
Lecture 3: Applications

• Least-squares

• Least-norm

• Total least-squares

• Low-rank approximation
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Over/underdetermined linear equations

Consider Ax = y with A ∈ R
m×n, y ∈ R

m given and x ∈ R
n unknown.

Without loss of generality assume that A is full rank.

• Ax = y is overdetermined if m > n (more eqns than unknowns)

• Ax = y is underdetermined if m < n (more unknowns than eqns)

For most y ∈ R
m

• overdetermined systems have no solution x

• underdetermined systems have infinitely many solutions x
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We are talking about

• Least-squares approximate solution of an overdetermined system

• Least-norm particular solution of an underdetermined system

Notes:

• Least-squares for an underdetermined system, and

• Least-norm for an overdetermined system are meaningless.

• the least-squares approx. solution is (most of the time) not solution

• the least-norm solution is (aways) one of infinitely many solutions
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Least-squares

• approach for solving approx. overdetermined system Ax = y

• choose x that minimizes 2-norm of the residual (eqn error)

e(x) := y −Ax

• a minimizing x is called a least-squares approximate solution

x̂ls := argmin
x

‖y −Ax︸ ︷︷ ︸
e(x)

‖2
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Geometric interpretation: project y onto the span of A

(ŷls := Ax̂ls is the projection)

els := ŷls −Ax̂ls

R
m

y

els

ŷls

image(A)
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Ax̂ls = ŷls ⇐⇒
[
A ŷls

][ x̂ls

−1

]
= 0

⇐⇒
[
ai ŷls,i

][ x̂ls

−1

]
= 0, for i = 1, . . . ,m

(ai is the i th row of A)

• (ai , ŷls,i), for all i , lies on the subspace perpendicular to (x̂ls,−1)

• “data point” (ai ,yi) = (ai , ŷls,i)+ (0,els,i)

• the approximation error (0,els,i) is the vertical distance from (ai ,yi )
to the subspace
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Another geometric interpretation of the LS approximation:

R
n+1

R
n

R
1

[
x̂ls
−1

]

els,i ker([ x̂⊤
ls −1 ])

(ai ,yi )

(ai , ŷls,i)
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Derivation of the least-squares solution

Assumption m ≥ n = rank(A), i.e., A is full column rank.

To minimize the norm of the residual e

‖e(x)‖2
2 = ‖y −Ax‖2

2 = (y −Ax)⊤(y −Ax) = x⊤A⊤Ax −2y⊤Ax +y⊤y

over x , set the gradient with respect to x equal to zero

∇x‖e(x)‖2
2 = ∇x(x⊤A⊤Ax −2y⊤Ax +y⊤y) = 2A⊤Ax −2A⊤y = 0.

This gives the linear equation A⊤Ax = 2A⊤y in x , called normal equation.

A full column rank, implies that A⊤A is nonsingular, so that

x̂ls = (A⊤A)−1A⊤y

is the unique least-squares approximate solution.
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Notes

• A+ := (A⊤A)−1A⊤ is called the pseudo-inverse of A

• x̂ls is a linear function of y (given by the pseudo inverse matrix A+)

• If A is square x̂ls = A−1y (in other words A+ = A−1)

• x̂ls is an exact solution if Ax = y has an exact solution

• ŷls := Ax̂ls = A(A⊤A)−1A⊤y is a least-squares approximation of y
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Projector onto the span of A

The m×m matrix
Πimage(A) := A(A⊤A)−1A⊤

is the orthogonal projector onto L := image(A).

The columns of A are an arbitrary basis for L .

Recall that if the columns of Q are an orthonormal basis for L

Πimage(Q) := QQ⊤
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Orthogonality principle
The least-squares residual vector

els := y −Ax̂ls =
(
Im −A(A⊤A)−1A⊤

)
︸ ︷︷ ︸

Π
(image(A))⊥

y

is orthogonal to image(A)

〈els,Ax̂ls〉 = y⊤
(
Im −A(A⊤A)−1A⊤

)
Ax̂ls = 0, for all x ∈ R

n

y

els

ŷls

image(A)
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Least-squares via QR factorization

Let A = QR be the QR factorization of A.

(A⊤A)−1A⊤ = (R⊤Q⊤QR)−1R⊤Q⊤

= (R⊤Q⊤QR)−1R⊤Q⊤ = R−1Q⊤

so that
x̂ls = R−1Q⊤y and ŷls := Axls = QQ⊤y

Let A =:
[
a1 · · · an

]
and consider the sequence of LS problems

Aix i = y , where Ai :=
[
a1 · · · ai

]
, for i = 1, . . . ,n

Define Ri as the leading i × i submatrix of R and Qi :=
[
q1 · · · qi

]
.

x̂ i
ls = R−1

i Q⊤
i y
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Weighted least-squares

Given a positive definite matrix W ∈ R
m×m, define wighted 2-norm

‖e‖2
W := e⊤We

Weighted least-squares approximate solution

x̂W ,ls := argmin
x

‖y −Ax‖W

The orthogonality principle holds by defining the inner product as

〈e,y〉W := e⊤Wy

Show that
x̂W ,ls = (A⊤WA)−1A⊤Wy

Linear algebra with applications (L3) 13 / 42



Recursive least-squares

Let a⊤
i be the i th row of A

A =




— a⊤
1 —
...

— a⊤
m —




with this notation, ‖y −Ax‖2
2 = ∑m

i=1(yi −a⊤
i x)2 and

x̂ls =

(
m

∑
i=1

aia
⊤
i

)−1 m

∑
i=1

aiyi

• (ai ,yi) correspond to a measurement

• often the measurements (ai ,yi) come sequentially (e.g., in time)
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Recursive computation of x̂ls(m) =

(
m

∑
i=1

aia
⊤
i

)−1 m

∑
i=1

aiyi

• P(0) = 0 ∈ R
n×n, q(0) = 0 ∈ R

n

• For m = 0,1, . . .

• P(m +1) := P(m)+am+1a⊤
m+1, q(m +1) := q(m)+am+1ym+1.

• If P(m) is invertible, xls(m) = P−1(m)q(m).

Notes:

• On each step, the algorithm requires inversion of an n×n matrix

• P(m) invertible =⇒ P(m′) invertible, for all m′ > m
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Rank-1 update formula

(P +aa⊤)−1 = P−1 −
1

1+a⊤P−1a
(P−1a)(P−1a)⊤

Notes:

• gives an O(n2) method for computing P−1(m +1) from P−1(m)

• standard methods for computing P−1(m +1) require O(n3)
operations (for dense matrices)
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Multiobjective least-squares

least-squares minimizes the cost function J1(x) := ‖Ax −y‖2
2.

Consider a second cost function J2(x) := ‖Bx −z‖2
2,

which we want to minimize together with J1.

Usually the criteria minx J1(x) and minx J2(x) are competing.

Common example: J2(x) := ‖x‖2
2 — minimize J1 with small x

• achievable objectives:

{(α ,β ) ∈ R
2 | ∃ x ∈ R

n subject to J1(x) = α , J2(x) = β }

• optimal trade-off curve: boundary of the achievable objectives

• the corresponding x are called Pareto optimal
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Scalarization of multiobjective problem

For any µ ≥ 0, x̂(µ) = argminx J1(x)+ µJ2(x) is Pareto optimal.

By varying µ ∈ [0,∞), x̂(µ) sweeps all Pareto optimal solutions

Example:

0.1 0.2 0.3 0.4 0.5

0.6

0.8

1

1.2

1.4

1.6

J2

J 1
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Regularized least-squares

Tychonov regularization

x̂ = argmin
x

‖Ax −b‖2
2 + µ‖x‖2

2

the solution
x̂ = (A⊤A+ µ In)−1A⊤y

exists for any µ > 0, independent on size and rank of A.

Trade-off between

• fitting accuracy ‖Ax −b‖2, and

• solution size ‖x‖2
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Least-norm solution

Consider an underdetermined system Ax = y , with full rank A ∈ R
m×n.

The set of solutions is

{x ∈ R
n | Ax = y } = {xp +z | ker(A)}

where xp is a particular solution, i.e., Axp = y .

least-norm solution

xln := argmin
x

‖x‖2 subject to Ax = y
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Geometric interpretation:

• xln is the projection of 0 onto the solution set

• orthogonality principle xln ⊥ ker(A)

R
n

xln

‖xln‖

0

ker(A)+xp
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Derivation of the solution: Lagrange multipliers
Consider the least-norm problem with A full rank

min
x

‖x‖2
2 subject to Ax = y

introduce Lagrange multipliers λ ∈ R
m

L(x ,λ ) = xx⊤ + λ⊤(Ax −y)

the optimality conditions are

∇xL(x ,λ ) = 2x +A⊤λ = 0

∇λ L(x ,λ ) = Ax −y = 0

from the first condition x = −A⊤λ/2, substituting into the second

λ = −2(AA⊤)−1y =⇒ xln = A⊤(AA⊤)−1y
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Solution via QR factorization

Let A⊤ = QR be the QR factorization of A⊤.

A⊤(AA⊤)−1 = QR(R⊤Q⊤QR)−1 = Q(R⊤)−1

is a right inverse of A. Then

xln = Q(R⊤)−1y
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Total least-squares (TLS)

The LS method minimizes 2-norm of the equation error e(x) := y −Ax .

min
x ,e

‖e‖2 subject to Ax = y −e

alternatively the equation error e can be viewed as a correction on y .

The TLS method is motivated by the asymmetry of the LS method:

both A and y are given data, but only y is corrected.

TLS problem: min
x ,Ã,ỹ

∥∥[Ã ỹ
]∥∥

F subject to (A+ Ã)x = y + ỹ

• Ã — correction on A, ỹ — correction on y

• Frobenius matrix norm: ‖C‖F :=
√

∑m
i=1 ∑n

j=1 c2
ij , where C ∈ R

m×n
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Geometric interpretation of the TLS criterion

In the case n = 1, the problem of solving approximately Ax = y is




a1
...

am


x =




y1
...

ym


, x ∈ R

Geometric interpretation:

fit a line L (x) passing through 0 to the points (a1,y1), . . . ,(am,ym)

• LS minimizes

sum of squared vertical distances from (ai ,yi ) to L (x)

• TLS minimizes

sum of squared orthogonal distances from (ai ,yi) to L (x)

(Show this algebraically.)
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R
n+1

R
n

R
1

[
x̂tls
−1

]

ker([ x̂⊤
tls −1 ])

(ai ,yi )

(âi , ŷtls,i)
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Solution of the TLS problem

Let
[
A y

]
= UΣV⊤ be the SVD of the data matrix

[
A y

]
and

Σ = diag(σ1, . . . ,σn+1), U =
[
u1 · · · un+1

]
, V =

[
v1 · · · vn+1

]
.

A TLS solution exists iff vn+1,n+1 6= 0 (last element of vn+1)
and is unique iff σn 6= σn+1.

In the case when a TLS solution exists and is unique, it is given by

x̂tls = −
1

vn+1,n+1




v1,n+1
...

vn,n+1




and the corresponding TLS corrections are
[
Ãtls ỹtls

]
= −σn+1un+1v⊤

n+1.

(Corollary of the low-rank approximation theorem, see page 29.)
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Low-rank approximation

Given

• a matrix A ∈ R
m×n, m ≥ n, and

• an integer r , 0 < r < n,

find
Â := argmin

Â
‖A− Â‖ subject to rank(Â) ≤ r .

Interpretation:

Â∗ is optimal rank-r approximation of A w.r.t. the norm ‖ · ‖, e.g.,

‖A‖2
F :=

m

∑
i=1

n

∑
j=1

a2
ij or ‖A‖2 := max

x

‖Ax‖2

‖x‖2
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Solution via SVD

Â∗ := argmin
Â

‖A− Â‖F subject to rank(Â) ≤ r (LRA)

Theorem Let A = UΣV⊤ be the SVD of A and define

U =:
r r −n[
U1 U2

]
n , Σ =:

r r −n[
Σ1 0
0 Σ2

]
r

r −n and V =:
r r −n[
V1 V2

]
n .

An solution to (LRA) is
Â∗ = U1Σ1V⊤

1 .

It is unique if and only if σr 6= σr+1.

(Outline of the proof.)
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Example: linear prediction problem

Future values of w are estimated as linear comb. of past values

w(t) = p1w(t −1)+p2w(t −2)+ · · ·+pℓw(t − ℓ) (LP)

pi are the linear prediction coefficients

Given an observed signal w , how do we find the coefficients pi?

There are many methods for doing this:

• Pisarenko, Prony, Kumaresan–Tufts methods

• subspace methods

• frequency domain methods

• maximum likelihood method
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Link to the sum-of-damped-exponentials model

Model the signal w as

w(t) =
ℓ

∑
i=1

aie
di tei(ωi t+φi ) (SDE)

where ai , di , φi , and ωi are parameters of the model

ai — amplitudes di — dampings
ωi — frequencies φi — initial phases

For all {ai ,di ,ωi ,φi } there are pi and w(−ℓ+ 1), . . . ,w(0), s.t. the
solution of (LP) coincides with (SDE) and vice verse.

the LP problem ⇐⇒ modelling by (SDE)
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Linear prediction problem as low-rank approx.

w =
(
w(1), . . . ,w(T )

)
sum-of-damped-exp. =⇒ w satisfies

p0w(t)+p1w(t +1)+ · · ·+pℓw(t + ℓ) = 0, for t = 1, . . . ,T − ℓ

Written in a matrix form these equations are

[
p0 p1 · · · pℓ

]




w(1) w(2) · · · w(T − ℓ)
w(2) w(3) · · · w(T − ℓ+1)

...
...

...
w(ℓ+1) w(ℓ+2) · · · w(T )




︸ ︷︷ ︸
Hℓ(w)

= 0

which shows that the Hankel matrix Hℓ(w) is rank deficient

rank
(
Hℓ(w)

)
≤ ℓ

Linear algebra with applications (L3) 32 / 42



Structured low-rank approximation

Given

• a vector p ∈ R
np ,

• a mapping S : R
np → R

m×n (structure specification)

• a vector norm ‖ · ‖, and

• an integer r , 0 < r < min(m,n),

find
p̂∗ := argmin

p̂
‖p− p̂‖ subject to rank

(
S (p̂)

)
≤ r .

Interpretation:

D̂∗ := S (p̂∗) is optimal rank-r (or less) approx. of D := S (p),
within the class of matrices with the same structure as D.
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Solution methods for structured low-rank appr.

No closed form solution is known for the general SLRA problem

p̂∗ := argmin
p̂

‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ r .

NP-hard, consider solution methods based on local optimization

Representing the constraint in a kernel form, the problem is

min
R,RR⊤=Im−r

(
min

p̂
‖p− p̂‖ subject to RS (p̂) = 0

)

Note: Double minimization with bilinear equality constraint.

There is a matrix G(R), such that RS (p̂) = 0 ⇐⇒ G(R)p = 0.

Linear algebra with applications (L3) 34 / 42



Variable projection vs. alternating projections

Two ways to approach the double minimization:

• Variable projections (VARPRO):
solve the inner minimization analytically

min
R,RR⊤=Im−r

vec⊤
(
RS (p̂)

)(
G(R)G⊤(R)

)−1
vec

(
RS (p̂)

)

 a nonlinear least squares problem for R only.

• Alternating projections (AP):
alternate between solving two least squares problems

VARPRO is globally convergent with a super linear conv. rate.

AP is globally convergent with a linear convergence rate.
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Software implementation

The structure of S can be exploited for efficient O(dim(p))
cost function and first derivative evaluations.

SLICOT library includes high quality FORTRAN implementation of
algorithms for block Toeplitz matrices.

VARPRO approach based on the Levenberg–Marquardt alg.
implemented in MINPACK.
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Another extension: weighted low-rank approx.

The basic low-rank approximation

D̂∗ := argmin
D̂

‖D− D̂‖ subject to rank(D̂) ≤ m.

is a maximum liklihood estimate assuming cov(vec(D̃)) = I.

If cov(vec(D̃)) = W , the maximum liklihood estimate is given by

min
D̂

vec⊤(D− D̂)W vec(D− D̂) subject to rank(D̂) ≤ m

weighted low-rank approximation (maximum likelihood PCA)

NP-hard problem
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Another extension: nonnegative low-rank approx.

Constrained LRA arise in Markov chains and image mining

min
D̂

‖D− D̂‖ subject to rank(D̂) ≤ m and D̂ij ≥ 0 for all i , j .

Using an image representation, an equivalent problem is

min
P∈Rd×m,L∈Rm×N

‖D−PL‖ subject to Pik ,Lkj ≥ 0 for all i ,k , j .

Alternating projections algorithm:

• Choose an initial approximation P(0) ∈ R
d×m and set k := 0.

• Solve: L(k) = argminL ‖D−P(k)L‖ subject to L ≥ 0.

• Solve: P(k+1) = argminP ‖D−PL(k)‖ subject to P ≥ 0.

• Repeat until convergence.
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Data fitting by a second order model

B(A,b,c) := {d ∈ R
d | d⊤Ad +b⊤d +c = 0}, with A = A⊤

Consider first exact data:

d ∈ B(A,b,c) ⇐⇒ d⊤Ad +b⊤d +c = 0

⇐⇒
〈

col(d ⊗s d ,d ,1)︸ ︷︷ ︸
dext

,col
(

vecs(A),b,c
)

︸ ︷︷ ︸
θ

〉
= 0

{d1, . . . ,dN } ∈ B(θ) ⇐⇒ θ ∈ leftker
[
dext,1 · · · dext,N

]
︸ ︷︷ ︸

Dext

, θ 6= 0

⇐⇒ rank(Dext) ≤ d−1

Therefore, for measured data LRA of Dext.

Notes:
• Special case B an ellipsoid (for A > 0 and 4c < b⊤A−1b).
• Related to kernel PCA
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Example: ellipsoid fitting

0 5 10 15
−2

0

2

4

6

8

x1

x 2

dashed — kernel PCA solid — modified method

dashed-dotted — orthogonal regression (geometric fitting)

◦ — data points × — centers
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Rank minimization

Approximate modeling is a tradeoff between:

• fitting accuracy and

• model complexity

Two possible scalarizations of the bi-objective optimization are:

• LRA: minimize misfit under a constraint on complexity

• RM: minimize complexity under a constraint (C ) on misfit

minimizeX rank(X ) subject to X ∈ C

RM is also NP-hard, however, there are effective heuristics, e.g.,

with X = diag(x), rank(X ) = card(x),

ℓ1 heuristic: minimizex ‖x‖1 subject to diag(x) ∈ C
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