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Abstract

Algebraic and geometric data fitting problems for a modetglaf affine varieties with bounded complexity
(dimension and degree) are equivalent to low-rank appratian of a polynomially structured matrix constructed
from the data. In algebraic fitting problems, the approxintatmatrix is unstructured and the corresponding low-
rank approximation problem can be solved analytically lystmgular value decomposition. In geometric fitting
problems, the approximating matrix is polynomially sturetd and, except for the case of an affine model class, no
analytic solution is know.

The equivalence of data modeling and low-rank approximatiaifies existing curve fitting methods, showing
that algebraic fitting is a relaxation of geometric fittintpt@ined by removing the structure constraint, and reveals
new solution approaches. Literate programs for solvindinearly structured low-rank approximation problems
are presented and their effectiveness is illustrated omgeraf artificially constructed and real-life data fitting
problems.

Keywords: Curve fitting, Orthogonal regression, Total least squdrea-rank approximation, Errors-in-variables
modeling, Reproducible research, Literate programming.

1 Introduction

Background and contribution

Identifying a curve in a set of curves that best fits given data pointsasamn problem in computer vision, statistics,
and coordinate metrology, see [Van97, Part IV]. More abstractly,ceqapation by Fourier series, wavelets, splines,
and sum-of-damped-exponentials are also curve fitting problems. In phieaons, the fitted curve is a model for
the data and, correspondingly, the set of candidate curves is a mostel cla

Data modeling problems are specified by choosing a model class and a fittergoor The fitting criterion is
maximisation of a measure for fit between the data and a model. Equivalentlyitér@on can be formulated as
minimization of a measure for lack of fit (misfit) between the data and a model. Datalimgp problems can be
classified according to the type of model and the type of fitting criterion asifsilo

e linear/affine vs nonlinear model class,
e algebraic vs geometric fitting criterion.

A model is a subset of the data space. The model is linear/affine if it is pacdaffine set. Otherwise, it is nonlinear.
A geometric fitting criterion minimises the sum-of-squares of the Euclidean degdiram the data points to a model.
An algebraic fitting criterion minimises an equation error (residual) in a reptason of the model. In general, the
algebraic fitting criterion has no simple geometric interpretation. Problems usirg timadel classes and algebraic
criteria are easier to solve numerically than problems using nonlinear modsésland geometric criteria.

The contributions of the paper are as follows.



e In Section 2, we formulate exact and approximate data modeling problemsnonleear model class of
bounded complexity. The considered models are affine varieties [CL.O84kernels of systems of multivari-
able polynomials. The complexity of an affine variety is defined as the paieofdhiety’s dimension and the
total degree of its polynomial representation.

e In Section 3, we establish equivalence between the data modeling probtelovanank approximation of a
polynomially structured matrix constructed from the data. As illustrated in Setfitre result allows us to use
a single algorithm and a piece of software for solving a wide variety of daitegfiproblems.

Explicit (Input/output) vs implicit (kernel) representati ons

In data modeling problems, the model is usually represented by a functiof(x). The corresponding statistical
estimation problem is regression. We call the functional relatienf (x) among the variablesandy, an input/output
representation of the modet = { (x,y) | y= f(X) } that this relation defines. Indeed, the input/output representation
y = f(x) implies thatx is an independent variable (an input) gnd a dependent variable (an output) of the mo#el

Input-output representations are appealing because thexjalieit functionsmapping some variables (inputs) to
other variables (outputs) and thus displaying a causal relation amongrihklea (the inputs cause the outputs). The
alternative kernel representati®x,y) = 0, used in the paper, defines amplicit function which does not a priori
bound one set of variables as a cause and another set of variablesfesct.

The a priori fixed causal relation, imposed on the to-be-found modeldmstulated input/output representation,
is restrictive. Consider, for example, data fitting by a model that is a coottose Only parabolas and lines can
be represented by functions. Hyperbolas, ellipses, and the verticgl(ligg) | x= 0} are not graphs of a function
y = f(x) and therefore can not be modelled by an input/output representation.

Related methods

Data modeling is a generic problem with applications throughout sciencengmeering. Our approach originates
from the systems and control community, where of main interest is modeling @fr limae-invariant dynamical
systems (system identification). As discussed next, there are also links whilems and methods in computer
vision, machine learning, computer algebra, and numerical linear algebra.

e Using a kernel instead of an input/output model representation is a signifeaeralization of the data mod-
eling problem formulation. It is important, however, to detach the model fromefisesentation and view it
abstractly as a subset of the data space. This idea is promoted by Jan @GsAfilehat is called behavioural
approach to systems and control [Wil87, Wil07]. The work, reported inghjser, is an application of the
behavioral approach to static nonlinear data modeling.

¢ In the systems and control literature, the geometric distance is called misfitaathtbraic distance latency,
see [LDO1]. Identification of a linear time-invariant dynamical systemsgusia latency criterion, leads to the
autoregressive moving average exogenous (ARMAX) setting [LjuS89%and using the misfit criterion, leads
to the errors-in-variables (EIV) setting [S6d07].

¢ In the computer vision literuture, there is a large body of work on ellipsoid fi{iseg,e.g, [Boo79, GGS94,
Kan94, FPF99, MKV04]), which is a special case of the consider&alfiting problem when the total degree
of the polynomial is two.

e State-of-the art image segmentation methods are based on the level set r8eti98q. [Level set methods use
implicit equations to represent a contour in the same way in which we usd kepnesentations to represent a
model. The methods used for parameter estimation in the level set literatureydrpare based on solution of
partial differntial equations while we use classical numerical optimization rdstho

e Relaxation of the nonlinearly structured low-rank approximation problersed@n ignoring the nonlinear
structure and thus solving the problem as unstructured low-rank appaten, (.e., the algebraic fitting
method) is known in the machine learning literature as kernel principal companalysis [SSM99].



e The principal curves, introduced in [HS89], lead to a problem of minimisiegthm of squares of the distances
from data points to a curve. This is a polynomially structured low-rank aqmittion problem. More generally,
dimensionality reduction by manifold learning, seqy, [ZZ05] is related to the problem of fitting an affine
variety to data, which is also polynomially structured low-rank approximation.

e Nonlinear (Vandermonde) structured total least squares problemssatesskd in [LVD02, RPG98] and are
applied to fitting a sum of damped exponentials model to data. It is well knoWA\RA06, page 129], however,
that fitting a sum of damped exponentials to data can be solved as a Haokalr&td approximation problem.
In contrast, the geometric data fitting problem considered in this paper tangeneral be reduced to a linearly
structured problem and is therefore a genuine application of nonlindauttsred low-rank approximation.

e We use multivariable polynomials as model representations, so that coaoepitsethods from algebraic ge-
ometry is relevant for our study. In particular, the problem of passiog fimage to kernel representation of
the model is known as the implicialization problem [CLO04, Page 96] in complgebia. We use also the
reverse transformation—passing from a kernel to an image represargatioe model, which is a problem of
solving a system of multivariable polynomial equations.

2 A framework for static nonlinear data modeling

Data, model class, and model complexity

We consider static multivariate modeling problems. The to-be-modelledvdassa set ofN observations
Wy = {Wd(l), .. ,Wd(N) } - Rq,

where the observationgy(i), i = 1,...,N, (called data points) are regddimensional vectors. A model fary is a
subset of the data spa& and a model class7 for wy is a set of subsets of the data sp&% i.e,, .Z9 is an
element of the powerse®2 For example, the linear model classRfi consists of all subspaces&f. An example
of a nonlinear model class IR? is the set of all conic sections. When the dimensjai the data space is understood
from the context, it will be skipped from the notation of the model class.

In [MWVDO06, page 110], the complexity of a linear mod#lis defined as the dimension &, i.e., the smallest
natural numbet, such that there is a linear functié R* — RY for which

% =imag€P) :={P(u) |[lueR"}. 1)

Similarly, the dimension of a nonlinear modé is defined as the smallest natural numtgesuch that there is a
(possibly nonlinear) functio® : R® — RY, for which (1) holds. In the context of nonlinear models, however, the
model dimension alone is not sufficient to define the model complexity. Fongea inR? both a linear model (a
line passing through the origin) and an ellipse have dimension equal to omeyér, it is intuitively clear that the
ellipse is a more “complex” model than the linear one.

The missing element in the definition of the model complexity in the nonlinear case fsdamplexity” of the
functionP. In what follows, we restrict to models that can be represented asl&@f@olynomial functions:

2 =kerR) :={weRY| Rw)=0}, (2)

i.e, we consider models that are affine varieties. Complexity of an affinetydfig is defined as the paim,d),
wheremn is the dimension of4 andd is the total degree dR. This definition allows us to distinguish a linear or affine
model @ = 1) from a nonlinear model(> 1) with the same dimension. For a modglwith complexity (m,d), we
call d the degree ofA.

The complexity of a model class is the maximal complexity (in a lexicographic ioglef the pairgm,d)) over
all models in the class. The model class of complexity boundeghjay) is denoted by, 4.



Exact and approximate data modeling

A model % is an exact model for the datey if wy C Z. Otherwise, it is an approximate model. An exact model for
the data may not exist in a model class of bounded complexity. This is gdhetti@acase when the data is noisy and
the number of observations is sufficiently large relative to the model compléxjiyactical data fitting problem must
involve approximation, however, our starting point for data modeling is thelsimppoblem of exact data modeling.
Justification for this decision, apart from its pedagogical value, is tradtenodeling problems are an ingredient of
approximate modeling problems.

Problem 1 (Exact modeling) Given datawy C RY and a complexity boundm,d), find a modelZ in the model
class.#, 4 that contains the data and has minimal (in the lexicographic ordering) comptexatgsert that such a
model does not exist.

Due to the bound on the model complexity, Problem 1 may not have a solutierguestion occur:
Under what conditions on the datg and the model clasg7, 4 a solution to Problem 1 exist?

If a solution exists it is unique. This unique solution is calledriest powerful unfalsified model (MPUNANiI86]
for the datawy in the model class#, ¢ and we denote it byZmpum(Wa)-
Suppose that the datg is generated by a mode# in the model class#, g, i.e.,

Wy C B € Mng-

Clearly, the exact identification problem has a solution in the model ciisg, however, the solutiofmpum(Wa)
may not be the data generating mog#l The question occurs:

(Identifiability) Under what conditions on the data, the data generating_modé, and the model
class.# 4, the MPUM %mpum(Wa) coincides with the data generating modé?

When an exact model does not exist in the considered model classpaxiapate model that is in some sense
“close” to the data is aimed at instead. This leads to the following approximatendakaling problem.

Problem 2 (Approximate modeling) Given datawg C RY, a complexity boundm,d), and a distance measure
dist(wy, #) between the dately and a models, find a model# in the model class#, 4 that is as close as pos-
sible to the data,e.,

minimize over# € .4, dist(wy, ). (3)

Two distance measures are often used for data fitting: the geometric distance

dist(wy, &) := mlg\/Zde
WC .2

where|| - ||2 is the 2-norm in the data spaBd, and the algebraic “distance”

dist (wq, %) : leHRwd (5)

where|| - || is the Frobenius matrix norm.€., 2-norm of the vector obtained by concatenation of the columns of a
matrix) andRis aq x p polynomial matrix that defines a kernel representation (2) of the m@&del

Note that the algebraic distance depends on the choice of the kerredeatation (which is not unique), while the
geometric distance is representation invariant. In addition, the geometricadistaimvariant to translation, rotation,
and scaling of the data points, while the algebraic distance is not.

(4)




Special cases

The model class%/n?d and the related exact and approximate modeling problems 1 and 2 have a®aatmngpecial
case the linear model class and data modeling problems, based on the pdogipanent analysis.

1. Linear/affine model class of bounded complexityAn affine modelZ (i.e., a affine set inRY) is an affine
variety, defined by a first order polynomial through kernel or imageasgmtation. The dimension of the affine
variety, as defined in Section 2, coincides with the dimension of the affineTsetefore,.#,, is an affine
model class iRY with complexity bounded by. The linear model class RY, with dimension bounded hy,
is a subset oMnﬂl and is denoted by7,.

2. Exact data fitting by a linear model. Existence of a linear mode¥ of bounded complexity for the datey is
equivalent to rank deficiency of the matrix

d(Wg) == [wg(1) - wg(N)] € RN,

composed of the data. Moreover, the rank of the mabiwy) is equal to theminimal dimension of an exact
model forwy

existence of € £, such thaty C %
= corank(®(wg)) >p:=q—m, (6)

where
forangx N matrix®, coranK®) :=min(g,N) —rank(®).

The exact model

% = image(®(wq)) (7)
of minimal dimension
m = rank(P(wg))

always exists and is unique.

The equivalence (6) between data modeling and the concept of rankiagisefor application of linear algebra
and matrix computations to linear data modeling. Indeed, (7) providedganithm (compute a basis for the
image of®(wy)) for exact linear data modeling. As shown next, (6) has also directanetevto approximate
data modeling.

3. Geometric fitting by a linear model is a low-rank approximation problemData modeling using the model
class of linear models, and the geometric fitting criterion (4) is a low-rank approximation problem

minimize overw € (RHYN || d(wq) — P(W)]| ®)

subjectto  corank®(W)) > q—m.

The rank constraint in (8) is equivalent to the constraint@hatexact for a linear model of dimension bounded
by m. This shows that exact modeling is an ingredient of approximate modeling.

4. Low-rank approximation is equivalent to principal component anahy@A). The PCA method for dimen-
sionality reduction is usually introduced in a stochastic setting as maximisationdrila@ce of the projected
data on a subspace. Computationally, however, the problem of findingitieggal components and the cor-
responding principal vectors is an eigenvalue/eigenvector decompogitiarem for the sample covariance
matrix

W(wg) == D(wg)P " (wg).

From this algorithmic point view, the equivalence of PCA and low-rank@pration problem is a basic linear
algebra fact.



Lemma 3 (Equivalence of PCA and low-rank approximatiofhe space spanned by the fitstprincipal
vectors of w coincides with the mode® = image(®(W)), wherew is a solution of (8).

5. Errors-in-variables (EIV) modeling and low-rank approximation.From a statistical point of view, low-rank
approximation (and therefore PCA) is related to EIV modeling [Ful87, Gle&lpsely related to the EIV
framework for low-rank approximation is the probabilistic PCA frameworfTd99]. More specifically, a
solution of the low-rank approximation problem (8) yields a maximum likelihodidnesor for the true model
in the EIV setup _

Wq = W+ W, where wcC % 9)

andw is a set of independent, zero mean, Gaussian random vectors, witliaoeeamatrixo?lq. (Iq is the
identity matrix of dimensior.)

6. Algebraic fit by a linear model and regression.A linear model class, defined by the input/output representa-

tion
2= {3 1ox=v}. (10
and algebraic fitting criterion (5), wheve:= [}] andR(w) := ©"x—y lead to the ordinary linear least squares
problem
minimize over® € R¥?  ||@" ®(xg) — P(yg)||.- (11)

The statistical setting for the least squares approximation problem (11)dtadsecal regression model.
A mixture of input/output model representation and errors-in-variableshagtic model for static nonlinear
data modeling is called polynomial errors-in-variables regression [CS98]

7. Algebraic curves. An affine variety of dimension one is called an algebraic curve. Famounp@ga of
algebraic curves are:
e conic sections# = {w | w' Aw+b"w+c}, whereA = AT, b, andc are parameters,
cissoidZ = { (x,y) | Y*(1+X) = (1—x)3},
e folium of Descartes? = { (x,y) | x3+y® —3xy=0},
e limacon of Pascai? = { (x,y) | y? +x% — (4x? — 2x+ 4y?)? = 0}.

In the special case of a curve in the plane, we use the notatienwy, y := w,. Note thatw = (x,y) is not
necessarily an input/output partitioning of the variables.

8. Geometric distance for linear and quadratic models.The two plots in Figure 1 illustrate the geometric
distance (4) from a set of eight data poimigin the plane to, respectively, line&; and quadratic’, models.
As its name suggests, digly, %) has geometric interpretation. In order to compute the geometric distance, we
project the data points on the models. This is a simple task (linear least squaiéssm) for linear models but
a nontrivial task (nonconvex optimization problem) for nonlinear modelsotirast, the algebraic “distance”
(not visualised on the figure) has no simple geometrical interpretation basijste compute for linear and
nonlinear models alike.

3 Equivalence of static nonlinear data modeling and low-rank approximation

Parametrisation of the kernel representations

Consider a kernel representation (2) of an affine variety. The poljaldR can be written as

%wziammzwww 12)
=1
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Figure 1: Geometric distance from eight data points to a linear (left) and-atiaftight) models

ni= (qu>, (13)

d is the total degree dR, and@(w) is a vector of all monomials with degree updo The monomials are ordered
in @(w) in decreasing degree according to the lexicographic ordering (with ladpha, . .. ,wg). For example, with
g=2,d =2, andw = (x,y),

where® is ann x p parameter matrix with

n=6 and W =[x xy x ¥ vy 1]T. (14)

The kernel representation (2) is not unique due to
1. nonminimality — existence of linearly dependent columns of the mRterd

2. nonuniqueness & — pre-multiplication ofR by a nonsingular matrix), define an equivalent representation
of the modelj.e., ker(R) = ker(QR)).

Minimality of the kernel representation is equivalent to the condition that thenpeter® is full column rank.
The nonuniqueness &; corresponds to a nonuniquenes&ofThe parameter® and©Q, whereQ is a nonsingular
matrix, define the same model. Therefore, without loss of generality, wassamme that the representation is minimal
and normalise it, so th@' © = I,.

Note that an x p full column rank matrix® defines via (12) a polynomial matrRRo, which defines a minimal
kernel representation (2) of a mod@le in ... The mappingZe : R™P — ///n‘jd is a function. Vice verse, a
model % in %ﬁd corresponds to a (nonuniquie)x p full column rank matrix®, such that = %e. For givenq,
there are one-to-one mappings+ d andp <> m, given by (13) ang = q—m, respectively.

Main results
Our first result is a generalization of example 2 — exact linear data modelimgSection 2.
Proposition 4. For a data set w C RY9 and a complexity specificatiqm, d),
existence ofZ € .#,, such that w c &
= corank(®q(wg)) > p :=q—m,

where
Pg(wa) = [@(Wa(1)) - @(wa(N))].



Proof. (=) Let % ¢ .#yq be an exact model fong and consider a minimal kernel representation (2)&f
parameterized as in (12). The minimality of the kernel representation implieshihgtarameter matri®© is full
column rankn x p, wheren is defined in (13). We have,

WgC A < wy(i)es, fori=1...,N
< 0O'p(Wi)=0, fori=1,...,N (15)
— 0O'dy(wg)=0.

Therefore ®4(Wy) has at leasp dimensional left null space, so that
corank(®q(wg)) > p.

(<) Letcorank®g(wg)) > q—m=:p. Then there existsax p full rank matrix®, such tha® " ®q(wg) = 0.
The equivalences in (15) prove that the ma®ixiefines (via (2) and (12)) an exact modéifor the datang. Ol

Proposition 4 answers the question of the existence of the MPUM in a modsiaflaffine varieties with bounded
complexity. Moreover, the proof is constructive and suggests an algofahidentification of the MPUM (as well
as detecting its existence). Under the assumptions of the proposition, the mgivy) has at lease = q—m
dimensional left null space. A set of basis vectors for this space giyegameter matri®©, which defines via (2)
and (12) a kernel representation of the MPUEhpum(Wg) in the model class#, .

Proposition 4 also provides an answer to the identifiability question.

Corollary 5. Consider a data setyw RY, generated by a modek < My d, 1.6, Wy C A. The MPUMZ mpum(Wa)
in the model class#, 4 exists and coincides with the data generating modef and only if

corank(®g(Wq)) = q—dim(2).
Proof. From Propositition 4 we have that
Wy C B € Mg = corank(®g(wg)) < q— dim(2).
If equality holds,Zmpum(Wa) = AB. Othewise Bmpum(Wg) C AB. O

Proposition 6 (Algebraic fit < unstructured low-rank approximation)he algebraic curve fitting problem

N
minimize over® € R™P \/ZHRO(Wd(i))Hi subjectto ©@'@ =1, (16)
i=

is equivalent to the unstructured low-rank approximation problem

minimize over® ¢ R¥®  ||dg(wy) — ®||¢ an
subjectto corankK®) > p.

Proof. Using the polynomial representation (12), the squared cost functioh6dfoan be rewritten as a quadratic
form

N ) X
3 [IRo(wa(0)) [ = |07 @s(we)

= trace(® ' Pg(wy) Py (Wy)O) = trace(©' Wy(wy)O).

Therefore, the algebraic fitting problem is equivalent to an eigenvabi#gm forWq(wqy) or, equivalently (Lemma 3),
to low-rank approximation ofy. Ol



Proposition 7 (Geometric fit <= polynomially structured low-rank approximationyhe geometric curve fitting
problem (3) is equivalent to the polynomially structured low-rank appration problem

N
minimize overw ¢ (RMH)N wq(i) —W(i)||?
(RY) \/;H (i) —w(i)| (18)
subjectto corank(®q(W)) > p.
Proof. Follows directly from Proposition 4. O

Corollary 8. The algebraic fitting problem (16) is a relaxation of the geometric fitting prob(8), obtained by
removing the structure constraint of the approximating matriXw).

4  Algorithms

Complexity selection

Initial approximations

9a (bcl ra9a=
function [th, sh] = bclra(w, d)
[g, N] = size(w); D = nonomals(d, q);
gext = nchoosek(q + d, d); td =ceil((g* d + 1) / 2);
(Define the Hermite polynomiaéb)

psi = zeros(gext, qgext, td);
for i = 1:qgext
for j = 1:gext
if i >=j
Dij =D(i, :) +D(, :);
for I = 1:N
psi_ijl =1,
for k = 1: ¢
psi_ijl = conv(psi_ijl, h{Dj(k) + 1}(wk, 1)));
end
psi_ijl = [psi_ijl zeros(l, td - length(psi_ijl))];
psi(i, j, ) =psi(i, j, ) + reshape(psi_ijl(21:td), 1, 1, td);
end
end
end
end
for k = 1:td, psi(:, :, k) =psi(:, :, k) + triu(psi(:, :, k)’, 1); end
[evec, ev] = polyeig (psi); ev(find(ev < 0)) = inf;
[sh2, min_ind] = mn(ev); sh = sqrt(sh2); th = evec(:, mn_ind);
9b (Define the Hermite polynomiaéh)= (9a)

h{1} = @x) 1; h{2} = @x) x;

for k = 2:(2 * d)
h{k + 1} = @x) [x * h{k}(x) zeros(1, nod(k - 1, 2))]
. - [0 (k - 1) = h{k - 1}(X)];

en



5 Properties

Invariance properties

Sensitivity analysis

6 Extensions

Centering and generalized low-rank approximation

Missing data

Constraints on the parameters©

Bounded models

7 Examples

In this section, we apply the algebraic and geometric fitting methods on a réatgebraic curve fitting problems.

In all examples, except for the last one, the dajas simulated in the errors-in-variables setup (9). The perturbations
w(i), i =1,...,N are independent, zero mean, normally distributed12vectors with covariance matrixl,. The
number of data pointdl and the perturbation standard deviatiorare simulation parameters. The true model is
plotted by a black solid line, the data points by circles, the algebraic fitrbydashed dotted line, and the geometric

fit by abluedashed line.

Simulation 1: Parabola % = {(x,y) |y=x>+1}

10a (exanpl es 1039 =
clear all
nane = ’'parabol a’;

N = 20; sigma = 0.1; d = 2;

Syms X vy,
r =x"2 -y + 1
ax = [-11122];

Simulation 2: Hyperbola
0}
10b (exanpl es 10a8+=

nane = ' hyperbol a’;

t est

B={(xy) | ¥-y-1=

N = 20; sigma = 0.3; d = 2

syms X y;
r=x"2 - y"2 - 1,

ax = [-2 2 -2 2]; test

10

10b>

1 1la



Simulation 3: Cissoid % = {(x,y) | Y(1+X) = (1—
X%}
1lla (exanpl es 108+=
nane = 'cissoid’
N = 25; sigm = 0.02; d = 3;
syms X y;
r=y"2 = (1 +x) - (1- x)"3
ax = [-1 0 -10 10]; test

) 11b>

Simulation 4: Folium of Descartes % = {(x,y) | x>+
y*—3xy=0}
11b (exanpl es 10a8+=
nane = 'foliun;
N =25, sigmma = 0.1; d = 3;
Syms X y;
r=x"3 +y"3 - 3 x x * vy,
ax = [-2 2 -2 2]; test

1 1l

Simulation 5: Eightcurve % = {(x,y) | > —x* +x* =
0}
11c (exanpl es 109 +=

nane = 'eight’;
N = 25; signma
Synms Xx y;
r = ynr2 - x"2 + x™4,
ax = [-11-11]; test

) 12a

0.01; d = 4

11



Simulation 6: Limacon of Pascal % = {(x,y) | y*+
X2 — (4% — 2x+4y?)? = 0} 0.5
12a (exanpl es 108 += : 12b>
nane = '|inmacon’; ot
N = 25; signa = 0.002; d = 4,
syms X y;
rr=y"2 + x"2 - (4% x"2 - 2 x + 4 yr2)"2;, 05}
ax = [-0.2 0.8 -1 1]; test
—852 0 0.2 0.4 0.6 0.8
1
Simulation 7: Four-leaved rose % = {(x,y) | (x* +
y?)% — 4xy? = 0} 0
12b (exanpl es 10g+= 1 12¢
nane = 'rose’; ol
N = 30; sigma = 0.002; d = 6;
Synms x y;
ro= (x"2 + y"2)"3 - 4 = x"2 * y~2; -0.5}
ax = [-11-11]; test
—11 1
Simulation 8: “Special data” example from [GGS94] P SO
12c  (exanpl es 108 += o a12b
nanme = 'special-data’; 6 o E T R
wd =[12579368; R "
76875724]; w=wd; 4 7 of
d=2; ax =[-4 10 -1 9]; Y
xini =[wd(:)’ 10010 -1]"; ol R
figure, (Fitdatal4c ', P
(Plot results14d) el .
of  Ttee----
0 5 10

8 Literate programs

In this section we give the software implementation of the developed curve fititigods and the scripts that repro-
duce the numerical expamples.
The functionnmononi al s generates a function that evaluates theariate vector of monomialg, with total
degreed. The monomialszv’I1 - -wgq are ordered in descending powers, according to the lexicographec ofdhe
tuple (ny,...,ng) (see for example (14)).
12d (monom al s 12d)=
function [D, phi] = nononmial s(d, q)
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13a

13b

13c

13d

13e

13f

Nt = (d
for ind 1Nt
sub fliplr(ind2sub(ind, (d + 1) * ones(1, q)) - 1);
if (sum(sub) <= d)

+

1) ~qg; D=1[]; s =11,

for i =q:-1:1,
s =sprintf(’.» w(%,:) .~ % %', i, sub(i), s);
end
D=1[sub; D; s =sprintf(’'; %', s(4:end));
end

end
eval (sprintf(’phi = @w [%];’, s(2:end)))
The unstructured low-rank approximation problem (8) is solved usingigelar value decomposition.
(lra13g=
function [th, Phih] = lra(Phi, r);
[u, s, v] = svd(Phi, 0); th =u(:, (r + 1):end);
if nargout > 1, Phih = u(:, 21:r) = s(2:r, 2:r) = v(:, 1:r)’; end
The nonlinearly structured low-rank approximation problem (18) is satwaderically using Matlab’s Optimiza-
tion Toolbox.
(nslra13p= 13c>
function [th, wh, info] = nslra(wd, phi, r, Xxini)
[, N] = size(wd); nt = size(phi(wd), 1);
If not specified, the initial approximation is taken as the algebraic fit anddisy data points.
(nsl ra 13p+= <13b 13d>
if (nargin < 4) | isenpty(xini)
[tini, Pini] = lra(phi(wd), r); %ini = [wd(:); tini(:)];
nti = (nt - 1) / q;
wh = Pini(nti:ntizend, :); xini = [wh(:); tini(:)];
end
Anonymous functions that extract the data approximafioand the model parametérfrom the optimization
parametex are defined next.
(nsl ra 13n+= <13c 13e
w = @x) reshape(x(1:(q * N)), a, N);
t @x) reshape(x((q * N+ 1):end), nt - r, nt)’;
The optimization problem is set and solved, using the Optimization Toolbox:

(nsl ra 13p+= <13d
prob = optinset();

prob. sol ver = "fmncon’;

prob. options = optinset('disp’, 'iter’);
prob.objective = @x) norm(wd - mM(x), 'fro’);
prob. nonl con = @x) deal ([],

[t(x)" * phi(wW(x)), t(x)' * t(x) - eye(nt - r)]);
prob. x0 = xini;

[x, fval, flag, info] = fm ncon(prob); wh = wW(x); th = t(x);
The test script est assumes that the simulation parameters—polynomialx andy, defined as a symbolic
object; total degred of r; number of data point; noise standard deviatiam;, and coordinateax of a rectangle for
plotting the results— are already defined.

(test 13f)=
(Default parameterd4a
(Generate data4b)
(Fit data 140
(Plot results14d)

13



If not specified otherwisey=2,m = 1.

14a (Default parameters4a = (13f)
if ~exist('q'), q =2; end
if ~exist('m), m=1; end
if ~exist(’xini’), xini =[]; end
The true (W) and noisy \wd) data points are generated as follows:
14b (Generate data4b)= (13f)
figure,
H = plot_nodel (r, ax, 'LineStyle, -, "color’, "k');

wb = []; for h=H, wb = [wb [get(h, ’XData');
get(h, "YData')]]; end

% sanple N points on the curve

wb = wb(:, round(linspace(l, size(wb, 2), N));
randn(’ seed’, 0);

wd = wb + sigma * randn(size(wb)); % add noi se

The data is fitted by the algebraicr(a) and geometricr(s! r a) fitting methods:

14c (Fit data 140 = (12c 13f)
gext = nchoosek(q + d, d); p=qgqg - m

[D, phi] = nonom al s(d, Qq);
th_exc = lra(phi(wb), gext - p); % exact nodeling
th_ini = bclra(wd, d); %bias corrected algebraic fit
[th, wh] = nslra(wd, phi, gext - p, xini); %geonetric fit
The noisy data and the two fitted models are plotted on top of the true model:
14d (Plot results14d = (12c 13f)

hold on; plot(wd(1,:), wd(2,:), "o, 'markersize , 7);
pl ot _nodel (t h2pol y(t h_exc, phi), ax,

"LineStyle, ":’, "color’, "k’);
pl ot _nodel (t h2poly(th_ini, phi), ax, ...

"LineStyle', "-.", 'color’, '"r’);
pl ot _model (th2pol y(th, phi), ax,

"LineStyle', '-', 'color’, '"b);

axis(ax); print_fig(sprintf(’ %s-est’, nane))
Plotting the algebraic curv& = {w | ¢(w)8 = 0} in a region, defined byect is done withpl ot _nodel .

l4e (pl ot _nodel 1l4e=
function H = plot_nodel (r, rect, varargin)
try % q ==
H = ezplot(r, rect);
catch % q ==
s = sol ve(r,
try %om==1
H = ezplot3(s.x(1), s.y(1), s.z(1l), rect)
catch % m ==
H = ezcontour(s.x(1), s.y(1), s.z(1), rect)
end

X', 'y, Tz,

end
if nargin > 2, for h = H, set(h, varargin{:}); end, end

14f (t h2pol y 14f)=
function r =
try %q == 2
r=@x, y) th = phi([x y]");
catch %q = 3
r=@x, y, z) th = phi([xy z]");
end

th2pol y(th, phi)

14
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(print_figi5=
function print_fig(file_nane)
xlabel (" x"), ylabel ("y'), title("t")

set (gca,

"fontsize' , 25)

eval ([ print -depsc ' file_nane '.eps’'])
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