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Data-driven simulation of generalized bilinear
systems via linear time-invariant embedding

Ivan Markovsky

Abstract—Nonparameteric representations of linear time-
invariant systems that use Hankel matrices constructed from
data are the basis for data-driven simulation and control. This
paper extends the approach to data-driven simulation of a class
of nonlinear systems, called generalized bilinear. The generalized
bilinear class includes Hammerstein, finite-lag Volterra, and bi-
linear systems. The key step of the generalization is an embedding
result that is of independent interest. The behavior of a nonlinear
system is included into the behavior of a linear time-invariant
system. The method proposed is illustrated and compared with a
model-based method on simulation examples and real-life data.

Index Terms—Behavioral approach, System identification,
Data-driven methods, Nonlinear systems.

I. INTRODUCTION

Data-driven methods in signal processing and control avoid
parametric model identification and subsequent model-based
design. In the case of a linear time-invariant (LTI) system, a
nonparameteric representation—the image of a Hankel matrix
constructed from the data—replaces the familiar state space
and transfer function representations. A key result that gives
theoretical justification for the nonparameteric representation
based on Hankel matrices is the fundamental lemma of [1,
Lemma 1]. The fundamental lemma is derived in the behav-
ioral setting and gives sufficient conditions for the image of
the Hankel matrix to coincide with the behavior of the data-
generating system. Based on the fundamental lemma, data-
driven simulation and control methods are proposed in [2], [3],
[4], [5], [6], [7], [8], [9]. The fundamental lemma and much
of the subsequent results, however, assume LTI dynamics.

Generalizations of the fundamental lemma to nonlinear
systems were proposed in [10], [11], [12]. The classes of non-
linear systems considered are: finite-lag second-order Volterra
[10], Hammerstein-Wiener [11], and bilinear [12]. They are
special cases of the Nonlinear Auto-Regressive eXogenous
(NARX) model class [13]. In this paper, we consider the
data-driven simulation problem for NARX systems and show
that it is equivalent to structured low-rank matrix completion.
Our main result is a generalization of the method of [2]
to generalized bilinear systems, which include the finite-lag
Volterra, Hammerstein, and bilinear systems as special cases.

The key result for generalizing the data-driven simulation
method of [2] to nonlinear systems is linear time-invariant
embedding: the behavior of the nonlinear system is included
into the behavior of an LTI system. LTI embedding is used
for deriving realization and identification methods for Wiener
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systems [14]. We generalize the result of [14] and use it for
data-driven simulation of generalized bilinear systems.

The paper is organized as follows. Section II reviews the
data-driven simulation problem and its solution in the case
of LTI systems. Section III introduces the nonlinear model
class. The main result of the paper—the generalization of data-
driven simulation method for LTI systems to nonlinear systems
is presented in Section IV. Simulation results illustrating the
resulting method and showing its performance in case of noisy
data and benchmark real-life data from the data base for
system identification DAISY [15] are presented in Section V.

II. DATA-DRIVEN SIMULATION OF LTI SYSTEMS

Section II-A introduces notation and preliminary results for
LTI systems. Section II-B reviews the data-driven simulation
problem and the solution method of [2].

A. Notation and preliminaries

The set of q-variate discrete-time signals w : N → Rq is
denoted by (Rq)N. The cut operator w|L restricts w to the
interval [1,L], i.e., w|L :=

(
w(1), . . . ,w(L)

)
. With some abuse

of notation, we view the finite L-samples long signal w∈ (Rq)L

also as a qL-dimensional vector w ∈ RqL.
A discrete-time dynamical system B is defined as a set

of trajectories, i.e., B ⊂ (Rq)N. If the system B is linear,
B is a subspace and if it is time-invariant σB = B, where
(σw)(t) := w(t + 1) is the shift operator. The class of LTI
systems with q variables is denoted by L q.

A system is often defined by equations, called representa-
tions of the system. A subclass of L q, called finite dimen-
sional, admits a kernel representation

B = ker R(σ) := {w | R0w+R1σw+ · · ·+R`σ
`w = 0}. (1)

(1) is minimal if rowdim R is as small as possible over all ker-
nel representations of B. In a minimal kernel representation,
the degree of R is also minimal over all kernel representations
of B [16, Proposition X.5]. The minimal degree is invariant
of the representation and is called the lag `̀̀(B) of the system.

The q variables w(t) ∈Rq of a system B ∈L q can be par-
titioned into inputs u(t)∈Rm and outputs y(t)∈Rp, i.e., there
is a permutation matrix Π ∈ Rq×q, such that w(t) = Π

[
u(t)
y(t)

]
.

Although the partitioning of the variables into inputs and
outputs is not unique, the number of inputs mmm(B) is invariant
of the choice of the partitioning.

An autonomous LTI system B ∈L q is a system without
inputs (mmm(B) = 0). The order nnn(B) of an autonomous LTI
system B ∈ L q is equal to its dimension, dim B. More
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generally, for a system B ∈ L q with inputs, we have that
dim B|L = mmm(B)L+nnn(B), for L≥ `̀̀(B), i.e., the dimension
of the restricted behavior B|L is determined by the horizon’s
length L, number of inputs mmm(B), and order nnn(B) [17].

The Hankel matrix of wd ∈ (Rq)T with L block rows is

HL(wd) :=


wd(1) wd(2) · · · wd(T −L+1)
wd(2) wd(3) · · · wd(T −L+2)

...
...

...
wd(L) wd(L+1) · · · wd(T )

 .
A generalization of the Hankel matrix for a set of signals
w1

d, . . . ,w
N
d is the mosaic-Hankel matrix HL(w1

d, . . . ,w
N
d ) :=[

HL(w1
d) · · · HL(wN

d )
]
. The Hankel matrix HL, j(wd) is the

submatrix of HL(wd) consisting of the first j columns.

B. Problem statement and solution method

As shown in [2], initial conditions for a trajectory w ∈B
can be specified by a prefix trajectory wini ∈ (Rq)Tini of length
Tini ≥ `̀̀(B). The condition that w is generated under the initial
conditions specified by wini is that the concatenation wini ∧
w :=

(
wini(1), . . . ,wini(Tini),w(1), . . . ,w(T )

)
of wini and w is a

trajectory of B. In the simulation problem, it is assumed that
B has a given input/output partition. Throughout the paper we
assume that w := [u

y ] is such a partition.

Problem 1 (Data-driven simulation). Given a model class M ,
data wd ∈ (Rq)T generated by an unknown system B ∈M ,
initial conditions wini ∈ (Rq)`, where `≥ `̀̀(B), and input us ∈
(Rm)Ts , find the output ys ∈ (Rp)Ts of B to us under the initial
conditions wini, i.e., wini∧ [us

ys ] ∈B.

Trajectory-based representation: Consider an LTI system
B ∈ L q. For any trajectory wd ∈ B|T and L ∈ [1,T ], due
to linearity and time-invariance image HL(wd) ⊆B|L. When
equality holds, image HL(wd) = B|L is a data-driven repre-
sentation of B|L. Indeed, the image of the Hankel matrix char-
acterizes all L-samples long trajectories of the system using
directly the given data wd without derivation of a parametric
model for the system. However, additional conditions have to
be satisfied for the validity of the data-driven representation.

Theorem 2 (Corollary 19 [17]). Consider wd ∈B|T , where
B ∈L q and L≥ `̀̀(B). Then, B|L = image HL(wd) iff

rankHL(wd) = mmm(B)L+nnn(B). (2)

The significance of the data-driven representation is evident
by the following corollary of Theorem 2, which gives a system
of linear equations that is equivalent to the constraint w∈B|L.

Corollary 3 ([18]). Let wd ∈B|T , where B ∈L q, L≥ `̀̀(B),
and (2) holds. Then, w∈B|L if and only if there is g∈RT−L+1,
such that w = HL(wd)g.

The data-driven simulation method of [2]: For an LTI data-
generating system B, i.e., M = L q, Problem 1 has a unique
solution ys. Using Corollary 3, the solution ys can be given
explicitly in terms of the data (wd,wini,us). This result is the
data-driven simulation method of [2].

Proposition 4. Assume that (2) holds. Then, the solution to
Problem 1 is given by

ys = HTs(σ
`yd)

[
H`, j(wd)

HTs(σ
`ud)

]+ [wini
us

]
, (3)

where j =: T −L+1 and A+ is the pseudo-inverse of A.

Proof: Proposition 4 is equivalent to [2, Proposition 1],
however, here we use the necessary and sufficient condition
(2) for the data-driven representation instead of the sufficient
conditions of [1, Lemma 1], that are used in [2].

III. THE NONLINEAR MODEL CLASS

This section introduces the nonlinear model class. In its
most general form it is defined as the kernel of a nonlinear
operator. In the paper, we consider single-input single-output
systems. We show that the constraint on a signal to be a valid
trajectory can be expressed as rank deficiency of a structured
matrix constructed from the data.

A. Nonlinear kernel and input/output representations

A discrete-time nonlinear time-invariant system B is often
defined by a difference equation:

B := {w | R
(
w,σw, . . . ,σ `w

)
= 0}, (4)

where R : Rq(`+1)→ Rg and g is the number of equations in
the representation. The representation (4) is a generalization
of the kernel representation (1) for LTI system.

Next, we consider a special case of (4) when q = 2 and

R(w,σw, . . . ,σ `w) = f
(
x(w)

)
−σ

`y,

with x(w) := vec(w,σw, . . . ,σ `−1w,σ `u). (5)

The model class considered is defined then by a nonlinear
difference equation

σ
`y = f (x) = f (u,y,σu,σy, . . . ,σ `−1u,σ `−1y,σ `u). (6)

In (6), the variable u can be chosen freely while the variable y
is determined by u and the initial conditions wini :=

(
w(−`+

1), . . . ,w(0)
)
. Thus, u is an input, y is an output, and (6) is an

input/output representation of the system.

Note 5. Given a signal w ∈ (R2)T over a finite interval [1,T ],
the signal x(w) is defined over the interval [1,T −`]. The map
x : w 7→ x is closely related to the Hankel matrix constructor:[

x(1) · · · x(T − `)
]
=

[
H`,T−`(w)[

u(`+1) · · · u(T )
]] .

For example, f can be an nx-variate polynomial, i.e.,

f (x) = θ1 xn11
1 · · ·x

n1nx
nx︸ ︷︷ ︸

φ1(x)

+ · · ·+θnθ
x

nnθ 1
1 · · ·xnnθ nx

nx︸ ︷︷ ︸
φnθ

(x)

= θ
>

φ(x).

The vector of monomials φ defines the model structure. In
case of a polynomial R, the model structure φ is specified
by the degrees ni j. More generally, φ is a vector of basis
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functions. Once φ is fixed1, a particular model is specified by
the parameter vector θ

B(θ) :=
{

w = [u
y ] | σ

`y = θ
>

φ
(
x(w)

)}
. (7)

The model class with structure φ defined by (7) is denoted Pφ .
The input/output structure of (6) ensures existence and

uniqueness of the solution of the simulation problem, i.e.,
Problem 1 has a unique solution.

B. Special cases and examples

Separating the elements of φ into first order (linear) and
other (nonlinear) terms, we have f (x)=: θ>linφlin(x)+θ>nl φnl(x),
where θlin ∈ Rnlin , and θnl ∈ Rnnl . If φlin(x) = x, we call the
linear part θ>linφlin(x) fully parameterized. If φnl = 0, the model
Bθ is LTI. Depending on the structure of φnl, we have the
following classes of nonlinear systems.
• Hammerstein system: φnl is of the form

φnl
(
x(t)
)
=
[
φh
(
u(t)

)
φh
(
u(t +1)

)
· · ·

φh
(
u(t + `)

)]>
, for some φh : R→ R.

• Finite-lag Volterra systems: φnl depends on the input u
and its shifts only, i.e., there is a function φv : R`+1→R,
such that φnl

(
x(t)
)
= φv

(
xu(t)

)
, where

xu(t) := vec
(
u(t),u(t +1), . . . ,u(t + `)

)
.

• Bilinear systems: φnl is linear in xu as well as in y and
its shifts, i.e., φnl

(
x(t)
)
= xu(t)⊗ xy(t), where

xy(t) := vec
(
y(t),y(t +1), . . . ,y(t + `−1)

)
and ⊗ is the Kroneker product.

• Generalized bilinear systems: φnl is affine in xy, i.e., there
is φb,0 ∈ (Rnnl)N and φb : R`+1→ Rnb , such that

φnl
(
x(t)
)
= φb,0(t)+φb

(
xu(t)

)
⊗ xy(t). (8)

Lemma 6 (Matrix representation of (8)). For a generalized
bilinear system, B ∈Pφ and a finite signal w= [u

y ] ∈ (R2)T

with T > `, it holds that φb,0 = φnl
(
x([u

0 ])
)
∈ Rnnl(T−`) and

φb(xu)⊗ xy = Φby, where Φb ∈ Rnnl(T−`)×T is given by

Φb =
[
φnl
(
x([ u

δ ])
)
−φb,0 · · ·φnl

(
x(
[ u

σT−1δ

]
)
)
−φb,0

]
(9)

with δ being the unit pulse (1,0, . . . ,0) ∈ RT .

Proof: Follows from the fact that φnl is affine in xy.

Example 7 (Hammerstein system). A simple example with lag
`= 1 is the Hammerstein system with quadratic nonlinearity:

y(t +1) = 0.95y(t)+u(t +1)+2u2(t +1). (10)

In this case, x(t) = col
(
u(t),y(t),u(t + 1)

)
and φ

(
x(t)
)
=

col
(
y(t),u(t+1),u2(t+1)

)
, with parameter vector identifying

the system B(θ) ∈Pφ defined by (10), θ = col(0.95,1,2).

1Choosing φ is called structure selection. We do not address the structure
selection problem in this paper and consider φ as a user specified hyper-
parameter. Methods for structure selection based on sparsity promoting
regularization are described in [19], [20], [21].

Example 8 (Finite-lag Volterra system). Another example with
lag `= 2 and non-static nonlinearity is the Volterra system

y(t +2) =−p0y(t)− p1y(t +1)+q0u(t)+

q1u(t +1)+q2u(t +2)+0.1u2(t +2)+
0.1u(t +1)u(t +2)+0.1u(t)u(t +1)u(t +2). (11)

In this case, x(t) = col
(
u(t),y(t),u(t + 1),y(t + 1),u(t + 2)

)
and φ

(
x(t)
)
=
[

x(t)
φnl(x(t))

]
, i.e., the "linear part" of (11) is fully

parametrized and the nonlinear part has three terms—two of
degree 2 and one of degree 3. θ = col(θl,θn), where θl =
col(−p0,−p1,q0,q1,q2) and θn = col(0.1,0.1,0.1).
Example 9 (Generalized bilinear system). As a generalization
of the finite-lag Volterra system in Example 8, we consider
the system defined by the difference equation

y(t +2) =−p0y(t)− p1y(t +1)+q0u(t)+

q1u(t +1)+q2u(t +2)+0.1y(t)u2(t +2)+
0.1u(t +1)y(t +1)u(t +2)+0.1u(t)u(t +1)u(t +2). (12)

The x(t) vector is the same as in Example 8. The nonlinear
part of (12) now consists of three terms of degree 3, with two
involving both inputs and outputs, so that the system is not of
the finite-lag Volterra type. The parameter vector identifying
the system defined by (12) is the same as in Example 8.

C. Rank condition for w ∈B(θ) ∈Pφ

From (4) and (6), we have w ∈B(θ) ∈Pφ if and only if[
θ> −1

][φ
(
x(1)

)
· · · φ

(
x(T − `)

)
y(`+1) · · · y(T )

]
︸ ︷︷ ︸

S (w)

= 0. (13)

In general, the matrix S (w) is nonlinearly structured, i.e.,
the map w 7→S (w) is nonlinear. In the LTI case, with fully
parameterized model, i.e., φ(x) = x, the structure is Hankel.

Checking if a signal w ∈ (R2)T is a trajectory of a given
system B(θ) ∈Pφ can be done using (13):

w ∈B(θ)|T ⇐⇒
[
θ> −1

]
S (w) = 0.

More generally, checking if a signal w ∈ (R2)T is a trajectory
of an unknown system B in a given model class Pφ can be
done by a rank test: rankS (w)≤ nθ .

The generalization of (13) to multiple trajectories w1, . . . ,wN

is straightforward:[
θ> −1

][
S (w1) · · · S (wN)

]︸ ︷︷ ︸
S (w1,...,wN)

= 0. (14)

In case of a fully parameterized LTI system, the data matrix
S (w1, . . . ,wN) is mosaic-Hankel H`+1(w1, . . . ,wN), see [17].

IV. DATA-DRIVEN SIMULATION OF NONLINEAR SYSTEMS

Since both wd and ws are trajectories of B(θ), by (14)

rank
[
S (wd) S (ws)

]
≤ nθ . (15)

The nonlinear data-driven simulation problem can be restated
then as a matrix completion problem: find ys, so that (15)
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holds. The problem can be solved by the following divide-
and-conquer model-based strategy:

1) system identification: compute an estimate θ̂ for the
parameter vector θ , and

2) model-based simulation: using θ̂ , compute ys from (6).
For well-posedness of the identification problem on step 1

the left kernel of S (wd) has to be one-dimensional.

Theorem 10 (Identifiability condition). Consider a system
B(θ) ∈ Pφ and a trajectory wd ∈ B(θ)|T . Assume that
rankS (wd) = nθ and let θ̂ext be a basis vector for the left ker-

nel of S (wd). Then, θ̂ := −1
θ̂ext,nθ +1

[
θ̂ext,1 · · · θ̂ext,nθ

]>
= θ ,

i.e., θ̂ identifies the data-generating system B(θ).

Proof: By the assumption that rankS (wd) = nθ , the left
kernel of S (wd) has dimension equal to one. Then, there is
α 6= 0, such that θ̂ext = α

[
θ> −1

]
, and therefore θ̂ = θ .

The rank condition, rankS (wd) = nθ , is a persistency of
excitation type condition. In the case of an LTI system,
Theorem 10 is a special case of the identifiability result of [17].

As an alternative to the model-based simulation approach
outlined above, next, we propose a data-driven approach that
is a generalization of the method of [2].

A. LTI embedding

A key idea exploited next is to embed the nonlinear system
B = B(θ) ∈ Pφ into an LTI system Bext by replacing
the vector φnl

(
x(w)

)
with an additional input variable unl ∈

(Rnnl)N, where nnl := dim φnl(x). As a result the embedding

Bext :=
{

wext = [ w
unl ]

∣∣ σ
`y= θ

>
linφlin

(
x(w)

)
+θ

>
nl unl

}
(16)

has 1+ nnl inputs. Let Πw be the projection of the extended
trajectory wext onto the w variables and let Πunl be the
projection of wext onto the unl variable.

Lemma 11 (LTI embedding). The system B ∈Pφ is embed-
ded in the LTI system Bext defined in (16), i.e., B ⊆ΠwBext.
Moreover, the embedding is exact, i.e., B = ΠwBext, when the
extra constraint unl = φnl

(
x(w)

)
is imposed, i.e.,

B =
{

Πwwext | wext ∈Bext, Πunl wext = φnl
(
x(Πwwext)

)}
.

Proof: Let w = [u
y ] ∈B and B = B(θ). Then,

σ
`y = θ

>
linφlin

(
x(w)

)
+θ

>
nl unl, with unl = φnl

(
x(w)

)
.

It follows by the definition of (16) that w∈ΠwBext. Therefore,
B ⊆ ΠwBext. For w, such that w ∈ ΠwBext, in general, it is
not true that w ∈B. Indeed,

unl := Πunl wext = φnl
(
x([uini

us ])
)

(17)

may not be satisfied. Imposing this extra constraint (in addition
to w ∈ΠwBext) however ensures that w ∈B.

Example 12. The LTI relaxation Bext of the Hammerstein sys-
tem in example 7 is defined by y(t+1)= 0.95y(t)+u1(t+1)+
2u2(t). Bext|T is a subspace of R3T with dim Bext|T = 2T +2,
while B is a manifold of R2T with dim B|T = T +2.

B. Generalization of (3)

Lemma 11 allows us to apply methods developed for LTI
systems to nonlinear systems. In this section, we consider
the data-driven simulation problem and generalize the method
of [2] to classes of nonlinear systems, i.e., in Problem 1,
M = Pφ for some given structures φ .

Let Bext be the LTI embedding of B ∈Pφ and define

wd,ext(t) :=
[

wd(t)
φnl
(
x
(
wd(t)

))] and wext(t) :=
[

w(t)
φnl
(
x
(
w(t)

))] .
As in Section II-B, the signal wext has length L and is a
concatenation of initial conditions wini,ext of length ` and
a to-be-simulated signal ws,ext of length Ts. The data-driven
simulation method (3) applied to Bext gives us

ys,ext = HTs(σ
`yd)

[
H`, j(wd,ext)

HTs(σ
`ud,ext)

]+
︸ ︷︷ ︸

A +(wd)

[
wini,ext
us,ext

]
, (18)

where j =: T − L + 1. If (17) holds true, we have that by
Lemma 11 B =Bext and therefore ys,ext defined in (18) is the
response of B to input us and initial conditions wini. Then, (18)
gives us the solution to the data-driven simulation problem.

The extended signal wd,ext is constructed from the given
data wd and the structure specification φ . In general, however,
uext can not be constructed from the given initial condition
wini, simulation input us, and φ . Indeed, the unknown ys may
be needed for the construction of uext. This problem does
not appear in the special case of a finite-lag Volterra model
structure φ , where unl depends on us only.

The following theorem shows that (18) can be used for data-
driven simulation of generalized bilinear systems, where unl
depends on both us and ys, however, unl is affine in ys.

Theorem 13 (Data-driven simulation of generalized bilin-
ear time-invariant systems). Consider a generalized bilinear
system B ∈Pφ and data wd ∈ B|T . Let Bext be the LTI
embedding (16) of B. Assume that

rankHL(wd,ext) = (1+nnl)L+ ` (19)

holds. Then, the solution to Problem 1 is given by

ys := HTs(σ
`yd)A

+(wd)
[ wini

us
Φb,pyini+φb,0

]
, (20)

where

A (wd) :=

 H`, j(wd)
HTs(σ

`ud)
HTs

(
φnl
(
x(wd)

))
−Φb,fHTs(σ

`yd)

 ,
and

[
Φb,p Φb,f

]
:= Φb, with Φb defined in (9).

Proof: By (19), using Corollary 3, we have that there is
g such that H`+L(wd,ext)g = wext. Partitioning the equations
according to the partitioning col(u,y,unl) of wext, we have HL(ud)

HL(yd)
HTs(ud,nl)

g =

[uini
us ]

[ yini
ys ]

unl

 . (21)

The equation ys =HL(σ
`yd)g is a definition of ys and imposes

no constraints on g.
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In order for the embedding Bext to satisfy ΠwBext = B,
the constraint (17) has to be added to (21). Since B is a
generalized bilinear system, by Lemma 6, (17) becomes

unl = φb,0 +Φb [
yini
ys ] = φb,0 +Φb,pyini +Φb,fys.

Substituting back in (21) and using ys = HTs(σ
`yd)g, we

obtain
A (wd)g =

[ wini
us

φb,0+Φb,pyini

]
.

Note 14 (Persistency of excitation assumption). The key
assumption of Theorem 13 is the persistency of excitation
assumption (19). The matrix HL(wd,ext) is of dimension
(2+ nnl)L× (T −L+ 1), where nnl := dim φnl is the number
of nonlinear terms in the representation (6) of the system. A
necessary condition for (19) then is T ≥ (3+nnl)L−1.
Note 15 (Comparison with model-based simulation). In com-
parison with the identifiability condition rankS (wd) = nθ of
Theorem 10, the condition (19) for data-driven simulation is
stronger. This is true also in the case of LTI systems. As shown
in [22, Lemma 3], however the condition for data-driven
simulation can be relaxed by "weaving together segments of
the desired response". Such a relaxation can be applied also
in the nonlinear case.
Note 16 (Explicit characterization of the behavior of a gener-
alized bilinear system). Theorem 13 shows that the restricted
behavior B|L of a generalized bilinear system B is the image
of the map M : R2`+Ts 7→ RTs defined by

M(wini,us) := HTs(σ
`yd)A

+(wd)
[ wini

us
Φb,pyini+φb,0

]
.

Corollary 17 (Data-driven simulation of finite-lag Volterra
systems). Consider a lag-` Volterra system B ∈Pφ and data
wd ∈B|T . Let Bext be the LTI embedding (16) of B. Assume
that (19) holds. Then, the solution to Problem 1 is

ys = HTs(σ
`yd)

 H`, j(wd)
HTs(σ

`ud)
HTs

(
φv
(
x(ud)

))
+ wini

us
φv
(
x([uini

us ])
)
 .

Theorem 13 gives a constructive method for data-driven
simulation of generalized bilinear systems, in particular, affine,
Hammerstein, finite-lag Volterra, and bilinear systems. The
next section shows simulation results illustrating the method.

V. SIMULATION RESULTS

In this section, we compare empirically the data-driven
simulation method with the model-based and show the perfor-
mance of the methods in case of simulated noisy data as well
as real-life data from the data base for system identification
DAISY [15]. The simulation results are made reproducible
in the sense of [23] by providing the implementation of the
method and the data generating scripts [24].

A. Illustrative examples

In order to test the method in as diverse situations as
possible, we consider the three nonlinear systems from Sec-
tion III-B—Hammerstein, finite-lag Volterra, and generalized
bilinear—and do data-driven simulation of

S1: response to random initial conditions and random input,
S2: free response—nonzero initial conditions and zero input,
S3: step response—zero initial conditions and unit step input.
The data wd is a T = 100 samples long trajectory obtained
from the system with random initial conditions and random
input. The simulation horizon is Ts = 10 samples.

The result ŷs obtained by the data-driven simulation method
(20) is evaluated by the relative error e= 100%‖ys− ŷs‖/‖ys‖,
where ys is the response obtained by model-based simulation.
In all experiments the relative error is of the order of the ma-
chine precision (e < 10−13). This is an empirical confirmation
of the method and its implementation.

B. Performance in case of noisy data wd

In this section, the data wd is generated in the
errors-in-variables setup [25]: wd = wd + w̃d, where wd ∈
B|T and w̃d ∼ N(0,s2I). The true value wd is a trajectory
of the to-be-simulated system B ∈Pφ and the measurement
noise w̃d is zero mean Gaussian with covariance matrix s2I.
In the simulation example, the noise standard deviation s is
selected so that the noise-to-signal ratio is varied in the interval
of [0,0.05], i.e., starting from exact data and ranging up to
5% noise. The to-be-simulated system B ∈Pφ is the finite-
lag Volterra model of example (11). The trajectory wd has
T = 1000 samples and ws has Ts = 10 samples. The simulated
response ŷs, computed by the data-driven simulation algorithm,
is evaluated by the relative error e, where ys is computed by
model-based simulation using the true model B.

Figure 1 shows the relative error as a function of the noise-
to-signal ratio. The model-based method is uniformly better
than the data-driven method. We attribute this to the fact
that the model-based method using more effectively the data
by shaping it in the matrix S (wd) rather than (21). This is
related to the weaker persistency of exaction for identification
compared to the one for data-driven simulation, see Note 14.

0 1 2 3 4 5

10
-3

0

0.1

0.2

0.3

Fig. 1. Relative error e as a function of the noise-to-signal ratio: solid line—
model-based method, dashed line—data-driven method.

C. Performance on data from the DAISY dataset

In this section we apply the data-driven simulation method
on data from the data-base for system identification DAISY.
From the 24 dataset in DAISY we choose the 6 single-input
single-output ones (see Table I). The given data (a single
input/output experiment) is split into two parts: the first 80%
is used as the "data trajectory" wd ∈ RT and the remaining
20% as the "to-be-simulated trajectory" wini∧ws ∈ RL. In all
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experiments, the model class M is the set of affine models
with lag `, where the value of ` is taken from [26].

The computed responses ŷs by the data-driven simulation
method and the model-based method are compared with the
measured response ys in terms of the relative error e. The
results shown in Table I indicate that the data-driven method
is uniformly better than the model-based method. We attribute
this to the fact that in this case the model class is not
correct, which leads to a potentially larger bias error in the
parameter estimation step of the model-based method. The
nonparameteric data-driven representation and the resulting
lack of parameter estimation step in the data-driven method
is an advantage in this case.

TABLE I
RESULTS WITH DATA FROM THE DAISY DATA BASE: eMB —RELATIVE
ERROR FOR THE MODEL-BASED METHOD, eDD —RELATIVE ERROR FOR

THE DATA-DRIVEN METHOD. ("FAIL" MEANS e > 100%)

data set name T L ` emb edd
1 Hair dryer 800 200 5 2.7 2.3
2 Ball and beam 800 200 2 fail 44.0
3 Wing flutter 800 200 5 fail fail
4 Robot arm 800 200 4 23.0 3.6
5 Heating system 600 200 2 9.9 5.6
6 Steam exchanger 3200 800 2 0.7 0.5

VI. CONCLUSIONS

We considered data-driven simulation of nonlinear sys-
tems (7) and showed that the problem is equivalent to matrix
completion. The solution method proposed in the paper is a
generalization of the method of [2].The key technical result
for the generalization is LTI embedding: the behavior of the
nonlinear system is included in the behavior of an LTI system.
Under an additional nonlinear constraint the behavior of the
embedding system coincides with the behavior of original
nonlinear system. The embedding result reveals that the gen-
eralization of the LTI data-driven simulation method to finite-
lag Volterra systems is trivial however it suggests also a novel
extension to a class of systems called generalized bilinear.
The resulting method requires only a solution of a system
of linear equations. Empirical results show the performance
of the method in case of simulated noisy data and real-
life benchmark problems. In case of noisy data simulated,
using the correct model structure, model-based simulation
gives better results than data-driven simulation. In case of true
data where the correct model structure does not exist or is
unknown, however, the data-driven simulation method gives
better results. Theoretical justification for this performance
is a topic of future work. Other important directions for
future work include generalization to multivariable systems,
statistical analysis, methods for model structure detection, and
using the embedding result for other data-driven problems,
such as interpolation, smoothing, and control.
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