
Lecture 2: Numerical linear algebra

• QR factorization

• Eigenvalue decomposition

• Singular value decomposition

• Conditioning of a problem

• Floating point arithmetic and stability of an algorithm

Linear algebra and optimization (L2) Numerical linear algebra 1 / 41

Orthonormal set of vectors

Consider a finite set of vectors Q := {q1, . . . ,qk } ⊂ R
n

• Q is normalized : ⇐⇒ ‖qi‖ = 1, i = 1, . . . ,k

• Q is orthogonal : ⇐⇒ qi ⊥ qj , for all i 6= j

• Q is orthonormal : ⇐⇒ Q is orthogonal and normalized

with Q :=
[
q1 · · · qk

]
, Q orthonormal ⇐⇒ Q⊤Q = Ik

Properties:

• orthonormal vectors are independent (show this)

• multiplication with Q preserves norm, ‖Qz‖2 = z⊤Q⊤Qz = ‖z‖2

• multiplication with Q preserves inner product, 〈Qz,Qy〉 = 〈z,y〉

Linear algebra and optimization (L2) Numerical linear algebra 2 / 41

Orthogonal projectors

Consider an orthonormal matrix Q ∈ R
n×k and L := span(Q) ⊆ R

n.

The columns of Q form an orthonormal basis for L .

Q⊤Q = Ik , however, for k < n, QQ⊤ 6= In.

Πspan(Q) := QQ⊤ is an orthogonal projector on span(Q), i.e.,

ΠL x = argmin
y

‖x −y‖2 subject to y ∈ L

Properties: Π = Π2, Π = Π⊤ (necessary and sufficient for Π orth. proj.)

Π⊥ := (I −Π) is also an orth. proj., it projects on

(
span(Π)

)⊥
⊆ R

n — the orthogonal complement of span(Π)

Linear algebra and optimization (L2) Numerical linear algebra 3 / 41

Orthonormal basis for R
n

orthonormal set Q := {q1, . . . ,qk } ⊂ R
n of k = n vectors

then Q :=
[
q1 · · · qn

]
is called orthogonal and satisfies Q⊤Q = In

It follows that Q−1 = Q⊤ and

QQ⊤ =
n

∑
i=1

qiq
⊤
i = In

Expansion in orthonormal basis x = QQ⊤x

• a := Q⊤x coordinates of x in the basis Q

• x = Qa reconstruct x from the coordinates a

Geometrically multiplication by Q (and Q⊤) is rotation.

Linear algebra and optimization (L2) Numerical linear algebra 4 / 41

Gram-Schmidt (G-S) procedure

Given independent set {a1, . . . ,ak } ⊂ R
n, G-S produces orthonormal

set {q1, . . . ,qk } ⊂ R
n such that

span(a1, . . . ,ar) = span(q1, . . . ,qr), for all r ≤ k

G-S procedure: Let q1 := a1/‖a1‖. At the i th step i = 2, . . . ,k

• orthogonalized ai w.r.t. q1, . . . ,qi−1:

vi := (I −Πspan(q1,...,qi−1))ai︸ ︷︷ ︸
projection of ai on

(
span(q1, . . . ,qi−1)

)⊥

• normalize the result: qi := vi/‖vi‖

(A modified version of the G-S procedure is used in practice.)

Linear algebra and optimization (L2) Numerical linear algebra 5 / 41

QR factorization

G-S procedure gives as a byproduct scalars rji , j ≤ i , i = 1, . . . ,k , s.t.

ai = (q⊤
1 ai)q1 + · · ·+(q⊤

i−1ai)qi−1 +‖qi‖qi

= r1iq1 + · · ·+ riiqi

in a matrix form G-S produces the matrix factorization

[
a1 a2 · · · ak

]
︸ ︷︷ ︸

A

=
[
q1 q1 · · · qk

]
︸ ︷︷ ︸

Q

r11 r12 · · · r1k

0 r22 · · · r2k
...

. . .
. . .

...
0 · · · 0 rkk

︸ ︷︷ ︸
R

with orthonormal Q ∈ R
n×k and upper triangular R ∈ R

k×k

Linear algebra and optimization (L2) Numerical linear algebra 6 / 41

If {a1, . . . ,ak } are dependent, vi := (I −Πspan(q1,...,qi−1))ai = 0 for some i

Conversely, if vi = 0 for some i , ai is linearly dependent on {a1, . . . ,ai−1 }

Modified G-S procedure: when vi = 0, skip to the next input vector ai+1

=⇒ R is in upper staircase form, e.g.,

× × × × × × ×

× × × × × ×
× × × ×

×

(empty elements
are zeros)

Which vectors ai are dependent on {a1, . . . ,ai−1 } in this example?

Linear algebra and optimization (L2) Numerical linear algebra 7 / 41

Full QR

A =
[
Q1 Q2

]
︸ ︷︷ ︸
orthogonal

[
R1

0

] span(A) = span(Q1)
(
span(A)

)⊥
= span(Q2)

Procedure for finding Q2:

complete A to a full rank matrix, e.g., Am :=
[
A I

]
, and apply G-S on Am

In MATLAB:

» [Q ,R] = qr(A) % full QR

» [Q1,R1] = qr(A,0) % reduced QR

Linear algebra and optimization (L2) Numerical linear algebra 8 / 41

Eigenvalue decomposition (EVD)

Suppose {v1, . . . ,vn } is a lin. indep. set of eigenvectors of A ∈ R
n×n

Avi = λivi , for i = 1, . . . ,n

written in a matrix form, we have the matrix factorization

A
[
v1 · · · vn

]
︸ ︷︷ ︸

V

=
[
v1 · · · vn

]
︸ ︷︷ ︸

V

λ1
. . .

λn

︸ ︷︷ ︸
Λ

V is nonsingular, so that

AV = V Λ =⇒ V−1AV = Λ

Linear algebra and optimization (L2) Numerical linear algebra 9 / 41

Three applications of EVD

• Compute matrix power Ak , more generally a fun. f (A) of a matrix

f (A) = Vf (Λ)V−1 (assuming A diagonalizable)

Example: [
1/3 1
0 1/2

]100

= ?

Linear algebra and optimization (L2) Numerical linear algebra 10 / 41

Three applications of EVD

• Compute matrix power Ak , more generally a fun. f (A) of a matrix

f (A) = Vf (Λ)V−1 (assuming A diagonalizable)

Example: [
1/3 1
0 1/2

]100

= ?

Eigenvalues: λ1 = 1/3, λ2 = 1/2, Eigenvectors: v1 =

[
1
0

]
, v2 =

[
6
1

]

Linear algebra and optimization (L2) Numerical linear algebra 10 / 41

Three applications of EVD

• Compute matrix power Ak , more generally a fun. f (A) of a matrix

f (A) = Vf (Λ)V−1 (assuming A diagonalizable)

Example: [
1/3 1
0 1/2

]100

= ?

Eigenvalues: λ1 = 1/3, λ2 = 1/2, Eigenvectors: v1 =

[
1
0

]
, v2 =

[
6
1

]

[
1/3 1
0 1/2

]100

=

[
1 6
0 1

][
3−100

2−100

][
1 −6
0 1

]
≈ 0

Linear algebra and optimization (L2) Numerical linear algebra 10 / 41

• First order vector linear constant coef. differential/difference eqns

d
dt

x(t) = Ax(t), t ∈ R+ and x(t +1) = Ax(t), t ∈ Z+

Given x(0) ∈ R
n, the equation has a unique solution x .

Qualitative properties of the set of solutions, such as, stability

x(t) → 0 as t → ∞

are determined by the location of the eigenvalues of A.

• In continuous-time: stability holds ⇐⇒ ℜλi < 0 for all i

• In discrete-time: stability holds ⇐⇒ |λi | < 1 for all i

Linear algebra and optimization (L2) Numerical linear algebra 11 / 41

• Principal component analysis (PCA)

given a set of vectors {a1, . . . ,an },

find an orthonormal set {v1, . . . ,vn }, such that

span(a1, . . . ,an) ≈ span(v1, . . . ,vk), for k = 1, . . . ,n

If “≈” means

maximize
∥∥∥Πspan(v1,...,vk)︸ ︷︷ ︸

projection

[
a1 · · · an

]
︸ ︷︷ ︸

A

∥∥∥
F

the solution {v1, . . . ,vn } is an orthonormal set of eigenvectors of A⊤A
ordered according to the magnitude of the eigenvalues.

Used for data compression/recognition (eigenfaces, eigengenes, . . .)

Linear algebra and optimization (L2) Numerical linear algebra 12 / 41

Overview of eigenvalue algorithms

• the best ways of computing eigenvalues are not obvious

• bad strategy: rooting the characteristic polynomial

• the power iteration (x
‖x‖ ,

Ax
‖Ax‖ ,

A2x
‖A2x‖ , . . .) is not effective in general

• modern general purpose algorithms are based on
eigenvalue revealing factorizations

• two stages: Hessenberg form (finite), Schur form (iterative)

Linear algebra and optimization (L2) Numerical linear algebra 13 / 41

Any eigenvalue solver must be iterative

p(z) = p0 +p1z + · · ·+zn ↔ A =

−pn−1 −pn−2 · · · −p1 −p0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

roots of p ↔ eigenvalues of A

Eigenvalue computation is a more general problem than root finding.

No analogue of quadratic formula exists for polynomials of degree ≥ 5.
(Abel 1824)

The aim of eigenvalue solvers is to produce

sequence of numbers that converges rapidly towards eigenvalues.

Linear algebra and optimization (L2) Numerical linear algebra 14 / 41

Rayleigh quotient

Symmetric A ∈ R
n×n has n real eigenvalues, which we index as follows

λmin := λ1 ≤ λ2 ≤ ·· · ≤ λn =: λmax

Corresponding to λ1, . . . ,λn, we choose orthonormal set of eigenvectors

v1, . . . ,vn

Rayleigh quotient of v ∈ R
n (w.r.t. A) is a mapping r : R

n → R defined by

r(v) :=
v⊤Av
v⊤v

Note that r(αvi) = λi , for all α ∈ R and i = 1, . . . ,n.

Fact: minv r(v) = λmin and maxv r(v) = λmax.

Linear algebra and optimization (L2) Numerical linear algebra 15 / 41

Power iteration

• Given: unit norm vector v (0) and symmetric matrix A

• For k = 1,2, . . . (till convergence)

• Apply A: w = Av (k−1)

• Normalize: v (k) := w/‖w‖

• Output: eigenvalue/eigenvector of A —
(
(v (k))⊤Av (k),v (k)

)

If |λ1| > |λ2| and v⊤
1 v (0) 6= 0,

v (k) →±v1

with linear convergence rate O(|λ2/λ1|).

Linear algebra and optimization (L2) Numerical linear algebra 16 / 41

Inverse iteration

• Given: unit norm vector v (0), symmetric matrix A, and µ ≥ 0

• For k = 1,2, . . . (till convergence)

• Apply (A−µI)−1: solve (A−µI)w = v (k−1)

• Normalize: v (k) := w/‖w‖

• Output: eigenvalue/eigenvector of A —
(
(v (k))⊤Av (k),v (k)

)

Let λ be the closest eigenvalue to µ and λ ′ be the second closest.

Let v be the unit norm eigenvector corresponding to λ . If v⊤v (0) 6= 0,

v (k) →±v

with linear convergence rate O(|(µ −λ ′)/(µ −λ)|).

Linear algebra and optimization (L2) Numerical linear algebra 17 / 41

Rayleigh quotient iteration

• Given: unit norm vector v (0) and symmetric matrix A

• Let λ (0) := (v (0))⊤Av (0)

• For k = 1,2, . . . (till convergence)

• Apply (A−λ (k−1)I)−1: solve (A−λ (k−1)I)w = v (k−1)

• Normalize: v (k) := w/‖w‖

• Let λ (k) := (v (k))⊤Av (k)

• Output: eigenvalue/eigenvector of A —
(
λ (k),v (k)

)

Let λ be the closest eigenvalue to µ and v be the corresponding
eigenvector. If v⊤v (0) 6= 0,

v (k) →±v with cubic convergence rate.

Linear algebra and optimization (L2) Numerical linear algebra 18 / 41

Exercise

• Implement the power, inverse power, and Rayleigh quotient
methods

• Apply them on examples and observe their convergence
properties

• Comment on the results

Linear algebra and optimization (L2) Numerical linear algebra 19 / 41

Simultaneous power iteration

Take a set of initial vectors {v (0)
1 , . . . ,v (0)

p } and consider the iteration:

[
v (k+1)

1 · · · v (k+1)
p

]

︸ ︷︷ ︸
V (k+1)

= A
[
v (k)

1 · · · v (k)
p

]

︸ ︷︷ ︸
V (k)

, k = 0,1, . . .

One can expect that under suitable assumptions

span(v (k)
1 , . . . ,v (k)

p) → span(v1, . . . ,vp), as k → ∞

However,
v (k)

i → v1, as k → ∞, for all i

so V (k+1) becomes increasingly ill-conditioned as k → ∞.

Linear algebra and optimization (L2) Numerical linear algebra 20 / 41

Normalized simultaneous power iteration

• Given: orthonormal matrix Q(0) ∈ R
n×p and symmetric matrix A

• For k = 1,2, . . . (till convergence)

• Apply A: solve Z = AQ(k−1)

• Compute orthonormal basis for image(Z):

QR factorization: Q(k)R(k) = Z

• Output: orthonormal eigenvectors of A — Q(k)

Under suitable assumptions

image(Q(k)) → span(v1, . . . ,vp), as k → ∞.

Linear algebra and optimization (L2) Numerical linear algebra 21 / 41

Hessenberg and Schur forms
Every square matrix has a Hessenberg form

A = Q

× × ·· · × ×
× × ·· · × ×

×
. . .

. . . ×
. . .

. . .
...

× ×

︸ ︷︷ ︸
H

Q⊤
Q — orthogonal

H — upper Hessenberg

and a Schur form

A = UTU⊤ U — unitary (complex orthogonal)

T — upper triangular

In MATLAB: [Q,H] = hess(A), [U,T] = schur(A)
[V,L] = eig(A)

Linear algebra and optimization (L2) Numerical linear algebra 22 / 41

QR algorithm

The basic QR algorithm is normalized simultaneous power iteration
with a full set p = n vectors and initial condition Q(0) = In.

• Given: a symmetric matrix A(0) = A

• For k = 1,2, . . . (till convergence)

• QR factorization: A(k−1) = Q(k)R(k)

• Recombine in reverse order: A(k) = R(k)Q(k)

• Output: a Schur decomposition of A — Q(k),R(k).

A(k) = R(k)Q(k) = Q(k)⊤A(k−1)Q(k) =⇒ A(k) is similar to A(k−1)

Linear algebra and optimization (L2) Numerical linear algebra 23 / 41

Additional features of a practical QR algorithm

• Pre-processing: reduce A to tridiagonal form before the iteration

• Shifts: factor A(k)−λ (k)I, λ (k) — eigenvalue estimate

• Deflations: reduce the size of A when and eigenvalue is found

QR algorithm with shifts ↔ Rayleigh quotient iteration

Linear algebra and optimization (L2) Numerical linear algebra 24 / 41

Generalized eigenvalues
Consider n×n matrices A and B; the pair (A,B) is called pencil

(v ,λ) is a generalized eigenvector/eigenvalue of the pencil (A,B) if

Av = λBv

For nonsingular B, the generalized eigenvalue problem is equivalent to

B−1Av = λv

standard eigenvalue problem

Generalized Rayleigh quotient:

λmin = min
v∈Rn

v⊤Av
v⊤Bv

, λmax = max
v∈Rn

v⊤Av
v⊤Bv

Linear algebra and optimization (L2) Numerical linear algebra 25 / 41

Singular value decomposition

The SVD is used as both computational and analytical tool.

Any m×n matrix A has an SVD

A =
[
u1 · · · ur

]
︸ ︷︷ ︸

U

σ1
. . .

σr

︸ ︷︷ ︸
Σ

[
v1 · · · vr

]⊤
︸ ︷︷ ︸

V⊤

where U and V are orthonormal

• σ1, . . . ,σr are called singular values

• u1, . . . ,ur are called left singular vectors

• v1, . . . ,vr are called right singular vectors

Linear algebra and optimization (L2) Numerical linear algebra 26 / 41

Geometric fact motivating the SVD

The image of a unit ball under linear map is a hyperellips.

[
1.00 1.50

0 1.00

]

︸ ︷︷ ︸
A

=

[
0.89 −0.45
0.45 0.89

]

︸ ︷︷ ︸
U

[
2.00 0

0 0.50

]

︸ ︷︷ ︸
Σ

[
0.45 −0.89
0.89 0.45

]

︸ ︷︷ ︸
V⊤

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

v1

v2

A
−→

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

σ1u1
σ2u2

Linear algebra and optimization (L2) Numerical linear algebra 27 / 41

Full SVD

Reduced SVD of a matrix A ∈ R
m×n of rank r

A = U1Σ1U1 =
[
u1 · · · ur

]

σ1
. . .

σr

v⊤
1
...

v⊤
r

Full SVD: find U2 ∈ R
m×(m−r) and V2 ∈ R

n×(n−r) such that

U :=
[
U1 U2

]
and V :=

[
V1 V2

]
are orthogonal

and add zero rows/columns to Σ1 to form Σ ∈ R
m×n

Warning: The singular values are σ1, . . . ,σr plus min(m− r ,n− r) zeros

In MATLAB:
[U,S,V] = svd(A) — full SVD
[U,S,V] = svd(A,0) — reduced SVD

Linear algebra and optimization (L2) Numerical linear algebra 28 / 41

Link between SVD and EVD

• both SVD and EVD diagonalize a matrix A

• left singular vectors of A are eigenvectors of AA⊤

• right singular vectors of A are eigenvectors of A⊤A

• the nonzero singular values of A are the square roots of
the nonzero eigenvalues of AA⊤ or A⊤A

Q: What are the eigenvalues of
[

1 1 1
1 1 1
1 1 1

]
?

• for a symmetric A, |λi | = σi

Linear algebra and optimization (L2) Numerical linear algebra 29 / 41

Differences between SVD and EVD

• SVD exists for any matrix

EVD exist for some square matrices

• SVD applies two orthogonal similarity transformations

EVD applies one (in general not orthonormal) similarity transf.

• EVD is useful in problems where A is repeatedly applied

SVD is used to analyse a single application of A on a vector

Linear algebra and optimization (L2) Numerical linear algebra 30 / 41

Conditioning of a problem

Problem: f : X → Y , where
X is the data space
Y is the solutions space

Usually f is a continuous nonlinear function.

Consider a particular data instance X0 ∈ X .

The problem f is called well conditioned at the data X0 if

small perturbations in X lead to small changes in f (X)

Absolute condition number: lim
δ→0

sup
‖X̃‖<δ

‖f (X0 + X̃)− f (X0)‖

‖X̃‖

Relative condition number: lim
δ→0

sup
‖X̃‖<δ

‖f (X0 + X̃)− f (X0)‖/‖f (X0)‖

‖X̃‖/‖X0‖

Linear algebra and optimization (L2) Numerical linear algebra 31 / 41

Conditioning of root finding

Given polynomial coefficients {p0,p1, . . . ,pn }, find its roots {λ1, . . . ,λn }

p(λ) = p0 +p1λ 1 + · · ·+pnλ n = c(λ −λ1) · · ·(λ −λn)

The relative condition number of λj w.r.t. perturbation ãi of ai is

κi ,j = |aiλ i−1
j |

/
| d
dλ p(λj)|

Example: For p(λ) = Π20
1 (λ − i), argmaxi ,j κi ,j = (15,15)

» roots(poly([1:20]))
ans = 1.0000 ... 14.0684 14.9319 16.0509 ... 20.0003

Check the computed roots of (λ −1)4 (roots(poly([1 1 1 1]))).

Linear algebra and optimization (L2) Numerical linear algebra 32 / 41

Condition number of matrix–vector product

Theorem: The problem of computing y = Ax , given nonsingular matrix
A ∈ R

n×n and x ∈ R
n has relative cond. number w.r.t. perturbations in x

κ = ‖A‖
‖x‖
‖y‖

≤ ‖A‖‖A−1‖

Condition number of a matrix: κ(A) := ‖A‖‖A−1‖

for nonsquare matrices and 2-norm ‖ · ‖, κ(A) := σmax(A)/σmin(A)

A is ill-conditioned if κ(A) is large, A is well-conditioned if κ(A) is small

κ(A) is related to perturbations in the worst case

For an ill-conditioned A, y = Ax may be well-conditioned, for certain x

Linear algebra and optimization (L2) Numerical linear algebra 33 / 41

Condition number of solving systems of equations

Theorem: The problem of computing x = A−1y , given A ∈ R
n×n and

y ∈ R
n has relative cond. number κ(A) w.r.t. perturbations in A.

Proof: The perturbation Ã in A leads to a perturbation x̃ in x , such that

(A+ Ã)(x + x̃) = y =⇒ Ãx +Ax̃ 1
= 0

“ 1
=” means equal up to first order terms in Ã and x̃ .

(κ(A) describes the effect of infinitesimal perturbations.)

x̃ 1
= −A−1Ãx =⇒ ‖x̃‖ ≤ ‖A−1‖‖Ã‖‖x‖

=⇒
‖x̃‖/‖x‖

‖Ã‖/‖A‖
≤ ‖A−1‖‖A‖ = κ(A)

Linear algebra and optimization (L2) Numerical linear algebra 34 / 41

Digital representation of real numbers

IEEE double precision arithmetic:

• Range: [−2.23×10−308,1.79×10308] overflow/underflow

• Discretization: [2i ,2i+1] 7→ 2i{1,1+2−52,1+2×2−52, . . . ,2}

The gaps between adjacent numbers are in a relative scale at most

ε := 2−52 ≈ 2.22×10−16 machine precision

• fixed point: the position of the decimal point is fixed

• floating point: its position is stored together with the digits

fixed point leads to uniform absolute errors
floating point leads to uniform relative errors

Rounding: let fl(x) be the digital representation of x ∈ R, |fl(x)−x | ≤ ε

Linear algebra and optimization (L2) Numerical linear algebra 35 / 41

Stability of an algorithm

Problem: f : X → Y , Algorithm: f̂ : X → Y

f̂ is backward stable if for each X ∈ X there is X̂ ∈ X , such that

‖X − X̂‖

‖X‖
= O(ε) and f̂ (X) = f (X̂)

in words:

backward stable algorithm gives the right answer to a nearby problem

e(X̃) := ‖X̃‖/‖X‖ = O(ε) means that there is c,δ > 0 such that

‖X̃‖ < δ =⇒ |e(X̃)| ≤ cε

Linear algebra and optimization (L2) Numerical linear algebra 36 / 41

Computational complexity of an algorithm

measured by # of flops (floating point operations) or execution time

1 flop — one addition, subtraction, multiplication, or division

the flops count is usually simplified to leading order terms, e.g., O(n)

useful in theoretical comparison of algorithms but it is not an accurate
predictor of the computation time

• n vector–vector operations — O(n) flops

e.g., vector sum, scalar–vector multiplication, inner product

• m×n matrix–vector product — O(mn) flops

• m×n matrix – n×p matrix product — O(mnp) flops

Example: solving Ax = b with general A ∈ R
n×n requires O(n3) flops

Linear algebra and optimization (L2) Numerical linear algebra 37 / 41

Linear equations with special structure

• diagonal — n flops (xi = yi/aii for i = 1, . . . ,n)

• lower/upper triangular: n2 flops (via forward/backward substitution)

• banded — O(nk), where k is the bandwidth

• symmetric — O(n3/3) (via Cholesky decomposition)

• orthogonal — O(n2) (x = AT y)

• permutation — 0 flops

• Toeplitz — O(n2) flops

• combination of banded, symmetric, and Toeplitz

Linear algebra and optimization (L2) Numerical linear algebra 38 / 41

Numerical linear algebra software

Matlab uses as its computational kernel LAPACK

LAPACK is a freely available FORTRAN library

currently the state-of-the-art software for numerical linear algebra

MATLAB provides simple and convenient interface to LAPACK

it is an excellent tool for research; free alternatives to MATLAB are

• octave

• scilab

Linear algebra and optimization (L2) Numerical linear algebra 39 / 41

BLAS and LAPACK

• BLAS — Basic Linear Algebra Subroutines, and

ATLAS — Automatically Tunable Linear Algebra Subroutines

• Level 1 BLAS: vector–vector operations
• Level 2 BLAS: matrix–vector products
• Level 3 BLAS: matrix–matrix products

• LAPACK — Linear Algebra PACKage

• Matrix factorizations; exploit triangular, banded, diagonal structures
• Solvers for linear systems, LS, LN problems; provide error bounds

ScaLAPACK — version for parallel computers.

Linear algebra and optimization (L2) Numerical linear algebra 40 / 41

References

Introductory texts:

• N. Trefethen & Bau, Numerical linear algebra

• G. Stewart, Introduction to matrix computations

• Overton, Numerical computing with IEEE floating point arithmetic

Advanced texts:

• G. Golub & Van Loan, Matrix computations

• N. Higham, Accuracy and stability of numerical methods

• J. Demmel, Applied numerical linear algebra

• LAPACK Users’ Guide

Linear algebra and optimization (L2) Numerical linear algebra 41 / 41

