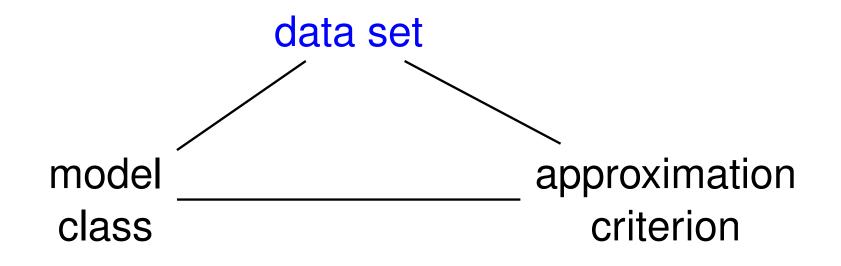
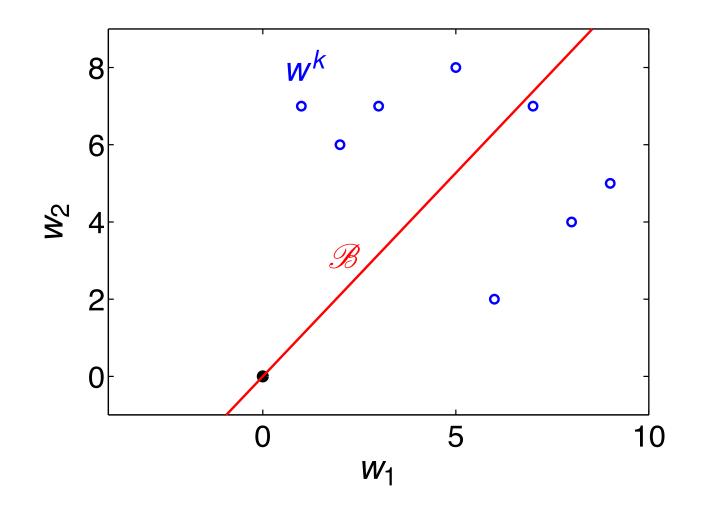
#### First is the data . . .



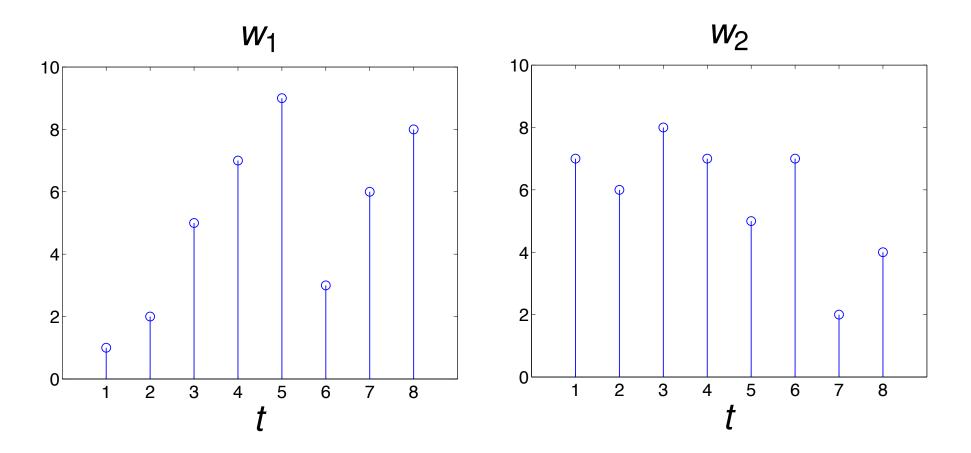
#### Line fitting (linear static model) data approx. model

 $w^1, \ldots, w^N$  — data points (the order is not important)

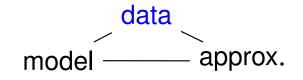


# Time series data (dynamic model)

 $w(1), \ldots, w(T)$  — samples in time (the order is important)



#### Summary: data

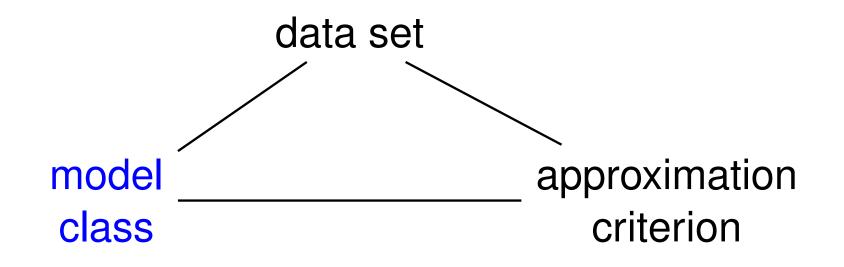


• the data is a set  $w = \{w^1, \dots, w^N\}$ 

• of vector valued 
$$w^k = \begin{bmatrix} w_1^k \\ \vdots \\ w_q^k \end{bmatrix}$$

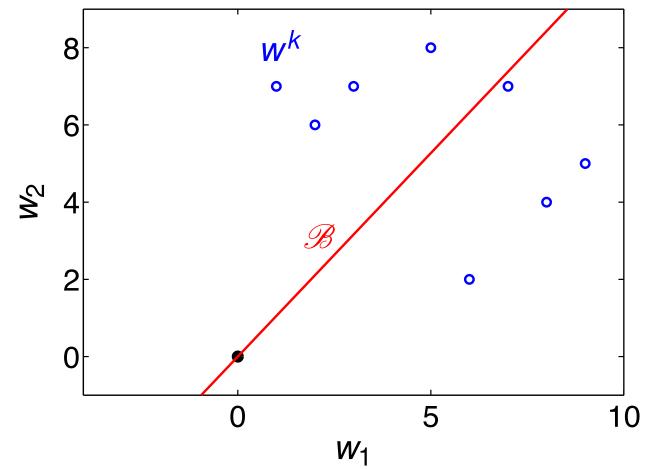
- ► time series  $w_i^k = (w_i^k(1), ..., w_i^k(T_k))$  N - # of repeated experiments q - # of variables  $T_k - \#$  of time samples in the *k*th exp.
- in static problems,  $T_1 = \cdots = T_N = 1$

#### Next is the model class . . .

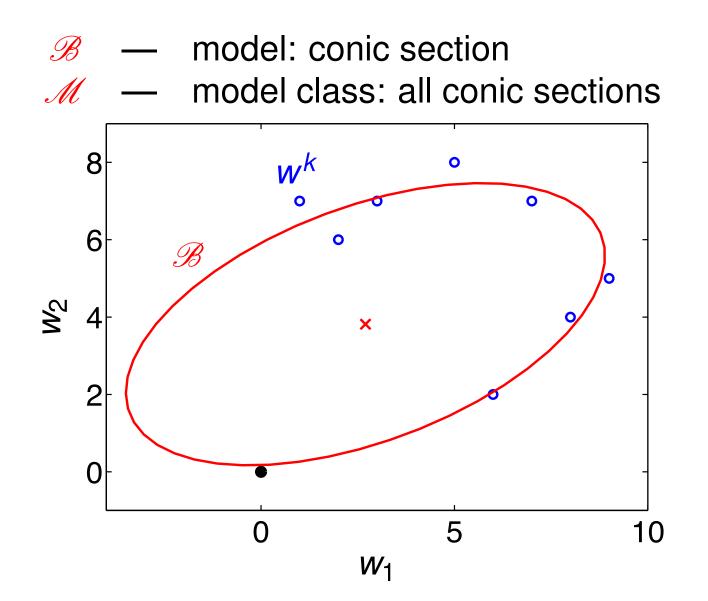


## Line fitting (linear static model)

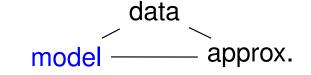
- $\mathscr{B}$  model: line through the origin
- M model class: all lines through the origin



### Conic section fitting (quadratic static model)

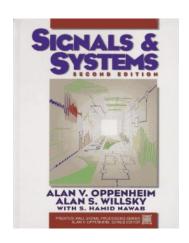


### Classical definition of dynamical model



dynamical model is signal processor

$$\widehat{u} \longrightarrow \text{model} \longrightarrow \widehat{y}$$

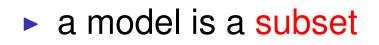


- specified by a map  $\hat{y} = f(\hat{u})$
- "state space model", "transfer function model", ...
- however, lines and conic sections may not be graphs

• *e.g.*, 
$$\xrightarrow{\uparrow}$$
,  $\xrightarrow{\uparrow}$  can't be represented by  $f: \widehat{u} \mapsto \widehat{y}$ 

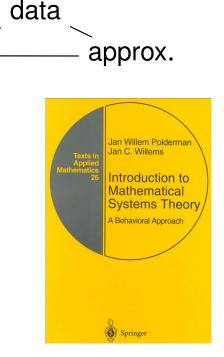
#### "good definition should formalize sensible intuition" Jan Willems, Paradigms and puzzles, TAC'91

### Behavioral definition of model



$$\mathscr{B} = \{ \widehat{w} \mid g(\widehat{w}) = 0 \text{ holds} \}$$

represented by an implicit function g

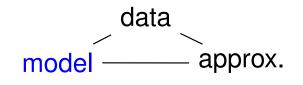


mode

- in the static case,  $g(\widehat{w}) = 0$  is algebraic equation
- in the dynamic case,  $g(\widehat{w}) = 0$  is difference equation

• 
$$\widehat{w} = \begin{bmatrix} \widehat{u} \\ \widehat{y} \end{bmatrix}$$
,  $\widehat{y} = f(\widehat{u})$  is a special case of  $g(\widehat{w}) = 0$   
 $(g(\widehat{u}, \widehat{y}) = \widehat{y} - f(\widehat{u}))$ 

#### Summary: model

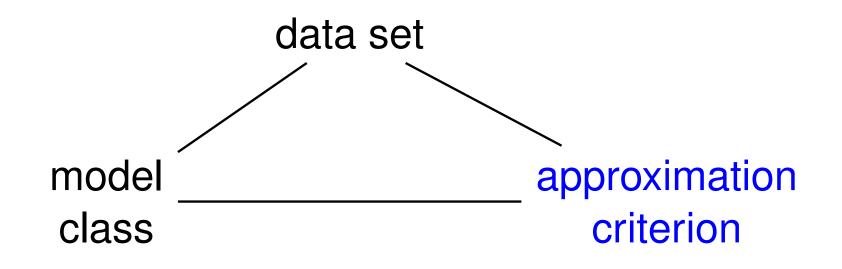


three data modeling examples:

problemmodelline fittingstatic linearconic section fittingstatic nonlinearsystem identificationdynamic

- two definitions of a model:
  - classicalbehavioralmap  $\widehat{y} = f(\widehat{u})$ set {  $\widehat{w} \mid g(\widehat{w}) = 0$  }f functiong relation
- the classical one can not deal with all examples

#### Finally, the approximation criterion ...

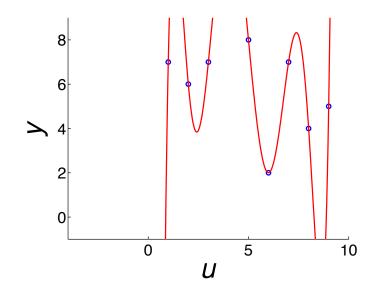


#### Exact model

$$w \subset \mathscr{B} \iff w^1, \dots, w^N \in \mathscr{B}$$
$$\iff : \quad "w \text{ is exact data of } \mathscr{B}"$$

two well known exact modeling problems

- realization: LTI model class, impulse resp. data
- interpolation: static nonlinear model class



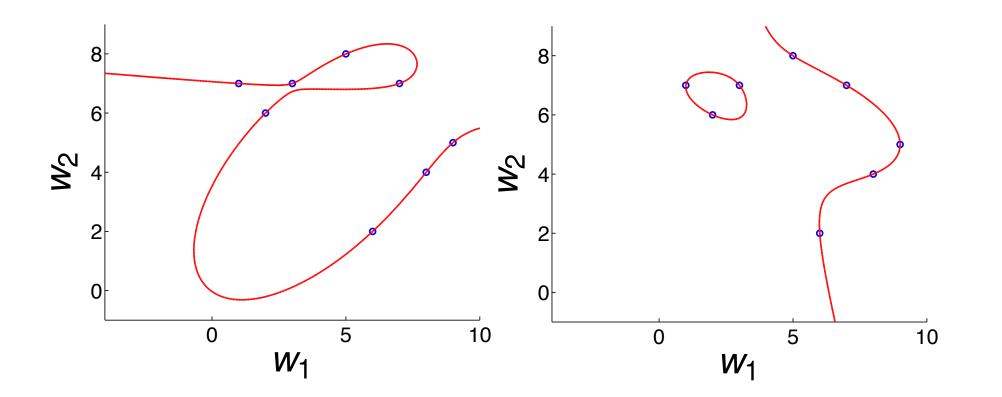
$$\mathscr{B} = \left\{ \begin{bmatrix} \widehat{u} \\ \widehat{y} \end{bmatrix} \mid \widehat{y} = f(\widehat{u}) \right\}$$

f is 8th order polynomial

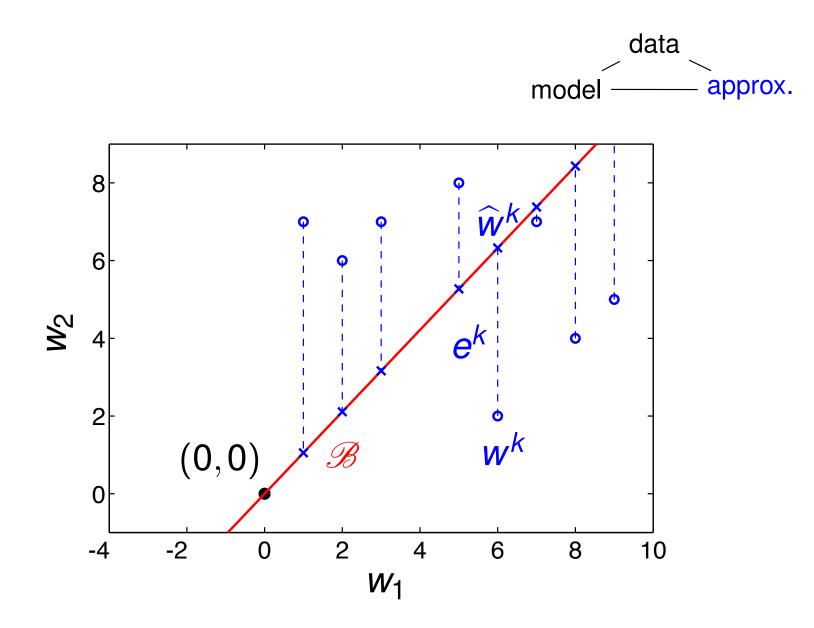
#### Exact 3rd order nonlinear static models

$$\mathscr{B} = \left\{ \left[ \begin{array}{c} \widehat{w}_1 \\ \widehat{w}_2 \end{array} \right] \mid g(\widehat{w}_1, \widehat{w}_2) = 0 \right\}$$

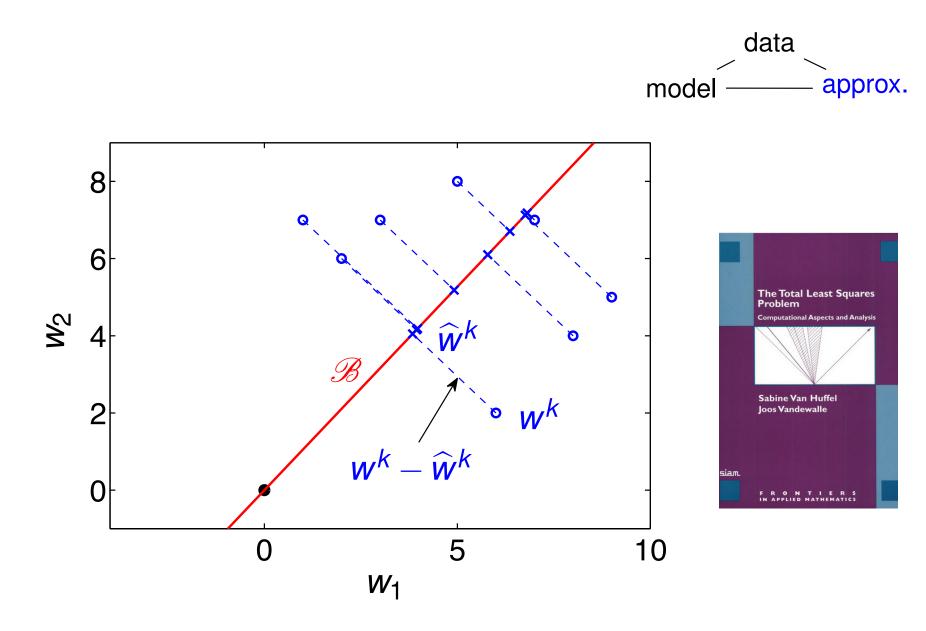
g is 3rd order polynomial in  $\widehat{w}_1$ ,  $\widehat{w}_2$ 



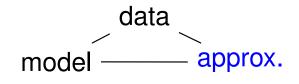
#### Ordinary least squares



#### **Total least squares**



#### Linear static case





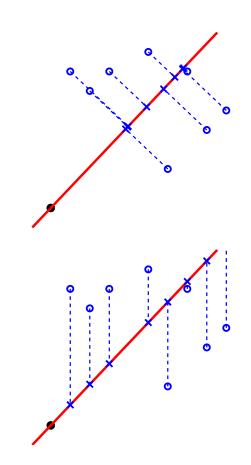
$$\min_{\widehat{u},\widehat{y},\theta} \| \begin{bmatrix} u - \widehat{u} & y - \widehat{y} \end{bmatrix} \|_{\mathsf{F}} \text{ s.t. } \underbrace{\widehat{u}\theta = \widehat{y}}_{(\widehat{u},\widehat{y}) \subset \mathscr{B}(\theta)}$$

 $\widehat{w} = (\widehat{u}, \widehat{y})$  approximates w = (u, y)

ordinary least squares

$$\min_{\widehat{e},\theta} \|\widehat{e}\|_2 \quad \text{s.t.} \quad \underbrace{u\theta = y + \widehat{e}}_{(\widehat{e},u,y) \subset \mathscr{B}_{\text{ext}}(\theta)}$$

 $\hat{e}$  is unobserved (latent) input



Exact models in the approximation criteria

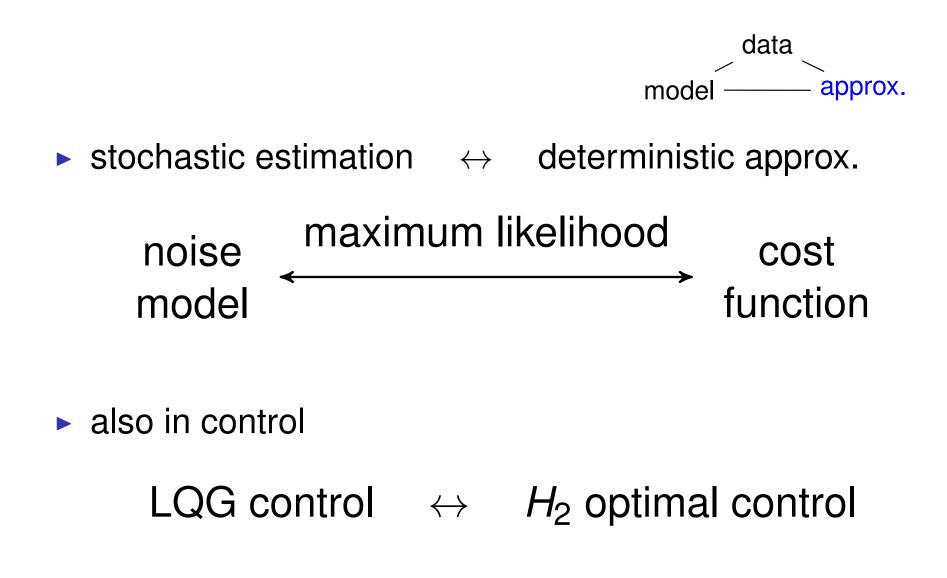
Misfit approach:

modify w as little as possible, so that  $\widehat{w}$  is exact

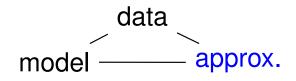
 $\| w - \widehat{w} \|$  is the misfit criterion

 Latency approach:
augment B by as small as possible e, so that (e, w) is exact
||e|| is the latency criterion

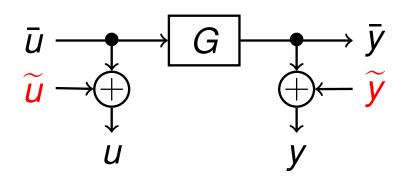
#### Deterministic vs stochastic setting



#### Misfit and latency in the stochastic setting

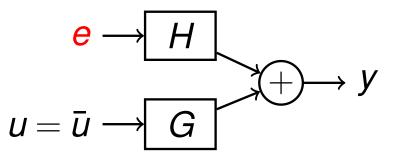


EIV  $\leftrightarrow$  misfit



 $\widetilde{u}, \widetilde{y}$  — measurement errors  $\min_{\widehat{\boldsymbol{w}}\subset\mathscr{B}}\|\boldsymbol{w}-\widehat{\boldsymbol{w}}\|$ 

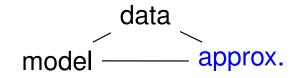
ARMAX ↔ latency

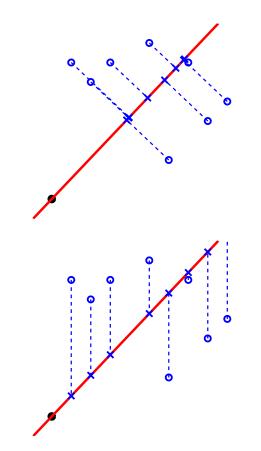


e — disturbance

 $\min_{(\widehat{e},w)\subset\mathscr{B}_{ext}} \|\widehat{e}\|$  $\mathscr{B} := \left\{ \begin{bmatrix} \widehat{u} \\ \widehat{y} \end{bmatrix} \mid \widehat{y} = \widehat{G}\widehat{u} \right\} \qquad \mathscr{B}_{\mathsf{ext}} := \left\{ \begin{bmatrix} \widehat{e} \\ u \\ y \end{bmatrix} \mid y = \begin{bmatrix} \widehat{\mu} & \widehat{G} \end{bmatrix} \begin{bmatrix} \widehat{e} \\ u \end{bmatrix} \right\}$ 

#### Summary: approximation criterion





 $\blacktriangleright TLS \leftrightarrow misfit \leftrightarrow errors-in-variables$ 

$$\min_{\widehat{w}\subset\mathscr{B}} \|w - \widehat{w}\| \quad \left(\begin{array}{c} \text{projection} \\ \text{of } w \text{ on } \mathscr{B} \end{array}\right)$$

 $\blacktriangleright \text{ OLS} \leftrightarrow \text{latency} \leftrightarrow \text{ARMAX}$ 

 $\min_{(\widehat{e},w)\in\mathscr{B}_{\mathsf{ext}}} \|\widehat{e}\|$ 

### A general problem



the aim is to obtain "simple" and "accurate" model:

"accurate"  $\rightarrow$  min. error( $w, \widehat{\mathscr{B}}$ ) = misfit/latency "simple"  $\rightarrow$  Occam's razor principle: among equally accurate models, choose the simplest

### Model complexity

simple models are small models

 $\mathscr{B}_1 \subset \mathscr{B}_2 \implies \mathscr{B}_1 \text{ is simpler than } \mathscr{B}_2$ 

- nonlinear model complexity is an open problem
- ► in the linear time-invariant case, *B* is a subspace

size of the model = dimension of  $\mathscr{B}$ 

however, models with inputs are infinite dimensional

#### Linear time-invariant model's complexity

• restriction of  $\mathscr{B}$  on an interval [1, T]

$$\mathscr{B}|_{T} = \{ w = (w(1), \dots, w(T)) \mid \exists w_{p}, w_{f}, \\ \text{such that } (w_{p}, w, w_{f}) \in \mathscr{B} \}$$

► for sufficiently large *T* 

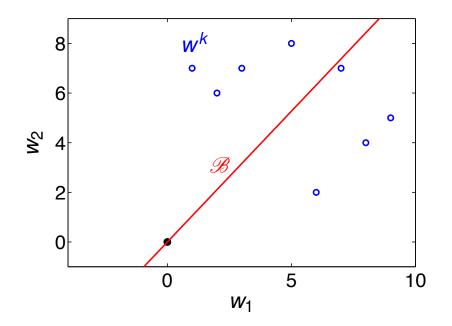
$$\dim(\mathscr{B}|_{\mathcal{T}}) = (\text{\# of inputs}) \cdot T + (\text{order})$$
$$\operatorname{complexity}(\mathscr{B}) = \begin{bmatrix} m \\ \ell \end{bmatrix} \rightarrow \text{\# of inputs}$$
$$\rightarrow \text{ order or lag}$$

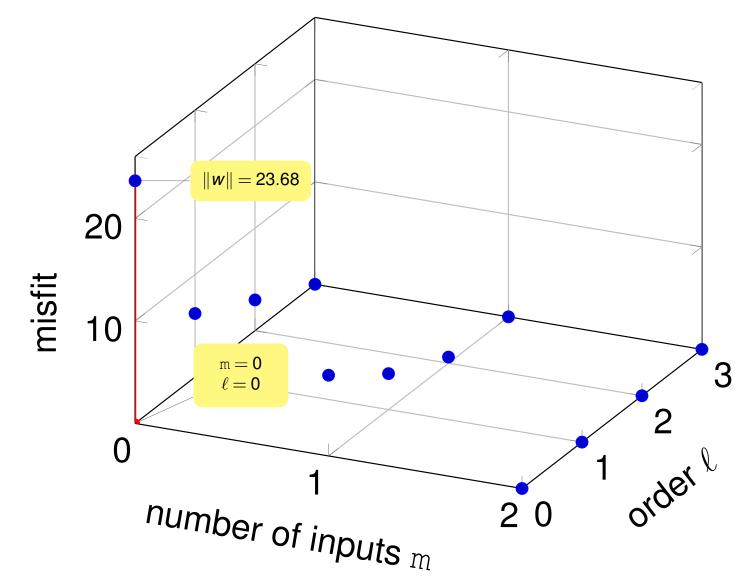
•  $\mathscr{L}_{m,\ell}$  — set of LTI systems of bounded complexity

#### **Complexity selection**

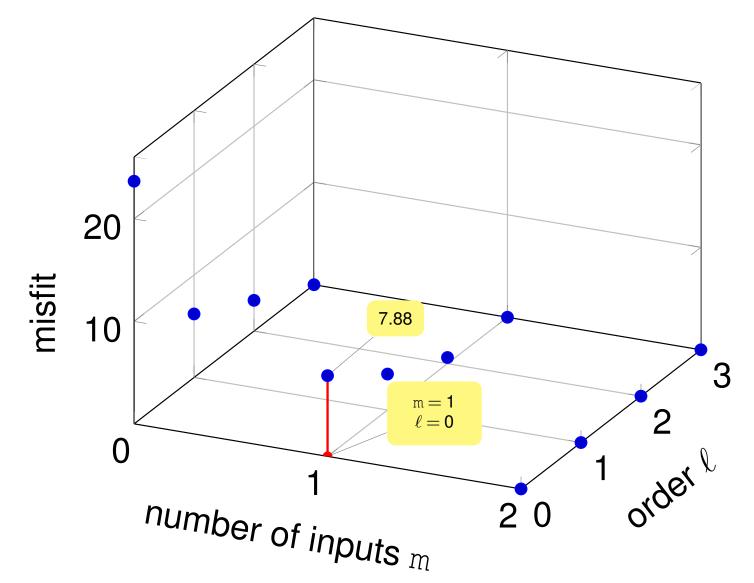
- if m is given and fixed, choosing the complexity is an order selection problem
- in general, choosing the complexity involves order selection and input selection

illustrated next on the example from the introduction

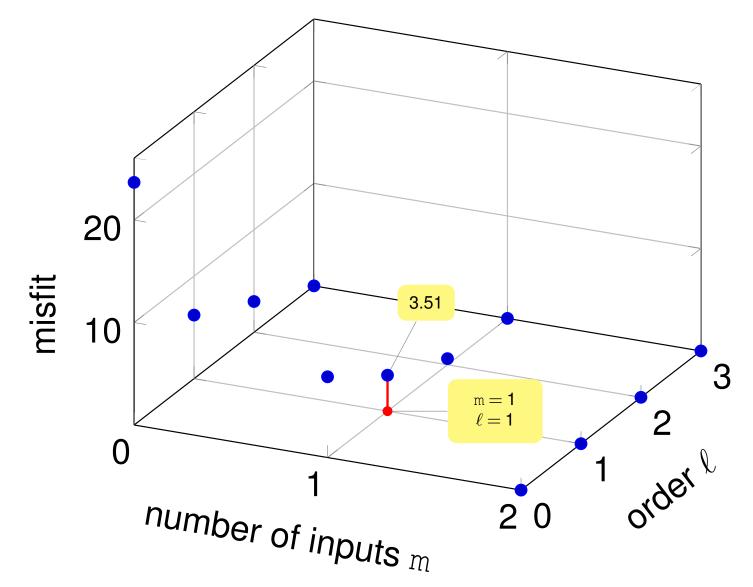




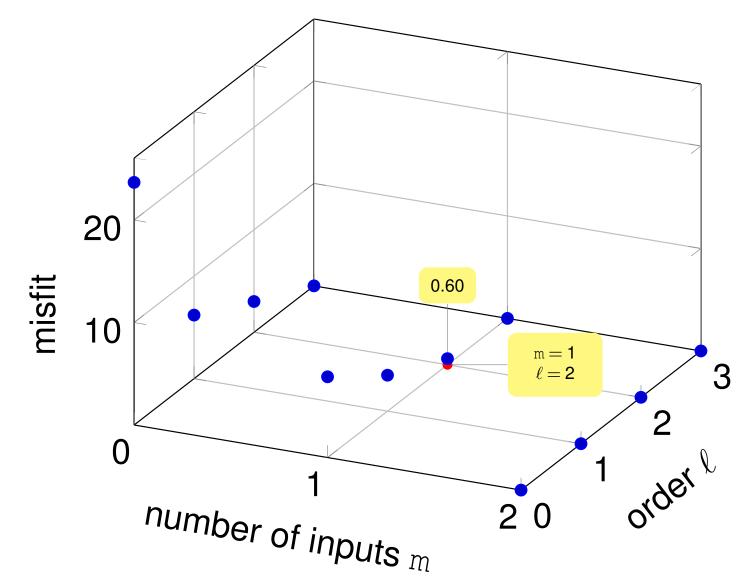
 $m = 0, \ \ell = 0 \implies \mathscr{B} = \{0\}$  is the only model



m = 1,  $\ell = 0 \implies \mathscr{B}$  is a line through 0



 $m = 1, \ell = 1 \implies \mathscr{B}$  is 1st order SISO



 $m = 1, \ell = 2 \implies \mathscr{B}$  is 2nd order SISO

Approximation error-complexity trade-off

minimize over 
$$\widehat{\mathscr{B}} \in \mathscr{L}$$

error(
$$w, \widehat{\mathscr{B}}$$
)  
complexity( $\widehat{\mathscr{B}}$ )

three ways to "scalarize" the problem:

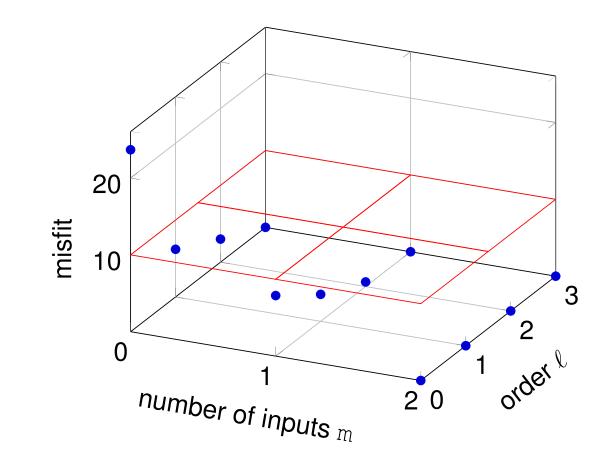
1. minimize over 
$$\widehat{\mathscr{B}} \in \mathscr{L}$$
 error $(w, \widehat{\mathscr{B}}) + \lambda$  complexity $(\widehat{\mathscr{B}})$ 

2. minimize over 
$$\widehat{\mathscr{B}} \in \mathscr{L}$$
 complexity  $(\widehat{\mathscr{B}})$  subject to error  $(w, \widehat{\mathscr{B}}) \leq \mu$ 

3. minimize over  $\widehat{\mathscr{B}}$  error $(w, \widehat{\mathscr{B}})$ subject to  $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$ 

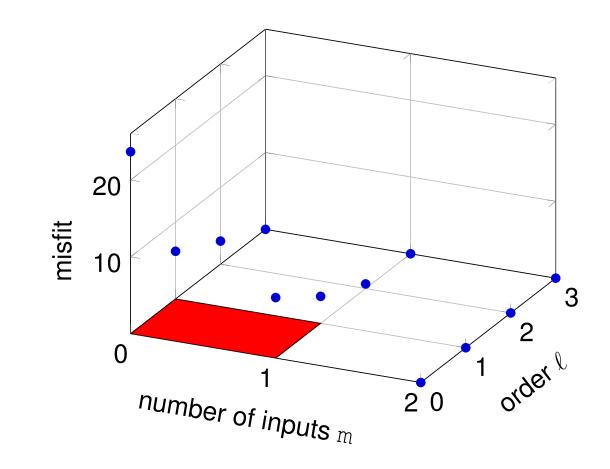
#### Complexity minimization with error bound

minimize over  $\widehat{\mathscr{B}} \in \mathscr{L}$  complexity $(\widehat{\mathscr{B}})$ subject to error $(w, \widehat{\mathscr{B}}) \leq \mu$ 



#### Error minimization with complexity bound

minimize over  $\widehat{\mathscr{B}}$  error( $w, \widehat{\mathscr{B}}$ ) subject to  $\widehat{\mathscr{B}} \in \mathscr{L}_{m,\ell}$ 



#### Summary: error-complexity trade-off

LTI model complexity

$$\mathsf{complexity}(\mathscr{B}) = \begin{bmatrix} \mathsf{m} \\ \ell \end{bmatrix} \xrightarrow{} \mathsf{m} \quad \mathsf{order or lag}$$

error-complexity trade-off

minimize over 
$$\widehat{\mathscr{B}} \in \mathscr{L}$$
 
$$\begin{bmatrix} \operatorname{error}(w, \widehat{\mathscr{B}}) \\ \operatorname{complexity}(\widehat{\mathscr{B}}) \end{bmatrix}$$

- tracing all optimal solutions requires hyper parameter
  - 1.  $\lambda$  no physical meaning
  - 2.  $\mu$  bound on the error
  - 3.  $(m, \ell)$  bound on the complexity