
Linear algebra with applications

Ivan Markovsky

ELEC, Vrije Universiteit Brussel
ivan.markovsky@vub.ac.be

2

Contents

1 Review of linear algebra 5

1.1 Linear functions and matrix–vector product . 5
1.2 Rank of a matrix and inversion . 8
1.3 Inner product . 10
1.4 Subspace, basis, and dimension . 11
1.5 Eigenvalues and eigenvectors . 12
1.6 Summary . 13
Bibliography . 14

2 Numerical linear algebra 15

2.1 Projectors, Gram-Schmidt, and QR factorization . 15
2.2 Computation of eigenvalues and eigenvectors . 18
2.3 Singular value decomposition . 22
2.4 Conditioning and stability . 23
Bibliography . 26

3 Applications 27

3.1 Least-squares . 27
3.2 Least-norm . 32
3.3 Total least-squares . 32
3.4 Low-rank approximation . 33
3.5 Notes and references . 34
Bibliography . 34

3

4 CONTENTS

Chapter 1

Review of linear algebra

• Linear functions and matrix–vector product

• Rank of a matrix and inversion

• Inner product

• Subspaces, basis, and dimension

• Eigenvalues and eigenvectors

1.1 Linear functions and matrix–vector product

Linear functions

Standard notation for a function f mapping a vector x ∈ R
n to a vector y ∈ R

m is

f : Rn → R
m or f : x 7→ y.

The value y ∈R
m of f at x ∈R

n is denoted by y = f (x). Note that f and f (x) are different objects— f is a function and
f (x) is a vector. Therefore, the statement “the function f (x)” is semantically wrong, despite the fact that its meaning
is intuitively clear and is commonly used.

A function f is usually specified by an analytic expression, e.g., f (x) = x2, but it can be specified in other ways as
well. For example, a function f can be defined by an algorithm that evaluates f for a given x or by a verbal description,
e.g., “ f (x) is the vector x rotated clockwise by α◦”. In system theory a function f is visualized by a box, called a
system, that accepts as an input x and produces as an output y.

x yf

One can think of the system as a device or a signal processor that transforms energy or information. However, a
system in system theory is an abstract object and is distinguished from a physical device.

By definition, f is a linear function if the following property holds:

f (αx+β z) = α f (x)+β f (z), for all α ,β ∈ R and x,z ∈ R
n.

An equivalent definition is that f satisfies the homogeneity and superposition properties

• homogeneity: f (αx) = α f (x), for all α ∈ R, and x ∈ R
n,

• superposition: f (x+ z) = f (x)+ f (z), for all x,z ∈ R
n.

Exercise problem 1. Show that rotation is a linear function.

5

6 CHAPTER 1. REVIEW OF LINEAR ALGEBRA

Matrix–vector product

Partition a matrix A ∈ R
m×n elementwise, column-wise, and row-wise, as follows

A =




a11 · · · a1n

...
...

am1 · · · amn


=



| |

a1 · · · an

| |


=




— (a′1)
⊤ —

...

— (a′m)
⊤ —


 .

The matrix–vector product y = Ax can be written in three alternative ways corresponding to the three partitionings
above 


y1
...

ym


=




∑n
j=1 a1 jx j

...

∑n
j=1 am jx j


=

n

∑
j=1

a jx j =



(a′1)

⊤x
...

(a′m)
⊤x


 .

For a given A, y = Ax defines a function f : x 7→ y. Matrix-vector product, however, is more than an example of a
linear function. It is the only example in the sense that any linear function admits a representation in the form of a
matrix times vector.

Exercise problem 2. Prove that the function f : Rn →R
m is linear if and only if there is a matrix A ∈R

m×n, such that
f (x) = Ax, for all x ∈ R

n.

The matrix A is called a matrix representation of the function f , f (x) = Ax. Given a matrix representation A of a
linear function f , the problem of evaluating the function y = f (x) at a given point x is a matrix–vector multiplication
y = Ax problem.

Note 3. Formally one should make a distinction between a vector and a vector representation. A vector representation
depends on the choice of basis and is therefore not unique. Similarly, a matrix representation of a linear function
depends on the bases of the input space R

n and the output space R
m and is not unique, see (1.7) in Section 1.4.

Exercise problem 4. Explain how to find a matrix representation of a linear function f , if f can be evaluated at
arbitrary points x ∈ R

n. Apply the procedure to the rotation function in R
n.

Example 5. A scalar linear function of a scalar argument

y = tan(α)x, where α ∈ [0,2π)

is a line in the plain passing through the origin. Its matrix representation is the scalar tan(α). Conversely, any line in
the plain passing though the origin is a linear function.

x

y

α

Example 6. A scalar valued linear function of a vector argument f : Rn → R is given by f (x) = a⊤x, where a ∈ R
n.

(The expression a⊤x, i.e., row vector times column vector, is called inner product, see Section 1.3.)

Example 7. The identity function x = f (x), for all x ∈ R
n, is a linear function represented by the n×n identity matrix

In :=




1
. . .

1


 ∈ R

n×n.

1.1. LINEAR FUNCTIONS AND MATRIX–VECTOR PRODUCT 7

Consider a differentiable function f : Rn → R
m. Then for a given x0 ∈ R

n

y = f (x0 + x̃)≈ f (x0)+Ax̃, where A =
[
ai j

]
=

[
∂ fi

∂x j

∣∣∣∣
x0

]
.

(∂ fi/∂x j is the partial derivative of fi with respect to x j and the matrix A of the partial derivatives is called the Jacobian
of f .) When the input deviation x̃ = x− x0 is “small”, the output deviation

ỹ := y− f (x0) =: y− y0

is approximately the linear function ỹ = Ax̃ of x̃, called the linear approximation of f at x0.

f

x0

y0

x

y Linear approximation
of f : x 7→ y at x = x0

8 CHAPTER 1. REVIEW OF LINEAR ALGEBRA

1.2 Rank of a matrix and inversion

The set of vectors {a1, . . . ,an } is linearly independent if the only linear combination of these vectors that is equal to
the zero vector is the trivial linear combination with all weights equal to zero, i.e.,

x1a1 + · · ·+ xnan = 0 =⇒ x1 = · · ·= xn = 0.

Linear independence means that non of the vectors ai, for i = 1, . . . ,n, can be expressed as a linear combination of the
remaining vectors. Vice verse, in a linearly dependent set of vectors {a1, . . . ,an } at least one vector is equal to a linear
combination of the others. This means that in a linearly dependent set of vectors, there is redundant information.

The rank rank(A) of the matrix A ∈ R
m×n is the number of linearly independent columns (or rows) of A and zero

if A is the zero matrix. Obviously,
0 ≤ rank(A)≤ min(m,n)

The matrix A is

• full row rank if rank(A) = m,

• full column rank if rank(A) = n, and

• full rank if it is either full row rank or full column rank.

Full row and column rank of A turns out to be a necessary and sufficient condition for, respectively, existence of
solution of the system Ax = y, for any given y ∈ R

m, and uniqueness of a solution of Ax = y for any given y ∈ R
m.

(Existence of solution of Ax = y, does depend on both A and y. However, assuming that the system Ax = y is solvable,
the uniqueness of a solution x depends only on A.)

Exercise problem 8. Prove that the matrix A being full row rank is equivalent to the system of equations Ax = y having
a solution for any y ∈ R

m.

Exercise problem 9. Prove that the matrix A being full column rank is equivalent to uniqueness of a solution x to the
system y = Ax, where y = Ax̄ for some x̄ ∈ R

n.

A system theoretic interpretation of A being full row rank is that the system defined by y = Ax has no redundant
outputs, i.e., none of the components of y can be inferred from the others. An interpretation of A being full column
rank is that the there exists an inverse system, i.e., a mechanism (which is also a system) to infer the the input from
the output.

Next we consider the inversion problem: given y ∈ R
m, find x, such that y = Ax. We distinguish three cases

depending on the shape of the matrix A (square, more rows than columns, or more columns than rows) and in all cases
we assume that A is full rank.

• If m = n = rank(A), then there exists a matrix A−1, such that

AA−1 = A−1A = Im. (1.1)

Then for all y ∈R
m

y = (AA−1)︸ ︷︷ ︸
Im

y = A(A−1y)︸ ︷︷ ︸
x

= Ax.

In this case, the inversion problem is solvable and the solution is unique.

Exercise problem 10. Prove the fact that m = n = rank(A) implies existance of a matrix A−1, such that (1.1).

Exercise problem 11. Find a matrix representation of a linear function f , from given values y1, . . . ,yn of f at
given points x1, . . . ,xn. When is this problem solvable?

1.2. RANK OF A MATRIX AND INVERSION 9

• If m ≥ n = rank(A), i.e., A is full column rank, the inversion problem may have no solution. In such cases, an
approximate solution may be desirable. The least-squares approximate solution minimizes the 2-norm

‖e‖2 :=
√

e⊤e =
√

e2
1 + · · ·+ e2

n, (1.2)

of the approximation error (or residual)
e := y−Ax.

The least-squares approximation problem is

minimize ‖e‖2 subject to Ax = y+ e

and the solution is given by the famous formula

xls = (A⊤A)−1A⊤y =: AL
lsy. (1.3)

Note that xls is a linear function AL
lsy of y. It is called the least squares approximate solution of the system of

equations Ax = y. If y = Ax̄, for some x̄ ∈ R
n, xls is an exact solution, i.e., xls = x̄.

Note 12 (Left inverse). Any matrix AL, satisfying the property ALA = In is called a left inverse of A. Left inverse
of A exists if and only if A is full column rank. If m > n, the left inverse is nonunique. If m = n, the left inverse
is unique and is equal to the inverse. The matrix AL

ls is a left inverse of A. Moreover, it is the smallest left
inverse, in the sense that it minimizes the Frobenius norm

‖AL‖F :=

√
m

∑
i=1

n

∑
j=1

(aL
i j)

2

over all left inverses AL of A.

Exercise problem 13. Prove that AL
ls = arg minAL ‖AL‖F subject to ALA = I.

• If n ≥ m = rank(A), i.e., A is full row rank, the inversion problem has infinitely many solutions. The set of all
solutions is

{x | Ax = y} = {xp + z | Az = 0}, where Axp = y,

i.e., xp is a particular solution of Ax = y and z is a parameter describing the nonuniquness of the solution. The
least-norm solution is

minimize ‖x‖2 subject to Ax = y.

It is given by the following closed form expression

xln = A⊤(AA⊤)−1y =: AR
lny. (1.4)

Note 14 (Right inverse). Any matrix AR, satisfying the property AAR = Im is called a right inverse of A. Right
inverse of A exists if and only if A is full row rank. If m < n, the right inverse is nonunique. If m = n, the
right inverse is unique and is equal to the inverse. The matrix AR

ln is a right inverse of A. Moreover, it can be
shown that it is the smallest right inverse, in the sense that it minimizes the Frobenius norm ‖AR‖F over all right
inverses AR of A.

Exercise problem 15. Prove that AR
ln = argminAR ‖AR‖F subject to AAR = I.

Note 16 (Inversion problem in the singular case). If A ∈R
m×n is rank deficient (or almost rank deficient), the inversion

problem is called ill-posed (or ill-conditioned). In this case, the inverse (assuming A is square) does not exist. Also
the least-squares (1.3) (assuming m > n) and the least-norm (1.4) (assuming m < n) formulas make no sense (because
the indicated inverses do not exist). A general solution to the inversion problem, which is independent of size and rank
assumptions on A, is given by x̂ = A+y, what A+ ∈ R

n×m is the pseudo-inverse of A. A related approach for solving
ill-posed and ill-conditioned inverse problems is regularization.

10 CHAPTER 1. REVIEW OF LINEAR ALGEBRA

1.3 Inner product

The inner product 〈a,b〉 = 〈b,a〉 of two vectors a,b ∈ R
m is defined by

〈a,b〉 := a⊤b =
m

∑
i=1

aibi.

The matrix–matrix product BA, where B : Rp×m and A : Rm×n, can be viewed as a collection of pn inner products
(between the rows of B and the columns of A)

BA =




— (b′1)
⊤ —

...
— (b′p)

⊤ —






| |

a1 · · · an

| |


=



〈b′1a1〉 · · · 〈b′1,an〉

...
...

〈b′p,a1〉 · · · 〈b′p,an〉


 .

The Gram matrix of the vectors a1, . . . ,an is defined by




a⊤1
...

a⊤n



[
a1 · · · an

]
= A⊤A.

The Gram matrix H := A⊤A is symmetric, i.e., H = H⊤ and positive semidefinite, i.e., x⊤Hx ≥ 0, for all x ∈ R
n. A

matrix H is called positive definite if x⊤Hx > 0, for all x ∈ R
m.

Exercise problem 17. The Gram matrix A⊤A is positive definite if and only if A is full column rank.

The Cauchy-Schwarz inequality relates the inner product with the product of the 2-norms

〈a,b〉 ≤ ‖a‖‖b‖. (1.5)

Equality holds in (1.5) if and only if b = αa, for some α ∈ R or b = 0.

Exercise problem 18. Prove (1.5).

Exercise problem 19 (Optimization of a linear function over the unit ball). Show that the solution of the problem,
given a ∈R

n,

maximize (over x) a⊤x subject to ‖x‖ ≤ 1

is xopt = a/‖a‖.

The angle between the vectors a,b ∈ R
n is defined as

∠(a,b) = cos−1 a⊤b

‖a‖‖b‖ .

• a 6= 0 and b are aligned if b = αa, for some α ≥ 0 (in this case, ∠(a,b) = 0).

• a 6= 0 and b are opposite if b =−αa, for some α ≥ 0 (in this case, ∠(a,b) = π).

• a and b are orthogonal, denoted a ⊥ b, if a⊤b = 0 (in this case, ∠(a,b) = π/2).

1.4. SUBSPACE, BASIS, AND DIMENSION 11

1.4 Subspace, basis, and dimension

The set A ⊂R
n is a subspace of a vector space R

n if A is a vector space itself, i.e.,

a,b ∈ A =⇒ αa+βb ∈ A , for all α ,β ∈R.

The set {a1, . . . ,an } is a basis for the subspace A if the following hold:

• a1, . . . ,an span A , i.e.,

A = span(a1, . . . ,an) := {x1a1 + · · ·+ xnan | x1, . . . ,xn ∈ R}= {
[
a1 · · · an

]
x | x ∈ R

n }

• {a1, . . . ,an } is an independent set of vectors.

Exercise problem 20. The number of basis vectors does not depend on the choice of the basis

The number of basis vectors of a subspace is invariant of the choice of the basis and is called the dimension of the
subspace. The dimension of A is denoted by dim(A).

The kernel (also called null space) of the matrix A ∈R
m×n is the set of vectors mapped to zero by f (x) := Ax, i.e.,

ker(A) := {x ∈ R
n | Ax = 0}.

Adding a vector z in the kernel of A to a solution xp of the system Ax = y produces another solution of the system, i.e.,
if Axp = y, then y = A(xp + z), for all z ∈ ker(A). From a parameter estimation point of view, ker(A) is the uncertainty
in finding the parameter x, given the observation y. From a control point of view, ker(A) is the freedom in the control x

that achieves the desired output y. If ker(A) = {0}, the function f (x) := Ax is called one-to-one .

Exercise problem 21. Show that ker(A) = {0} if and only if A is full column rank.

The image (also called column span or range) of the matrix Am×n is the set of vectors that can be obtained as an
output of the function f (x) := Ax, i.e.,

image(A) := {Ax ∈ R
m | x ∈ R

n }.

Obviously, image(A) is the span of the columns of A. Alternatively, image(A) is the set of vectors y for which the
system Ax = y has a solution. If image(A) = R

m, the function f (x) := Ax is called onto.

Exercise problem 22. Show that image(A) = R
m if and only if A is full row rank.

For a matrix A ∈ R
m×n, ker(A) is a subspace of Rn and image(A) is a subspace of Rn.

Exercise problem 23. Show that

dim
(

image(A)
)
= rank(A) and coldim(A)−dim

(
ker(A)

)
= rank(A). (1.6)

A direct consequence of (1.6) is the so called preservation of dimensions theorem (in R
n)

dim
(

ker(A)
)
+dim

(
image(A)

)
= coldim(A).

Note that
rank(A) = dim

(
image(A)

)
= rank(A⊤) = dim

(
image(A⊤)

)
.

image(A) is the span of the columns of A and image(A⊤) is the span of the rows of A. The former is a subspace of Rm

and the latter is a subspace of Rn, they are equal (to the rank of A). By defining the left kernel of A,

leftker(A) := {y ∈ R
m | y⊤A = 0},

12 CHAPTER 1. REVIEW OF LINEAR ALGEBRA

we have a preservation of dimensions theorem for Rm

dim
(

leftker(A)
)
+dim

(
image(A⊤)

)
= rowdim(A).

The standard basis vectors in R
n are the vectors

e1 =




1
0
0
...
0



, e2 =




0
1
0
...
0



, . . . , en =




0
0
...
0
1



.

Note that e1, . . . ,en are the columns of the identity matrix In. The elements of a vector x ∈ R
n are the coordinates of x

with respect to a basis understood from the context. The default basis is the standard basis e1, . . . ,en. Suppose that
a new bases is given by the columns t1, . . . , tn of a matrix T ∈ R

n×n. Since {t1, . . . , tn } is a basis, the set is linearly
independent. Therefore, the matrix T is nonsingular. Vice verse, any nonsingular matrix T ∈ R

n×n defines a basis
for Rn. Let the coordinates of x in the basis T be x̃1, . . . , x̃n. Then

x = x̃1t1 + · · ·+ x̃ntn = T x̃ =⇒ x̃ = T−1x,

i.e., the inverse matrix T−1 transforms the standard basis coordinates x into the T -basis coordinates x̃.
Consider, now a linear operator f : Rn → R

n (i.e., a function mapping from a space to the same space), given
by f (x) = Ax, A ∈ R

n×n. The matrix A is a representation of f in a basis that is understood from the context. By
default this is the standard basis. Changing the standard basis to a basis defined by the columns of a nonsingular
matrix T ∈ R

n×n, the matrix representation of f changes to T−1AT , i.e.,

ỹ = (T−1AT)x̃. (1.7)

The mapping A 7→ T−1AT , defined by T , is called a similarity transformation of A.

1.5 Eigenvalues and eigenvectors

The (complex) number λ ∈ C is an eigenvalue of the square matrix A ∈ R
n×n if there is a (complex) nonzero vector

v ∈ C
n, called an eigenvector associated to λ , such that Av = λv. Equivalently, λ is an eigenvalue of A if the matrix

λ In −A is singular. If (λ ,v) is an eigenpair of A, the action of A on vectors in span(v) is equivalent to a scalar
multiplication by λ .

The characteristic polynomial of A is
pA(λ) := det(λ In −A).

The degree of pA, denoted deg(pA), is equal to n and p is monic, i.e., the coefficient of the highest order term is one.

Exercise problem 24. Prove that the scalar λ ∈ C is an eigenvalue of A if and only if λ is a root of pA.

The geometric multiplicity of λ is the dimension of the kernel of λ In −A. The algebraic multiplicity of λ is the
multiplicity of the root λ of pA. A matrix that has an eigenvalue for which the geometric and algebraic multiplicities
do not coincide is called defective.

Suppose that {v1, . . . ,vn } is a linearly independent set of eigenvectors of A ∈ R
n×n, i.e.,

Avi = λivi, for i = 1, . . . ,n.

Written in a matrix form, the above set of equations is

A
[
v1 · · · vn

]
︸ ︷︷ ︸

V

=
[
v1 · · · vn

]
︸ ︷︷ ︸

V




λ1
. . .

λn




︸ ︷︷ ︸
Λ

.

1.6. SUMMARY 13

The matrix V has as columns the eigenvectors and is nonsingular since by assumption {v1, . . . ,vn } is a linearly
independent set. Then

AV =V Λ =⇒ V−1AV = Λ,

i.e., we obtain a similarity transformation (defined by the matrix T :=V−1) that diagonalizes A. Conversely, if there
is a nonsingular V ∈ C

n×n, such that
V−1AV = Λ

then Avi = λivi, for i = 1, . . . ,n, and therefore {v1, . . . ,vn } is a linearly independent set of eigenvectors.
The matrix A ∈ R

n×n is diagonalizable if

• there is a nonsingular matrix T , such that TAT−1 is diagonal, or

• there is a set of n linearly independent eigenvectors of A.

The set of defective matrices corresponds to the set of matrices that are not diagonalizable. The eigenvalues of a matrix
being distinct implies that the matrix is diagonalizable, however, the converse is not true (consider, for example, the
the identity matrix). A prototypical example of a defective matrix is what is called the Jordan block

Jλ :=




λ 1

λ
. . .

. . . 1
λ



.

A generalization of the eigenvalue decomposition TAT−1 = Λ for defective matrices is the Jordan canonical form

TAT−1 = diag(Jλ1 , . . . ,Jλk
),

where λ1, , . . . ,λk are the distinct eigenvalues of A.

Exercise problem 25. Show that the eigenvalues of a symmetric matrix A ∈ R
n×n are real and the eigenvectors can be

chosen to form an orthonormal set, i.e., be orthogonal to each other and have unit norm.

1.6 Summary

• f is linear if homogeneity and superposition holds, i.e., f (αx+βv) = α f (x)+β f (v)

• f is linear if and only if there is a matrix A, such that f (x) = Ax

• image (column span or range) of A ∈ R
m×n is the set image(A) := {Ax | x ∈R

n }

• kernel (or null space) of A ∈ R
m×n is the set ker(A) := {x ∈ R

m | Ax = 0}

• A ⊂ R
n is a subspace if αa+βb ∈ A for all a,b ∈ A

• a basis of a subspace is a set of linearly independent vectors that span the subspace

• the dimension of a subspace is the number of basis vectors

• the image(A) and the ker(A) of any matrix A are subspaces

• the rank of A is the number of linearly independent rows (or columns)

• dim
(

image(A)
)
= rank(A) and coldim(A)−dim

(
ker(A)

)
= rank(A)

• A is full row rank if rank(A) = rowdim(A)

14 CHAPTER 1. REVIEW OF LINEAR ALGEBRA

• A is full column rank if rank(A) = coldim(A)

• A is full rank if A is either full row rank or full column rank

• A is nonsingular if A is square and full rank

• inversion problem: given y = Ax, find x

• A−1 is inverse of A if A−1A = A−1A = I

• for A to have inverse, A should be square and full rank

• AL is left inverse of A if ALA = I

• solution of the inversion problem: x = ALy, ALA = I

• left inverse exists if and only if A is full column rank

• least-squares left inverse AL
ls = (A⊤A)−1A⊤

• AR is right inverse of A if AAR = I

• right inverse exists if and only if A is full row rank (nonsingular)

• least-norm right inverse AR
ln = A⊤(AA⊤)−1

• 2-norm of a vector ‖x‖=
√

x⊤x, unit ball {x | ‖x‖ ≤ 1}

• inner product of x,y ∈R
n is the scalar 〈x,y〉 := x⊤y

• Cauchy-Schwarz inequality: |a⊤b| ≤ ‖a‖‖b‖

• x,y ∈R
n are orthogonal, defined by x ⊥ y, if 〈x,y〉 = 0

• similarity transformation: A 7→ T−1AT , T nonsingular

• eigenvalue decomposition: T−1AT = Λ, Λ diagonal

• characteristic polynomial of A: pA(λ) := det(λ I −A)

• symmetric matrix A = A⊤ =⇒ real eigenvalues
orthonormal eigenvectors

Notes and references

Excellent undergraduate level introduction to linear algebra is the text of G. Strang [Str98]. A more advanced text on
linear algebra by the same author is [Str76]. The text of Meyer [Mey00] is encyclopedic and is well written. Advanced
topics on matrix theory are covered by Horn and Johnson in [HJ85, HJ91].

Bibliography

[HJ85] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[HJ91] R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.

[Mey00] C. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

[Str76] G. Strang. Linear Algebra and Its Applications. Academic Press, 1976.

[Str98] G. Strang. Introduction to Linear Algebra. Wellesley College, 1998.

Chapter 2

Numerical linear algebra

• Projectors, Gram-Schmidt, and QR factorization

• Computation of eigenvalues and eigenvectors

• Singular value decomposition

• Conditioning of a problem

• Floating point arithmetic and stability of an algorithm

2.1 Projectors, Gram-Schmidt, and QR factorization

Projectors

Consider a finite set of vectors Q := {q1, . . . ,qk } ⊂ R
n.

• Q is normalized if ‖qi‖= 1, for i = 1, . . . ,k.

• Q is orthogonal if qi ⊥ q j, for all i 6= j.

• Q is orthonormal if Q is orthogonal and normalized.

Exercise problem 26. Show that an orthonormal set of vectors is independent.

Define the matrix Q :=
[
q1 · · · qk

]
and note that Q is orthonormal if and only if Q⊤Q = Ik. A matrix Q, such

that Q⊤Q = Ik, is sometimes called orthonormal (this is not a completely standard terminology).

Exercise problem 27. Show that

• multiplication with an orthonormal matrix Q preserves norm, i.e., ‖Qz‖2 = z⊤Q⊤Qz = ‖z‖2, and

• multiplication with an orthonormal matrix Q preserves inner product, i.e., 〈Qz,Qy〉= 〈z,y〉.

Consider an orthonormal matrix Q ∈R
n×k and the subspace L spanned by the columns of Q, i.e.,

L := image(Q)⊆ R
n.

The columns of Q form an orthonormal basis for L . Since Q is orthonormal, Q⊤Q = Ik, however, for k < n,

QQ⊤ 6= In.

Exercise problem 28. The matrix Πimage(Q) := QQ⊤ is an orthogonal projector onto L , i.e.,

ΠL x = argmin
y

‖x− y‖2 subject to y ∈ L (2.1)

15

16 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Exercise problem 29. Show that necessary and sufficient conditions for Π to be a projector are

1. Π = Π2 (Π is idempotent), and

2. Π = Π⊤ (Π is symmetric).

Exercise problem 30. Show that the matrix
Π⊥ := I −Π

is also an orthogonal projector. The projector Π⊥ is called the complementary projector to Π. Define for a set S ⊂R
n,

its orthogonal complement

S
⊥ := {x ∈R

n | x⊤y = 0 for all y ∈ S }.
Show that for any set S ⊂R

n, its orthogonal complement S ⊥ is a subspace and that Π⊥ projects onto the orthogonal
complement

(
image(Π)

)⊥
of image(Π).

If Q := {q1, . . . ,qk } ⊂ R
n is an orthonormal set of k = n vectors, then the matrix Q :=

[
q1 · · · qn

]
is called

orthogonal. A matrix Q ∈ R
n is orthogonal if and only if it satisfies the identities

Q⊤Q = QQ⊤ =
n

∑
i=1

qiq
⊤
i = In.

It follows that for an orthogonal matrix Q, Q−1 = Q⊤. The identity x = QQ⊤x is an expansion of x in the orthonormal
basis given by the columns of Q.

• x̃ := Q⊤x is the vector of the coordinates of x in the basis Q, and

• x = Qx̃ reconstructs x in the standard basis {e1, . . . ,en }.

Geometrically multiplication by Q (and Q⊤) is a rotation.

Exercise problem 31. Verify that a matrix representation of rotation in R
2 is an orthogonal matrix.

Gram-Schmidt procedure and QR factorization

Given an independent set of vectors {a1, . . . ,ak } ⊂ R
n, the Gram-Schmidt procedure, see Algorithm 1, produces an

orthonormal set {q1, . . . ,qk } ⊂ R
n, such that

span(a1, . . . ,ar) = span(q1, . . . ,qr), for all r ≤ k.

Algorithm 1 Gram-Schmidt
Input: {a1, . . . ,ak } ⊂R

n

1: q1 := a1/‖a1‖
2: for i = 2, . . . ,k do

3: vi := (I −Πimage(q1,...,qi−1))ai {project ai onto
(
span(q1, . . . ,qi−1)

)⊥}
4: qi := vi/‖vi‖ {normalize}
5: end for

Output: {q1, . . . ,qk } ⊂ R
n

From ai ∈ span(q1, . . . ,qk), it follows that

ai = r1iq1 + · · ·+ riiqi (2.2)

for some scalars ri j, for i ≤ j and j = 1, . . . ,k.

2.1. PROJECTORS, GRAM-SCHMIDT, AND QR FACTORIZATION 17

Exercise problem 32. Show that ri j = q⊤i a j.

Written in a matrix form (2.2) is what is called the QR matrix factorization

[
a1 a2 · · · ak

]
︸ ︷︷ ︸

A

=
[
q1 q1 · · · qk

]
︸ ︷︷ ︸

Q1




r11 r12 · · · r1k

0 r22 · · · r2k

...
. . .

. . .
...

0 · · · 0 rkk




︸ ︷︷ ︸
R1

.

Here Q1 ∈ R
n×k is orthonormal and R1 ∈R

k×k is upper triangular.
The Gram-Schmidt procedure applies a sequence of linear operations on the columns of A, such that the resulting

matrix has orthonormal columns. In a matrix form this is expressed by AR̃1 = Q1, where the matrix R̃1 encodes the
operations of the Gram-Schmidt procedure. Note that R̃1 = R−1

1 , where R1 is the upper triangular matrix of the QR
factorization A = Q1R1.

Exercise problem 33. Show that the inverse R̃1 of a nonsingular upper triangular matrix R1 is again upper triangular

Therefore, the Gram-Schmidt procedure can be termed “triangular orthogonalization”.
There is an alternative procedure for computing the QR factorization that applies a sequence of orthogonal trans-

formations on the columns of A, aiming to produce an upper triangular matrix. In a matrix form this is expressed by
Q̃1A = R1, where Q1

Q̃1 = Q̃(1) · · · Q̃(n)

encodes the sequence of orthogonal transformations.

Exercise problem 34. Show that the product of orthonormal matrices Q̃(1), . . . ,Q̃(n) is orthonormal.

Q̃ = Q⊤
1 is the orthogonal matrix of the QR factorization A = Q1R1. The alternative process of “orthogonal

triangularization” turns our to be numerically more stable than the Gram-Schmidt procedure and is the preferred way
of computing the QR factorization

If {a1, . . . ,ak } is a set of dependent vectors, vi := (I −Πspan(q1,...,qi−1))ai = 0 for some i. Conversely, if vi = 0 for
some i, ai is linearly dependent on a1, . . . ,ai−1. The Gram-Schmidt produces can handle linearly dependent sets by
skipping to the next input vector ai+1 whenever vi = 0. As a result, the matrix R1 is in upper staircase form, e.g.,




× × × × × × ×
× × × × × ×

× × × ×
×




, (2.3)

with all empty elements being zeros.

Exercise problem 35. Which vectors are linearly dependent in the example of (2.3)?

The factorization

A =
[
Q1 Q2

][R1

0

]
= QR

with Q :=
[
Q1 Q2

]
orthogonal and R1 upper triangular is called full QR factorization.

Exercise problem 36. Show that

• image(A) = image(Q1), and

18 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

•
(

image(A)
)⊥

= image(Q2).

A method for finding the full QR factorization of A is to complete A to a full rank matrix, e.g., Am :=
[
A I

]
, and

apply the Gram-Schmidt procedure on Am. In Matlab, [Q,R] = qr(A) procedures the full QR and [Q1,R1] =

qr(A,0) procedures the reduced QR.

2.2 Computation of eigenvalues and eigenvectors

Three applications of the eigenvalue decomposition

• Evaluation of a function f : R→R at a square matrix. Consider a real analytic function x 7→ f (x) with a Taylor
series expansion

f (x) =
1
0!

f (0)x0 +
1
1!

(
d
d t

f
)
(0)x1 +

1
2!

(
d2

dt2 f
)
(0)x2 + · · ·

A matrix valued matrix function X 7→ f (X), where X ∈R
n×n, corresponding to the scalar valued scalar function

x 7→ f (x), where x ∈ R is defined by the series

f (X) :=
1
0!

f (0)X0 +
1
1!

(
d
dt

f
)
(0)X1 +

1
2!

(
d2

dt2 f
)
(0)X2 + · · ·

Exercise problem 37. Assuming that X is diagonalizable, i.e., there is a nonsingular matrix V and a diagonal
matrix Λ, such that

X =V−1ΛV, Λ = diag(λ1, . . . ,λn),

show that

f(X) =V




f (λ1)
. . .

f (λn)


V−1 =: V f (Λ)V−1.

• Stability of linear time-invariant systems. Consider the first order vector linear constant coefficients differential
and difference equations

d
dt

x(t) = Ax(t), for t ∈ R+ and x(t +1) = Ax(t), for t ∈ Z+. (2.4)

Given x(0) ∈R
n, the equations (2.4) have unique solutions x. Qualitative properties of the set of solutions, such

as, stability, i.e.,
x(t)→ 0 as t → ∞,

are determined by the location of the eigenvalues of A.

Exercise problem 38. Show that for the differential equation (continuous-time system), stability holds if and
only if ℜ(λi) < 0 for all i and for the difference equation (discrete-time system), stability holds if |λi| < 1 for
all i.

Stability of (2.4), however, can be checked without computing the eigenvalues λ1, . . . ,λn, cf., the Routh–Hurwitz
(continuous-time systems) and Schur–Cohn (discrete-time systems) tests [Jur74].

• Principal component analysis (PCA). Principal component analysis is a statistical technique. Here we give an
alternative deterministic formulation. Given a set of vectors {a1, . . . ,an }, find

{b∗1, . . . ,b
∗
j } := arg max

b1,...,b j

∥∥∥Πspan(b1,...,b j)

[
a1 · · · an

]∥∥∥
F

subject to
[
b1 · · · b∗j

]⊤ [
b1 · · · b∗j

]
= I

(2.5)
(Recall that Πspan(b1,...,b j) is the orthogonal projector onto span(b1, . . . ,b j).)

2.2. COMPUTATION OF EIGENVALUES AND EIGENVECTORS 19

Exercise problem 39. Shown that the solution {b∗1, . . . ,b
∗
n } to (2.5) is the orthonormal set of eigenvectors

{v1, . . . ,v j } of the matrix A⊤A, corresponding to the largest eigenvalues.

Eigenvalue/eigenvector computation algorithms

Eigenvalue computation is closely related to rooting a polynomial.

Exercise problem 40. Show that the set of eigenvalues of the companion matrix

Cp :=




−pn−1 −pn−2 · · · −p1 −p0

1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0




coincides with the set of roots of a polynomial

p(z) = p0 + p1z+ · · ·+ pnzn.

A classical results in mathematics due to Abel, is that there is no analogue of the formula for the roots of a quadratic
polynomial for a general polynomial of degree more than 4. By the above link between roots of a polynomial and
eigenvalues of a matrix, we conclude that the same must be true for the eigenvalues of a general matrix of dimension
more than 4×4.

There is no algorithm that can compute the eigenvalues of a general matrix of dimension more than 4×4
in a finite number of operations.

Eigenvalue algorithms must be iterative and in finite time produce only an approximation of the eigenvalues. The aim
in the design of eigenvalue algorithms is to increase the converges speed and reduce the number of operations per
iteration, so that the sequence of the eigenvalue approximations produced by the algorithm converges rapidly to the
eigenvalues.

The power iteration, inverse power iteration, and Rayleigh quotient iteration are basic methods for computing
an eigenvalue/eigenvector pair of a matrix and are ingredients of the modern algorithms for eigenvalue computation.
Next we outline these algorithms and for simplicity we restrict to the symmetric case. A symmetric A ∈ R

n×n has n

real eigenvalues, which we index as follows

λmax := λ1 ≥ λ2 ≥ ·· · ≥ λn =: λmin.

Corresponding to λ1, . . . ,λn, we choose an orthonormal set of eigenvectors q1, . . . ,qn. The Rayleigh quotient of v∈R
n

(with respect to A) is a mapping r : Rn → R defined by

r(v) :=
v⊤Av

v⊤v
.

Note that r(αqi) = λi, for all α ∈ R and i = 1, . . . ,n.

Exercise problem 41. Show that minv r(v) = λmin and maxv r(v) = λmax.

Exercise problem 42. Show that if |λ1|> |λ2| and v⊤1 v(0) 6= 0, then v(k) →±v1 with linear convergence rate O(|λ2/λ1|).

Let λ be the closest eigenvalue to µ and λ ′ be the second closest. Let v be the unit norm eigenvector corresponding
to λ . Then if v⊤v(0) 6= 0, then v(k) →±v with linear convergence rate O(|(µ −λ ′)/(µ −λ)|).

Let λ be the closest eigenvalue to µ and v be the corresponding eigenvector. Then, if v⊤v(0) 6= 0, then v(k) →±v

with cubic convergence rate.

20 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Algorithm 2 Power iteration.

Input: unit norm vector v(0) and a symmetric matrix A.
1: for k = 1,2, . . . (till convergence) do

2: w := Av(k−1) {apply A}
3: v(k) := w/‖w‖ {normalize}
4: end for

Output: eigenvalue/eigenvector of A —
(
(v(k))⊤Av(k),v(k)

)

Algorithm 3 Inverse iteration.

Input: unit norm vector v(0), a symmetric matrix A, and µ ≥ 0.
1: for k = 1,2, . . . (till convergence) do

2: (A−µI)w = v(k−1) {apply (A−µI)−1}
3: v(k) := w/‖w‖ {normalize}
4: end for

Output: eigenvalue/eigenvector of A —
(
(v(k))⊤Av(k),v(k)

)

Exercise problem 43. Implement the power, inverse power, and Rayleigh quotient methods. Apply them on examples
and observe their convergence properties. Comment on the results.

Normalized simultaneous power iteration

Take a set of initial vectors {v
(0)
1 , . . . ,v

(0)
p } and consider the iteration:

[
v
(k+1)
1 · · · v

(k+1)
p

]

︸ ︷︷ ︸
V (k+1)

= A
[
v
(k)
1 · · · v

(k)
p

]

︸ ︷︷ ︸
V (k)

, k = 0,1, . . .

One can expect that under suitable assumptions

span(v(k)1 , . . . ,v
(k)
p)→ span(v1, . . . ,vp), as k → ∞.

However,

v
(k)
i → v1, as k → ∞, for all i,

so V (k+1) becomes increasingly ill-conditioned as k → ∞. This problem is resolved by changing the computed basis
on each iteration step to an equivalent orthonormal basis.

Under suitable assumptions

image(Q(k))→ span(v1, . . . ,vp), as k → ∞.

Algorithm 4 Rayleigh quotient iteration

Input: unit norm vector v(0) and symmetric matrix A

1: for k = 1,2, . . . (till convergence) do

2: (A−λ (k−1)I)w = v(k−1) {apply (A−λ (k−1)I)−1}
3: v(k) := w/‖w‖ {normalize}
4: λ (k) := (v(k))⊤Av(k) {eigenvalue estimate}
5: end for

Output: eigenvalue/eigenvector of A —
(
λ (k),v(k)

)

2.2. COMPUTATION OF EIGENVALUES AND EIGENVECTORS 21

Algorithm 5 Normalized simultaneous power iteration.

Input: orthonormal matrix Q(0) ∈ R
n×p and symmetric matrix A.

1: for k = 1,2, . . . (till convergence) do

2: Z = AQ(k−1) {apply A}
3: QR factorization Q(k)R(k) = Z {compute orthonormal basis for image(Z)}
4: end for

Output: orthonormal eigenvectors of A — Q(k)

QR algorithm

The basic QR algorithm is normalized simultaneous power iteration with a full set p = n vectors and initial condition
Q(0) = In. Note that

A(k) = R(k)Q(k) = Q(k)⊤A(k−1)Q(k),

so that A(k) is similar to A(k−1).
Additional features of a practical QR algorithm are

• pre-processing: reduce A to tridiagonal form before the iteration,

• shifts: factor A(k)−λ (k)I instead of A(k), where λ (k) is an eigenvalue estimate, and

• deflations: reduce the size of A when and eigenvalue is found.

Algorithm 6 QR algorithm.

Input: symmetric matrix A(0) = A.
1: for k = 1,2, . . . (till convergence) do

2: A(k−1) = Q(k)R(k) {QR factorization}
3: A(k) = R(k)Q(k) {recombine in reverse order}
4: end for

Output: a Schur decomposition of A — Q(k),R(k).

The QR algorithm with shifts corresponds to the Rayleigh quotient iteration.

Note 44 (Hessenberg and Schur forms). The analogue of the tridiagonal form for nonsymmetric matrices is the
Hessenberg form

H :=




× × ·· · × ×
× × ·· · × ×

× . . .
. . . ×

. . .
. . .

...
× ×




There is an orthogonal similarity transformation that brings any square matrix to a Hessenberg form. Modern algo-
rithms for eigenvalue factorization of a general matrix A consist of two distinct stages:

1. reduction of A by an orthogonal similarity transformation to Hessenberg form, and

2. iterative convergence by a sequence of unitary similarity transformation to a Schur form.

Let U∗ be the conjugate transposed of U ∈ C
m×n. The matrix U is unitary if U =U∗. The Schur form R of A is an

upper triangular matrix, such that R = U∗AU , where U is a unitary matrix. The Schur form is eigenvalue revealing

because the eigenvalues of A appear on the diagonal of R. The first stage requires a finite number of operations and is
introduced for the purpose of speeding up the convergence on the second stage, which requires an infinite number of
operations.

22 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Generalized eigenvalues

A pair (A,B) of square matrices A,B ∈ R
n×n is called a pencil. A generalized eigenvector/eigenvalue (v,λ) of the

pencil (A,B) is a vector v ∈ C
n and a scalar λ ∈ C, such that

Av = λBv.

For a nonsingular matrix B, the generalized eigenvalue problem is equivalent to a standard eigenvalue problem

B−1Av = λv.

If A and B are symmetric matrices, the pencil (A,B) is called symmetric and has real generalized eigenvalues. The
generalized Rayleigh quotient is a mapping r : Rn → R defined by

rA,B(v) :=
v⊤Av

v⊤Bv

It has analogous properties to the Rayleigh quotient.

Exercise problem 45. Consider a symmetric pencil (A,B) and let λmin/λmax be the minimal/maximal generalized
eigenvalue of (A,B). Show that

λmin = min
v∈Rn

rA,B(v) and λmax = max
v∈Rn

rA,B(v).

2.3 Singular value decomposition

The singular value decomposition is used as both computational and analytical tool. Any matrix A ∈ R
m×n has a

singular value decomposition

A =
[
u1 · · · ur

]
︸ ︷︷ ︸

U1




σ1
. . .

σr




︸ ︷︷ ︸
Σ1

[
v1 · · · vr

]⊤
︸ ︷︷ ︸

V⊤
1

, (2.6)

where U1 and V1 are orthonormal and σ1, . . . ,σr are positive scalars, called singular values of A. The columns of U ,
u1, . . . ,ur are called left singular vectors and the columns of V , v1, . . . ,vr are called right singular vectors of A.

A geometric fact motivating the singular value decomposition is:

the image E = AU of a unit ball U under a linear map x 7→ Ax is a hyperellips.

Example 46. Consider the following example
[

1.00 1.50
0 1.00

]

︸ ︷︷ ︸
A

=

[
0.89 −0.45
0.45 0.89

]

︸ ︷︷ ︸
U

[
2.00 0

0 0.50

]

︸ ︷︷ ︸
Σ

[
0.45 −0.89
0.89 0.45

]

︸ ︷︷ ︸
V⊤

.

The image of the unit ball under the linear map defined by A is

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

v1

v2

A−→

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

σ1u1

σ2u2

2.4. CONDITIONING AND STABILITY 23

The vector v1 is mapped by A to the vector σ1u1, and the vector v2 is mapped by A to the vector σ2u2. From all unit
norm inputs vectors, the vector v1 achieves the maximum 2-norm output vector σ1u1, and v2 achieves the minimum
2-norm output vector σ2u2. Note that ‖σiui‖= σi.

The decomposition (2.6) is sometimes called the reduced SVD of a matrix A ∈R
m×n in order to distinguish it from

the full SVD

A =UΣV,

where U ∈ R
m×m and V ∈ R

n×n are orthogonal and

Σ =

[
Σ1 0
0 0

]
∈ R

m×n.

Compared with the reduced SVD, the full SVD computes matrices U2 ∈ R
m×(m−r) and V2 ∈ R

n×(n−r), such that

U :=
[
U1 U2

]
and V :=

[
V1 V2

]

are orthogonal and adds zero rows/columns to Σ1 to form Σ ∈ R
m×n. Note that the singular values of A are σ1, . . . ,σr

and min(m− r,n− r) zeros. In Matlab the full SVD is computed via [U,S,V] = svd(A) and the reduced SVD
via [U,S,V] = svd(A,0).

Similarities between SVD and EVD: Both the SVD and EVD diagonalize a matrix A. The left singular vectors
of A are eigenvectors of AA⊤, the right singular vectors of A are eigenvectors of A⊤A, the nonzero singular values of A

are the square roots of the nonzero eigenvalues of AA⊤ or A⊤A. In particular, for a symmetric A, |λi| = σi and for a
positive definite matrix λi = σi.

Exercise problem 47. Using the fact that AA⊤ or A⊤A have the same nonzero eigenvalues, argue (without doing

computations) that the eigenvalues of
[

1 1 1
1 1 1
1 1 1

]
are 3,0,0.

Differences between SVD and EVD: Despite the above similarities, there are important differences between the
SVD and EVD. The SVD exists for any matrix, while the EVD exist for nondefective square matrices. The SVD
applies two orthogonal similarity transformations, while the EVD applies one (in general not orthogonal) similarity
transformation. The SVD is used to analyse a single application of A on a vector, while the EVD is useful in problems
where A is repeatedly applied.

2.4 Conditioning and stability

Abstractly a computational problem is a mapping f : X → Y from a data space X to a solutions space Y . Usually
f is a continuous nonlinear function (even though the problem is in th realm of the linear algebra). A particular data
instance is an element X0 ∈ X . The problem f is called well conditioned at the data X0 if

small perturbations in X0 lead to small changes in f (X0)

The absolute condition number of the problem f at the data instance X0 is the derivative of f with respect to X at X0

lim
δ→0

sup
‖X̃‖<δ

‖ f (X0 + X̃)− f (X0)‖
‖X̃‖

.

The relative condition number is defined as

lim
δ→0

sup
‖X̃‖<δ

‖ f (X0 + X̃)− f (X0)‖/‖ f (X0)‖
‖X̃‖/‖X0‖

.

24 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Example 48 (Conditioning of root finding). The roots finding problem is: Given polynomial coefficients { p0, p1, . . . , pn },
find its roots {λ1, . . . ,λn }, i.e.,

p(λ) = p0 + p1λ 1 + · · ·+ pnλ n = c(λ −λ1) · · · (λ −λn).

The relative condition number of λ j with respect to perturbation ãi of ai is

κi, j = |aiλ
i−1
j |

/
| d

dλ p(λ j)|.

For the polynomial p(λ) = (λ −1) · · · (λ −20), argmaxi, j κi, j = (15,15) and in Matlab we obtain

>> roots(poly([1:20]))

ans = 1.0000 ... 14.0684 14.9319 16.0509 ... 20.0003

The function poly gives the coefficients of a monic polynomial with roots, specified by the input argument. (This
operation is recursive multiplication of a polynomial by monomials or equivalently convolution of a sequence by a
sequence with length two.) The function roots solves the roots finding problem, i.e., its argument is a vector of
polynomial coefficients and the results is a vector of the roots. In exact arithmetic roots(poly([1:20])) should
return the answer {1, . . . ,20}, however, due to the round-off errors in the finite precision arithmetic the answer is not
exact. The experiment shows that the 15th root is the one that has the largest perturbation.

Exercise problem 49. Check the computed roots of (λ −1)4 (roots(poly([1 1 1 1]))).

Condition number of matrix–vector product

Theorem 50. The problem of computing y = Ax for given nonsingular matrix A ∈ R
n×n and a vector x ∈ R

n has

relative condition number with respect to perturbations in x

κ = ‖A‖‖x‖
‖y‖ ≤ ‖A‖‖A−1‖.

For a nonsingular matrix A, the number
κ(A) := ‖A‖‖A−1‖

is called the condition number of A. For a general (nonsquare) matrix and 2-norm ‖ · ‖,

κ(A) := σmax(A)/σmin(A).

The matrix A is called ill-conditioned if κ(A) is “large”, and A is called well-conditioned if κ(A) is “small”. (Here
“large” and “small” depend on the size of the expected perturbations, so that they depend on the application.) The
number κ(A) is related to perturbations in the worst case. For an ill-conditioned A, the problem y = Ax may still be
well-conditioned at certain x’s.

Condition number of solving systems of equations

The relative condition number of the computational problem “solve a system of equations y = Ax, A ∈ R
n×n, with

respect to perturbation in y” is given by Theorem 50. Indeed, provided A is nonsingular, x = A−1y, which is a matrix–
vector product problem. (The matrix now is A−1.) If A is singular, the problem is infinitely ill-conditioned. Another
term for this case is ill-posed problem.

Theorem 51. The problem of computing x = A−1y, given A ∈ R
n×n and y ∈ R

n has relative condition number κ(A)
with respect to perturbations in A.

Proof. The perturbation Ã in A leads to a perturbation x̃ in x, such that

(A+ Ã)(x+ x̃) = y =⇒ Ãx+Ax̃
1
= 0.

2.4. CONDITIONING AND STABILITY 25

Here “ 1
=” means equal up to first order terms in Ã and x̃. (κ(A) describes the effect of infinitesimal perturbations.)

x̃
1
=−A−1Ãx =⇒ ‖x̃‖ ≤ ‖A−1‖‖Ã‖‖x‖

=⇒ ‖x̃‖/‖x‖
‖Ã‖/‖A‖

≤ ‖A−1‖‖A‖= κ(A).

Digital representation of real numbers

The IEEE double precision arithmetic is a widely used standard for digital representation of real numbers. It is
characterized by

• range: [−2.23×10−308,1.79×10308], and

• discretization: [2i,2i+1] 7→ 2i{1,1+2−52,1+2×2−52, . . . ,2}.

If a number large than 10308 is produced during computations, an exception called an overflow occurs. Conversely, if
a number smaller than 10−308 is produced, an underflow occurs. In the case of underflow, the number is rounded to
zero. Different systems react in different ways to overflow, which is a more serious exception.

The gaps between adjacent numbers are in a relative scale at most

ε := 2−52 ≈ 2.22×10−16.

The number ε := 2−52 is called the machine precision.
In fixed point arithmetic the position of the decimal point is fixed. In floating point arithmetic the position of the

decimal point is stored together with the digits. Fixed point arithmetic leads to uniform absolute errors, while floating
point arithmetic leads to uniform relative errors.

Let fl(x) be the digital representation of x ∈R, the error |fl(x)− x| ≤ ε is called rounding error.

Stability of an algorithm

Recall the general definition of a computational problem as a mapping f : X → Y . A computational algorithm,
aiming to solve the problem f , is another mapping f̂ : X → Y from the data to the solution space. The algorithm f̂

is called backward stable if for each X ∈ X there is X̂ ∈ X , such that

‖X − X̂‖
‖X‖ = O(ε) and f̂ (X) = f (X̂),

i.e.,

backward stable algorithm gives the right answer to a nearby problem

The meaning of e(X̃) := ‖X̃‖/‖X‖= O(ε) is that there is c,δ > 0, such that

‖X̃‖< δ =⇒ |e(X̃)| ≤ cε .

Computational complexity of an algorithm

The computational complexity of an algorithm is measured by the number of floating point operations (flops) or by
the execution time. One flop is defined as one addition, subtraction, multiplication, or division. The flops count is
usually simplified to leading order terms, e.g., O(n). It is useful in theoretical comparison of algorithms but on modern
computers it is not an accurate predictor of the computation time.

Standard linear algebra operations have the following computational complexities:

• n vector–vector operations (vector sum, scalar–vector multiplication, inner product) — O(n) flops

26 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

• m×n matrix–vector product — O(mn) flops

• m×n matrix – n× p matrix product — O(mnp) flops

• solving Ax = b with general A ∈ R
n×n — O(n3) flops

However if the matrix A has special structure and this structure is exploited, the computational complexities may be
lower. The following are typical examples of matrix structures and the corresponding computational complexities for
solving systems of equations with such matrices:

• diagonal — n flops (xi = yi/aii for i = 1, . . . ,n)

• lower/upper triangular: n2 flops (via forward/backward substitution)

• banded — O(nk), where k is the bandwidth

• symmetric — O(n3/3) (via Cholesky decomposition)

• orthogonal — O(n2) (x = AT y)

• permutation — 0 flops

• Toeplitz — O(n2) flops

• combination of banded, symmetric, and Toeplitz

Numerical linear algebra software

Currently the state-of-the-art software for numerical linear algebra are the Basic Linear Algebra Subroutines (BLAS)
and Linear Algebra PACKage (LAPACK) libraries. BLAS has functions for the lower-level linear algebra operations,
such as vector–vector operations (Level 1 BLAS), matrix–vector products (Level 2 BLAS), and matrix–matrix prod-
ucts (Level 3 BLAS). Although these operations are conceptually simple and algorithmically straightforward, their
implementation on a computer with distributed memory, is a highly nontrivial task.

The LAPACK library contains functions for higher level operations such as matrix factorizations and solvers for
linear systems, least-squares, and least-norm problems. There are special functions for structured problems involving
triangular, banded, diagonal matrices and the solvers provide error bounds based on perturbation analysis.

Notes and references

A excellent concise introduction to numerical linear algebra is given by Trefethen and Bau [TB97]. Classic reference
on this subject is the book of Golub and Van Loan [GV96]. The book of Demmel [Dem97] is with a particular
emphasis on writing numerical software. Perturbation theory is treated in [SS90] and stability analysis is extensively
treated by Higham [Hig91]. The IEEE floating point arithmetic is presented in [Ove01].

Bibliography

[Dem97] J Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[GV96] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, third edition, 1996.

[Hig91] N. Higham. Accuracy and Stability of Numerical Methods. SIAM, 1991.

[Jur74] E. Jury. Inners and stability of dynamic systems. Wiley, 1974.

[Ove01] M. Overton. Numerical Computing with IEEE Floating Point Arithmetic. SIAM, 2001.

[SS90] G. Stewart and J. Sun. Matrix perturbation theory. Academic Press, Boston, 1990.

[TB97] L. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

Chapter 3

Applications

• Least-squares

• Least-norm

• Total least-squares

• Low-rank approximation

The first three sections are discuss the linear system of equations Ax = y. The matrix A ∈ R
m×n and the vector

y ∈ R
m are given data. The vector x ∈ R

n is an unknown. Assuming that A is full rank, the system Ax = y is called

• overdetermined if m > n (in this case it has more equations than unknowns) and

• underdetermined if m < n (in this case it has more unknowns than equations).

For most vectors y ∈R
m, an overdetermined system has no solution x, and for any y ∈R

m an underdetermined system
has infinitely many solutions x. In the case of an overdetermined system, it is of interested to find an approximate
solution. An important example is the least squares approximate solution, which minimizes the 2-norm of the equation
error.

In the case of an underdetermined system, it is of interested to find a particular solution. The least-norm solution
is an example of a particular solution, It minimizes the 2-norm of the solution. Note that the least-squares approximate
solution is (most of the time) not a solution, while the least-norm solution is (aways) one of infinitely many solutions.

3.1 Least-squares

The least-squares method for solving approximately an overdetermined system Ax = y of equations is defined as
follows. Choose x such that the 2-norm of the residual (equation error)

e(x) := y−Ax

is minimized. A minimizer

x̂ls := argmin
x

‖y−Ax︸ ︷︷ ︸
e(x)

‖2 (3.1)

is called a least-squares approximate solution of the system Ax = y.
A geometric interpretation of the least-squares approximation problem (3.1) projection of y onto the image of A.

27

28 CHAPTER 3. APPLICATIONS

R
m

y

els

ŷls

image(A)

Here ŷls := Ax̂ls is the projection, which is the least-squares approximation of y and els := ŷls −Ax̂ls is the approx-
imation error.

Let ai be the ith row of A. We refer to the vector col(ai,yi) as a “data point”. We have,

Ax̂ls = ŷls ⇐⇒
[
A ŷls

][x̂ls

−1

]
= 0

⇐⇒
[
ai ŷls,i

][x̂ls

−1

]
= 0, for i = 1, . . . ,m

so that for all i, (ai, ŷls,i) lies on the subspace perpendicular to (x̂ls,−1). (ai, ŷls,i) is an the least-squares approximation
of the i data point col(ai,yi).

(ai, ŷls,i) = (ai, ŷls,i)+ (0,els,i),

and (0,els,i) is the least-squares approximation error. Note that els,i is the vertical distance from (ai,yi) to the subspace.
The above derivation suggestions another geometric interpretation of the least-squares approximation.

R
n+1

R
n

R
1

[
x̂ls
−1

]

els,i ker([x̂⊤ls −1])

(ai,yi)

(ai, ŷls,i)

Note that the former geometric interpretation is in the space R
m, while the latter is in the (data space) Rn+1.

Exercise problem 52. [Derivation of solution xln via Lagrange multipliers] Assuming that m ≥ n = rank(A), i.e., A is
full column rank, show that

x̂ls = (A⊤A)−1A⊤y.

Notes:

• Als := (A⊤A)−1A⊤ is a left-inverse of A

• x̂ls is a linear function of y (given by the matrix Als)

• If A is square, x̂ls = A−1y (i.e., Als = A−1)

• x̂ls is an exact solution if Ax = y has an exact solution

• ŷls := Ax̂ls = A(A⊤A)−1A⊤y is a least-squares approximation of y

3.1. LEAST-SQUARES 29

Projector onto the image of A and orthogonality principle

The m×m matrix

Πimage(A) := A(A⊤A)−1A⊤

is the orthogonal projector onto the subspace L := image(A). Suppose that the columns of A form an orthonormal
basis for L . Then, recall that Πimage(Q) := AA⊤.

The least-squares residual vector

els := y−Ax̂ls =
(
Im −A(A⊤A)−1A⊤)
︸ ︷︷ ︸

Π
(image(A))⊥

y

is orthogonal to image(A)

〈els,Ax̂ls〉= y⊤
(
Im −A(A⊤A)−1A⊤)Ax̂ls = 0. (3.2)

y

els

ŷls

image(A)

Exercise problem 53. Show that the orthogonality condition (3.2) is a necessary and sufficient condition for x̂ls being
a least squares approximate solution to Ax = b.

Least-squares via QR factorization

Let A = QR be the QR factorization of A. We have,

(A⊤A)−1A⊤ = (R⊤Q⊤QR)−1R⊤Q⊤

= (R⊤Q⊤QR)−1R⊤Q⊤ = R−1Q⊤,

so that

x̂ls = R−1Q⊤y and ŷls := Axls = QQ⊤y.

Exercise problem 54 (Least-squares with an increasing number of columns in A). Let A =:
[
a1 · · · an

]
and consider

the sequence of least squares problems

Aixi = y, where Ai :=
[
a1 · · · ai

]
, for i = 1, . . . ,n

Define Ri as the leading i× i submatrix of R and let Qi :=
[
q1 · · · qi

]
. Show that

x̂i
ls = R−1

i Q⊤
i y.

30 CHAPTER 3. APPLICATIONS

Weighted least-squares

Given a positive definite matrix W ∈ R
m×m, define the wighted 2-norm

‖e‖2
W := e⊤We.

and the weighted least-squares approximate solution

x̂W,ls := arg min
x

‖y−Ax‖2
W .

Exercise problem 55. Show that
x̂W,ls = (A⊤WA)−1A⊤Wy,

and that the least-squares orthogonality principle holds for the weighted least-squares problem as well by replacing
the inner product 〈e,y〉 by the weighted inner product

〈e,y〉W := e⊤Wy.

Recursive least-squares

The least-squares criterion is

‖y−Ax‖2
2 =

m

∑
i=1

(yi −a⊤i x)2

where a⊤i is the ith row of A. We consider the sequence of least-squares problems

minimize
k

∑
i=1

(yi −a⊤i x)2

the solutions of which are

x̂ls(k) :=

(
k

∑
i=1

aia
⊤
i

)−1
m

∑
i=1

aiyi.

The meaning is that the measurements (ai,yi) come sequentially (in time) and we aim to compute a solution each time
a new data point arrives. Instead of recomputing the solution from scratch, we can recursively update x̂ls(k− 1) in
order to obtain x̂ls(k).

Recursive algorithm

• Initialization: P(0) = 0 ∈ R
n×n, q(0) = 0 ∈R

n

• For m = 0,1, . . . ,m

• P(k+1) := P(k)+ak+1a⊤k+1, q(k+1) := q(k)+ak+1yk+1

• If P(k) is invertible, x̂ls(k) = P−1(k)q(k).

On each step, the algorithm requires inversion of an n×n matrix, which requires O(n3) operations. At certain k,
P(k) being invertible implies that P(k′) is invertible, for all k′ > k.

The computational complexity of the algorithm can be decreased to O(n2) operations per step by using the fol-
lowing result about the inverse of matrix with rank-1 update

(P+aa⊤)−1 = P−1 − 1
1+a⊤P−1a

(P−1a)(P−1a)⊤.

3.1. LEAST-SQUARES 31

Multiobjective least-squares

Least-squares minimizes the cost function
J1(x) := ‖Ax− y‖2

2.

Consider a second cost function
J2(x) := ‖Bx− z‖2

2,

which we want to minimize together with J1. Usually the criteria minx J1(x) and minx J2(x) are competing. A common
example is J2(x) := ‖x‖2

2 — minimize J1 with small x.
The set of achievable objectives is

{(α ,β) ∈ R
2 | ∃ x ∈ R

n subject to J1(x) = α , J2(x) = β }

Its boundary is the optimal trade-off curve and the corresponding x’s are called Pareto optimal.
A common method for “solving” multiobjective optimization problems is secularization. For any µ ≥ 0, the

problem
x̂(µ) = arg min

x
J1(x)+µJ2(x)

produces a Pareto optimal point. For a convex problem (such as the the multiobjective least-squares), by varying
µ ∈ [0,∞), x̂(µ) sweeps all Pareto optimal solutions.

0.1 0.2 0.3 0.4 0.5

0.6

0.8

1

1.2

1.4

1.6

J2

J 1

Regularized least-squares

Exercise problem 56. Show that the solution of the Tychonov regularization problem

x̂reg = arg min
x

‖Ax−b‖2
2 +µ‖x‖2

2

is
x̂reg = (A⊤A+µIn)

−1A⊤y.

Note that x̂reg exists for any µ > 0, independent on size and rank of A. The parameter µ controls the trade-off
between

• fitting accuracy ‖Ax−b‖2, and

• solution size ‖x‖2.

For small µ , the solution is larger but gives better fit. For large µ , the solution is smaller but the fit is worse. In
the extreme case µ = 0, assuming that the system Ax = b is overdetermined, the regularized least-squares problem is
equivalent to the standard least-squares problem, which does not constrain the size of x. In the other extreme µ → 0,
assuming that Ax = b is underdetermined, the regularized least-squares problem tends to the least-norm problem.

32 CHAPTER 3. APPLICATIONS

3.2 Least-norm

Consider an underdetermined system Ax = y, with full rank A ∈R
m×n. The set of solutions is

A := {x ∈ R
n | Ax = y}= {xp + z | z ∈ ker(A)}= xp +ker(A).

where xp is a particular solution, i.e., Axp = y. The least-norm solution is defined by the optimization problem

x2
ln := arg min

x
‖x‖2 subject to Ax = y. (3.3)

Exercise problem 57 (Derivation of solution xln via Lagrange multipliers). Assuming that n ≥ m = rank(A), i.e., A is
full row rank, show that

xln = A⊤(AA⊤)−1y.

A geometric interpretation of (1.4) is the projection of 0 onto the solution set A .

R
n

xln

‖xln‖

0

ker(A)+ xp

Exercise problem 58. The orthogonality principle for least-norm is xln ⊥ ker(A). Show that it is a necessary and
sufficient condition for optimality of xln

Let A⊤ = QR be the QR factorization of A⊤. The right inverse of A is

A⊤(AA⊤)−1 = QR(R⊤Q⊤QR)−1 = Q(R⊤)−1,

so that
xln = Q(R⊤)−1y.

3.3 Total least-squares

The least-squares method minimizes the 2-norm of the equation error e(x) := y−Ax

min
x,e

‖e‖2 subject to Ax = y− e

Alternatively, the equation error e can be viewed as a correction on y. The total least-squares method is motivated
by the asymmetry of the least-squares method: both A and b are given data, but only b is corrected. The total least
squares problem is defined by the optimization problem

minimize
x,Ã,ỹ

∥∥[Ã ỹ
]∥∥

F subject to (A+ Ã)x = y+ ỹ

Here Ã is the correction on A and ỹ is the correction on y. The Frobenius norm ‖C‖F of C ∈ R
m×n is defined as

‖C‖F :=

√
m

∑
i=1

n

∑
j=1

c2
i j.

3.4. LOW-RANK APPROXIMATION 33

Geometric interpretation of the total least squares criterion

In the case n = 1, the problem of solving approximately Ax = y is



a1
...

am


x =




y1
...

ym


, where x ∈ R. (3.4)

A geometric interpretation of the total least squares problem (3.4) is: fit a line

L (x) := {(a,b) | ax = b}

passing through the origin to the points (a1,y1), . . . ,(am,ym).

• least squares minimizes sum of squared vertical distances from (ai,yi) to L (x),

• total least squares minimizes sum of squared orthogonal distances from (ai,yi) to L (x).

R
n+1

R
n

R
1

[
x̂tls
−1

]

ker([x̂⊤tls −1])

(ai,yi)

(âi, ŷtls,i)

Solution of the total least squares problem

Theorem 59. Let
[
A y

]
=UΣV⊤ be the SVD of the data matrix

[
A y

]
and

Σ := diag(σ1, . . . ,σn+1), U :=
[
u1 · · · un+1

]
, V :=

[
v1 · · · vn+1

]
.

A total least squares solution exists if and only if vn+1,n+1 6= 0 (last element of vn+1) and is unique if and only if

σn 6= σn+1.

In the case when a total least squares solution exists and is unique, it is given by

x̂tls =− 1
vn+1,n+1




v1,n+1
...

vn,n+1




and the corresponding total least squares corrections are
[
Ãtls ỹtls

]
=−σn+1un+1v⊤n+1.

3.4 Low-rank approximation

The low-rank approximation problem is defined as: Given a matrix A ∈R
m×n, m ≥ n, and an integer r, 0 < r < n, find

Â∗ := arg min
Â

‖A− Â‖ subject to rank(Â)≤ r. (3.5)

Â∗ is an optimal rank-r approximation of A with respect to the norm ‖ · ‖, e.g.,

‖A‖2
F :=

m

∑
i=1

n

∑
j=1

a2
i j or ‖A‖2 := max

x

‖Ax‖2

‖x‖2

34 CHAPTER 3. APPLICATIONS

Theorem 60 (Solution via SVD). Let A =UΣV⊤ be the SVD of A and define

U =:
r r− n[
U1 U2

]
n , Σ =:

r r− n[
Σ1 0
0 Σ2

]
r

r− n
and V =:

r r− n[
V1 V2

]
n .

An solution to (3.5) is

Â∗ =U1Σ1V⊤
1 .

It is unique if and only if σr 6= σr+1.

3.5 Notes and references

Least-squares and least-norm are standard topics in both numerical linear algebra and engineering. Numerical aspects
of the problem are considered in [Bjö96]. For an overview of total least squares problem, see [MV07]

Bibliography

[Bjö96] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[MV07] I. Markovsky and S. Van Huffel. Overview of total least squares methods. Signal Processing, 87:2283–2302,
2007.

