}\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right] \quad \begin{array}{cl}
\operatorname{span}(A) & =\operatorname{span}\left(Q_{1}\right) \\
(\operatorname{span}(A))^{\perp} & =\operatorname{span}\left(Q_{2}\right)
\end{array}
$$

Procedure for finding Q_{2} :
complete A to a full rank matrix, e.g., $A_{\mathrm{m}}:=\left[\begin{array}{ll}A & I\end{array}\right]$, and apply $\mathrm{G}-\mathrm{S}$ on A_{m}
In Matlab:
» [Q ,R] = qr(A) \% full QR
» [Q1,R1] = qr (A, O) \% reduced $Q R$

Eigenvalue decomposition (EVD)

Suppose $\left\{v_{1}, \ldots, v_{n}\right\}$ is a lin. indep. set of eigenvectors of $A \in \mathbb{R}^{n \times n}$

$$
A v_{i}=\lambda_{i} v_{i}, \quad \text { for } i=1, \ldots, n
$$

written in a matrix form, we have the matrix factorization

V is nonsingular, so that

$$
A V=V \Lambda \quad \Longrightarrow \quad V^{-1} A V=\Lambda
$$

Three applications of EVD

- Compute matrix power A^{k}, more generally a fun. $f(A)$ of a matrix

$$
f(A)=V f(\Lambda) V^{-1} \quad \text { (assuming } A \text { diagonalizable) }
$$

Example:

$$
\left[\begin{array}{cc}
1 / 3 & 1 \\
0 & 1 / 2
\end{array}\right]^{100}=?
$$

Three applications of EVD

- Compute matrix power A^{k}, more generally a fun. $f(A)$ of a matrix

$$
f(A)=V f(\Lambda) V^{-1} \quad \text { (assuming } A \text { diagonalizable) }
$$

Example:

$$
\left[\begin{array}{cc}
1 / 3 & 1 \\
0 & 1 / 2
\end{array}\right]^{100}=?
$$

Eigenvalues: $\lambda_{1}=1 / 3, \lambda_{2}=1 / 2, \quad$ Eigenvectors: $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}6 \\ 1\end{array}\right]$

Three applications of EVD

- Compute matrix power A^{k}, more generally a fun. $f(A)$ of a matrix

$$
f(A)=V f(\Lambda) V^{-1} \quad \text { (assuming } A \text { diagonalizable) }
$$

Example:

$$
\left[\begin{array}{cc}
1 / 3 & 1 \\
0 & 1 / 2
\end{array}\right]^{100}=?
$$

Eigenvalues: $\lambda_{1}=1 / 3, \lambda_{2}=1 / 2, \quad$ Eigenvectors: $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}6 \\ 1\end{array}\right]$

$$
\left[\begin{array}{cc}
1 / 3 & 1 \\
0 & 1 / 2
\end{array}\right]^{100}=\left[\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
3^{-100} & \\
& 2^{-100}
\end{array}\right]\left[\begin{array}{cc}
1 & -6 \\
0 & 1
\end{array}\right] \approx 0
$$

- First order vector linear constant coef. differential/difference eqns

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x(t)=A x(t), t \in \mathbb{R}_{+} \quad \text { and } \quad x(t+1)=A x(t), t \in \mathbb{Z}_{+}
$$

Given $x(0) \in \mathbb{R}^{n}$, the equation has a unique solution x.
Qualitative properties of the set of solutions, such as, stability

$$
x(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

are determined by the location of the eigenvalues of A.

- In continuous-time: stability holds $\Longleftrightarrow \Re \lambda_{i}<0$ for all i
- In discrete-time: stability holds $\Longleftrightarrow\left|\lambda_{i}\right|<1$ for all i
- Principal component analysis (PCA)
given a set of vectors $\left\{a_{1}, \ldots, a_{n}\right\}$,
find an orthonormal set $\left\{v_{1}, \ldots, v_{n}\right\}$, such that

$$
\operatorname{span}\left(a_{1}, \ldots, a_{n}\right) \approx \operatorname{span}\left(v_{1}, \ldots, v_{k}\right), \quad \text { for } k=1, \ldots, n
$$

If " \approx " means

$$
\operatorname{maximize}\|\underbrace{\Pi_{\text {span }\left(v_{1}, \ldots, v_{k}\right)}}_{\text {projection }} \underbrace{\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]}_{A}\|_{F}
$$

the solution $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal set of eigenvectors of $A^{\top} A$ ordered according to the magnitude of the eigenvalues.

Used for data compression/recognition (eigenfaces, eigengenes, ...)

Overview of eigenvalue algorithms

- the best ways of computing eigenvalues are not obvious
- bad strategy: rooting the characteristic polynomial
- the power iteration $\left(\frac{x}{\|x\|}, \frac{A x}{\|A x\|}, \frac{A^{2} x}{\left\|A^{2} x\right\|}, \ldots\right)$ is not effective in general
- modern general purpose algorithms are based on eigenvalue revealing factorizations
- two stages: Hessenberg form (finite), Schur form (iterative)

Any eigenvalue solver must be iterative

$$
p(z)=p_{0}+p_{1} z+\cdots+z^{n} \leftrightarrow \quad A=\left[\begin{array}{ccccc}
-p_{n-1} & -p_{n-2} & \cdots & -p_{1} & -p_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & 0 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

roots of $p \leftrightarrow$ eigenvalues of A
Eigenvalue computation is a more general problem than root finding.
No analogue of quadratic formula exists for polynomials of degree ≥ 5.
(Abel 1824)
The aim of eigenvalue solvers is to produce
sequence of numbers that converges rapidly towards eigenvalues.

Rayleigh quotient

Symmetric $A \in \mathbb{R}^{n \times n}$ has n real eigenvalues, which we index as follows

$$
\lambda_{\min }:=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}=: \lambda_{\max }
$$

Corresponding to $\lambda_{1}, \ldots, \lambda_{n}$, we choose orthonormal set of eigenvectors

$$
v_{1}, \ldots, v_{n}
$$

Rayleigh quotient of $v \in \mathbb{R}^{n}$ (w.r.t. A) is a mapping $r: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
r(v):=\frac{v^{\top} A v}{v^{\top} v}
$$

Note that $r\left(\alpha v_{i}\right)=\lambda_{i}$, for all $\alpha \in \mathbb{R}$ and $i=1, \ldots, n$.
Fact: $\min _{v} r(v)=\lambda_{\text {min }}$ and $\max _{v} r(v)=\lambda_{\text {max }}$.

Power iteration

- Given: unit norm vector $v^{(0)}$ and symmetric matrix A
- For $k=1,2, \ldots$ (till convergence)
- Apply $A: w=A v^{(k-1)}$
- Normalize: $v^{(k)}:=w /\|w\|$
- Output: eigenvalue/eigenvector of $A-\left(\left(v^{(k)}\right)^{\top} \boldsymbol{A} \boldsymbol{v}^{(k)}, \boldsymbol{v}^{(k)}\right)$

If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$ and $v_{1}^{\top} v^{(0)} \neq 0$,

$$
v^{(k)} \rightarrow \pm v_{1}
$$

with linear convergence rate $O\left(\left|\lambda_{2} / \lambda_{1}\right|\right)$.

Inverse iteration

- Given: unit norm vector $v^{(0)}$, symmetric matrix A, and $\mu \geq 0$
- For $k=1,2, \ldots$ (till convergence)
- Apply $(A-\mu I)^{-1}$: solve $(A-\mu I) w=v^{(k-1)}$
- Normalize: $v^{(k)}:=w /\|w\|$
- Output: eigenvalue/eigenvector of $A-\left(\left(v^{(k)}\right)^{\top} A v^{(k)}, v^{(k)}\right)$

Let λ be the closest eigenvalue to μ and λ^{\prime} be the second closest.
Let v be the unit norm eigenvector corresponding to λ. If $v^{\top} v^{(0)} \neq 0$,

$$
v^{(k)} \rightarrow \pm v
$$

with linear convergence rate $O\left(\left|\left(\mu-\lambda^{\prime}\right) /(\mu-\lambda)\right|\right)$.

Rayleigh quotient iteration

- Given: unit norm vector $v^{(0)}$ and symmetric matrix A
- Let $\lambda^{(0)}:=\left(v^{(0)}\right)^{\top} A v^{(0)}$
- For $k=1,2, \ldots$ (till convergence)
- Apply $\left(A-\lambda^{(k-1)} I\right)^{-1}$: solve $\left(A-\lambda^{(k-1)} I\right) w=v^{(k-1)}$
- Normalize: $v^{(k)}:=w /\|w\|$
- Let $\lambda^{(k)}:=\left(v^{(k)}\right)^{\top} A v^{(k)}$
- Output: eigenvalue/eigenvector of $A-\left(\lambda^{(k)}, v^{(k)}\right)$

Let λ be the closest eigenvalue to μ and v be the corresponding eigenvector. If $v^{\top} v^{(0)} \neq 0$,

$$
v^{(k)} \rightarrow \pm v \quad \text { with cubic convergence rate. }
$$

Exercise

- Implement the power, inverse power, and Rayleigh quotient methods
- Apply them on examples and observe their convergence properties
- Comment on the results

Simultaneous power iteration

Take a set of initial vectors $\left\{v_{1}^{(0)}, \ldots, v_{p}^{(0)}\right\}$ and consider the iteration:

$$
\underbrace{\left[\begin{array}{lll}
v_{1}^{(k+1)} & \cdots & v_{p}^{(k+1)}
\end{array}\right]}_{V^{(k+1)}}=A \underbrace{\left[\begin{array}{lll}
v_{1}^{(k)} & \cdots & v_{p}^{(k)}
\end{array}\right]}_{V^{(k)}}, \quad k=0,1, \ldots
$$

One can expect that under suitable assumptions

$$
\operatorname{span}\left(v_{1}^{(k)}, \ldots, v_{p}^{(k)}\right) \rightarrow \operatorname{span}\left(v_{1}, \ldots, v_{p}\right), \quad \text { as } \quad k \rightarrow \infty
$$

However,

$$
v_{i}^{(k)} \rightarrow v_{1}, \quad \text { as } \quad k \rightarrow \infty, \quad \text { for all } i
$$

so $\boldsymbol{V}^{(k+1)}$ becomes increasingly ill-conditioned as $k \rightarrow \infty$.

Normalized simultaneous power iteration

- Given: orthonormal matrix $Q^{(0)} \in \mathbb{R}^{n \times p}$ and symmetric matrix A
- For $k=1,2, \ldots$ (till convergence)
- Apply A : solve $Z=A Q^{(k-1)}$
- Compute orthonormal basis for image (Z) :

$$
\text { QR factorization: } \quad Q^{(k)} R^{(k)}=Z
$$

- Output: orthonormal eigenvectors of $A-Q^{(k)}$

Under suitable assumptions

$$
\operatorname{image}\left(Q^{(k)}\right) \rightarrow \operatorname{span}\left(v_{1}, \ldots, v_{p}\right), \quad \text { as } \quad k \rightarrow \infty .
$$

Hessenberg and Schur forms

Every square matrix has a Hessenberg form

$$
A=Q \underbrace{\left[\begin{array}{ccccc}
\times & \times & \cdots & \times & \times \\
\times & \times & \cdots & \times & \times \\
& \times & \ddots & \ddots & \times \\
& & \ddots & \ddots & \vdots \\
& & & \times & \times
\end{array}\right]}_{H} Q^{\top}
$$

Q — orthogonal
H-upper Hessenberg
and a Schur form

$$
A=U T U^{\top} \quad U-\text { unitary (complex orthogonal) }
$$

T - upper triangular
In MATLAB: $[Q, H]=\operatorname{hess}(A),[U, T]=\operatorname{schur}(A)$ $[\mathrm{V}, \mathrm{L}]=$ eig(A)

QR algorithm

The basic QR algorithm is normalized simultaneous power iteration with a full set $p=n$ vectors and initial condition $Q^{(0)}=I_{n}$.

- Given: a symmetric matrix $A^{(0)}=A$
- For $k=1,2, \ldots$ (till convergence)
- QR factorization: $A^{(k-1)}=Q^{(k)} R^{(k)}$
- Recombine in reverse order: $A^{(k)}=R^{(k)} Q^{(k)}$
- Output: a Schur decomposition of $A-Q^{(k)}, R^{(k)}$.
$A^{(k)}=R^{(k)} Q^{(k)}=Q^{(k)^{\top}} A^{(k-1)} Q^{(k)} \quad \Longrightarrow \quad A^{(k)}$ is similar to $A^{(k-1)}$

Additional features of a practical QR algorithm

- Pre-processing: reduce A to tridiagonal form before the iteration
- Shifts: factor $A^{(k)}-\lambda^{(k)} I, \lambda^{(k)}$ - eigenvalue estimate
- Deflations: reduce the size of A when and eigenvalue is found

QR algorithm with shifts \leftrightarrow Rayleigh quotient iteration

Generalized eigenvalues

Consider $n \times n$ matrices A and B; the pair (A, B) is called pencil
(v, λ) is a generalized eigenvector/eigenvalue of the pencil (A, B) if

$$
A v=\lambda B v
$$

For nonsingular B, the generalized eigenvalue problem is equivalent to

$$
B^{-1} A v=\lambda v
$$

standard eigenvalue problem

Generalized Rayleigh quotient:

$$
\lambda_{\min }=\min _{v \in \mathbb{R}^{n}} \frac{v^{\top} A v}{v^{\top} B v} \quad, \quad \lambda_{\max }=\max _{v \in \mathbb{R}^{n}} \frac{v^{\top} A v}{v^{\top} B v}
$$

Singular value decomposition

The SVD is used as both computational and analytical tool.
Any $m \times n$ matrix A has an SVD

$$
A=\underbrace{\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{lll}
v_{1} & \cdots & v_{r}
\end{array}\right]^{\top}}_{v^{\top}}
$$

where U and V are orthonormal

- $\sigma_{1}, \ldots, \sigma_{r}$ are called singular values
- u_{1}, \ldots, u_{r} are called left singular vectors
- v_{1}, \ldots, v_{r} are called right singular vectors

Geometric fact motivating the SVD

The image of a unit ball under linear map is a hyperellips.

$$
\underbrace{\left[\begin{array}{cc}
1.00 & 1.50 \\
0 & 1.00
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{cc}
0.89 & -0.45 \\
0.45 & 0.89
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{cc}
2.00 & 0 \\
0 & 0.50
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cc}
0.45 & -0.89 \\
0.89 & 0.45
\end{array}\right]}_{V^{\top}}
$$

Full SVD

Reduced SVD of a matrix $A \in \mathbb{R}^{m \times n}$ of rank r

$$
A=U_{1} \Sigma_{1} U_{1}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\top} \\
\vdots \\
v_{r}^{\top}
\end{array}\right]
$$

Full SVD: find $U_{2} \in \mathbb{R}^{m \times(m-r)}$ and $V_{2} \in \mathbb{R}^{n \times(n-r)}$ such that

$$
U:=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right] \text { and } V:=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right] \text { are orthogonal }
$$

and add zero rows/columns to Σ_{1} to form $\Sigma \in \mathbb{R}^{m \times n}$
Warning: The singular values are $\sigma_{1}, \ldots, \sigma_{r}$ plus $\min (m-r, n-r)$ zeros
$\begin{array}{ll}\text { In MAtLAB: } & {[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{A})} \\ {[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{A}, 0) \quad-\mathrm{full} \operatorname{SVD}} \\ & -\quad \text { reduced SVD }\end{array}$

Link between SVD and EVD

- both SVD and EVD diagonalize a matrix A
- left singular vectors of A are eigenvectors of $A A^{\top}$
- right singular vectors of A are eigenvectors of $A^{\top} A$
- the nonzero singular values of A are the square roots of the nonzero eigenvalues of $A A^{\top}$ or $A^{\top} A$
Q : What are the eigenvalues of $\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right]$?
- for a symmetric $A,\left|\lambda_{i}\right|=\sigma_{i}$

Differences between SVD and EVD

- SVD exists for any matrix EVD exist for some square matrices
- SVD applies two orthogonal similarity transformations

EVD applies one (in general not orthonormal) similarity transf.

- EVD is useful in problems where A is repeatedly applied SVD is used to analyse a single application of A on a vector

Conditioning of a problem

Problem: $f: \mathscr{X} \rightarrow \mathscr{Y}, \quad$ where \mathscr{X} is the data space
 \mathscr{Y} is the solutions space

Usually f is a continuous nonlinear function.
Consider a particular data instance $X_{0} \in \mathscr{X}$.
The problem f is called well conditioned at the data X_{0} if small perturbations in X lead to small changes in $f(X)$

Absolute condition number: $\lim _{\delta \rightarrow 0} \sup _{\|\tilde{X}\|<\delta} \frac{\left\|f\left(X_{0}+\widetilde{X}\right)-f\left(X_{0}\right)\right\|}{\|\widetilde{X}\|}$
Relative condition number: $\lim _{\delta \rightarrow 0} \sup _{\|\tilde{X}\|<\delta} \frac{\left\|f\left(X_{0}+\widetilde{X}\right)-f\left(X_{0}\right)\right\| /\left\|f\left(X_{0}\right)\right\|}{\|\tilde{X}\| /\left\|X_{0}\right\|}$

Conditioning of root finding

Given polynomial coefficients $\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$, find its roots $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$

$$
p(\lambda)=p_{0}+p_{1} \lambda^{1}+\cdots+p_{n} \lambda^{n}=c\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

The relative condition number of λ_{j} w.r.t. perturbation \widetilde{a}_{i} of a_{i} is

$$
\kappa_{i, j}=\left|a_{i} \lambda_{j}^{i-1}\right| /\left|\frac{\mathrm{d}}{\mathrm{~d} \lambda} p\left(\lambda_{j}\right)\right|
$$

Example: For $p(\lambda)=\Pi_{1}^{20}(\lambda-i)$, arg $\max _{i, j} \kappa_{i, j}=(15,15)$
» roots(poly([1:20]))
ans $=1.0000$... 14.068414 .931916 .0509 ... 20.0003
Check the computed roots of $(\lambda-1)^{4}$ (roots (poly $\left.\left(\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\right)\right)$).

Condition number of matrix-vector product

Theorem: The problem of computing $y=A x$, given nonsingular matrix $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$ has relative cond. number w.r.t. perturbations in x

$$
\kappa=\|A\| \frac{\|x\|}{\|y\|} \leq\|A\|\left\|A^{-1}\right\|
$$

Condition number of a matrix: $\quad K(A):=\|A\|\left\|A^{-1}\right\|$
for nonsquare matrices and 2-norm $\|\cdot\|, \kappa(A):=\sigma_{\max }(A) / \sigma_{\min }(A)$
A is ill-conditioned if $\kappa(A)$ is large, A is well-conditioned if $\kappa(A)$ is small $\kappa(A)$ is related to perturbations in the worst case

For an ill-conditioned $A, y=A x$ may be well-conditioned, for certain x

Condition number of solving systems of equations

Theorem: The problem of computing $x=A^{-1} y$, given $A \in \mathbb{R}^{n \times n}$ and $y \in \mathbb{R}^{n}$ has relative cond. number $\kappa(A)$ w.r.t. perturbations in A.

Proof: The perturbation \widetilde{A} in A leads to a perturbation \widetilde{x} in x, such that

$$
(A+\widetilde{A})(x+\widetilde{x})=y \quad \Longrightarrow \quad \widetilde{A} x+A \widetilde{x} \stackrel{1}{=} 0
$$

" $=$ " means equal up to first order terms in \widetilde{A} and \widetilde{x}.
$(\kappa(A)$ describes the effect of infinitesimal perturbations.)

$$
\begin{aligned}
\widetilde{x} \stackrel{1}{=}-A^{-1} \widetilde{A} x & \Longrightarrow\|\widetilde{x}\| \leq\left\|A^{-1}\right\|\|\tilde{A}\|\|x\| \\
& \Longrightarrow \frac{\|\widetilde{x}\| /\|x\|}{\|\widetilde{A}\| /\|A\|} \leq\left\|A^{-1}\right\|\|A\|=\kappa(A)
\end{aligned}
$$

Digital representation of real numbers

IEEE double precision arithmetic:

- Range: $\left[-2.23 \times 10^{-308}, 1.79 \times 10^{308}\right]$ overflow/underflow
- Discretization: $\left[2^{i}, 2^{i+1}\right] \mapsto 2^{i}\left\{1,1+2^{-52}, 1+2 \times 2^{-52}, \ldots, 2\right\}$

The gaps between adjacent numbers are in a relative scale at most

$$
\varepsilon:=2^{-52} \approx 2.22 \times 10^{-16} \quad \text { machine precision }
$$

- fixed point: the position of the decimal point is fixed
- floating point: its position is stored together with the digits
fixed point leads to uniform absolute errors floating point leads to uniform relative errors

Rounding: let $\mathrm{fl}(x)$ be the digital representation of $x \in \mathbb{R},|\mathrm{fl}(x)-x| \leq \varepsilon$

Stability of an algorithm

Problem: $f: \mathscr{X} \rightarrow \mathscr{Y} \quad, \quad$ Algorithm: $\hat{f}: \mathscr{X} \rightarrow \mathscr{Y}$
\widehat{f} is backward stable if for each $X \in \mathscr{X}$ there is $\hat{X} \in \mathscr{X}$, such that

$$
\frac{\|X-\widehat{X}\|}{\|X\|}=O(\varepsilon) \quad \text { and } \quad \hat{f}(X)=f(\widehat{X})
$$

in words:
backward stable algorithm gives the right answer to a nearby problem
$e(\widetilde{X}):=\|\widetilde{X}\| /\|X\|=O(\varepsilon)$ means that there is $c, \delta>0$ such that

$$
\|\widetilde{X}\|<\delta \quad \Longrightarrow \quad|e(\widetilde{X})| \leq c \varepsilon
$$

Computational complexity of an algorithm

measured by \# of flops (floating point operations) or execution time
1 flop - one addition, subtraction, multiplication, or division the flops count is usually simplified to leading order terms, e.g., $O(n)$
useful in theoretical comparison of algorithms but it is not an accurate predictor of the computation time

- n vector-vector operations - $O(n)$ flops
e.g., vector sum, scalar-vector multiplication, inner product
- $m \times n$ matrix-vector product $-O(m n)$ flops
- $m \times n$ matrix $-n \times p$ matrix product $-O(m n p)$ flops

Example: solving $A x=b$ with general $A \in \mathbb{R}^{n \times n}$ requires $O\left(n^{3}\right)$ flops

Linear equations with special structure

- diagonal — n flops $\left(x_{i}=y_{i} / a_{i i}\right.$ for $\left.i=1, \ldots, n\right)$
- lower/upper triangular: n^{2} flops (via forward/backward substitution)
- banded $-O(n k)$, where k is the bandwidth
- symmetric - $O\left(n^{3} / 3\right)$ (via Cholesky decomposition)
- orthogonal - $O\left(n^{2}\right)\left(x=A^{T} y\right)$
- permutation - 0 flops
- Toeplitz $-O\left(n^{2}\right)$ flops
- combination of banded, symmetric, and Toeplitz

Numerical linear algebra software

Matlab uses as its computational kernel LAPACK

LAPACK is a freely available FORTRAN library
currently the state-of-the-art software for numerical linear algebra
MATLAB provides simple and convenient interface to LAPACK it is an excellent tool for research; free alternatives to MATLAB are

- octave
- scilab

BLAS and LAPACK

- BLAS - Basic Linear Algebra Subroutines, and

ATLAS - Automatically Tunable Linear Algebra Subroutines

- Level 1 BLAS: vector-vector operations
- Level 2 BLAS: matrix-vector products
- Level 3 BLAS: matrix-matrix products
- LAPACK - Linear Algebra PACKage
- Matrix factorizations; exploit triangular, banded, diagonal structures
- Solvers for linear systems, LS, LN problems; provide error bounds

ScaLAPACK - version for parallel computers.

References

Introductory texts:

- N. Trefethen \& Bau, Numerical linear algebra
- G. Stewart, Introduction to matrix computations
- Overton, Numerical computing with IEEE floating point arithmetic

Advanced texts:

- G. Golub \& Van Loan, Matrix computations
- N. Higham, Accuracy and stability of numerical methods
- J. Demmel, Applied numerical linear algebra
- LAPACK Users' Guide

