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ABSTRACT
The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or
semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis
functions using a limited number of measured output variables. This representation assumes that
the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A
two-step identification procedure is derived for the grey-box model parameters, integrating non-
linear subspace initialisation and weighted least-squares optimisation. The complete procedure is
applied to an electrical circuit mimicking the behaviour of a single–input, single–output (SISO) non-
linear mechanical system and to a single–input, multiple–output (SIMO) geometrically nonlinear
beam structure.

1. Introduction

Operating in nonlinear regime has become a popular
design solution for many systems and devices in order
to meet escalating performance requirements. Among a
variety of potential examples, the nonlinear implementa-
tion of signal processing operations is worthy of mention.
In Boechler, Theocharis, and Daraio (2011), tunable rec-
tificationwas achieved using a granular crystal with bifur-
cating dynamics leading to quasiperiodic and chaotic
states. By coupling nonlinearmodes through internal res-
onances, Antonio, Zanette, and Lopez (2012) proposed a
frequency stabilisation mechanism for micromechanical
resonators. In Strachan, Shaw, and Kogan (2013), a chain
of nonlinear resonators involving a cascade of parametric
resonances was also used to passively divide frequencies.
In the field of mechanical vibrations, intentionally util-
ising nonlinearity has similarly attracted a great deal of
attention over the past few years, in particular for devising
vibration absorbers (Habib&Kerschen, 2015;Wierschem
et al., 2017) and harvesters (Karami & Inman, 2012).

This emergence of ever-more complicated nonlin-
ear designs calls for the development of a new genera-
tion of data-driven modelling tools capable of account-
ing for nonlinear phenomena. The most recent and
popular contributions pursuing this goal in mechanical
vibration engineering were surveyed in Noël and Ker-
schen (2017), and include, e.g. nonlinear modal analy-
sis techniques (Chen et al., 2014; Noël, Renson, Grappa-
sonni, & Kerschen, 2016; Peeters, Kerschen, & Golinval,
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2011; Renson, Gonzalez-Buelga, Barton, & Neild, 2016)
and numerical model updating methods (Claeys, Sinou,
Lambelin, & Alcoverro, 2014; Isasa, Hot, Cogan, &
Sadoulet-Reboul, 2011).

One of the major challenges in nonlinear data-
driven modelling, or nonlinear system identification, is
to address the constant compromise existing between the
flexibility of the fitted model and its parsimony. Flexibil-
ity refers to the ability of the model to capture complex
nonlinearities, while parsimony is its quality to possess a
low number of parameters. In this paper, we concentrate
on nonlinear state-space representations of the kind{

ẋ(t ) = Ax(t ) + Bu(t ) + E g(x, u, y)
y(t ) = Cx(t ) + Du(t ) + F h(x, u, y), (1)

which can be classified as very flexible but little parsimo-
nious, two features typically shared by black-box models.
In Equation (1), A ∈ R

ns×ns , B ∈ R
ns×m, C ∈ R

l×ns and
D ∈ R

l×m are the linear state, input, output and direct
feedthroughmatrices, respectively; x(t ) ∈ R

ns is the state
vector; y(t ) ∈ R

l and u(t ) ∈ R
m are the output and

input vectors, respectively. The linear-in-the-parameters
expressions E g(x, u, y) ∈ R

ns and F h(x, u, y) ∈ R
l are

the nonlinear model terms coupling the state, input and
output variables. The order of the model, i.e. the dimen-
sion of the state space, is denoted as ns.

In the analysis of mechanical vibrations, one very
often distinguishes nonlinearities distributed throughout
(some large region of) the entire structure from localised
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nonlinearities, which are physically confined to a small
area. Localised nonlinearities are arguably the most com-
mon in mechanical engineering practice, as they typi-
cally arise in joints interfacing substructures. Meaningful
examples of this reality can be found in aerospace appli-
cations. During the modal survey of the Cassini space-
craft (Carney, Yunis, Smith, & Peng, 1997), nonlinearities
resulting from the appearance of gaps in the truss sup-
ports of the Huygens probe were attested. Similarly, the
analysis of in-orbit data of the International Space Sta-
tion highlighted that the opening of a pin connection in
the assembly of its solar arrays led to severe nonlinear
manifestations (Laible, Fitzpatrick, & Grygier, 2013).
Nonlinearities were also reported during ground vibra-
tion testing of the Airbus A400M, and were attributed
to the elastomeric mounts supporting the four turboprop
engines of the aircraft (Ahlquist, Carreño, Climent, de
Diego, & de Alba, 2010).

In the present paper, it is shown that, in the case of
mechanical systems where nonlinearities are localised in
physical space, the black-box model structure in Equa-
tion (1) can be drastically simplified. More specifically,
Section 2 demonstrates that the nonlinear terms in Equa-
tion (1) can be constructed using a limited number of
output measurements, and hence without involving the
state and input vectors. This makes the resulting grey-
box state-space model a parsimonious representation of
nonlinear mechanical systems. A two-step identification
procedure is derived for this model in Section 3, inte-
grating nonlinear subspace initialisation and weighted
least-squares optimisation. Finally, the complete proce-
dure is applied in Sections 4 and 5 to an electrical circuit
mimicking the behaviour of a single–input, single–output
(SISO) nonlinear mechanical system and to a single–
input, multiple–output (SIMO) geometrically nonlinear
beam structure, respectively.

2. Grey-box state-spacemodelling based on
Newton’s second law

Assuming localised nonlinearities, the vibrations of a np-
degree-of-freedom mechanical system, i.e. a system fea-
turing np linear resonances, obey Newton’s second law
written in the form

Mÿ(t ) + Cv ẏ(t ) + Ky(t )

+
s∑

a=1

ca ga(ynl (t ), ẏnl(t )) = u(t ), (2)

where M, Cv , K ∈ R
np×np are the mass, linear viscous

damping and linear stiffness matrices, respectively; y(t ),

m1 m2

k1,cv1 k2,cv2 c1,k3,cv3

u(t)

Figure . An illustrative -degree-of-freedom mechanical system
with one localised nonlinearity.

ẏ(t ), ÿ(t ) and u(t ) ∈ R
np are the displacement, veloc-

ity, acceleration and external force vectors, respectively;
the nonlinear restoring force term is formed as the sum
of s basis function vectors ga(t ) ∈ R

np associated with
coefficients ca. The subsets of displacements and veloc-
ities involved in the construction of the basis functions
are denoted ynl (t ) and ẏnl (t ), respectively. To fix ideas and
illustrate Equation (2), the 2-degree-of-freedommechan-
ical system shown in Figure 1 is considered. It comprises
one cubic stiffness element, and obeys Newton’s law as
written term-by-term in Equation (3). Because the non-
linearity in the system is localised between mass 2 and a
fixed base, vector g1 = ( 0 y32 )T in Equation (3) possesses
a single nonzero element function of ynl = y2.(

m1 0
0 m2

)(
ÿ1
ÿ2

)
+

(
cv1 + cv2 −cv2

−cv2 cv2 + cv3

)(
ẏ1
ẏ2

)
+

(
k1 + k2 −k2
−k2 k2 + k3

) (
y1
y2

)
+ c1

(
0
y32

)
=

(
u(t )
0

)
(3)

The dynamics governed by Equation (2) is conve-
niently interpreted by moving the nonlinear restoring
force term to the right-hand side, i.e.

Mÿ(t ) + Cv ẏ(t ) + Ky(t )

= u(t ) −
s∑

a=1

ca ga(ynl (t ), ẏnl (t )), (4)

which leads to the block-diagram representation in
Figure 2.

Underlying linear

system: M, Cv, K

Nonlinear feedback:

ca, ga(ynl(t), ẏnl(t))

u(t) y(t), ẏ(t)
+

Figure . Feedback interpretation of Newton’s law in Equation ().
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The feedback structure of this diagram suggests that
localised nonlinearities in mechanical systems act as
additional inputs applied to the underlying linear system.
This, in turn, reveals that black-box nonlinear terms in a
state-space model, such as E g(x, u, y) and F h(x, u, y)
in Equations (1), are overly complex to address mechani-
cal vibrations. A more parsimonious description of non-
linearities is achieved by translating Equation (4) in state
space, which provides the grey-box model{

ẋ(t ) = Ax(t ) + Bu(t ) + E g(ynl (t ), ẏnl (t ))
y(t ) = Cx(t ) + Du(t ) + F g(ynl (t ), ẏnl (t )),

(5)

where g(t ) ∈ R
s is a vector concatenating the nonzero

elements in the basis function vectors ga(t ), and E ∈
R

ns×s and F ∈ R
np×s are the associated coefficient matri-

ces.
For the sake of conciseness, one adopts the concate-

nated equations{
ẋ(t ) = Ax(t ) + Bu(t )
y(t ) = Cx(t ) + Du(t ), (6)

where B = [B E] and D = [D F]; the extended input
vector u(t ) is similarly defined as [u(t )T g(t )T ]T , where
T is the transpose operation.

3. Identification procedure

The simplified structure of the grey-box state-space
model proposed in Equation (6) lends itself to a two-step
identification procedure, whereas four steps including
two nonlinear optimisation searches are needed in clas-
sical black-box state-space identification (Paduart et al.,
2010). First, initial estimates of the A, B, C and Dmatri-
ces are obtained using nonlinear subspace identifica-
tion. Second, the quality of the initial subspace param-
eter estimates is improved using nonlinear optimisation.
The complete procedure is carried out in the frequency
domain, opening the possibility to apply user-defined
weighting functions in specific frequency intervals. We
also opt for a discrete-time formulation to ensure a proper
conditioning of the identification algorithm and to per-
mit effective model-based time simulations.

3.1 Initial state-spacemodel obtained using
nonlinear subspace identification

Equation (6) is first recast in the frequency domain as{
zk X(k) = AX(k) + BU(k)

Y(k) = CX(k) + DU(k), (7)

where k is the frequency line, zk the z-transform variable,
and Y(k), X(k) andU(k) the discrete Fourier transforms
(DFTs) of y(t ), x(t ) and u(t ), respectively.

Initial estimates of the (A,B,C,D) matrices are cal-
culated using the frequency-domain nonlinear subspace
identification (FNSI) method proposed in Noël and
Kerschen (2013). This method derives parameters non-
iteratively from data by manipulating Equation (7) using
geometric projections, and by considering the measured
outputs as nonlinear regressors. The strength of using
nonlinear subspace identification is that a fully nonlinear
grey-box model is initially obtained, contrasting with the
linearised initial model considered in the black-box state-
space identification approach of Paduart et al. (2010). A
complete description of the FNSI algorithm is provided
in Appendix 1.

3.2 Final state-spacemodel obtained using
nonlinear optimisation

The recourse to measured outputs as regressors in the
FNSI method causes parameter estimates to suffer from
a systematic error, which magnitude depends on the out-
put signal-to-noise ratio (SNR). To reduce this error, the
second step of the identification procedure consists in
minimising a weighted least-squares cost function with
respect to all parameters in

(
A,B,C,D

)
.

.. Definition of the cost function
Introducing the vector of model parameters θ ∈ R

nθ as

θ = [
vec (A) ; vec

(
B
) ; vec (C) ; vec

(
D

)]
, (8)

where the operation denoted vec stacks the columns of a
matrix on top of each other, the cost function tominimise
writes

V(θ) =
F∑

k=1

εH (k, θ)W(k) ε(k, θ), (9)

where F is the number of processed frequency lines, H
theHermitian transpose, andW(k) a weighting function.
The model error vector ε ∈ R

l , where l is in general the
number of measured output variables, is defined as the
complex-valued difference

ε(k, θ) = Ym(k, θ) − Y(k), (10)

where Ym(k, θ) and Y(k) are the DFTs of the modelled
and measured outputs, respectively.



4 J. P. NOËL AND J. SCHOUKENS

.. Assumption on noise disturbances and
weighting strategy
An output error framework is adopted according to the
two following assumptions on the frequency-domain
input and output noise disturbances.

Assumption 3.1 The input spectrum is assumed to be
noiseless, i.e. observed without errors and independent of
the output noise. In practice, electromagnetic shakers used
in mechanical applications typically yield SNRs of 60–80
dB, which is coherent with a noise-free assumption. If the
input noise disturbances are otherwise too important, mea-
surements can be averaged over multiple periods.

Assumption 3.2: The output disturbing noise termNY (k)
is Gaussian distributed, has zero mean E (NY (k)) = 0,
where E is the expectation operator, and has a covari-
ance matrix with only nonzero diagonal elements equal
to σ2

Y (k) = E (|NY (k)|2), as described in Schoukens,
Pintelon, and Rolain (1999).

In linear system identification, model errors are negli-
gible relative to noise errors provided an adequate choice
of the model order. In this case, the cost function V(θ)

in Equation (9) is usually weighted by the inverse of the
noisemagnitude, i.e.W(k) = σ−1

Y (k), leading to parame-
ter estimates with maximum likelihood dispersion prop-
erties (Pintelon & Schoukens, 2001). In the presence of
nonlinearities, model errors generally prevail over noise
errors. Accordingly, we select herein a unitary weighting
matrixW(k), assuming that unmodelled dynamics is uni-
formly distributed in the frequency domain.

.. Analytical calculation of the Jacobianmatrix
In this work, the minimisation of the cost function
V(θ) in Equation (9) is performed by means of a
Levenberg–Marquardt optimisation algorithm, which
combines the large convergence region of the gradient
descent method with the fast convergence of the Gauss–
Newton method (Levenberg, 1944; Marquardt, 1963).
This algorithm requires the calculation of the Jacobian
matrix J(k, θ) associated with the cost function or, equiv-
alently, with the error function ε(k, θ), i.e.

J(k, θ) = ∂ε(k, θ)

∂θ
= ∂Ym(k, θ)

∂θ
. (11)

Given the nonlinear relationship which exists between
Y(k) and U(k) in Equation (7), it may not be practical to
compute the elements of J(k, θ) in the frequency domain.
An alternative approach consists in carrying out the com-
putation of the Jacobian matrix in the time domain, and
then in applying the DFT. Following this idea, the ana-
lytical derivation of all elements in J(k, θ) is achieved in
Appendix 2.

Table . Natural frequency and damping
ratio of the Silverbox benchmark esti-
mated at  mV RMS.

Natural frequency (Hz) Damping ratio (%)

. .

4. Experimental demonstration on the
Silverbox benchmark

The identification procedure described in Section 3 is
demonstrated in the present section using experimen-
tal measurements acquired on the Silverbox benchmark,
an electronic circuit mimicking the behaviour of a SISO
mechanical system with a single resonance.

The system was excited using random phase mul-
tisines (Pintelon & Schoukens, 2001) with root-mean-
squared (RMS) amplitudes of 5 and 100 mV. The input
frequency spectrum was limited to 0–300 Hz, exclud-
ing the DC component, and considering a sampling fre-
quency of 2441 Hz. Experiments were conducted over 30
periods of 8192 samples each, removing the first five peri-
ods to achieve steady-state conditions. Table 1 reports the
underlying linear modal properties of the Silverbox esti-
mated at 5 mVRMS. Figure 3 depicts frequency response
functions (FRFs) measured at 5 and 100 mV RMS. At
high excitation level, a shift of the resonance frequency
of about 9 Hz together with severe nonlinearity-induced
stochastic distortions is noticed.

4.1 Grey- versus black-box identification

The Silverbox was designed to exhibit the dynamics of
a Duffing oscillator with cubic spring, though previ-
ous studies concluded that it also features an asymme-
try in its nonlinear characteristic (Noël, Schoukens, &
Kerschen, 2015; Schoukens, Nemeth, Crama, Rolain, &
Pintelon, 2003). This is usually modelled using an addi-
tional quadratic stiffness term, prescribing the equation
of motion

M ÿ(t ) +Cv ẏ(t ) + K y(t ) + c1 y2(t ) + c2 y3(t ) = u(t ).(12)

A state-space model of the Silverbox system, in the grey-
box form of Equation (5), is constructed in discrete time
at 100 mV RMS. According to the physical description
given in Equation (12), nonlinear terms in the state equa-
tion are chosen to be quadratic and cubic functions of
the measured output displacement ynl(t). The resulting
vector θ in Equation (8) contains 13 parameters, given a
model order equal to 2. In Paduart et al. (2010), a black-
box, second-order state-space model, in the discrete-
time form equivalent to Equation (1), was identified
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Figure . (Colour online) Comparison of FRFs measured at  (in blue) and  (in black) mV RMS.

considering a third-degreemultivariate polynomial in the
state equation with all cross products included, and linear
terms only in the output equation. This led to a nonlinear
model with 37 parameters.

The frequency-domain behaviour of the grey-box
model error is studied in Figure 4(a), where the out-
put spectrum in grey is compared with the initial and
final state-space fitting error levels in orange and blue,
respectively. The error of a linear state-spacemodel is also
plotted in green. Error levels were evaluated on a val-
idation data set consisting of one period of 8192 sam-
ples measured at 100 mV RMS. The noise level dis-
played in blackwas obtained by averaging estimation data
over the 25 periods acquired in steady state. The ini-
tial model obtained using nonlinear subspace identifica-
tion (in orange) features a low error level, generally lying
40 dB below the output spectrum. This accuracy is
explained by the high SNR of the output measurement
(around 50 dB), which limits the systematic error dis-
cussed in Section 3.2. The final model error (in blue)
closely matches the noise level in the resonance region,
translating a virtually perfect fitting in this interval. A
larger error is noticed around 250 Hz, which might be
attributed to an unmodelled resonance between the fifth
harmonic of the noise signal and the third harmonic
of the Silverbox response. The time-domain errors cor-
responding to Figure 4(a) are depicted in Figure 4(b).
The RMS values of the validation output time history
and of the linear model error are equal to 0.16 and 0.09

V, respectively. The initial and final state-space models
obtained following the identification procedure of Sec-
tion 3 decrease this error down to 0.002 and 0.001 V,
respectively.

Figure 5(a,b) compares in the frequency domain the
proposed grey-box approach with the black-box identifi-
cation method of Paduart et al. (2010). In Figure 5(a),
initial model error spectra are superposed. The graph
shows the clear advantage in starting from the nonlin-
ear subspace model (in orange) described in Section 3.1,
as opposed to the linearised model (in green) adopted
in black-box identification. Final models are assessed in
Figure 5(b). They are seen to lead to a similar valida-
tion error level, proving the accuracy of the introduced
grey-box framework. The Levenberg–Marquardt itera-
tions necessary to construct the final grey-box and black-
box models are eventually analysed in Figure 6. It is
observed that an optimal grey-box model is reached in a
single iteration, whereas 33 iterations are required by the
black-box model. This significant difference is the result
of the already low initial error of the nonlinear subspace
model (−55 dB), in comparison with the more substan-
tial error of the linearised model (−21 dB).

4.2 Nonlinear coefficients and discrete- to
continuous-time conversion

The coefficients of the physical system nonlinearities, i.e.
c1 and c2 in Equation (12), can be calculated from the
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Figure . (Colour online) (a) Frequency-domain behaviour of the validation model error over the input band, featuring the output spec-
trum (in grey), linear state-space error level (in green), initial (in orange) and final (in blue) grey-box state-space error levels, and noise
level (in black). (b) Time-domain validation plot, with the output time history (in black), linear state-space error (in green), and initial (in
orange) and final (in blue) grey-box nonlinear state-space errors.
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Figure . (Colour online) Decrease of the RMS validation error over  Levenberg–Marquardt iterations for the grey-box (in blue) and
black-box (in red) approaches. Optimal models are located using black dots.

final estimates of the grey-box state-space parameters.
Following the procedure described in Marchesiello and
Garibaldi (2008), the generated nonlinear coefficients
are frequency-dependent and possess a spurious imagi-
nary part. They are obtained as the ratios of elements of
the transfer function matrix associated with the model
in Equation (7). This matrix is formed in continuous
time, assuming zero-order-hold equivalence between the
discrete- and continuous-time domains.

The real and imaginary parts of the estimated c1 and
c2 are depicted versus frequency in Figure 7. They are
presented for two distinct sampling frequencies, namely
the original rate of 2441 Hz (in black) and a five-times
greater rate of 12,205 Hz (in blue). The imaginary parts
of the coefficients are seen to be more than one order
of magnitude smaller than the real parts. The frequency
dependence of the real parts is also found to be reduced
when increasing the sampling frequency, as a result
of the decrease of the error inherent to the discrete-
to continuous-time conversion (Pintelon & Schoukens,
2001; Relan & Schoukens, 2016). Using the averaged val-
ues of the coefficients calculated at 2441 Hz (doing so
at 12,205 Hz leads to very similar values, see Table 2),
Figure 8 displays the synthesis of the nonlinear restoring
force c1 y2nl (t ) + c2 y3nl (t ) in the system. The cubic non-
linearity dominates this force–displacement curve, even
though it additionally exhibits a slight asymmetry due

Table . Spectral average over the input
band of the real parts of the nonlinear
coefficients c and c for sampling fre-
quencies of  and , Hz.

Sampling frequency (Hz) c (SI) c (SI)

 −. .
, −. .

to the quadratic nonlinearity, particularly visible in the
close-up plot.

4.3 Statistical analysis overmultiple input
realisations

In this section, a statistical analysis of the Silverbox iden-
tification is conducted. Table 3 lists the means and stan-
dard deviations of the 13 grey-box model parameters
calculated over 50 input realisations, i.e. 50 multisine
input signals with different phase spectra independently
drawn from a uniform distribution on [0, 2π) (Pintelon
& Schoukens, 2001). One first observes in this table the
reasonably low variability of all estimates. Compared to
parameters in (B,C,D,E), the linear dynamic parame-
ters in matrix A are also found to exhibit a ratio between
standard deviation and mean values lower by one order
of magnitude.
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Figure . (Colour online) Complex-valued and frequency-dependent estimates of the nonlinear coefficients (a and b) c and (c and d) c
for sampling frequencies of  Hz (in black) and  Hz (in blue).

In Table 4, similar statistics are given for the modal
and physical parameters of the Silverbox system. The
variability in the estimation of the linear natural fre-
quency and damping ratio ismarginal, although damping

ratio estimates are seen to be comparatively more scat-
tered. Similarly, the physical coefficient c1 of the quadratic
nonlinearity features a standard-deviation-over-mean
ratio of −1.81 %, compared to 0.18 % for the cubic

Table . Statistics (means and standard deviations) of the  grey-box state-space parameters calcu-
lated over  input realisations. The ratios between standard deviation andmean values are also given
in %.

Parameter Mean (SI) Standard deviation (× ) Std. dev./mean (%)

A(, ) . . .
A(, ) − . . − .
A(, ) . . .
A(, ) . . .
B(, ) − . . − .
B(, ) − . . − .
C(, ) − . . − .
C(, ) . . .
D(, ) . . .
E(, ) − . . − .
E(, ) − . . − .
E(, ) . . .
E(, ) . . .
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Table . Statistics of the Silverboxmodal and physical parameters calculated
over  input realisations.

Parameter Mean Standard deviation (× ) Std. dev./mean (%)

Natural frequency . (Hz) . .
Damping ratio . (%) . .
c − . (SI) . − .
c . (SI) . .
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Figure . Silverbox nonlinear restoring force synthesised using the nonlinear coefficients averaged at  Hz in Table .
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Figure . (Colour online) Variability of the frequency-dependent nonlinear coefficients (a) c and (b) c over  input realisations. In the
two plots, the limits of the vertical axes correspond to ±% of the coefficient mean values. In blue, the two coefficients obtained in
Section . are reproduced.
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Figure . Correlation matrix of the  grey-box state-space parameters calculated over  input realisations.

coefficient. This is studied in Figure 9, where the 50
frequency-dependent estimates of c1 and c2 are depicted.
In the two plots, the limits of the vertical axes correspond
to ±10% of the coefficient mean values, confirming the
greater variability of c1.

The existence of correlation between the estimated
state-space parameters is inspected in Figure 10. This
figure presents the correlation matrix of the parame-
ters, computed by normalising the rows and columns
of their covariance matrix by the associated stan-
dard deviations. Multiple off-diagonal elements with

significant magnitudes are observed, with five elements
in the upper triangular block larger than 0.8. This is illus-
trated in Figure 11(a,b) by plotting the pairs of strongly
correlated parameter estimates {A(2, 1), A(1, 2)} (corr. =
0.99) and {B(1, 1), E(1, 1)} (corr. = 0.97), respectively.
The evidence of correlation implies that the derived state-
space model is an overparametrised representation of the
input–output relationship. In fact, Equation (12) indi-
cates that five parameters in physical space are sufficient
to describe the Silverbox dynamics, in comparison to the
13 grey-box parameters.
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Figure . Evidence of the correlation existing between (a) the A(, ) and A(, ) parameters and (b) the B(, ) and E(, ) parameters.
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Figure . (Colour online) Comparison of  different nonlinearmodel structures based on benchmark data, namely () linear, () Hammer-
stein, () nonlinear feedback, () linear fractional representation, () locally linear state-space, () black-box state-space with sigmoidal
nonlinearities, () black-box state-space with polynomial nonlinearities, () support vector machines, () neural network, and () grey-
box state-space (this paper, in blue) models. Detailed information about the features of the different models is to be found in Marconato
et al. () and the references therein.

Figure . Close-up picture of the connection between the main linear beam and the thin beam (top view).
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Figure . (Colour online) Comparison of FRFs measured at the main beam tip at . (in blue) and . (in black) V RMS.

It is a user decision to opt for a physical- or a state-
space nonlinear modelling approach. Overparametri-
sation in state-space is expected to lead to a greater
variability of the estimated parameters compared to
a minimal system representation in physical space.
However, in a grey-box formulation, the existence of
correlation between state-space parameters results in
physically interpretable parameters, namely linear modal
properties and nonlinear coefficients, with little variabil-
ity (see Table 4). Moreover, by increasing the model flex-
ibility, overparametrising plays a key role in the decrease
of the input–output simulation error (see Figure 4).

4.4 Comparisonwith other nonlinearmodel
structures

The grey-box state-space model proposed in Section 2 is
compared herein to a number of other nonlinear model
structures. To this end, a benchmark data set measured
on the Silverbox system, and described in Marconato,
Sjöberg, Suykens, and Schoukens (2012), is utilised. It
consists of 10 realisations of a multisine signal serving as
estimation data, and of a filtered Gaussian noise sequence
with increasing RMS value functioning as test data. In
Figure 12, the RMS error evaluated on test data is plotted
versus number of parameters for 10 different nonlinear
models derived based on estimation data, namely (1) lin-
ear, (2) Hammerstein, (3) nonlinear feedback, (4) linear

fractional representation, (5) locally linear state-space,
(6) black-box state-space with sigmoidal nonlinearities,
(7) black-box state-space with polynomial nonlinearities,
(8) support vectormachines, (9) neural network, and (10)
grey-box state-space models. Detailed information about
the features of the different models is to be found in
Marconato et al. (2012) and the references therein. The
model structure introduced in the present paper (number
(10), in blue) is seen to achieve a good trade-off between
accuracy and parsimony. It shows a slightly larger
RMS error than black-box state-space models (numbers
(6–7)), owing to the existence of an extrapolation region
in the test data sequence where it fails to predict the
Silverbox response accurately. However, it possesses the
lowest number of parameters compared to other non-
linear state-space models (numbers (5–6–7)). It should
finally be noted that models (2–3–4) are block-oriented
models, which perform verywell in the case of a SISO sys-
tem with a single resonance but, unlike state-space mod-
els, generalise limitedly to larger scale systems with mul-
tiple resonances and nonlinearities.

5. Experimental demonstration on a nonlinear
beam benchmark

This section demonstrates the identification proce-
dure of Section 3 using the Ecole Centrale de Lyon
(ECL) benchmark structure (Thouverez, 2003). It is an
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Figure . (Colour online) Frequency-domain behaviour of the validation model error over the – Hz band, featuring the output
spectrum (in grey), initial (in orange) and final (in blue) grey-box state-space error levels, and noise level (in black). (a) Sensor  and (b)
sensor .

experimental system comprising a thin beam behaving
as a localised nonlinear stiffness component, connected
to a linear thick beam with well-separated, lowly damped
modes (see the geometric properties in Table 5). The

system is clamped on both sides and is entirely made up
of steel. A close-up picture of the connection between
the main linear beam and the thin beam is displayed
in Figure 13. The nature of the nonlinearity in the
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Table . Geometric properties of the nonlinear beam
benchmark.

Component Length (m) Width (mm) Thickness (mm)

Main beam .  
Thin beam .  .

system is geometric, and is physically related to the
substantially large displacements experienced by the
thin beam at high forcing amplitude compared to its
thickness.

The system was instrumented using seven accelerom-
eters, regularly spaced along the main beam. Excitation
signals were applied in a horizontal plane using a shaker
connected to the main beam through a stinger attached
20 cm away from the clamping. An impedance head was
used to measure force and acceleration signals at the
excitation location. Random phase multisine inputs were
generated, considering a sampling frequency of 1600 Hz
and a frequency resolution of about 0.2 Hz (the num-
ber of time samples was 8192). The selected bandwidth
of interest ranges from 20 to 100 Hz excluding DC and,
in each experiment, 10 periods of input–output data were
collected. The first two periods in each sequence were
rejected to achieve steady state, and the final period was
saved for validation. Because of dynamic interactions
existing between the shaker and the structure, the input

Table . Linear natural frequency and
damping ratio of thefirst structuralmode
of the nonlinear beam benchmark esti-
mated at . V RMS.

Natural frequency (Hz) Damping ratio (%)

. .

Table . Spectral average over the – Hz band
of the real parts of the nonlinear coefficients for a
sampling frequency of  Hz.

c (SI) c (SI) c (SI) c (SI)

.×  .×  −.×  −.× 

processed herein is the voltage signalmeasured at the out-
put of the measurement setup amplifier.

At 0.1VRMS input amplitude (corresponding approx-
imately to 1.2 N RMS), the system exhibits linear dynam-
ics, as expected from the geometric nature of the nonlin-
earity. The modal properties of the first structural mode
estimated at this level are given in Table 6. Figure 14
compares FRFs measured at the main beam tip (sensor
number 7) at 0.1 and 1.2 V RMS (corresponding approx-
imately to 11.1 N RMS), revealing typical stochastic non-
linear distortions and a shift of the resonance frequency
of about 2 Hz.
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Figure . (Colour online) Time-domain RMS validation error for grey-box models with increasing polynomial degree.
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Figure . (Colour online) Frequency-domain comparison at sensor  of the grey-box and black-box state-space modelling approaches.
Validation output spectra and noise levels are plotted in grey and black, respectively. (a) Initial grey-box model obtained using nonlinear
subspace identification (in orange) and initial linear black-boxmodel (in green); (b) final grey-box (in blue) and black-box (in red) models.
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Figure . (Colour online) Decrease of the RMS validation error over  Levenberg–Marquardt iterations for the grey-box (in blue) and
black-box (in red) approaches. Optimal models are located using black dots.
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Figure . Physical restoring force of the nonlinear beam benchmark synthesised using the averaged nonlinear coefficients listed in
Table .
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Table . General comparison of the grey-box and black-box identification frameworks.

Grey-box state-space model Black-box state-space model

Nonlinear model terms are univariate
polynomials with a low number of parameters.

Nonlinear model terms are multivariate polynomials with a high
number of parameters.

Nonlinear coefficients have physical meaning. Nonlinear coefficients have no direct interpretation.

Identification procedure includes two steps with
one nonlinear optimisation search.

Identification procedure includes four steps with two nonlinear
optimisation searches.

Initialisation is based on a nonlinear subspace
model.

Initialisation is based on a linearised model.

A grey-box model of the beam dynamics is con-
structed at 1.2 V RMS input amplitude considering
nonlinear terms in the state equation formed using the
displacement measured at the main beam tip (sensor
number 7), i.e. the displacement measured at the nonlin-
earity location, denoted ynl = y7. A fifth-degree polyno-
mial in ynl is used to describe the geometrically nonlin-
ear effects induced by the thin beam, leading to a second-
order model in state-space comprising 35 parameters.
Figure 15 presents validationmodel error plots in the fre-
quency domain, featuring the output spectrum (in grey),
initial (in orange) and final (in blue) grey-box state-space
error levels, and noise level (in black). Two sensor loca-
tions are represented, namely (a) sensor 4 close to the
mid-span of the main beam and (b) sensor 7 at the non-
linearity location. In the resonance region, the errors of
the initial and final models are seen to lie about 15 and
30 dB below the output level, respectively. Out of reso-
nance, initial and final model errors correspond and pos-
sess an amplitude larger than the noise floor. In Figure 16,
the time-domain RMS validation error is plotted for grey-
box models with increasing polynomial degree, showing
a clear minimum corresponding to a representation of
degree five.

In Figure 17, the obtained fifth-degree grey-boxmodel
is compared at sensor 7 with a black-box model includ-
ing in the state equation a fifth-degree multivariate poly-
nomial involving 36 monomial combinations of the two
state variables, and resulting into a state-space model
with 99 parameters. Similarly to the Silverbox analy-
sis, Figure 17 shows that the initial grey-box model
(in orange) provided by the nonlinear subspace identi-
fication algorithm outperforms the initial linear model
(in green) of the black-box method. It is also observed
that the two final models (grey-box in blue and black-
box in red) achieve a comparable validation error level
throughout the frequency band of interest, except in the
vicinity of the system resonance, where the black-box
model reaches the noise floor, 5 dB below the grey-box
model error level. Finally, the study in Figure 18 of the
Levenberg–Marquardt iterations necessary to achieve the
final estimation of the state-space parameters reveals that

optimal grey-box and black-boxmodels are reached in 12
and 806 iterations, respectively.

The synthesis of the physical restoring force acting
at the nonlinearity location, and expressed as the four-
term sum c1 y2nl (t ) + c2 y3nl (t ) + c3 y4nl (t ) + c4 y5nl (t ), is
performed in Figure 19. The nonlinear coefficients in this
expression were obtained by averaging over the 20–100
Hz band their frequency-dependent estimates generated
as explained in Section 4.2. They are listed in Table 7. A
dominant odd behaviour is noted in Figure 19, mainly
associated with the cubic nonlinearity in the model. For
positive displacements, an asymmetry is also remarked,
visible as a softening of the force. This effect might be
attributed to an imperfection in the clamping of the thin
beam component, as already pointed out in Grappasonni,
Noël, and Kerschen (2014).

6. Conclusions

The objective of the present paper was to introduce a
grey-box state-space modelling framework to support
the identification of nonlinear mechanical vibrations.
Assuming nonlinearities localised in physical space,
which is a generic case in mechanics, this framework
was shown to pave the way for an important decrease in
the number of parameters with respect to classical black-
box state-space modelling. A general comparison of the
grey-box and black-box identification features is drawn
in Table 8.

The Silverbox benchmark was considered as a first
experimental case study demonstrating the derived
identification procedure, combining nonlinear subspace
initialisation and weighted least-squares optimisation.
Compared with nine other model structures, the pro-
posed grey-box approach was shown to lead to a good
compromise between fitting flexibility and parsimony.
A nonlinear beam benchmark was treated as a second
experimental case study, confirming the findings of the
Silverbox analysis. Future research prospects include the
application of the developed framework to multiple-
mode and multiple-nonlinearity mechanical systems.
The calculation of confidence bounds on the model
parameters would be another major advance in the topic.
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Appendices

Appendix 1. Frequency-domain nonlinear subspace
identification (FNSI) method

This appendix details the FNSI algorithm (Noël &
Kerschen, 2013) used in Section 3.1 to derive non-
iteratively from data initial estimates of the matrices
(A,B,C,D) in Equation (7).

The measured output spectra are first organised in a
complex-valued matrix Yc

i defined as

Yc
i =

⎛⎜⎜⎜⎜⎜⎝
Y(1) Y(2) . . . Y(F )

z1 Y(1) z2 Y(2) . . . zF Y(F )

z21 Y(1) z22 Y(2) . . . z2F Y(F )
...

zi−1
1 Y(1) zi−1

2 Y(2) . . . zi−1
F Y(F )

⎞⎟⎟⎟⎟⎟⎠ ∈ C
li×F ,(A1)

where the superscript c stands for complex, and the sub-
script i is the user-defined number of block rows in
Yc
i . The number of processed frequency lines is noted F

and the number of output variables is l. Defining ζ =
diag (z1 z2 · · · zF ) ∈ C

F×F and grouping frequency lines,
Yc
i is recast into

Yc
i =

⎛⎜⎜⎜⎜⎝
Y
Y ζ

Y ζ 2

. . .

Y ζ i−1

⎞⎟⎟⎟⎟⎠ . (A2)

The matrix of the extended input spectra is similarly
formed as

Uc
i =

⎛⎜⎜⎜⎜⎝
U
U ζ

U ζ 2

. . .

U ζ i−1

⎞⎟⎟⎟⎟⎠ ∈ C
(m+sl) i×F , (A3)

wherem is the number of extended input variables. Intro-
ducing the extended observability matrix

�i =

⎛⎜⎜⎜⎜⎜⎜⎝

C
CA
CA2

. . .

CAi−2

CAi−1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R
li×ns (A4)

and the lower block triangular Toeplitz matrix �i

�i =

⎛⎜⎜⎜⎜⎜⎝
D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0
...

...
...

...
CAi−2B CAi−3B CAi−4B . . . D

⎞⎟⎟⎟⎟⎟⎠ ∈ R
li×(m+sl) i,

(A5)
recursive substitution of the second relation into the first
relation of Equation (7) results in the output-state–input
relationship

Yc
i = �i Xc + �i U

c
i , (A6)

where Xc ∈ C
ns×F is the state spectrum. To force the

identified state-space model (A,B,C,D) to be real-
valued, Equation (A6) is finally converted into the real
equation

Yi = �i X + �i Ui (A7)

by separating the real and imaginary parts of Yc
i , Xc and

Uc
i , for instance,

Yi = [R(Yc
i ) I(Yc

i )
] ∈ R

li×2F , (A8)

where R and I denote the real and imaginary parts,
respectively.

Under the assumptions discussed in Noël and Ker-
schen (2013), the orthogonal projectionOi = Yi/U

⊥
i and

its singular value decomposition Oi = L SRT are com-
puted. An estimate of the extended observability matrix
�i can then be shown to be given by

�̂i = L1 S1/21 , (A9)

where L1 and S1 contain the first ns left singular vec-
tors and singular values ofOi, respectively, and where hat
symbols signal estimated quantities. FromEquation (A9),
Ĉ is merely extracted as the l first rows of �̂i. An estimate
of A can be calculated by exploiting the shift property

�i A = �i, (A10)

where �i and �i are the matrix �̂i without its last and
first l rows, respectively. Matrix A is therefore found as
the least-squares solution

Â = �i
† �i, (A11)

where the symbol † denotes the pseudo-inverse
operation.
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Given estimates of A and C, matrices B and D are
finally obtained by defining the transfer function matrix
Gs associated with Equation (7) as

Gs(k) = Ĉ
(
zk I ns×ns − Â

)−1 B + D, (A12)

and by minimising the difference between the measured
and modelled output spectra in a linear least-squares
sense, i.e.

B̂, D̂ = arg min
B,D

F∑
k=1

∣∣Y(k) − Gs(k)U(k)
∣∣2 . (A13)

Appendix 2. Analytical calculation of the Jacobian
matrix

One first focuses on the determination of the element
JAi j (t ) ∈ R

l of the time-domain Jacobian defined as

JAi j (t ) = ∂y(t )
∂Ai j

. (B1)

The derivative of the output relation in Equation (6)
with respect to Ai j is given by

∂y(t )
∂Ai j

= ∂

∂Ai j

(
Cx(t ) + Du(t )

)
= C

∂x(t )
∂Ai j

+ D
∂u(t )
∂Ai j

= C
∂x(t )
∂Ai j

+ D
∂u(t )
∂y(t )

∂y(t )
∂Ai j

. (B2)

The first term in the right-hand side of Equation (B2) is
obtained by taking the derivative of the state relation in
Equation (6) with respect to Ai j, that is

∂ ẋ(t )
∂Ai j

= ∂

∂Ai j

(
Ax(t ) + Bu(t )

)
= A

∂x(t )
∂Ai j

+ I ns×ns
i j x(t ) + B

∂u(t )
∂Ai j

= A
∂x(t )
∂Ai j

+ I ns×ns
i j x(t ) + B

∂u(t )
∂y(t )

∂y(t )
∂Ai j

, (B3)

where I ns×ns
i j is a zero matrix with a single element equal

to one at entry (i, j).

The element JAi j (t ) is therefore given by the solution of
the two equations

⎧⎪⎪⎨⎪⎪⎩
∂ ẋ(t )
∂Ai j

= A
∂x(t )
∂Ai j

+ I ns×ns
i j x(t ) + B

∂u(t )
∂y(t )

∂y(t )
∂Ai j

∂y(t )
∂Ai j

= C
∂x(t )
∂Ai j

+ D
∂u(t )
∂y(t )

∂y(t )
∂Ai j

.

(B4)
Introducing the notations

x∗(t ) = ∂x(t )
∂Ai j

; y∗(t ) = ∂y(t )
∂Ai j

;

u∗(t ) =
(
x(t )T

(
∂u(t )
∂y(t )

∂y(t )
∂Ai j

)T
)T

(B5)

and

A∗ = A ; B∗ =
(
I ns×ns
i j B

)
;

C∗ = C; D∗ = (
0 l×ns D

)
, (B6)

Equation (B4) can be recast in the form

{
ẋ∗(t ) = A∗ x∗(t ) + B∗ u∗(t )
y∗(t ) = C∗ x∗(t ) + D∗ u∗(t ).

(B7)

Equation (B7) reveals that the elements of the Jacobian
matrix associated with the parameters in A are solutions
of an auxiliary state-space model defined by the four
matrices (A∗,B∗

,C∗,D∗
). The first term in the auxiliary

extended input u∗(t ) in Equation (B5) is the state vec-
tor x(t ). It is obtained by simulating in time the orig-
inal model in Equation (6) with the estimated parame-
ters of the previous Levenberg–Marquardt iteration. The
second term in u∗(t ) depends on ∂u(t )/∂y(t ), which is
formed using the derivatives of the nonlinear basis func-
tions g(ynl (t ), ẏnl (t )) with respect to y(t ).

The determination of the element JBi j
(t ) ∈ R

l is
conducted similarly to JAi j (t ). The result is given in
Equation (B8), where JBi j

(t ) is seen to be the solution of
another auxiliary state-space model,

⎧⎪⎪⎨⎪⎪⎩
∂ ẋ(t )
∂Bi j

= A
∂x(t )
∂Bi j

+ I ns×(m+sl)
i j u(t ) + B

∂u(t )
∂y(t )

∂y(t )
∂Bi j

∂y(t )
∂Bi j

= C
∂x(t )
∂Bi j

+ D
∂u(t )
∂y(t )

∂y(t )
∂Bi j

.

(B8)
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The computation of JCi j (t ) ∈ R
l and JDi j

(t ) ∈ R
l is

easier because they do not involve time integration, as
shown in Equations (B9) and (B10), respectively,

∂y(t )
∂Ci j

= I l×ns
i j x(t ) + D

∂u(t )
∂y(t )

∂y(t )
∂Ci j

; (B9)

∂y(t )
∂Di j

= I l×(m+sl)
i j u(t ) + D

∂u(t )
∂y(t )

∂y(t )
∂Di j

. (B10)
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