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Abstract

Algebraic and geometric data fitting problems for a model class of affine varieties with bounded complexity
(dimension and degree) are equivalent to low-rank approximation of a polynomially structured matrix constructed
from the data. In algebraic fitting problems, the approximating matrix is unstructured and the corresponding low-
rank approximation problem can be solved analytically by the singular value decomposition. In geometric fitting
problems, the approximating matrix is polynomially structured and, except for the case of an affine model class, no
analytic solution is know.

The equivalence of data modeling and low-rank approximation unifies existing curve fitting methods, showing
that algebraic fitting is a relaxation of geometric fitting, obtained by removing the structure constraint, and reveals
new solution approaches. Literate programs for solving nonlinearly structured low-rank approximation problems
are presented and their effectiveness is illustrated on a range of artificially constructed and real-life data fitting
problems.

Keywords: Curve fitting, Orthogonal regression, Total least squares,Low-rank approximation, Errors-in-variables
modeling, Reproducible research, Literate programming.

1 Introduction

Background and contribution

Identifying a curve in a set of curves that best fits given data points is a common problem in computer vision, statistics,
and coordinate metrology, see [Van97, Part IV]. More abstractly, approximation by Fourier series, wavelets, splines,
and sum-of-damped-exponentials are also curve fitting problems. In the applications, the fitted curve is a model for
the data and, correspondingly, the set of candidate curves is a model class.

Data modeling problems are specified by choosing a model class and a fitting criterion. The fitting criterion is
maximisation of a measure for fit between the data and a model. Equivalently, thecriterion can be formulated as
minimization of a measure for lack of fit (misfit) between the data and a model. Data modeling problems can be
classified according to the type of model and the type of fitting criterion as follows:

• linear/affine vs nonlinear model class,

• algebraic vs geometric fitting criterion.

A model is a subset of the data space. The model is linear/affine if it is a subspace/affine set. Otherwise, it is nonlinear.
A geometric fitting criterion minimises the sum-of-squares of the Euclidean distances from the data points to a model.
An algebraic fitting criterion minimises an equation error (residual) in a representation of the model. In general, the
algebraic fitting criterion has no simple geometric interpretation. Problems using linear model classes and algebraic
criteria are easier to solve numerically than problems using nonlinear model classes and geometric criteria.

The contributions of the paper are as follows.
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• In Section 2, we formulate exact and approximate data modeling problems for anonlinear model class of
bounded complexity. The considered models are affine varieties [CLO04], i.e., kernels of systems of multivari-
able polynomials. The complexity of an affine variety is defined as the pair of the variety’s dimension and the
total degree of its polynomial representation.

• In Section 3, we establish equivalence between the data modeling problem and low-rank approximation of a
polynomially structured matrix constructed from the data. As illustrated in Section7, the result allows us to use
a single algorithm and a piece of software for solving a wide variety of data fitting problems.

Explicit (Input/output) vs implicit (kernel) representati ons

In data modeling problems, the model is usually represented by a functiony = f (x). The corresponding statistical
estimation problem is regression. We call the functional relationy= f (x) among the variablesx andy, an input/output
representation of the modelB = {(x,y) | y= f (x)} that this relation defines. Indeed, the input/output representation
y= f (x) implies thatx is an independent variable (an input) andy is a dependent variable (an output) of the modelB.

Input-output representations are appealing because they areexplicit functions, mapping some variables (inputs) to
other variables (outputs) and thus displaying a causal relation among the variables (the inputs cause the outputs). The
alternative kernel representationR(x,y) = 0, used in the paper, defines animplicit function, which does not a priori
bound one set of variables as a cause and another set of variables asan effect.

The a priori fixed causal relation, imposed on the to-be-found model by apostulated input/output representation,
is restrictive. Consider, for example, data fitting by a model that is a conic section. Only parabolas and lines can
be represented by functions. Hyperbolas, ellipses, and the vertical line{(x,y) | x= 0} are not graphs of a function
y= f (x) and therefore can not be modelled by an input/output representation.

Related methods

Data modeling is a generic problem with applications throughout science and engineering. Our approach originates
from the systems and control community, where of main interest is modeling of linear time-invariant dynamical
systems (system identification). As discussed next, there are also links with problems and methods in computer
vision, machine learning, computer algebra, and numerical linear algebra.

• Using a kernel instead of an input/output model representation is a significant generalization of the data mod-
eling problem formulation. It is important, however, to detach the model from itsrepresentation and view it
abstractly as a subset of the data space. This idea is promoted by Jan C. Willems in what is called behavioural
approach to systems and control [Wil87, Wil07]. The work, reported in thispaper, is an application of the
behavioral approach to static nonlinear data modeling.

• In the systems and control literature, the geometric distance is called misfit and the algebraic distance latency,
see [LD01]. Identification of a linear time-invariant dynamical systems, using the latency criterion, leads to the
autoregressive moving average exogenous (ARMAX) setting [Lju99, SS89] and using the misfit criterion, leads
to the errors-in-variables (EIV) setting [Söd07].

• In the computer vision literuture, there is a large body of work on ellipsoid fitting(see,e.g., [Boo79, GGS94,
Kan94, FPF99, MKV04]), which is a special case of the considered data fitting problem when the total degree
of the polynomial is two.

• State-of-the art image segmentation methods are based on the level set method [Set99]. Level set methods use
implicit equations to represent a contour in the same way in which we use kernel representations to represent a
model. The methods used for parameter estimation in the level set literature, however, are based on solution of
partial differntial equations while we use classical numerical optimization methods.

• Relaxation of the nonlinearly structured low-rank approximation problem, based on ignoring the nonlinear
structure and thus solving the problem as unstructured low-rank approximation, (i.e., the algebraic fitting
method) is known in the machine learning literature as kernel principal component analysis [SSM99].
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• The principal curves, introduced in [HS89], lead to a problem of minimising the sum of squares of the distances
from data points to a curve. This is a polynomially structured low-rank approximation problem. More generally,
dimensionality reduction by manifold learning, see,e.g., [ZZ05] is related to the problem of fitting an affine
variety to data, which is also polynomially structured low-rank approximation.

• Nonlinear (Vandermonde) structured total least squares problems are discussed in [LVD02, RPG98] and are
applied to fitting a sum of damped exponentials model to data. It is well known [MWVD06, page 129], however,
that fitting a sum of damped exponentials to data can be solved as a Hankel structured approximation problem.
In contrast, the geometric data fitting problem considered in this paper can not in general be reduced to a linearly
structured problem and is therefore a genuine application of nonlinearly structured low-rank approximation.

• We use multivariable polynomials as model representations, so that conceptsand methods from algebraic ge-
ometry is relevant for our study. In particular, the problem of passing from image to kernel representation of
the model is known as the implicialization problem [CLO04, Page 96] in computer algebra. We use also the
reverse transformation—passing from a kernel to an image representation of the model, which is a problem of
solving a system of multivariable polynomial equations.

2 A framework for static nonlinear data modeling

Data, model class, and model complexity

We consider static multivariate modeling problems. The to-be-modelled datawd is a set ofN observations

wd =
{

wd(1), . . . ,wd(N)
}
⊂ R

q
,

where the observationswd(i), i = 1, . . . ,N, (called data points) are realq-dimensional vectors. A model forwd is a
subset of the data spaceRq and a model classM q for wd is a set of subsets of the data spaceR

q, i.e., M q is an
element of the powerset 2R

q
. For example, the linear model class inRq consists of all subspaces ofRq. An example

of a nonlinear model class inR2 is the set of all conic sections. When the dimensionq of the data space is understood
from the context, it will be skipped from the notation of the model class.

In [MWVD06, page 110], the complexity of a linear modelB is defined as the dimension ofB, i.e., the smallest
natural numberm, such that there is a linear functionP : Rm → R

q for which

B = image(P) := {P(u) | u∈ R
m }. (1)

Similarly, the dimension of a nonlinear modelB is defined as the smallest natural numberm, such that there is a
(possibly nonlinear) functionP : Rm → R

q, for which (1) holds. In the context of nonlinear models, however, the
model dimension alone is not sufficient to define the model complexity. For example, inR2 both a linear model (a
line passing through the origin) and an ellipse have dimension equal to one, however, it is intuitively clear that the
ellipse is a more “complex” model than the linear one.

The missing element in the definition of the model complexity in the nonlinear case is the “complexity” of the
functionP. In what follows, we restrict to models that can be represented as kernels of polynomial functions:

B = ker(R) := {w∈ R
q | R(w) = 0}, (2)

i.e., we consider models that are affine varieties. Complexity of an affine variety (1) is defined as the pair(m,d),
wherem is the dimension ofB andd is the total degree ofR. This definition allows us to distinguish a linear or affine
model (d = 1) from a nonlinear model (d > 1) with the same dimension. For a modelB with complexity(m,d), we
call d the degree ofB.

The complexity of a model class is the maximal complexity (in a lexicographic ordering of the pairs(m,d)) over
all models in the class. The model class of complexity bounded by(m,d) is denoted byMm,d.
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Exact and approximate data modeling

A modelB is an exact model for the datawd if wd ⊂ B. Otherwise, it is an approximate model. An exact model for
the data may not exist in a model class of bounded complexity. This is generically the case when the data is noisy and
the number of observations is sufficiently large relative to the model complexity. A practical data fitting problem must
involve approximation, however, our starting point for data modeling is the simpler problem of exact data modeling.
Justification for this decision, apart from its pedagogical value, is that exact modeling problems are an ingredient of
approximate modeling problems.

Problem 1 (Exact modeling). Given datawd ⊂ R
q and a complexity bound(m,d), find a modelB̂ in the model

classMm,d that contains the data and has minimal (in the lexicographic ordering) complexityor assert that such a
model does not exist.

Due to the bound on the model complexity, Problem 1 may not have a solution. The question occur:

Under what conditions on the datawd and the model classMm,d a solution to Problem 1 exist?

If a solution exists it is unique. This unique solution is called themost powerful unfalsified model (MPUM)[Wil86]
for the datawd in the model classMm,d and we denote it byBmpum(wd).

Suppose that the datawd is generated by a model̄B in the model classMm,d, i.e.,

wd ⊂ B̄ ∈ Mm,d.

Clearly, the exact identification problem has a solution in the model classMm,d, however, the solutionBmpum(wd)
may not be the data generating modelB̄. The question occurs:

(Identifiability) Under what conditions on the datawd, the data generating model̄B, and the model
classMm,d, the MPUMBmpum(wd) coincides with the data generating modelB̄?

When an exact model does not exist in the considered model class, an approximate model that is in some sense
“close” to the data is aimed at instead. This leads to the following approximate datamodeling problem.

Problem 2 (Approximate modeling). Given datawd ⊂ R
q, a complexity bound(m,d), and a distance measure

dist(wd,B) between the datawd and a modelB, find a modelB̂ in the model classMm,d that is as close as pos-
sible to the data,i.e.,

minimize overB ∈ M
q
m,d dist(wd,B). (3)

Two distance measures are often used for data fitting: the geometric distance

dist(wd,B) := min
ŵ⊂B

√
N

∑
i=1

∥∥wd(i)− ŵ(i)
∥∥2

2, (4)

where‖ · ‖2 is the 2-norm in the data spaceRq, and the algebraic “distance”

dist′(wd,B) :=

√
N

∑
i=1

∥∥R
(
wd(i)

)∥∥2
F, (5)

where‖ · ‖F is the Frobenius matrix norm (i.e., 2-norm of the vector obtained by concatenation of the columns of a
matrix) andR is aq× p polynomial matrix that defines a kernel representation (2) of the modelB.

Note that the algebraic distance depends on the choice of the kernel representation (which is not unique), while the
geometric distance is representation invariant. In addition, the geometric distance is invariant to translation, rotation,
and scaling of the data points, while the algebraic distance is not.
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Special cases

The model classM q
m,d and the related exact and approximate modeling problems 1 and 2 have as an important special

case the linear model class and data modeling problems, based on the principal component analysis.

1. Linear/affine model class of bounded complexity.An affine modelB (i.e., a affine set inRq) is an affine
variety, defined by a first order polynomial through kernel or image representation. The dimension of the affine
variety, as defined in Section 2, coincides with the dimension of the affine set.Therefore,M q

m,1 is an affine
model class inRq with complexity bounded bym. The linear model class inRq, with dimension bounded bym,
is a subset ofM q

m,1 and is denoted byL q
m .

2. Exact data fitting by a linear model. Existence of a linear model̂B of bounded complexity for the datawd is
equivalent to rank deficiency of the matrix

Φ(wd) :=
[
wd(1) · · · wd(N)

]
∈ R

q×N
,

composed of the data. Moreover, the rank of the matrixΦ(wd) is equal to theminimaldimension of an exact
model forwd

existence ofB̂ ∈ L
q
m
, such thatwd ⊂ B̂

⇐⇒ corank
(
Φ(wd)

)
≥ p := q−m, (6)

where
for anq×N matrix Φ, corank(Φ) := min(q,N)− rank(Φ).

The exact model
B̂ = image

(
Φ(wd)

)
(7)

of minimal dimension
m= rank

(
Φ(wd)

)

always exists and is unique.

The equivalence (6) between data modeling and the concept of rank is thebasis for application of linear algebra
and matrix computations to linear data modeling. Indeed, (7) provides analgorithm (compute a basis for the
image ofΦ(wd)) for exact linear data modeling. As shown next, (6) has also direct relevance to approximate
data modeling.

3. Geometric fitting by a linear model is a low-rank approximation problem.Data modeling using the model
class of linear modelsL q

m and the geometric fitting criterion (4) is a low-rank approximation problem

minimize overŵ∈ (Rq)N
∥∥Φ(wd)−Φ(ŵ)

∥∥
F

subject to corank
(
Φ(ŵ)

)
≥ q−m.

(8)

The rank constraint in (8) is equivalent to the constraint thatŵ is exact for a linear model of dimension bounded
by m. This shows that exact modeling is an ingredient of approximate modeling.

4. Low-rank approximation is equivalent to principal component analysis (PCA). The PCA method for dimen-
sionality reduction is usually introduced in a stochastic setting as maximisation of thevariance of the projected
data on a subspace. Computationally, however, the problem of finding the principal components and the cor-
responding principal vectors is an eigenvalue/eigenvector decompositionproblem for the sample covariance
matrix

Ψ(wd) := Φ(wd)Φ⊤(wd).

From this algorithmic point view, the equivalence of PCA and low-rank approximation problem is a basic linear
algebra fact.
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Lemma 3 (Equivalence of PCA and low-rank approximation). The space spanned by the firstm principal
vectors of wd coincides with the model̂B = image

(
Φ(ŵ)

)
, whereŵ is a solution of (8).

5. Errors-in-variables (EIV) modeling and low-rank approximation.From a statistical point of view, low-rank
approximation (and therefore PCA) is related to EIV modeling [Ful87, Gle81]. Closely related to the EIV
framework for low-rank approximation is the probabilistic PCA framework of[TB99]. More specifically, a
solution of the low-rank approximation problem (8) yields a maximum likelihood estimator for the true model
in the EIV setup

wd = w̄+ w̃, where w̄⊂ B̄ (9)

andw̃ is a set of independent, zero mean, Gaussian random vectors, with covariance matrixσ2Iq. (Iq is the
identity matrix of dimensionq.)

6. Algebraic fit by a linear model and regression.A linear model class, defined by the input/output representa-
tion

B =

{[
x
y

]
| Θ⊤x= y

}
, (10)

and algebraic fitting criterion (5), wherew := [ x
y] andR(w) := Θ⊤x−y lead to the ordinary linear least squares

problem
minimize overΘ ∈ R

q×p
∥∥Θ⊤Φ(xd)−Φ(yd)

∥∥
F. (11)

The statistical setting for the least squares approximation problem (11) is theclassical regression model.

A mixture of input/output model representation and errors-in-variables stochastic model for static nonlinear
data modeling is called polynomial errors-in-variables regression [CS98].

7. Algebraic curves. An affine variety of dimension one is called an algebraic curve. Famous examples of
algebraic curves are:

• conic sectionsB = {w | w⊤Aw+b⊤w+c}, whereA= A⊤, b, andc are parameters,

• cissoidB = {(x,y) | y2(1+x) = (1−x)3},

• folium of DescartesB = {(x,y) | x3+y3−3xy= 0},

• limacon of PascalB = {(x,y) | y2+x2− (4x2−2x+4y2)2 = 0}.

In the special case of a curve in the plane, we use the notationx := w1, y := w2. Note thatw = (x,y) is not
necessarily an input/output partitioning of the variables.

8. Geometric distance for linear and quadratic models.The two plots in Figure 1 illustrate the geometric
distance (4) from a set of eight data pointswd in the plane to, respectively, linearB1 and quadraticB2 models.
As its name suggests, dist(wd,B) has geometric interpretation. In order to compute the geometric distance, we
project the data points on the models. This is a simple task (linear least squaresproblem) for linear models but
a nontrivial task (nonconvex optimization problem) for nonlinear models. Incontrast, the algebraic “distance”
(not visualised on the figure) has no simple geometrical interpretation but is easy to compute for linear and
nonlinear models alike.

3 Equivalence of static nonlinear data modeling and low-rank approximation

Parametrisation of the kernel representations

Consider a kernel representation (2) of an affine variety. The polynomial R can be written as

RΘ(w) =
n

∑
k=1

Θkφk(w) = Θ⊤φ(w), (12)
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−4 −2 0 2 4 6 8 10

0

2

4

6

8

w1

w
2

wd(i)

B2 ŵ(i)

Figure 1: Geometric distance from eight data points to a linear (left) and quadratic (right) models

whereΘ is ann× p parameter matrix with

n :=

(
q+d

d

)
, (13)

d is the total degree ofR, andφ(w) is a vector of all monomials with degree up tod. The monomials are ordered
in φ(w) in decreasing degree according to the lexicographic ordering (with alphabetw1, . . . ,wq). For example, with
q= 2, d = 2, andw= (x,y),

n= 6 and φ(w) =
[
x2 xy x y2 y 1

]⊤
. (14)

The kernel representation (2) is not unique due to

1. nonminimality — existence of linearly dependent columns of the matrixR and

2. nonuniqueness ofR — pre-multiplication ofR by a nonsingular matrixQ, define an equivalent representation
of the model,i.e., ker(R) = ker(QR)).

Minimality of the kernel representation is equivalent to the condition that the parameterΘ is full column rank.
The nonuniqueness ofRΘ corresponds to a nonuniqueness ofΘ. The parametersΘ andΘQ, whereQ is a nonsingular
matrix, define the same model. Therefore, without loss of generality, we canassume that the representation is minimal
and normalise it, so thatΘ⊤Θ = Ip.

Note that an× p full column rank matrixΘ defines via (12) a polynomial matrixRΘ, which defines a minimal
kernel representation (2) of a modelBΘ in M

q
m,d. The mappingBΘ : Rn×p → M

q
m,d is a function. Vice verse, a

modelB in M
q
m,d corresponds to a (nonunique)n× p full column rank matrixΘ, such thatB = BΘ. For givenq,

there are one-to-one mappingsn↔ d andp↔ m, given by (13) andp= q−m, respectively.

Main results

Our first result is a generalization of example 2 — exact linear data modeling —in Section 2.

Proposition 4. For a data set wd ⊂ R
q and a complexity specification(m,d),

existence ofB ∈ M
q
m,d, such that wd ⊂ B

⇐⇒ corank
(
Φd(wd)

)
≥ p := q−m,

where
Φd(wd) :=

[
φ
(
wd(1)

)
· · · φ

(
wd(N)

)]
.
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Proof. (⇒) Let B ∈ Mm,d be an exact model forwd and consider a minimal kernel representation (2) ofB,
parameterized as in (12). The minimality of the kernel representation implies thatthe parameter matrixΘ is full
column rankn×p, wheren is defined in (13). We have,

wd ⊂ B ⇐⇒ wd(i) ∈ B, for i = 1, . . . ,N

⇐⇒ Θ⊤φ
(
ŵ(i)

)
= 0, for i = 1, . . . ,N

⇐⇒ Θ⊤Φd(wd) = 0.

(15)

Therefore,Φd(wd) has at leastp dimensional left null space, so that

corank
(
Φd(wd)

)
≥ p.

(⇐) Let corank
(
Φd(wd)

)
≥ q−m=: p. Then there exists an×p full rank matrixΘ, such thatΘ⊤Φd(wd) = 0.

The equivalences in (15) prove that the matrixΘ defines (via (2) and (12)) an exact modelB for the datawd.

Proposition 4 answers the question of the existence of the MPUM in a model class of affine varieties with bounded
complexity. Moreover, the proof is constructive and suggests an algorithm for identification of the MPUM (as well
as detecting its existence). Under the assumptions of the proposition, the matrixΦd(wd) has at leasep = q− m

dimensional left null space. A set of basis vectors for this space givesa parameter matrixΘ, which defines via (2)
and (12) a kernel representation of the MPUMBmpum(wd) in the model classMm,d.

Proposition 4 also provides an answer to the identifiability question.

Corollary 5. Consider a data set wd ⊂ R
q, generated by a model̄B ∈ Mm,d, i.e., wd ⊂ B̄. The MPUMBmpum(wd)

in the model classMm,d exists and coincides with the data generating modelB̄ if and only if

corank
(
Φd(wd)

)
= q−dim(B̄).

Proof. From Propositition 4 we have that

wd ⊂ B̄ ∈ Mm,d ⇐⇒ corank
(
Φd(wd)

)
≤ q−dim(B̄).

If equality holds,Bmpum(wd) = B̄. Othewise,Bmpum(wd)⊂ B̄.

Proposition 6 (Algebraic fit ⇐⇒ unstructured low-rank approximation). The algebraic curve fitting problem

minimize overΘ ∈ R
n×p

√
N

∑
i=1

∥∥RΘ
(
wd(i)

)∥∥2
F subject to Θ⊤Θ = Ip (16)

is equivalent to the unstructured low-rank approximation problem

minimize overΦ̂ ∈ R
q×p ‖Φd(wd)− Φ̂‖F

subject to corank(Φ̂)≥ p.
(17)

Proof. Using the polynomial representation (12), the squared cost function of (16) can be rewritten as a quadratic
form

N

∑
i=1

∥∥RΘ
(
wd(i)

)∥∥2
F =

∥∥Θ⊤Φd(wd)
∥∥2

F

= trace
(
Θ⊤Φd(wd)Φ⊤

d (wd)Θ
)
= trace

(
Θ⊤Ψd(wd)Θ

)
.

Therefore, the algebraic fitting problem is equivalent to an eigenvalue problem forΨd(wd) or, equivalently (Lemma 3),
to low-rank approximation ofΦd.
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Proposition 7 (Geometric fit ⇐⇒ polynomially structured low-rank approximation). The geometric curve fitting
problem (3) is equivalent to the polynomially structured low-rank approximation problem

minimize overŵ∈ (Rq)N

√
N

∑
i=1

‖wd(i)− ŵ(i)‖2

subject to corank
(
Φd(ŵ)

)
≥ p.

(18)

Proof. Follows directly from Proposition 4.

Corollary 8. The algebraic fitting problem (16) is a relaxation of the geometric fitting problem (3), obtained by
removing the structure constraint of the approximating matrixΦd(ŵ).

4 Algorithms

Complexity selection

Initial approximations

9a 〈bclra 9a〉≡
function [th, sh] = bclra(w, d)
[q, N] = size(w); D = monomials(d, q);
qext = nchoosek(q + d, d); td = ceil((q * d + 1) / 2);
〈Define the Hermite polynomials9b〉
psi = zeros(qext, qext, td);
for i = 1:qext

for j = 1:qext
if i >= j
Dij = D(i, :) + D(j, :);
for l = 1:N

psi_ijl = 1;
for k = 1:q
psi_ijl = conv(psi_ijl, h{Dij(k) + 1}(w(k, l)));

end
psi_ijl = [psi_ijl zeros(1, td - length(psi_ijl))];
psi(i, j, :) = psi(i, j, :) + reshape(psi_ijl(1:td), 1, 1, td);

end
end

end
end
for k = 1:td, psi(:, :, k) = psi(:, :, k) + triu(psi(:, :, k)’, 1); end
[evec, ev] = polyeig_(psi); ev(find(ev < 0)) = inf;
[sh2, min_ind] = min(ev); sh = sqrt(sh2); th = evec(:, min_ind);

9b 〈Define the Hermite polynomials9b〉≡ (9a)
h{1} = @(x) 1; h{2} = @(x) x;
for k = 2:(2 * d)

h{k + 1} = @(x) [x * h{k}(x) zeros(1, mod(k - 1, 2))] ...
- [0 (k - 1) * h{k - 1}(x)];

end
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5 Properties

Invariance properties

Sensitivity analysis

6 Extensions

Centering and generalized low-rank approximation

Missing data

Constraints on the parametersΘ

Bounded models

7 Examples

In this section, we apply the algebraic and geometric fitting methods on a range of algebraic curve fitting problems.
In all examples, except for the last one, the datawd is simulated in the errors-in-variables setup (9). The perturbations
w̃(i), i = 1, . . . ,N are independent, zero mean, normally distributed 2×1 vectors with covariance matrixσ2I2. The
number of data pointsN and the perturbation standard deviationσ are simulation parameters. The true model is
plotted by a black solid line, the data points by circles, the algebraic fit by areddashed dotted line, and the geometric
fit by abluedashed line.

Simulation 1: Parabola B = {(x,y) | y= x2+1}
10a 〈examples 10a〉≡ 10b⊲

clear all
name = ’parabola’;
N = 20; sigma = 0.1; d = 2;
syms x y;
r = x^2 - y + 1;
ax = [-1 1 1 2.2]; test

−1 −0.5 0 0.5 1
1

1.2

1.4

1.6

1.8

2

2.2

Simulation 2: Hyperbola B = {(x,y) | x2− y2−1 =
0}

10b 〈examples 10a〉+≡ ⊳10a 11a⊲
name = ’hyperbola’;
N = 20; sigma = 0.3; d = 2;
syms x y;
r = x^2 - y^2 - 1;
ax = [-2 2 -2 2]; test

−2 −1 0 1 2
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−1

0

1

2
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Simulation 3: Cissoid B = {(x,y) | y2(1+ x) = (1−
x)3}

11a 〈examples 10a〉+≡ ⊳10b 11b⊲
name = ’cissoid’;
N = 25; sigma = 0.02; d = 3;
syms x y;
r = y^2 * (1 + x) - (1 - x)^3;
ax = [-1 0 -10 10]; test

−1 −0.8 −0.6 −0.4 −0.2 0
−10
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0

5
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Simulation 4: Folium of Descartes B = {(x,y) | x3+
y3−3xy= 0}

11b 〈examples 10a〉+≡ ⊳11a 11c⊲
name = ’folium’;
N = 25; sigma = 0.1; d = 3;
syms x y;
r = x^3 + y^3 - 3 * x * y;
ax = [-2 2 -2 2]; test
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2

Simulation 5: Eight curve B = {(x,y) | y2−x2+x4 =
0}

11c 〈examples 10a〉+≡ ⊳11b 12a⊲
name = ’eight’;
N = 25; sigma = 0.01; d = 4;
syms x y;
r = y^2 - x^2 + x^4;
ax = [-1 1 -1 1]; test
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Simulation 6: Limacon of Pascal B = {(x,y) | y2 +
x2− (4x2−2x+4y2)2 = 0}

12a 〈examples 10a〉+≡ ⊳11c 12b⊲
name = ’limacon’;
N = 25; sigma = 0.002; d = 4;
syms x y;
r = y^2 + x^2 - (4 * x^2 - 2 * x + 4 * y^2)^2;
ax = [-0.2 0.8 -1 1]; test

−0.2 0 0.2 0.4 0.6 0.8
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−0.5

0

0.5

1

Simulation 7: Four-leaved rose B = {(x,y) | (x2 +
y2)3−4x2y2 = 0}

12b 〈examples 10a〉+≡ ⊳12a 12c⊲
name = ’rose’;
N = 30; sigma = 0.002; d = 6;
syms x y;
r = (x^2 + y^2)^3 - 4 * x^2 * y^2;
ax = [-1 1 -1 1]; test
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Simulation 8: “Special data” example from [GGS94]
12c 〈examples 10a〉+≡ ⊳12b

name = ’special-data’;
wd = [1 2 5 7 9 3 6 8 ;

7 6 8 7 5 7 2 4 ]; wb = wd;
d = 2; ax = [-4 10 -1 9];
xini = [wd(:)’ 1 0 0 1 0 -1]’;
figure, 〈Fit data 14c〉
〈Plot results14d〉
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8 Literate programs

In this section we give the software implementation of the developed curve fittingmethods and the scripts that repro-
duce the numerical expamples.

The functionmonomials generates a function that evaluates theq-variate vector of monomialsφ , with total
degreed. The monomialswn1

1 · · ·w
nq
q are ordered in descending powers, according to the lexicographic order of the

tuple(n1, . . . ,nq) (see for example (14)).
12d 〈monomials 12d〉≡

function [D, phi] = monomials(d, q)
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Nt = (d + 1) ^ q; D = []; s = [];
for ind = 1:Nt

sub = fliplr(ind2sub(ind, (d + 1) * ones(1, q)) - 1);
if (sum(sub) <= d)

for i = q:-1:1,
s = sprintf(’.* w(%d,:) .^ %d %s’, i, sub(i), s);

end
D = [sub; D]; s = sprintf(’; %s’, s(4:end));

end
end
eval(sprintf(’phi = @(w) [%s];’, s(2:end)))

The unstructured low-rank approximation problem (8) is solved using the singular value decomposition.
13a 〈lra 13a〉≡

function [th, Phih] = lra(Phi, r);
[u, s, v] = svd(Phi, 0); th = u(:, (r + 1):end);
if nargout > 1, Phih = u(:, 1:r) * s(1:r, 1:r) * v(:, 1:r)’; end

The nonlinearly structured low-rank approximation problem (18) is solvednumerically using Matlab’s Optimiza-
tion Toolbox.

13b 〈nslra 13b〉≡ 13c⊲
function [th, wh, info] = nslra(wd, phi, r, xini)
[q, N] = size(wd); nt = size(phi(wd), 1);

If not specified, the initial approximation is taken as the algebraic fit and the noisy data points.
13c 〈nslra 13b〉+≡ ⊳13b 13d⊲

if (nargin < 4) | isempty(xini)
[tini, Pini] = lra(phi(wd), r); %xini = [wd(:); tini(:)];
nti = (nt - 1) / q;
wh = Pini(nti:nti:end, :); xini = [wh(:); tini(:)];

end

Anonymous functions that extract the data approximationŵ and the model parameterθ from the optimization
parameterx are defined next.

13d 〈nslra 13b〉+≡ ⊳13c 13e⊲
w = @(x) reshape(x(1:(q * N)), q, N);
t = @(x) reshape(x((q * N + 1):end), nt - r, nt)’;

The optimization problem is set and solved, using the Optimization Toolbox:
13e 〈nslra 13b〉+≡ ⊳13d

prob = optimset();
prob.solver = ’fmincon’;
prob.options = optimset(’disp’, ’iter’);
prob.objective = @(x) norm(wd - w(x), ’fro’);
prob.nonlcon = @(x) deal([], ...

[t(x)’ * phi(w(x)), t(x)’ * t(x) - eye(nt - r)]);
prob.x0 = xini;
[x, fval, flag, info] = fmincon(prob); wh = w(x); th = t(x);

The test scripttest assumes that the simulation parameters—polynomialr in x andy, defined as a symbolic
object; total degreed of r; number of data pointsN; noise standard deviationσ ; and coordinatesax of a rectangle for
plotting the results— are already defined.

13f 〈test 13f〉≡
〈Default parameters14a〉
〈Generate data14b〉
〈Fit data 14c〉
〈Plot results14d〉
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If not specified otherwise,q= 2, m= 1.
14a 〈Default parameters14a〉≡ (13f)

if ~exist(’q’), q = 2; end
if ~exist(’m’), m = 1; end
if ~exist(’xini’), xini = []; end

The true (wb) and noisy (wd) data points are generated as follows:
14b 〈Generate data14b〉≡ (13f)

figure,
H = plot_model(r, ax, ’LineStyle’, ’-’, ’color’, ’k’);
wb = []; for h = H’, wb = [wb [get(h, ’XData’);
get(h, ’YData’)]]; end
% sample N points on the curve
wb = wb(:, round(linspace(1, size(wb, 2), N)));
randn(’seed’, 0);
wd = wb + sigma * randn(size(wb)); % add noise

The data is fitted by the algebraic (lra) and geometric (nslra) fitting methods:
14c 〈Fit data 14c〉≡ (12c 13f)

qext = nchoosek(q + d, d); p = q - m;
[D, phi] = monomials(d, q);
th_exc = lra(phi(wb), qext - p); % exact modeling
th_ini = bclra(wd, d); % bias corrected algebraic fit
[th, wh] = nslra(wd, phi, qext - p, xini); % geometric fit

The noisy data and the two fitted models are plotted on top of the true model:
14d 〈Plot results14d〉≡ (12c 13f)

hold on; plot(wd(1,:), wd(2,:), ’o’, ’markersize’, 7);
plot_model(th2poly(th_exc, phi), ax, ...

’LineStyle’, ’:’, ’color’, ’k’);
plot_model(th2poly(th_ini, phi), ax, ...

’LineStyle’, ’-.’, ’color’, ’r’);
plot_model(th2poly(th, phi), ax, ...

’LineStyle’, ’-’, ’color’, ’b’);
axis(ax); print_fig(sprintf(’%s-est’, name))

Plotting the algebraic curveB = {w | φ(w)θ = 0} in a region, defined byrect is done withplot_model.
14e 〈plot_model 14e〉≡

function H = plot_model(r, rect, varargin)
try % q == 2

H = ezplot(r, rect);
catch % q == 3

s = solve(r, ’x’, ’y’, ’z’);
try % m == 1

H = ezplot3(s.x(1), s.y(1), s.z(1), rect)
catch % m == 2

H = ezcontour(s.x(1), s.y(1), s.z(1), rect)
end

end
if nargin > 2, for h = H’, set(h, varargin{:}); end, end

14f 〈th2poly 14f〉≡
function r = th2poly(th, phi)
try % q == 2

r = @(x, y) th’ * phi([x y]’);
catch % q = 3

r = @(x, y, z) th’ * phi([x y z]’);
end
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15 〈print_fig 15〉≡
function print_fig(file_name)
xlabel(’x’), ylabel(’y’), title(’t’)
set(gca, ’fontsize’, 25)
eval([’print -depsc ’ file_name ’.eps’])
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