Line fitting

problem: fit points $d_{1}, \ldots, d_{N} \in \mathbb{R}^{2}$ by a line

1. find condition for existence of a line (any line in \mathbb{R}^{2}) that passes through the points
2. how would you test the condition in MATLAB?
3. implement a method for exact line fitting

Conic section fitting

problem: fit points $d_{1}, \ldots, d_{N} \in \mathbb{R}^{2}$ by conic section

$$
\mathscr{B}(S, u, v)=\left\{d \in \mathbb{R}^{2} \mid d^{\top} S d+u^{\top} d+v=0\right\}
$$

1. find condition for existence of an exact fit
2. propose numerical method for exact fitting
3. implement the method and test it on the data

$$
d_{1}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right], \quad d_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad d_{3}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad d_{4}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Recursive sequence fitting

problem: fit $w=(w(1), \ldots, w(T))$ by model

$$
\mathscr{B}=\left\{w \mid R_{0} w+R_{1} \sigma w+\cdots+R_{\ell} \sigma^{\ell} w=0\right\}
$$

1. find condition for existence of an exact fit first, with, and then, without knowledge of ℓ
2. propose numerical method for exact fitting find the smallest ℓ, for which exact model exists
3. implement the method and test it on the data

$$
(1,2,4,7,13,24,44,81)
$$

