Lecture 3: Applications

- Least-squares
- Least-norm
- Total least-squares
- Low-rank approximation

Over/underdetermined linear equations

Consider $A x=y$ with $A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^{m}$ given and $x \in \mathbb{R}^{n}$ unknown. Without loss of generality assume that A is full rank.

- $A x=y$ is overdetermined if $m>n$ (more eqns than unknowns)
- $A x=y$ is underdetermined if $m<n$ (more unknowns than eqns)

For most $y \in \mathbb{R}^{m}$

- overdetermined systems have no solution x
- underdetermined systems have infinitely many solutions x

We are talking about

- Least-squares approximate solution of an overdetermined system
- Least-norm particular solution of an underdetermined system

Notes:

- Least-squares for an underdetermined system, and
- Least-norm for an overdetermined system are meaningless.
- the least-squares approx. solution is (most of the time) not solution
- the least-norm solution is (aways) one of infinitely many solutions

Least-squares

- approach for solving approx. overdetermined system $A x=y$
- choose x that minimizes 2-norm of the residual (eqn error)

$$
e(x):=y-A x
$$

- a minimizing x is called a least-squares approximate solution

$$
\widehat{x}_{1 \mathrm{~s}}:=\arg \min _{x}\|\underbrace{y-A x}_{e(x)}\|_{2}
$$

Geometric interpretation: project y onto the span of A
($\widehat{y}_{1 s}:=A \widehat{x}_{1 s}$ is the projection)

$$
e_{\mathrm{ls}}:=\widehat{y}_{\mathrm{ls}}-A \widehat{x}_{\mathrm{ls}}
$$

$$
\begin{aligned}
A \widehat{x}_{1 \mathrm{~s}}=\widehat{y}_{\mathrm{ls}} & \Longleftrightarrow \quad\left[\begin{array}{ll}
A & \widehat{y}_{\mathrm{Is}}
\end{array}\right]\left[\begin{array}{l}
\widehat{x}_{1 \mathrm{~s}} \\
-1
\end{array}\right]=0 \\
\Longleftrightarrow & {\left[\begin{array}{ll}
a_{i} & \widehat{y}_{1 \mathrm{l}, i}
\end{array}\right]\left[\begin{array}{l}
\widehat{x}_{\mathrm{ls}} \\
-1
\end{array}\right]=0, \text { for } i=1, \ldots, m } \\
& \left(a_{i} \text { is the ith row of } A\right)
\end{aligned}
$$

- $\left(a_{i}, \widehat{y}_{1 \mathrm{~s}, i}\right)$, for all i, lies on the subspace perpendicular to ($\widehat{x}_{\mathrm{ls}},-1$)
- "data point" $\left(a_{i}, y_{i}\right)=\left(a_{i}, \widehat{y}_{\mathrm{Is}, i}\right)+\left(0, e_{\mathrm{Is}, i}\right)$
- the approximation error $\left(0, e_{\mathrm{l}, i}\right)$ is the vertical distance from $\left(a_{i}, y_{i}\right)$ to the subspace

Another geometric interpretation of the LS approximation:

Derivation of the least-squares solution

Assumption $m \geq n=\operatorname{rank}(A)$, i.e., A is full column rank.
To minimize the norm of the residual e

$$
\|e(x)\|_{2}^{2}=\|y-A x\|_{2}^{2}=(y-A x)^{\top}(y-A x)=x^{\top} A^{\top} A x-2 y^{\top} A x+y^{\top} y
$$

over x, set the gradient with respect to x equal to zero

$$
\nabla_{x}\|e(x)\|_{2}^{2}=\nabla_{x}\left(x^{\top} A^{\top} A x-2 y^{\top} A x+y^{\top} y\right)=2 A^{\top} A x-2 A^{\top} y=0 .
$$

This gives the linear equation $A^{\top} A x=2 A^{\top} y$ in x, called normal equation.
A full column rank, implies that $A^{\top} A$ is nonsingular, so that

$$
\widehat{x}_{\mathrm{ls}}=\left(A^{\top} A\right)^{-1} A^{\top} y
$$

is the unique least-squares approximate solution.

Notes

- $A^{+}:=\left(A^{\top} A\right)^{-1} A^{\top}$ is called the pseudo-inverse of A
- $\widehat{x}_{\mathrm{ls}}$ is a linear function of y (given by the pseudo inverse matrix A^{+})
- If A is square $\widehat{x}_{\mathrm{ls}}=A^{-1} y$ (in other words $A^{+}=A^{-1}$)
- $\widehat{x}_{\mathrm{ls}}$ is an exact solution if $A x=y$ has an exact solution
- $\widehat{y}_{\mathrm{ls}}:=A \widehat{x}_{\mathrm{ls}}=A\left(A^{\top} A\right)^{-1} A^{\top} y$ is a least-squares approximation of y

Projector onto the span of A

The $m \times m$ matrix

$$
\Pi_{\text {image }(A)}:=A\left(A^{\top} A\right)^{-1} A^{\top}
$$

is the orthogonal projector onto $\mathscr{L}:=\operatorname{image}(A)$.

The columns of A are an arbitrary basis for \mathscr{L}.
Recall that if the columns of Q are an orthonormal basis for \mathscr{L}

$$
\Pi_{\text {image }(Q)}:=Q Q^{\top}
$$

Orthogonality principle

The least-squares residual vector

$$
e_{\mathrm{ls}}:=y-A \widehat{x}_{\mathrm{ls}}=\underbrace{\left(I_{m}-A\left(A^{\top} A\right)^{-1} A^{\top}\right)}_{\Pi_{(\text {image }(A))^{\perp}}} y
$$

is orthogonal to image (A)

$$
\left\langle e_{\mathrm{ls}}, A \widehat{x}_{\mathrm{ls}}\right\rangle=y^{\top}\left(I_{m}-A\left(A^{\top} A\right)^{-1} A^{\top}\right) A \widehat{x}_{\mathrm{ls}}=0, \quad \text { for all } x \in \mathbb{R}^{n}
$$

Least-squares via QR factorization

Let $A=Q R$ be the $Q R$ factorization of A.

$$
\begin{aligned}
\left(A^{\top} A\right)^{-1} A^{\top} & =\left(R^{\top} Q^{\top} Q R\right)^{-1} R^{\top} Q^{\top} \\
& =\left(R^{\top} Q^{\top} Q R\right)^{-1} R^{\top} Q^{\top}=R^{-1} Q^{\top}
\end{aligned}
$$

so that

$$
\widehat{x}_{\mathrm{ls}}=R^{-1} Q^{\top} y \quad \text { and } \quad \widehat{y}_{1 \mathrm{~s}}:=A x_{\mathrm{ls}}=Q Q^{\top} y
$$

Let $A=:\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$ and consider the sequence of LS problems

$$
A^{i} x^{i}=y, \quad \text { where } A^{i}:=\left[\begin{array}{lll}
a_{1} & \cdots & a_{i}
\end{array}\right], \quad \text { for } i=1, \ldots, n
$$

Define R_{i} as the leading $i \times i$ submatrix of R and $Q_{i}:=\left[\begin{array}{lll}q_{1} & \cdots & q_{i}\end{array}\right]$.

$$
\widehat{x}_{\mathrm{ls}}^{j}=R_{i}^{-1} Q_{i}^{\top} y
$$

Weighted least-squares

Given a positive definite matrix $W \in \mathbb{R}^{m \times m}$, define wighted 2-norm

$$
\|e\|_{W}^{2}:=e^{\top} W e
$$

Weighted least-squares approximate solution

$$
\widehat{x}_{W, \text { Is }}:=\arg \min _{x}\|y-A x\|_{W}
$$

The orthogonality principle holds by defining the inner product as

$$
\langle e, y\rangle_{w}:=e^{\top} W_{y}
$$

Show that

$$
\widehat{x}_{W, \mathrm{ls}}=\left(A^{\top} W A\right)^{-1} A^{\top} W y
$$

Recursive least-squares

Let a_{i}^{\top} be the i th row of A

$$
A=\left[\begin{array}{ccc}
- & a_{1}^{\top} & - \\
& \vdots & \\
- & a_{m}^{\top} & -
\end{array}\right]
$$

with this notation, $\|y-A x\|_{2}^{2}=\sum_{i=1}^{m}\left(y_{i}-a_{i}^{\top} x\right)^{2}$ and

$$
\widehat{x}_{1 \mathrm{~s}}=\left(\sum_{i=1}^{m} a_{i} a_{i}^{\top}\right)^{-1} \sum_{i=1}^{m} a_{i} y_{i}
$$

- $\left(a_{i}, y_{i}\right)$ correspond to a measurement
- often the measurements $\left(a_{i}, y_{i}\right)$ come sequentially (e.g., in time)

Recursive computation of $\widehat{x}_{\mathrm{ls}}(m)=\left(\sum_{i=1}^{m} a_{i} a_{i}^{\top}\right)^{-1} \sum_{i=1}^{m} a_{i} y_{i}$

- $P(0)=0 \in \mathbb{R}^{n \times n}, q(0)=0 \in \mathbb{R}^{n}$
- For $m=0,1, \ldots$
- $P(m+1):=P(m)+a_{m+1} a_{m+1}^{\top}, q(m+1):=q(m)+a_{m+1} y_{m+1}$.
- If $P(m)$ is invertible, $x_{\mathrm{ls}}(m)=P^{-1}(m) q(m)$.

Notes:

- On each step, the algorithm requires inversion of an $n \times n$ matrix
- $P(m)$ invertible $\Longrightarrow P\left(m^{\prime}\right)$ invertible, for all $m^{\prime}>m$

Rank-1 update formula

$$
\left(P+a a^{\top}\right)^{-1}=P^{-1}-\frac{1}{1+a^{\top} P^{-1} a}\left(P^{-1} a\right)\left(P^{-1} a\right)^{\top}
$$

Notes:

- gives an $O\left(n^{2}\right)$ method for computing $P^{-1}(m+1)$ from $P^{-1}(m)$
- standard methods for computing $P^{-1}(m+1)$ require $O\left(n^{3}\right)$ operations (for dense matrices)

Multiobjective least-squares

least-squares minimizes the cost function $J_{1}(x):=\|A x-y\|_{2}^{2}$.
Consider a second cost function $J_{2}(x):=\|B x-z\|_{2}^{2}$,
which we want to minimize together with J_{1}.
Usually the criteria $\min _{x} J_{1}(x)$ and $\min _{x} J_{2}(x)$ are competing.
Common example: $J_{2}(x):=\|x\|_{2}^{2}$ - minimize J_{1} with small x

- achievable objectives:

$$
\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \exists x \in \mathbb{R}^{n} \text { subject to } J_{1}(x)=\alpha, J_{2}(x)=\beta\right\}
$$

- optimal trade-off curve: boundary of the achievable objectives
- the corresponding x are called Pareto optimal

Scalarization of multiobjective problem

For any $\mu \geq 0, \widehat{x}(\mu)=\arg \min _{x} J_{1}(x)+\mu J_{2}(x)$ is Pareto optimal. By varying $\mu \in[0, \infty), \widehat{x}(\mu)$ sweeps all Pareto optimal solutions

Example:

Regularized least-squares

Tychonov regularization

$$
\widehat{x}=\arg \min _{x}\|A x-b\|_{2}^{2}+\mu\|x\|_{2}^{2}
$$

the solution

$$
\widehat{x}=\left(A^{\top} A+\mu I_{n}\right)^{-1} A^{\top} y
$$

exists for any $\mu>0$, independent on size and rank of A.

Trade-off between

- fitting accuracy $\|A x-b\|_{2}$, and
- solution size $\|x\|_{2}$

Least-norm solution

Consider an underdetermined system $A x=y$, with full rank $A \in \mathbb{R}^{m \times n}$.

The set of solutions is

$$
\left\{x \in \mathbb{R}^{n} \mid A x=y\right\}=\left\{x_{p}+z \mid \operatorname{ker}(A)\right\}
$$

where x_{p} is a particular solution, i.e., $A x_{p}=y$.
least-norm solution

$$
x_{\text {ln }}:=\arg \min _{x}\|x\|_{2} \quad \text { subject to } \quad A x=y
$$

Geometric interpretation:

- $x_{\text {In }}$ is the projection of 0 onto the solution set
- orthogonality principle $x_{l n} \perp \operatorname{ker}(A)$

Derivation of the solution: Lagrange multipliers

Consider the least-norm problem with A full rank

$$
\min _{x}\|x\|_{2}^{2} \quad \text { subject to } \quad A x=y
$$

introduce Lagrange multipliers $\lambda \in \mathbb{R}^{m}$

$$
L(x, \lambda)=x x^{\top}+\lambda^{\top}(A x-y)
$$

the optimality conditions are

$$
\begin{aligned}
& \nabla_{x} L(x, \lambda)=2 x+A^{\top} \lambda=0 \\
& \nabla_{\lambda} L(x, \lambda)=A x-y=0
\end{aligned}
$$

from the first condition $x=-A^{\top} \lambda / 2$, substituting into the second

$$
\lambda=-2\left(A A^{\top}\right)^{-1} y \quad \Longrightarrow \quad x_{\ln }=A^{\top}\left(A A^{\top}\right)^{-1} y
$$

Solution via QR factorization

Let $A^{\top}=Q R$ be the QR factorization of A^{\top}.

$$
A^{\top}\left(A A^{\top}\right)^{-1}=Q R\left(R^{\top} Q^{\top} Q R\right)^{-1}=Q\left(R^{\top}\right)^{-1}
$$

is a right inverse of A. Then

$$
x_{\mathrm{ln}}=Q\left(R^{\top}\right)^{-1} y
$$

Total least-squares (TLS)

The LS method minimizes 2-norm of the equation error $e(x):=y-A x$.

$$
\min _{x, e}\|e\|_{2} \quad \text { subject to } \quad A x=y-e
$$

alternatively the equation error e can be viewed as a correction on y.

The TLS method is motivated by the asymmetry of the LS method: both A and y are given data, but only y is corrected.

TLS problem: $\min _{x, \widetilde{A}, \widetilde{y}}\|[\widetilde{A} \widetilde{y}]\|_{\mathrm{F}} \quad$ subject to $\quad(A+\widetilde{A}) x=y+\widetilde{y}$

- \widetilde{A} - correction on $A, \quad \widetilde{y}$ - correction on y
- Frobenius matrix norm: $\|C\|_{\mathrm{F}}:=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j}^{2}}$, where $C \in \mathbb{R}^{m \times n}$

Geometric interpretation of the TLS criterion

 In the case $n=1$, the problem of solving approximately $A x=y$ is$$
\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right] x=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right], \quad x \in \mathbb{R}
$$

Geometric interpretation:
fit a line $\mathscr{L}(x)$ passing through 0 to the points $\left(a_{1}, y_{1}\right), \ldots,\left(a_{m}, y_{m}\right)$

- LS minimizes
sum of squared vertical distances from $\left(a_{i}, y_{i}\right)$ to $\mathscr{L}(x)$
- TLS minimizes
sum of squared orthogonal distances from $\left(a_{i}, y_{i}\right)$ to $\mathscr{L}(x)$
(Show this algebraically.)

Solution of the TLS problem

Let $\left[\begin{array}{ll}A & y\end{array}\right]=U \Sigma V^{\top}$ be the SVD of the data matrix $\left[\begin{array}{ll}A & y\end{array}\right]$ and

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n+1}\right), \quad U=\left[\begin{array}{lll}
u_{1} & \cdots & u_{n+1}
\end{array}\right], \quad V=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n+1}
\end{array}\right] .
$$

A TLS solution exists iff $v_{n+1, n+1} \neq 0$ (last element of v_{n+1}) and is unique iff $\sigma_{n} \neq \sigma_{n+1}$.

In the case when a TLS solution exists and is unique, it is given by

$$
\widehat{x}_{\mathrm{tl}}=-\frac{1}{v_{n+1, n+1}}\left[\begin{array}{c}
v_{1, n+1} \\
\vdots \\
v_{n, n+1}
\end{array}\right]
$$

and the corresponding TLS corrections are $\left[\widetilde{A}_{\mathrm{ts}} \widetilde{y}_{\mathrm{tls}}\right]=-\sigma_{n+1} u_{n+1} v_{n+1}^{\top}$.
(Corollary of the low-rank approximation theorem, see page 29.)

Low-rank approximation

Given

- a matrix $A \in \mathbb{R}^{m \times n}, m \geq n$, and
- an integer $r, 0<r<n$,
find

$$
\widehat{A}:=\arg \min _{\widehat{A}}\|A-\widehat{A}\| \quad \text { subject to } \quad \operatorname{rank}(\widehat{A}) \leq r
$$

Interpretation:
\widehat{A}^{*} is optimal rank- r approximation of A w.r.t. the norm $\|\cdot\|$, e.g.,

$$
\|A\|_{\mathrm{F}}^{2}:=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2} \quad \text { or } \quad\|A\|_{2}:=\max _{x} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

Solution via SVD

$$
\begin{equation*}
\widehat{A}^{*}:=\arg \min _{\widehat{A}}\|A-\widehat{A}\|_{\mathrm{F}} \quad \text { subject to } \quad \operatorname{rank}(\widehat{A}) \leq r \tag{LRA}
\end{equation*}
$$

Theorem Let $A=U \Sigma V^{\top}$ be the SVD of A and define

$$
U=:\left[\begin{array}{cc}
r & r-n \\
U_{1} & U_{2}
\end{array}\right] n, \quad \Sigma=:\left[\begin{array}{cc}
r & r-n \\
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right] \begin{array}{cc}
r \\
r-n
\end{array} \quad \text { and } \quad V=:\left[\begin{array}{ll}
r-n \\
V_{1} & V_{2}
\end{array}\right] n .
$$

An solution to (LRA) is

$$
\widehat{A}^{*}=U_{1} \Sigma_{1} V_{1}^{\top} .
$$

It is unique if and only if $\sigma_{r} \neq \sigma_{r+1}$.
(Outline of the proof.)

Example: linear prediction problem

Future values of w are estimated as linear comb. of past values

$$
\begin{equation*}
w(t)=p_{1} w(t-1)+p_{2} w(t-2)+\cdots+p_{\ell} w(t-\ell) \tag{LP}
\end{equation*}
$$

p_{i} are the linear prediction coefficients
Given an observed signal w, how do we find the coefficients p_{i} ?
There are many methods for doing this:

- Pisarenko, Prony, Kumaresan-Tufts methods
- subspace methods
- frequency domain methods
- maximum likelihood method

Link to the sum-of-damped-exponentials model

Model the signal w as

$$
\begin{equation*}
w(t)=\sum_{i=1}^{\ell} a_{i} e^{d_{i} t} e^{\mathbf{i}\left(\omega_{i} t+\phi_{i}\right)} \tag{SDE}
\end{equation*}
$$

where a_{i}, d_{i}, ϕ_{i}, and ω_{i} are parameters of the model
a_{i} — amplitudes $d_{i}-$ dampings
$\omega_{i} \quad$ frequencies $\quad \phi_{i} \quad$ initial phases

For all $\left\{a_{i}, d_{i}, \omega_{i}, \phi_{i}\right\}$ there are p_{i} and $w(-\ell+1), \ldots, w(0)$, s.t. the solution of (LP) coincides with (SDE) and vice verse.
the LP problem \Longleftrightarrow modelling by (SDE)

Linear prediction problem as low-rank approx.

$w=(w(1), \ldots, w(T))$ sum-of-damped-exp. $\Longrightarrow w$ satisfies

$$
p_{0} w(t)+p_{1} w(t+1)+\cdots+p_{\ell} w(t+\ell)=0, \quad \text { for } t=1, \ldots, T-\ell
$$

Written in a matrix form these equations are

$$
\left[\begin{array}{llll}
p_{0} & p_{1} & \cdots & p_{\ell}
\end{array}\right] \underbrace{\left[\begin{array}{cccc}
w(1) & w(2) & \cdots & w(T-\ell) \\
w(2) & w(3) & \cdots & w(T-\ell+1) \\
\vdots & \vdots & & \vdots \\
w(\ell+1) & w(\ell+2) & \cdots & w(T)
\end{array}\right]}_{\mathscr{\ell}_{\ell}(w)}=0
$$

which shows that the Hankel matrix $\mathscr{H}_{\ell}(w)$ is rank deficient

$$
\operatorname{rank}\left(\mathscr{H}_{\ell}(w)\right) \leq \ell
$$

Structured low-rank approximation

Given

- a vector $p \in \mathbb{R}^{n_{p}}$,
- a mapping $\mathscr{S}: \mathbb{R}^{n_{p}} \rightarrow \mathbb{R}^{m \times n}$ (structure specification)
- a vector norm $\|\cdot\|$, and
- an integer $r, 0<r<\min (m, n)$,
find

$$
\widehat{p}^{*}:=\arg \min _{\hat{p}}\|p-\hat{p}\| \quad \text { subject to } \quad \operatorname{rank}(\mathscr{S}(\widehat{p})) \leq r .
$$

Interpretation:
$\widehat{D}^{*}:=\mathscr{S}\left(\widehat{p}^{*}\right)$ is optimal rank-r (or less) approx. of $D:=\mathscr{S}(p)$, within the class of matrices with the same structure as D.

Solution methods for structured low-rank appr.

No closed form solution is known for the general SLRA problem

$$
\widehat{p}^{*}:=\arg \min _{\hat{p}}\|p-\hat{p}\| \quad \text { subject to } \quad \operatorname{rank}(\mathscr{S}(\widehat{p})) \leq r .
$$

NP-hard, consider solution methods based on local optimization
Representing the constraint in a kernel form, the problem is

$$
\min _{R, R R^{\top}=I_{m-r}}\left(\min _{\hat{p}}\|p-\hat{p}\| \quad \text { subject to } \quad R \mathscr{S}(\hat{p})=0\right)
$$

Note: Double minimization with bilinear equality constraint.
There is a matrix $G(R)$, such that $R \mathscr{S}(\widehat{p})=0 \Longleftrightarrow G(R) p=0$.

Variable projection vs. alternating projections

Two ways to approach the double minimization:

- Variable projections (VARPRO): solve the inner minimization analytically

$$
\min _{R, R R^{\top}=I_{m-r}} \operatorname{vec}^{\top}(R \mathscr{S}(\widehat{p}))\left(G(R) G^{\top}(R)\right)^{-1} \operatorname{vec}(R \mathscr{S}(\widehat{p}))
$$

\rightsquigarrow a nonlinear least squares problem for R only.

- Alternating projections (AP): alternate between solving two least squares problems

VARPRO is globally convergent with a super linear conv. rate.
AP is globally convergent with a linear convergence rate.

Software implementation

The structure of \mathscr{S} can be exploited for efficient $O(\operatorname{dim}(p))$ cost function and first derivative evaluations.

SLICOT library includes high quality FORTRAN implementation of algorithms for block Toeplitz matrices.

VARPRO approach based on the Levenberg-Marquardt alg. implemented in MINPACK.

Another extension: weighted low-rank approx.

The basic low-rank approximation

$$
\widehat{D}^{*}:=\arg \min _{\widehat{D}}\|D-\widehat{D}\| \quad \text { subject to } \quad \operatorname{rank}(\widehat{D}) \leq m
$$

is a maximum liklihood estimate assuming $\operatorname{cov}(\operatorname{vec}(\widetilde{D}))=I$.

If $\operatorname{cov}(\operatorname{vec}(\widetilde{D}))=W$, the maximum liklihood estimate is given by

$$
\min _{\widehat{D}} \operatorname{vec}^{\top}(D-\widehat{D}) W \operatorname{vec}(D-\widehat{D}) \quad \text { subject to } \quad \operatorname{rank}(\widehat{D}) \leq \mathrm{m}
$$

weighted low-rank approximation (maximum likelihood PCA)

NP-hard problem

Another extension: nonnegative low-rank approx.

Constrained LRA arise in Markov chains and image mining

$$
\min _{\widehat{D}}\|D-\widehat{D}\| \quad \text { subject to } \quad \operatorname{rank}(\widehat{D}) \leq \mathrm{m} \text { and } \widehat{D}_{i j} \geq 0 \text { for all } i, j .
$$

Using an image representation, an equivalent problem is

$$
\min _{P \in \mathbb{R}^{\mathrm{d} \times \mathrm{m}}, L \in \mathbb{R}^{\mathrm{m} \times N}}\|D-P L\| \quad \text { subject to } \quad P_{i k}, L_{k j} \geq 0 \text { for all } i, k, j .
$$

Alternating projections algorithm:

- Choose an initial approximation $P^{(0)} \in \mathbb{R}^{\mathrm{d} \times \mathrm{m}}$ and set $k:=0$.
- Solve: $L^{(k)}=\arg \min _{L}\left\|D-P^{(k)} L\right\|$ subject to $L \geq 0$.
- Solve: $P^{(k+1)}=\arg \min _{P}\left\|D-P L^{(k)}\right\|$ subject to $P \geq 0$.
- Repeat until convergence.

Data fitting by a second order model

$$
\mathscr{B}(A, b, c):=\left\{d \in \mathbb{R}^{d} \mid d^{\top} A d+b^{\top} d+c=0\right\}, \quad \text { with } A=A^{\top}
$$

Consider first exact data:

$$
\begin{aligned}
d \in \mathscr{B}(A, b, c) & \Longleftrightarrow d^{\top} A d+b^{\top} d+c=0 \\
& \Longleftrightarrow\langle\underbrace{\operatorname{col}\left(d \otimes_{\mathrm{s}} d, d, 1\right)}_{d_{\text {ext }}}, \underbrace{\operatorname{col}\left(\operatorname{vec}_{s}(A), b, c\right)}_{\theta}\rangle=0 \\
\left\{d_{1}, \ldots, d_{N}\right\} \in \mathscr{B}(\theta) & \Longleftrightarrow \theta \in \operatorname{leftker} \underbrace{\left.d_{\text {ext }, 1} \cdots d_{\text {ext }, N}\right]}_{D_{\text {ext }}}, \quad \theta \neq 0 \\
& \Longleftrightarrow \operatorname{rank}\left(D_{\text {ext }}\right) \leq d-1
\end{aligned}
$$

Therefore, for measured data \rightsquigarrow LRA of $D_{\text {ext }}$.

Notes:

- Special case \mathscr{B} an ellipsoid (for $A>0$ and $4 c<b^{\top} A^{-1} b$).
- Related to kernel PCA

Example: ellipsoid fitting

dashed — kernel PCA solid — modified method
dashed-dotted - orthogonal regression (geometric fitting)
\circ - data points $\quad \times$ - centers

Rank minimization

Approximate modeling is a tradeoff between:

- fitting accuracy and
- model complexity

Two possible scalarizations of the bi-objective optimization are:

- LRA: minimize misfit under a constraint on complexity
- RM: minimize complexity under a constraint (\mathscr{C}) on misfit

$$
\text { minimize }_{X} \operatorname{rank}(X) \text { subject to } \quad X \in \mathscr{C}
$$

RM is also NP-hard, however, there are effective heuristics, e.g., with $X=\operatorname{diag}(x), \operatorname{rank}(X)=\operatorname{card}(x)$,
ℓ_{1} heuristic: \quad minimize ${ }_{x}\|x\|_{1} \quad$ subject to $\quad \operatorname{diag}(x) \in \mathscr{C}$

References

- S. Boyd, EE263: Linear dynamical systems
- Golub \& Van Loan, An analysis of the total least-squares problem, SIAM J. Numer. Anal., volume 17, pages 883-893, 1980
- Van Huffel \& Vandewalle, The total least-squares problem: Computational aspects and analysis, SIAM, 1991
- Markovsky \& Van Huffel, Overview of total least-squares methods, Signal Processing, volume 87, pages 2283-2302, 2007
- Markovsky, Structured low-rank approximation and its applications, Automatica, 2008

