Fitting algebraic curves to data

Ivan Markovsky

University of Southampton

Affine variety

consider system of p, q-variate polynomials

$$
r_{i}\left(d_{1}, \ldots, d_{q}\right)=0, \quad i=1, \ldots, p \quad \Longleftrightarrow \quad R(d)=0
$$

the set of their real valued solutions

$$
\mathscr{B}=\left\{d \in \mathbb{R}^{q} \mid R(d)=0\right\}
$$

is affine variety
of primary interest for data modeling is the set \mathscr{B} (the model)
$R(d)=0$ is demoted to (kernel) representation of \mathscr{B}

Dimension of affine variety

image representation:

$$
\mathscr{B}=\left\{d \mid d=P(\ell), \text { for all } \ell \in \mathbb{R}^{g}\right\}
$$

$\operatorname{dim}(\mathscr{B})=$: minimum g in image representation of \mathscr{B}
affine variety of dimension one is called algebraic curve

Algebraic curves in 2D

in the special case $q=2$, we use

$$
x:=d_{1} . \quad \text { and } \quad y:=d_{2} .
$$

the set

$$
\mathscr{B}=\left\{(x, y) \in \mathbb{R}^{2} \mid r(x, y)=0\right\}
$$

may be

- empty, e.g., $r(x, y)=x^{2}+y^{2}+1$
- finite (isolated points), e.g., $r(x, y)=x^{2}+y^{2}$, or
- infinite (curve), e.g., $r(x, y)=x^{2}+y^{2}-1$

Examples

- subspace
- conic section
- cissoid
- folium of Descartes
- four-leaved rose

$$
\mathscr{B}=\left\{(x, y) \mid\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}=0\right\}
$$

Parabola $y=x^{2}+1$

Ellipse $y^{2}+x y+x^{2}-1=0$

Cissoid $y^{2}(1+x)=(1-x)^{3}$

Folium of Descartes $x^{3}+y^{3}-3 x y=0$

Rose $\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}=0$

Explicit vs implicit representations

- function $y=f(x)$ vs relation $(r(x, y)=0)$
(mathematics)
- input/output vs kernel representation
(system theory)
- regression vs EIV regression
(statistics)
- functional vs structural models
(statistics)

The fitting problem

Given:

- data points $\mathscr{D}=\left\{d_{1}, \ldots, d_{N}\right\}$
- set of candidate curves (model class) \mathscr{M}
- data-model distance measure $\operatorname{dist}(d, \mathscr{B})$
find model $\widehat{\mathscr{B}} \in \mathscr{M}$ that is as close as possible to the data:

$$
\text { minimize } \quad \text { over } \mathscr{B} \in \mathscr{M} \quad \operatorname{dist}(\mathscr{D}, \mathscr{B})
$$

Algebraic vs geometric distance measures

geometric distance: $\begin{array}{ll}\operatorname{dist}(d, \mathscr{B}):= & \min _{\widehat{d} \in \mathscr{B}}\|d-\widehat{d}\| \\ \|R(d)\| \quad \text { where } R \text { defines } \\ \quad \text { kernel repr. of } \mathscr{B}\end{array}$
other interpretations:

- misfit vs latency
P. Lemmerling and B. De Moor, Misfit versus latency, Automatica, 37:2057-2067, 2001
- algebraic \leftrightarrow LS \leftrightarrow ARMAX
- geometric \leftrightarrow TLS/PCA \leftrightarrow EIV SYSID

Example: geometric distance to a linear model

$\operatorname{dist}\left(\mathscr{D}, \mathscr{B}_{1}\right)=\min _{\hat{d}_{1}, \ldots, \hat{d}_{8} \in \mathscr{B}_{1}} \sqrt{\sum_{j=1}^{8}\left\|d_{j}-\widehat{d}_{j}\right\|_{2}^{2}}=7.8865$

Example: geometric distance to a quadratic model

$\operatorname{dist}\left(\mathscr{D}, \mathscr{B}_{2}\right)=\min _{\widehat{d}_{1}, \ldots, \widehat{d}_{8} \in \mathscr{B}_{2}} \sqrt{\sum_{j=1}^{8}\left\|d_{j}-\widehat{d}_{j}\right\|^{2}}=1.1719$

Kernel representation in 2D

$$
r(d)=\sum_{k=1}^{q_{\text {ext }}} \theta_{k} \phi_{k}(d)=\theta \phi(d)
$$

linear in θ nonlinear in d

- θ - (row) vector of parameters
- $\phi(d)$ - vector of monomials, e.g.,

$$
\begin{aligned}
& q=2, \quad n:=\operatorname{deg}(r)=2 \quad \rightsquigarrow \quad \phi(d)=\left[\begin{array}{lllllll}
x^{2} & x y & x & y^{2} & y & 1
\end{array}\right]^{\top} \\
& n=3 \rightsquigarrow \phi(d)=\left[\begin{array}{lllllllll}
x^{3} & x^{2} y^{1} & x^{2} & x y^{2} & x y & x & y^{3} & y^{2} & y \\
1
\end{array}\right]^{\top}
\end{aligned}
$$

- $q_{\text {ext }}=\binom{q+n}{n}$ - measure of complexity of \mathscr{M}_{n}
the degree n is the only design parameter in the curve fitting prob.
- θ is nonunique, θ and $\alpha \theta$, for all $\alpha \neq 0$, define the same \mathscr{B}

Algebraic curve fitting in \mathbb{R}^{2}

$$
\begin{gathered}
\text { minimize } \quad \text { over }\|\theta\|_{2}=1 \quad \sum_{j=1}^{N}\left\|r_{\theta}\left(d_{j}\right)\right\|_{2}^{2} \\
\begin{array}{rlll}
\sum_{j=1}^{N}\left\|r_{\theta}\left(d_{j}\right)\right\|_{2}^{2} & =\| \theta\left[\phi\left(d_{1}\right)\right. & \cdots & \left.\phi\left(d_{N}\right)\right] \|_{2}^{2} \\
& =\theta \Phi(\mathscr{D}) \Phi^{\top}(\mathscr{D}) \theta^{\top}=\theta \Psi(\mathscr{D}) \theta^{\top}
\end{array}
\end{gathered}
$$

algebraic curve fitting is eigenvalue problem

$$
\text { minimize over }\|\theta\|_{2}=1 \quad \theta \Psi(\mathscr{D}) \theta^{\top}
$$

or, equivalently, (unstructured) low rank approximation problem

$$
\begin{array}{ll}
\text { minimize } & \operatorname{over} \widehat{\Phi}\|\Phi(\mathscr{D})-\widehat{\Phi}\|_{F} \\
\text { subject to } & \operatorname{rank}(\widehat{\Phi}) \leq q_{\mathrm{ext}}-1
\end{array}
$$

Geometric distance

minimize over $\widehat{\mathscr{D}} \subset \mathscr{B}\|\underbrace{\left[\begin{array}{lll}d_{1} & \cdots & d_{N}\end{array}\right]}_{D}-\underbrace{\left[\begin{array}{lll}\hat{d}_{1} & \cdots & \widehat{d}_{N}\end{array}\right]}_{\widehat{D}}\|_{F}$

$$
\text { let } \begin{aligned}
\mathscr{B}=\{d \mid \theta \phi(d) & =0\} \\
\qquad \widehat{\mathscr{D}} \subset \mathscr{B} & \Longleftrightarrow \widehat{d}_{j} \in \mathscr{B}, \quad \text { for } j=1, \ldots, N \\
& \Longleftrightarrow \theta \phi\left(\widehat{d}_{j}\right)=0, \quad \text { for } j=1, \ldots, N \\
& \Longleftrightarrow \theta \Phi(\widehat{\mathscr{D}})=0
\end{aligned}
$$

the problem of computing the geometric distance is:

$$
\text { minimize over } \widehat{\mathscr{D}} \quad\|D-\widehat{D}\|_{\mathrm{F}} \quad \text { subject to } \quad \theta \Phi(\widehat{\mathscr{D}})=0
$$

Geometric curve fitting

$$
\text { minimize } \quad \text { over } \mathscr{B} \in \mathscr{M}_{n} \quad \operatorname{dist}(\mathscr{D}, \mathscr{B})
$$

assuming that $N \geq q_{\text {ext }}$, we have
$\theta \Phi(\widehat{\mathscr{D}})=0, \theta \neq 0 \quad \Longleftrightarrow \quad \operatorname{rank}(\Phi(\widehat{\mathscr{D}})) \leq q_{\mathrm{ext}}-1, \quad q_{\mathrm{ext}}:=\binom{2+n}{n}$
geometric curve fitting is nonlinearly structured low rank approx.:

$$
\begin{array}{ll}
\text { minimize } & \text { over } \widehat{\mathscr{D}} \text { and } \theta \quad\|D-\widehat{D}\| \\
\text { subject to } & \operatorname{rank}(\Phi(\widehat{\mathscr{D}})) \leq q_{\mathrm{ext}}-1
\end{array}
$$

note: algebraic fitting is a relaxation of geometric fitting, obtained by removing the structure constraint

Bias corrected low rank approximation

assume that \mathscr{D} is generated by the errors-in-variables model

$$
\begin{equation*}
d_{j}=d_{0, j}+\tilde{d}_{j}, \quad \text { where } \quad d_{0, j} \in \mathscr{B}_{0} \text { and } \tilde{d}_{j} \sim N\left(0, \sigma^{2} l_{q}\right) \tag{EIV}
\end{equation*}
$$

- \mathscr{B}_{0} is the "true" model
- $\mathscr{D}_{0}:=\left\{d_{0,1}, \ldots, d_{0, N}\right\}$ is the true data, and
- $\widetilde{\mathscr{D}}:=\left\{\widetilde{d}_{1}, \ldots, \widetilde{d}_{N}\right\}$ is the measurement noise
the estimate obtained by the algebraic fitting method is biased define the matrices

$$
\psi:=\Phi(\mathscr{D}) \Phi^{\top}(\mathscr{D}) \quad \text { and } \quad \psi_{0}:=\Phi\left(\mathscr{D}_{0}\right) \Phi^{\top}\left(\mathscr{D}_{0}\right)
$$

we construct "corrected" matrix Ψ_{c}, such that $\mathbf{E}\left(\Psi_{c}\right)=\Psi_{0}$

Hermite polynomials

the polynomials

$$
\begin{aligned}
h_{0}(x)= & 1, \quad h_{1}(x)=x, \quad \text { and } \\
& h_{k}(x)=x h_{k-1}(x)-(k-2) h_{k-2}(x), \quad \text { for } k=2,3, \ldots
\end{aligned}
$$

have the property

$$
\begin{equation*}
\mathbf{E}\left(h_{k}\left(x_{0}+\widetilde{x}\right)\right)=x_{0}^{k}, \quad \text { where } \quad \widetilde{x} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \tag{**}
\end{equation*}
$$

Derivation of the correction

$$
\psi=\sum_{\ell=1}^{N} \phi\left(d_{\ell}\right) \phi^{\top}\left(d_{\ell}\right)=\sum_{\ell=1}^{N}\left[\phi_{i}\left(d_{\ell}\right) \phi_{j}\left(d_{\ell}\right)\right]
$$

where the monomials ϕ_{i} are

$$
\phi_{k}(d)=d_{1}^{n_{k 1}} \cdots d_{q}^{n_{k q}}, \quad \text { for } \quad k=1, \ldots, q_{\mathrm{ext}}
$$

the (i, j) th element of Ψ is

$$
\psi_{i j}=\sum_{\ell=1}^{N} d_{1 \ell}^{n_{i}+n_{j i}} \cdots d_{q \ell}^{n_{i q}+n_{j q}}=\sum_{\ell=1}^{N} \prod_{k=1}^{q}\left(d_{0, k \ell}+\widetilde{d}_{k \ell}\right)^{n_{i q}+n_{j q}}
$$

by (EIV), $\tilde{d}_{k \ell}$ are independent, zero mean, normally distributed
then, by the property $(* *)$ of the Hermite polynomials

$$
\phi_{\mathrm{c}, i j}:=\sum_{\ell=1}^{N} \prod_{k=1}^{q} h_{n_{i q}+n_{j q}}\left(d_{k \ell}\right)
$$

has the desired property

$$
\mathbf{E}\left(\psi_{\mathrm{c}, i j}\right)=\sum_{\ell=1}^{N} \prod_{k=1}^{q} d_{0, k \ell}^{n_{i q}+n_{j q}}=: \psi_{0, i j}
$$

the corrected matrix Ψ_{c} is an even polynomial in σ

$$
\Psi_{\mathrm{c}}\left(\sigma^{2}\right)=\Psi_{\mathrm{c}, 0}+\sigma^{2} \Psi_{\mathrm{c}, 1}+\cdots+\sigma^{2 n_{\psi}} \Psi_{\mathrm{c}, n_{\psi}}
$$

the estimate $\hat{\theta}$ is in the null space of $\Psi_{c}\left(\sigma^{2}\right)$, i.e., $\Psi_{c}\left(\sigma^{2}\right) \widehat{\theta}=0$ computing simultaneously σ and θ is a polynomial EVP

Comparison of algebraic, bias corrected, and geometric fits on simulation examples

Simulation setup: $q=2, p=1$

- true model

$$
\mathscr{B}_{0}=\left\{d \mid \theta_{0} \phi(d)=0\right\}
$$

- data points

$$
d=d_{0}+\widetilde{d}, d_{0} \in \mathscr{B}_{0}, \widetilde{d} \sim \mathrm{~N}\left(0, \sigma^{2} l\right)
$$

- algebraic fit — black dotted line
- bias corrected fit — dashed dotted line
- geometric fit - dashed line

Parabola $y=x^{2}+1$

Hyperbola $x^{2}-y^{2}-1=0$

Cissoid $y^{2}(1+x)=(1-x)^{3}$

Folium of Descartes $x^{3}+y^{3}-3 x y=0$

Eight curve $y^{2}-x^{2}+x^{4}=0$

Rose $\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}=0$

"Special data" example

