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Abstract— We pose a multi-model system parame-
ter estimation problem. A multi-model system is a
linearly parameterized system H(z, p) =

∑np
i=1 piHi(z).

The parameter estimation problem is: given the set
of systems {Hi(z)}

np
i=1, describing the multi-model

system, find a causal system that assumes as an input
the input/output signals of the multi-model system
and produces as an output the parameter estimate.

We propose an easy to implement suboptimal so-
lution. The algorithm that realizes it selects the best
linear combination of the estimates produced by the
Kalman filters designed for the models {Hi(z)}

np
i=1.

“Best” is defined in the sense of minimization of the
output error of estimation covariance.

The algorithm is appropriate for fault detection
and can be viewed as an observer for the discrete
state of a hybrid system.

Keywords— Multi-model systems, Kalman filter-
ing, Recursive parameter estimation, Fault detec-
tion, Hybrid systems.

I. Introduction: multi-model system

LET S be a set of systems and let p be an np-
dimensional real vector of parameters. The pa-

rameter space is Rnp , the np-dimensional real vector
space. We define abstractly a parameterized sys-
tem S as a mapping from the parameter space to
the set of systems, i.e., S : Rnp → S.

The parameter vector can be viewed as a selector
of a particular dynamical system in a subset of S
(the image of S). In practice, we think of the param-
eter as a “macro state” or a “supervisory control”
of the parameterized system in the sense that p can
be an “interface” to a higher level control system or
to a human being that supervises the system.

We will consider linearly parameterized systems
in the class of the discrete-time linear systems. A
linearly parameterized system S, also called a multi-
model systems, is a parameterized systems such that

S(p) =
np∑
i=1

piSi, for some Si ∈ S, i = 1, . . . , np.

The multi-model system is completely described by
the set of systems {Si}

np
i=1.

Let the set of systems S be the set of discrete-time
linear time-invariant systems. For a fixed value p of

the parameter vector, S(p) is a discrete-time lin-
ear time-invariant system described by the transfer
function

H(z, p) =
np∑
i=1

piHi(z),

where Hi(z) is the transfer function describing the
system Si. We refer to [1] for more information
about linearly parameterized systems.

II. Problem formulation: multi-model

system parameter estimation

Given is the multi-model system H(z, p), de-
scribed by the set of systems {Hi}

np
i=1. The input

of H(z, p) is partitioned into an unmeasurable in-
put or disturbance wd and a measurable input u.
The output is measured with additive noise wn
and the parameter p is unmeasurable. We con-
sider the problem to design a causal system, called
an estimator, that assumes as an input the mea-
sured input/output signals from the multi-model
system and produces as an output the parameter
estimate p̂, see Fig. 1. We will assume that the
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Fig. 1. Multi-model system parameter estimation problem
setup.

disturbance and the measurement noise are white,
zero mean random processes with known constant
covariance matrices Vwd and Vwn , respectively. De-
note by p̃ the error of estimation,

p̃ := p− p̂.



The estimation criterion is minimum estimation er-
ror covariance, i.e.,

min
p

tr (Cov (p̃)) . (1)

As defined, the multi-model system parameter es-
timation problem is a filtering problem. In the cor-
responding smoothing problem we consider a finite
time interval 0, . . . , tf − 1 and solve problem (1) for
the minimizing sequence {p̂(t)}tf−1

t=0 . The solution
of the smoothing problem is a structured total least
squares problem, see [2].

Partition Hi(z) according to the disturbance
channel and the measured input channel

Hi(z) = [Hwd,i(z) Hu,i(z)].

We denote by Hwd,iwd the response of the system
with transfer function Hwd,i(z) to the signal wd un-
der zero initial conditions. Similarly for the mea-
sured input channel. Note that these mappings are
causal convolution operators, so that they are lin-
ear, represented by lower triangular Toeplitz matri-
ces. Thus the notation Hwd,iwd can be interpreted
as a matrix-vector multiplication.

Assume zero initial conditions. The response of
the i-th model to a disturbance wd and measured
input u is

yi = Hu,iu+Hwd,iwd.

The response of the multi-model system to the same
signals is

y =
np∑
i=1

piyi + wn.

Combining these equations, we have

[Hu,1u+Hwd,1wd, . . . ,Hu,npu+Hwd,npwd] p = y−wn,

which expresses the smoothing problem as a
“static” regression problem. The vectors u and y
are known, wd and wn are unknown, and p is un-
known and to-be-estimated.

While the disturbance enters the right-hand-side
of the regression equation in a structured way, the
problem is not a standard least-squares problem.
This problem is called structured total least squares
problem and is known to be difficult non-convex op-
timization problem [3]. Moreover, in the context of
the filtering problem, we are interested in a recur-
sive algorithm that updates the solution. Next we
present a suboptimal but simpler solution.

III. Proposed solution

The reason why the multi-model system parame-
ter estimation problem is difficult is that we try to

filter the noise signals and estimate the parameter
vector simultaneously. The problem is simplified if
we separate it into two independent phases: first, fil-
ter the input/output data, and second, estimate the
parameters from the filtered measurements. Clearly
this approach leads to a suboptimal solution.

In the filtering stage, we process the input/output
signals with a bank of Kalman filters, designed for
the set of models {Hi}

np
i=1. Let ŷi be the output

estimate of the i-th Kalman filter. For any p ∈ Rnp
we interpret

ŷ(p) :=
np∑
i=1

piŷi

as the predicted output . The output error of esti-
mation is

ỹ(p) := y − ŷ.

In the estimation stage, we select as an estimate p̂,
the parameter vector that minimizes the covariance
of the output error of estimation, i.e.,

min
p

tr (Cov (ỹ(p))) . (2)

Denote by Ŷ the matrix of the stacked one next to
the other filtered outputs

Ŷ := [ŷ1 · · · ŷnp ].

Then
ỹ(p) = y − Ŷ p

and the solution of problem (2) is

p̂ = E{Ŷ Ŷ T }−1E{Ŷ T y}. (3)

While Ŷ is computed and y is measured, the quan-
tities

F := E{Ŷ Ŷ T } and h := E{Ŷ T y}

can be estimated in real-time by

F̂ (t) =
1
t

t∑
τ=0

Ŷ T (τ)Ŷ (τ) (4)

and

ĥ(t) =
1
t

t∑
τ=0

Ŷ T (τ)ŷ(τ). (5)

Then at the moment of the time t, the estimate is

p̂(t) = F̂−1(t)ĥ(t) (6)

In practice, the computation of F̂ (t) and ĥ(t) is done
recursively by

F̂ (t) =
1

t− 1
(
(t− 2)F̂ (t− 1) + Ŷ T (t)Ŷ (t)

)



and

ĥ(t) =
1

t− 1
(
(t− 2)ĥ(t− 1) + Ŷ T (t)y(t)

)
.

A refinement of the algorithm is to estimate di-
rectly F̂−1(t), so that solving the system (6) on
every time instance is avoided. Furthermore, one
can consider square root type algorithms, where the
Cholesky factor F̂−1/2(t) is estimated. We leave
these improvements for a further research work and
concentrate in this paper on the questions of the
performance and the applications of the algorithm.

Next we show a simulation example. In the exper-
iment, the parameter p is constant and the multi-
model system is described by four models, i.e.,
np = 4. Let 1i denotes the i-th unit vector,

1i := [0 · · · 0 1
i

0 · · · 0]T .

The parameter vector is p = 11, which means that
the dynamical behavior of the multi-model system
coincides with this of the first model.

The simulation result is shown on the plot of
Fig. 2. In red is the estimate of the first param-
eter. In 20 time samples p̂1 is sufficiently close to
1 and the estimates of the other parameters (p̂2 is
in blue) are close to 0. The algorithm “recognizes”
the correct “mode” of operation from the noisy in-
put/output data.

Next, we modify the algorithm to allow estima-
tion of a time varying parameter vector. In this case
the estimation algorithm becomes adaptive. We will
assume that an a priori knowledge for the rate of
variation is known.

If the parameter vector is a function of time, the
multi-model system is time-varying and the output
is not an ergodic stochastic process. Then the ex-
pectation operations in (3) does not make sense.
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Fig. 2. Simulation result with unknown constant parameter.

Nevertheless, for a short time intervals (“short” de-
pending on the rate of change of the parameter vec-
tor) Ŷ and y are nearly stationary.

We account for the time variation by making the
averaging over a moving window of T past samples
and weighting the data by an exponential forget-
ting factor λ ∈ [0, 1]. With this modifications equa-
tions (4) and (5) become

F̂ (t) =
1
T

t∑
τ=t−T

λt−τ Ŷ T (τ)Ŷ (τ)

and

ĥ(t) =
1
T

t∑
τ=t−T

λt−τ Ŷ T (τ)ŷ(τ).

To demonstrate the performance of the modified
estimation algorithm, we alter the simulation exam-
ple described above. At time instance t = 133 we
simulate a switching of the parameter vector from
the initial value 11 to 12, i.e., at time t = 133 the
multi-model system switches from the model H1(z)
to the model H2(z).

The simulation result is shown on the plot of
Fig. 3. Again in red is the estimate of the first
parameter and in blue is the estimate of the sec-
ond parameter. After time instance t = 20 and
before time instance t = 133 the algorithm cor-
rectly “recognizes” the first model as the “active”
one. The switching causes a jump in the estimates
and in about 100 time samples a new steady state is
reached. The estimates are again correct according
to the new value of the parameter vector.

IV. Adding prior knowledge in the

estimation

The experiment with the switching from one
model to another results in a big jump of the es-
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Fig. 3. Simulation result with switching.



timates. Also the convergence to the new steady
state is rather slow. The performance can be im-
proved by adding prior knowledge for the possible
(or allowed) parameter values. An example of prior
knowledge are upper and lower bounds for the pa-
rameters.

We use as a prior knowledge the constraint

np∑
i=1

pi = 1, p ≥ 0. (7)

The subset in the parameter space defined by (7) is
called the probability simplex. It allows to interpret
the elements of the parameter vector as probabili-
ties; p̂i(t) is the probability, that at time t, Hi(z) is
active. By “Hi(z) active” we mean that it governs
the dynamical behavior of the multi-model system.

To account for the constraint (7), we have to solve
on each iteration step the quadratic programming
problem

min
p
||F̂ p− ĥ||2 s.t. (7).

The equality constraint in (7) can be eliminated
leading to another quadratic programming problem
with np − 1 variables.

min
q
qTNT F̂T F̂Nq − 2(ĥ− F̂ p̂0)T F̂Nq

s.t. Nq ≥ −p̂0,

where N := Null(1T ) and p̂0 is a particular solution
of 1T p = 1, 1 := [1 · · · 1]T .

Next, we apply the algorithm with the probabil-
ity simplex constraint to the above simulation ex-
ample. The plot of Fig. 4 shows a result with a
constant parameter p = 11. For all t the estimates
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Fig. 4. Simulation result with unknown constant parameter
and probability simplex constraint.

are confined to the interval [0, 1]. The convergence
to the true parameter values is smoother and faster.
The plot of Fig. 5 shows a result for the experiment
with switching from p = 11 to p = 12. Compared
with the plot on Fig. 3, the big jump is avoided and
the convergence is faster.

V. Applications

In this section we discuss two areas of application
of the multi-model parameter estimation problem.

The first one is fault detection. Assume that the
real-life system, we model, has a finite number of
modes in which it can operate and one or more of
them are faulty. We consider the problem of de-
signing a device that monitors the behavior of the
real-life system and issues warning when it enters
one of the faulty modes.

In this setting, the fault detection problem is a
direct application of the algorithm in the paper.
Let the modes be modeled by discrete-time lin-
ear time-invariant systems {Hi(z)}

np
i=1 (there are np

modes in total) and consider the multi-model sys-
tem H(z, p) =

∑np
i=1 piHi(z). Only one mode is

active (i.e., in use) in every moment of the time, so
that for any time instance t, the parameter vector
p(t) = 1i(t) for some i(t) ∈ {1, . . . , np}. The in-
dex of the nonzero element of p(t) corresponds to
the index of the currently active mode. Assuming
p̂(t) ≈ p(t), the index of the largest entry of the
parameter estimate p̂ also indicates the currently
active mode. The estimated current mode can be
checked against membership to the set of the faulty
modes.

The second application is for observer for the dis-
crete state of a hybrid system. A hybrid system is a
multi-model system which parameter is the state of
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Fig. 5. Simulation result with switching and probability
simplex constraint.



a discrete-event system. The estimation algorithm
described in the paper can be viewed as an observer
for the discrete state of a hybrid system described,
by the the set of systems {Hi(z)}

np
i=1. While hy-

brid systems become popular modeling framework,
the discrete state observer problem has potentially
wide application domain.

VI. Conclusions

Multi-model system is a linearly parameterized
system. It is a convenient tool to incorporate super-
visory control or higher level discrete-event dynam-
ics in the framework of the linear time-invariant sys-
tems. We introduced a parameter estimation prob-
lem for multi-model systems. The system is driven
by a measured input and a disturbance signal and
the output is measured with additive noise. The
optimal solution of the multi-model parameter esti-
mation problem is a structured total least squares
problem. It is difficult to compute off-line and cur-
rently there are no recursive algorithms. We pro-
pose a simpler to implement, suboptimal solution
and demonstrated by simulation examples its effec-
tiveness. Taking into account prior knowledge im-
proves the convergence of the estimates. We show
an estimation procedure with the constraint that
the parameter vector belongs to the probability sim-
plex. This constraint makes possible to interpret the
parameters as probabilities.
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