Outline

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations

Outline

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations

A classic line fitting method is solving $Ax \approx B$

problem: fit points $d_1, \ldots, d_N \in \mathbb{R}^2$ by line going through 0

approach: find approximate solution $x \in \mathbb{R}$ of

$$\begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix} x = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}, \quad \text{where} \quad d_i = \begin{bmatrix} a_i \\ b_i \end{bmatrix}$$

the fitting line is
$$\mathscr{B} := \{ \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2 \mid ax = b \}$$
 (x is model parameter)

The choice of a and b is arbitrary

another approach: find approximate solution $x' \in \mathbb{R}$ of

$$egin{bmatrix} b_1 \ dots \ b_N \end{bmatrix} & x' = egin{bmatrix} a_1 \ dots \ a_N \end{bmatrix}$$

the fitting line is
$$\mathscr{B}' := \{ \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2 \mid a = bx' \}$$
 (x' is model parameter)

exceptions: vertical line
$$x = \infty$$
 $x' = 0$ horizontal line $x = 0$ $x' = \infty$

In general, the two solutions differ: $\mathscr{B} \neq \mathscr{B}'$

solving Ax = B and Bx' = A leads to different solutions

the fitting criterion depends on how we choose a and b

the mode representation affects the fitting criterion

Ax = B imposes input/output model structure

functional relations

- Ax = B defined a function $a \mapsto b$
- Bx = A defined a function $b \mapsto a$

in the model
$$\mathscr{B} := \{ \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2 \mid ax = b \}$$

a is input, b is output (a causes b)

in the model
$$\mathscr{B}' := \{ \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2 \mid bx = a \}$$

b is input, a is output (b causes a)

Model class — set of all candidate models

in the example, the model class is $\mathcal{M} := \{ \text{ lines through } 0 \}$

separately, ax = b and bx = a don't represent all $\mathcal{B} \in \mathcal{M}$

any $\mathscr{B} \in \mathscr{M}$ is representable as $\mathscr{B} = \{ \Pi[{}^a_b] \mid ax = b \}$ with Π a permutation matrix

Definition of least-squares line fitting problem

given points $\mathscr{D}=\{d_1,\ldots,d_N\}\subset\mathbb{R}^2$ and model class \mathscr{M} minimize over $\mathscr{B}\in\mathscr{M}$ error $(\mathscr{D},\mathscr{B})$

where

$$\operatorname{error}(\mathscr{D},\widehat{\mathscr{B}}) := \min_{\widehat{\mathscr{D}} \subset \widehat{\mathscr{B}}} \quad \sum_{i=1}^{N} \|d_i - \widehat{d}_i\|_2^2$$

notes:

- $\widehat{\mathscr{D}} \subset \widehat{\mathscr{B}}$ means that $\widehat{\mathscr{B}}$ fits $\{\widehat{d}_1, \dots, \widehat{d}_N\}$ exactly
- \widehat{d}_i is the projection of d_i on the line $\widehat{\mathscr{B}}$
- ▶ $||d_i \widehat{d}_i||_2$ is the orthogonal distance from d_i to $\widehat{\mathscr{B}}$

Any $\mathscr{B} \in \mathscr{M}$ can be represented as kernel

any $\mathcal{B} \in \mathcal{M}$ can be represented as

$$\mathscr{B}=\ker(R):=\{\,d\in\mathbb{R}^2\mid Rd=0\,\}$$
 $(R\in\mathbb{R}^{1\times 2},\,R\neq0\ \text{is a model parameter})$

Rd = 0 defines a relation (implicit fucntion) between a and b

exact modeling condition

$$\{d_1,\ldots,d_N\}\subset\ker(R)\quad\Longleftrightarrow\quad R\underbrace{\left[d_1\quad\cdots\quad d_N\right]}_D=0$$

Any $\mathscr{B} \in \mathscr{M}$ can be represented as image

any $\mathcal{B} \in \mathcal{M}$ can be represented as

$$\mathscr{B}=\mathsf{image}(P):=\{\,d=P\ell\mid\ell\in\mathbb{R}\,\}$$

$$(P\in\mathbb{R}^{2\times 1}\;\mathsf{is\;a\;model\;parameter})$$

 $d = P\ell$ also defines a relation between a and b

exact modeling condition

$$\mathscr{D} \subset \operatorname{image}(P) \iff \begin{bmatrix} d_1 & \cdots & d_N \end{bmatrix} = PL$$

$$(L \in \mathbb{R}^{1 \times N} \text{ is a latent variable})$$

For exact data, rank $(\begin{bmatrix} d_1 & \cdots & d_N \end{bmatrix}) \leq 1$

common feature of the representations considered

$$\exists x \in \mathbb{R}, \Pi \text{ permut.} \qquad \begin{bmatrix} x & -1 \end{bmatrix} \Pi D = 0 \iff \\ \exists R \in \mathbb{R}^{1 \times 2}, R \neq 0 & RD = 0 \iff \\ \exists P \in \mathbb{R}^{2 \times 1}, L \in \mathbb{R}^{1 \times N} & D = PL \iff \end{bmatrix} \operatorname{rank}(D) \leq 1$$

representation free characterization of exact data

$$\mathcal{D} \subset \mathcal{B} \in \mathcal{M}$$

$$\updownarrow$$

$$\operatorname{rank}(D) = 1$$

Approximate modeling of data is equivalent to low-rank approximation

minimize over $\widehat{\mathcal{D}}$ error($\mathcal{D}, \widehat{\mathcal{D}}$) subject to exact model for $\widehat{\mathcal{D}}$ exists

minimize over \widehat{D} error (D, \widehat{D}) subject to \widehat{D} is rank deficient

Low-rank approximation is a general concept

- 1. multivariable data fitting $\mathcal{U} = \mathbb{R}^q$

 - model complexity subspace dimension
 - rank(D) \leftrightarrow upper bound on the model complexity
- 2. nonlinear static modeling
 - $\triangleright \mathscr{D} \mapsto D$ nonlinear function
 - nonlinearly structured low-rank approximation
- 3. linear time-invariant dynamical models
 - $\mathscr{D} \mapsto \mathsf{Hankel} \; \mathsf{matrix} \; D$
 - Hankel structured low-rank approximation

The matrix structure corresponds to the model class

structure \mathscr{S}	model class M
unstructured	linear static
Hankel	scalar LTI
$q \times 1$ Hankel	q-variate LTI
$q \times N$ Hankel	N equal length traj.
mosaic Hankel	N general trajectory
[Hankel unstructured]	finite impulse response
block-Hankel Hankel-block	2D linear shift-invariant

EIV, PCA, and factor analysis are related

errors-in-variables modeling

- all variables are perturbed by noise
- ▶ maximum likelihood estimation ↔ LRA

principal component analysis

another statistical setting for LRA

factor analysis

▶ factors ↔ latent variables in an image representation

Outline

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations

A linear static model is a subspace

linear static model with q variables = subspace of \mathbb{R}^q

model complexity ← subspace dimension

 $ightharpoonup \mathscr{L}_{m,0}$ — linear static models with complexity at most m

 $\mathscr{B} \in \mathscr{L}_{\text{m.0}}$ admits kernel, image, and I/O representations

A linear static model admits kernel, image, and input/output representations

kernel representation with parameter $R \in \mathbb{R}^{p \times q}$

$$\ker(R) := \{ d \mid Rd = 0 \}$$

image representation with parameter $P \in \mathbb{R}^{q \times m}$

$$image(P) := \{ d = P\ell \mid \ell \in \mathbb{R}^m \}$$

input/output representation with parameters $X \in \mathbb{R}^{m \times p}$, Π

$$\mathscr{B}_{\mathsf{i/o}}(X,\Pi) := \{ d = \Pi \begin{bmatrix} u \\ y \end{bmatrix} \mid u \in \mathbb{R}^{\mathsf{m}}, \ y = X^{\mathsf{T}}u \}$$

The parameters R and P are not unique

addition of linearly dependent

- ► rows of R
- columns of P

minimal representations

- the smallest number of generators is $m := dim(\mathscr{B})$
- the max. number of annihilators is $p := q \dim(\mathscr{B})$

change of basis transformation

- ▶ $\ker(R) = \ker(UR)$, $U \in \mathbb{R}^{p \times p}$, $\det(U) \neq 0$
- ► image(PV) = image(PV), $V \in \mathbb{R}^{m \times m}$, det(V) $\neq 0$

Inputs and outputs can be deduced from \mathscr{B}

definition

input is a "free" variable

$$\Pi \begin{bmatrix} u \\ y \end{bmatrix} \in \mathscr{B} \text{ and } u \text{ input} \iff u \in \mathbb{R}^m$$

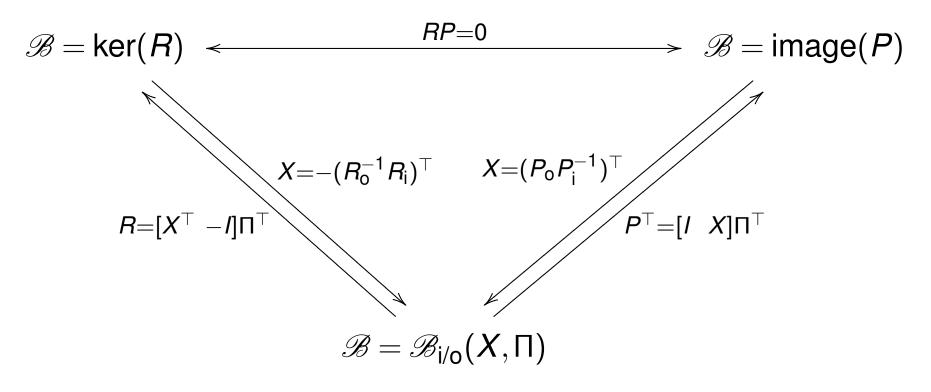
output is bound by input and model

fact:
$$m := dim(\mathscr{B})$$
 — number of inputs $p := q - m$ — number of outputs

choosing an I/O partition amounts to choosing

- full rank p x p submatrix of R
- full rank m x m submatrix of P

It is possible to convert a given representation into an equivalent one



$$\Pi^{\top} P =: \begin{bmatrix} P_{i} \\ P_{o} \end{bmatrix} \text{ m and } R\Pi =: \begin{bmatrix} R_{i} & R_{o} \end{bmatrix}$$

Outline

From Ax = B to low-rank approximation

Linear static model representations

Linear time-invariant model representations

Dynamical models are sets of functions

observations are trajectories w

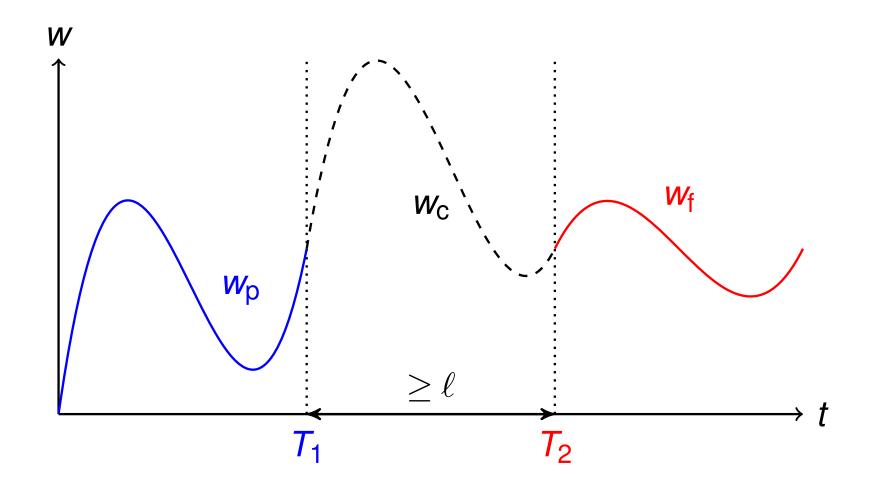
- $(\mathbb{R}^q)^{\mathbb{N}}$ set of functions from \mathbb{N} to \mathbb{R}^q
- ▶ shift operator: $(\sigma^{\tau}w)(t) := w(t+\tau)$, for all $t \in \mathbb{N}$

discrete-time dynamic model \mathscr{B} is a subset of $(\mathbb{R}^q)^\mathbb{N}$

properties

- ▶ linearity: $w, v \in \mathscr{B} \implies \alpha w + \beta v \in \mathscr{B}$, for all α, β
- time-invariance: $\sigma^{\tau}\mathscr{B} = \mathscr{B}$, for all $\tau \in \mathbb{N}$

Controllability can be defined in a representation free manner



for all w_p , $w_f \in \mathscr{B}$, there is w_c , such that $w_p \wedge w_c \wedge w_f \in \mathscr{B}$ (" \wedge " denotes "concatenation" of trajectories)

An LTI model admits kernel and input/state/output representations

kernel representation with parameter $R(z) \in \mathbb{R}^{g \times q}[z]$

$$\ker(R) = \{ w \mid R(\sigma)w = R_0w + R_1\sigma w + \cdots + R_\ell\sigma^\ell w = 0 \}$$

image representation with parameter $P(z) \in \mathbb{R}^{q \times g}[z]$

$$image(P) = \{ w = P(\sigma)v \mid for some v \}$$

input/state/output representation

$$\mathscr{B}(A,B,C,D,\Pi) := \{ w = \Pi \begin{bmatrix} u \\ y \end{bmatrix} \mid$$
 exists x , such that $\sigma x = Ax + Bu$ and $y = Cx + Du \}$

Minimal kernel and image representations have full rank *R* and *P* parameters

minimal rowdim(R) = number of outputs

minimal coldim(P) = number of inputs

lag of \mathscr{B} — minimal ℓ , for which kernel repr. exists

The I/S/O representation is not unique

choice of an input/output partition

redundant states (nonminimality of the representation)

• minimal representation \iff n = order of \mathscr{B}

change of state space basis

$$\mathscr{B}(A,B,C,D) = \mathscr{B}(T^{-1}AT,T^{-1}B,CT,D),$$
 for any nonsingular matrix $T \in \mathbb{R}^{n \times n}$

The complexity of an LTI model is determined by the number of inputs and the order

restriction of \mathscr{B} on an interval [1, T]

$$\mathscr{B}|_{\mathcal{T}} = \{ w = (w(1), \dots, w(\mathcal{T})) \mid \text{there are } w_p, w_f, \\ \text{such that } w_p \wedge w \wedge w_f \in \mathscr{B} \}$$

for sufficiently large T

$$dim(\mathscr{B}|_{\mathcal{T}}) = (\# \text{ of inputs}) \cdot \mathcal{T} + (\text{order})$$

$$\mathsf{complexity}(\mathscr{B}) = \begin{bmatrix} \mathsf{m} \\ \ell \end{bmatrix} \to \mathsf{\#ofinputs} \\ \to \mathsf{order\ or\ lag}$$

 $\mathscr{L}_{m,\ell}^q$ — LTI models with q variables and complexity bounded by (m,ℓ)

Transition among different representations is a powerful problem solving tool

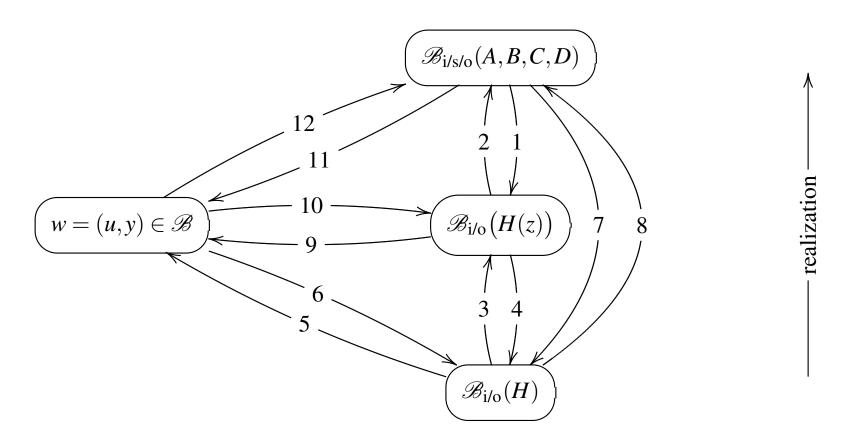
a problem is easier, when suitable representation is used

examples:

- decoupling of a MIMO system
- diagonalization in linear algebra
- pole placement using canonical forms

the problem becomes to transform the representation

data ——— identification ——> model



1.
$$H(z) = C(Iz - A)^{-1}B + D$$

- 2. realization of a transfer function
- 3. Z or Laplace transform of H(t)
- 4. inverse transform of H(z)
- 5. convolution $y_d = H \star u_d$
- 6. exact identification

7.
$$H(0) = D$$
, $H(t) = CA^{t-1}B$ (discrete-time), $H(t) = Ce^{At}B$ (continuous-time), for $t > 0$

- 8. realization of an impulse response
- 9. simulation with input u_d and x(0) = 0
- 10. exact identification
- 11. simulation with input u_d and $x(0) = x_{ini}$
- 12. exact identification