
First is the data . . .

data set

model
class

approximation
criterion
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Line fitting (linear static model)
data

model approx.

w1, . . . ,wN — data points (the order is not important)
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Time series data (dynamic model)
data

model approx.

w(1), . . . ,w(T ) — samples in time (the order is important)
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Summary: data
data

model approx.

� the data is a set w = {w1, . . . ,wN }

� of vector valued wk =




wk
1
...

wk
q




� time series wk
i =

�
wk

i (1), . . . ,w
k
i (Tk )

�

N — # of repeated experiments
q — # of variables
Tk — # of time samples in the k th exp.

� in static problems, T1 = · · ·= TN = 1
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Next is the model class . . .

data set

model
class

approximation
criterion
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Line fitting (linear static model)
data

model approx.

B — model: line through the origin
M — model class: all lines through the origin
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B
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Conic section fitting (quadratic static model)
data

model approx.

B — model: conic section
M — model class: all conic sections
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Classical definition of dynamical model
data

model approx.

� dynamical model is signal processor

model�u �y

� specified by a map �y = f (�u)

� "state space model", "transfer function model", . . .

� however, lines and conic sections may not be graphs

� e.g., , can’t be represented by f : �u �→ �y
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"good definition should formalize sensible intuition"

Jan Willems, Paradigms and puzzles, TAC’91
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Behavioral definition of model
data

model approx.

� a model is a subset

B =
� �w

�� g(�w) = 0 holds
�

� represented by an implicit function g

� in the static case, g(�w) = 0 is algebraic equation

� in the dynamic case, g(�w) = 0 is difference equation

� �w =
�
�u
�y

�
, �y = f (�u) is a special case of g(�w) = 0

(g(�u,�y) = �y − f (�u))
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Summary: model
data

model approx.

� three data modeling examples:
problem model
line fitting static linear
conic section fitting static nonlinear
system identification dynamic

� two definitions of a model:
classical behavioral
map �y = f (�u) set { �w g(�w) = 0}
f — function g — relation

� the classical one can not deal with all examples
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Finally, the approximation criterion . . .

data set

model
class

approximation
criterion
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Exact model

w ⊂ B ⇐⇒ w1, . . . ,wN ∈ B

⇐⇒ : "w is exact data of B"

� two well known exact modeling problems
� realization: LTI model class, impulse resp. data

� interpolation: static nonlinear model class

� � ��

�

�

�

�

�

u

y B =
� �

�u
�y

� �� �y = f (�u)
�

f is 8th order polynomial
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Exact 3rd order nonlinear static models

B =
� � �w1

�w2

� �� g(�w1, �w2) = 0
�

g is 3rd order polynomial in �w1, �w2

� � ��

�

�

�

�

�

w1

w
2

� � ��

�

�

�

�

�

w1

w
2
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Ordinary least squares
data

model approx.

�� �� � � � � � ��
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w
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Total least squares
data

model approx.

� � ��

�

�

�

�

�

w1

w
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wk
B

�wk

wk − �wk
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Linear static case
data

model approx.

� total least squares

min
�u,�y ,θ

���u−�u y −�y
���

F s.t. �uθ = �y� �� �
(�u,�y)⊂B(θ)

�w = (�u,�y) approximates w = (u,y)

� ordinary least squares

min
�e,θ

��e�2 s.t. uθ = y +�e� �� �
(�e,u,y)⊂Bext(θ)

�e is unobserved (latent) input
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Exact models in the approximation criteria

� Misfit approach:

modify w as little as possible,
so that �w is exact

�w − �w� is the misfit criterion

� Latency approach:

augment B by as small as possible e,
so that (e,w) is exact

�e� is the latency criterion

24 / 71



Deterministic vs stochastic setting

data

model approx.

� stochastic estimation ↔ deterministic approx.

noise
model

cost
function

maximum likelihood

� also in control

LQG control ↔ H2 optimal control
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Misfit and latency in the stochastic setting
data

model approx.

EIV ↔ misfit

G• •
+ +

ū
�u

ȳ
�y

u y

�u, �y — measurement errors

min
�w⊂B

�w − �w�

B :=
��

�u
�y

�
| �y = �G�u

�

ARMAX ↔ latency

G

H
+

e

u = ū
y

e — disturbance

min
(�e,w)⊂Bext

��e�

Bext :=

���e
u
y

�
| y = [ �H �G ]

��e
u

��

26 / 71



Summary: approximation criterion

data

model approx.

� TLS ↔ misfit ↔ errors-in-variables

min
�w⊂B

�w − �w�
�

projection
of w on B

�

� OLS ↔ latency ↔ ARMAX

min
(�e,w)∈Bext

��e�

27 / 71



A general problem

data
w

identification−−−−−−−−−→ model
B ∈ M

the aim is to obtain "simple" and "accurate" model:

"accurate" → min. error(w , �B) = misfit/latency
"simple" → Occam’s razor principle:

among equally accurate models,
choose the simplest
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Model complexity

� simple models are small models

B1 ⊂ B2 =⇒ B1 is simpler than B2

� nonlinear model complexity is an open problem

� in the linear time-invariant case, B is a subspace

size of the model = dimension of B

� however, models with inputs are infinite dimensional

30 / 71



Linear time-invariant model’s complexity

� restriction of B on an interval [1,T ]

B|T = {w =
�
w(1), . . . ,w(T )

�
| ∃ wp,wf,

such that (wp,w ,wf) ∈ B}

� for sufficiently large T

dim(B|T ) = (# of inputs) ·T + (order)

complexity(B) =

�
m
�

�
→ # of inputs
→ order or lag

� Lm,� — set of LTI systems of bounded complexity
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Complexity selection
� if m is given and fixed, choosing the complexity is an

order selection problem

� in general, choosing the complexity involves
order selection and input selection

illustrated next on the example from the introduction

� � ��

�

�

�

�

�

w1

w
2

wk

B
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Example: misfit-complexity trade-off

0
1

2 0
1

2
3

10

20
�w�= 23.68

m= 0
�= 0

number of inputs m
order �

m
is

fit

m= 0, �= 0 =⇒ B = {0} is the only model

33 / 71



Example: misfit-complexity trade-off

0
1

2 0
1

2
3

10

20

7.88

m= 1
�= 0

number of inputs m
order �

m
is

fit

m= 1, �= 0 =⇒ B is a line through 0
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Example: misfit-complexity trade-off

0
1

2 0
1

2
3

10

20

3.51

m= 1
�= 1

number of inputs m
order �

m
is

fit

m= 1, �= 1 =⇒ B is 1st order SISO
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Example: misfit-complexity trade-off

0
1

2 0
1

2
3

10

20
0.60

m= 1
�= 2

number of inputs m
order �

m
is

fit

m= 1, �= 2 =⇒ B is 2nd order SISO
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Approximation error-complexity trade-off

minimize over �B ∈ L

�
error(w , �B)

complexity( �B)

�

three ways to "scalarize" the problem:

1. minimize over �B ∈ L error(w , �B)+λcomplexity( �B)

2. minimize over �B ∈ L complexity( �B)

subject to error(w , �B)≤ µ

3. minimize over �B error(w , �B)

subject to �B ∈ Lm,�
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Complexity minimization with error bound

minimize over �B ∈ L complexity( �B)

subject to error(w , �B)≤ µ

0
1

2 0
1

2
3

10

20

number of inputs m
order �

m
is

fit
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Error minimization with complexity bound

minimize over �B error(w , �B)

subject to �B ∈ Lm,�

0
1

2 0
1

2
3

10

20

number of inputs m
order �

m
is

fit
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Summary: error-complexity trade-off

� LTI model complexity

complexity(B) =

�
m
�

�
→ # of inputs
→ order or lag

� error-complexity trade-off

minimize over �B ∈ L

�
error(w , �B)

complexity( �B)

�

� tracing all optimal solutions requires hyper parameter
1. λ — no physical meaning
2. µ — bound on the error
3. (m,�) — bound on the complexity
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