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General setup: linearly parameterized
discrete-time nonlinear systems

kernel: R
(

w(t),w(t−1), . . . ,w(t− `)︸ ︷︷ ︸
x(t)

)
= 0

special case: input/output NARX system

B =
{

w =
[u

y
]
| y(t) = f

(
u(t),w(t−1), . . . ,w(t− `)

)}
linearly parameterized model Bθ

R(x) = ∑θiφi(x) = θφ(x),
φ — model structure
θ — parameter vector
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Example: single-input single-output
polynomially time-invariant model

φ is a vector of monomials φi := xni1
1 · · ·x

nix
nx

the structure φ is defined by the degrees matrix

φ ↔
[
nij
]
∈ Nnφ×nx

polynomially time-invariant (PTI) model class

P`,n := {Bθ | θ ∈ Rnθ }, ` — lag
n := maxi ,j nij
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Our goal is to find PTI model from data:(
w(1), . . . ,w(T )

)
7→B ∈P`,n

1. structure selection: find φ

2. parameter estimation: find θ

minimize over θ and ŵ ‖w − ŵ‖
subject to ŵ ∈Bθ

(NL SYSID)
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Link to low-rank approximation

w ∈Bθ

m

R
(
x(t)

)
= θ

>
φ
(
x(t)

)
= 0, for t = 1, . . . ,T − `

m

θ
> [

φ
(
x(1)

)
· · · φ

(
x(T − `)

)]
= 0

m

rank
(

Φ(w)
)
≤ nφ −1
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(NL SYSID) ⇐⇒ low-rank approximation

minimize over ŵ ‖w − ŵ‖2
subject to rank

(
Φ(ŵ)

)
≤ nφ −1

(SLRA)

non-convex optimization problem

there are no efficient solution methods

heuristic method: ignore the structure of Φ(ŵ)

minimize over θ 6= 0 ‖θ>Φ(w)‖2 (LRA)
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Structure selection via sparsity regularization

select "large" model class P`,n and impose sparsity on θ

minimize over θ 6= 0 ‖θ>Φ(w)‖2 + γ‖θ‖1

γ controls the sparsity level
I γ = 0 ; (LRA) ; full θ

I γ → ∞ ; θ → 0

selected, so that # nonzero elements = given number
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Unstructured LRA is biased

the heuristic method ignoring the structure of Φ(ŵ)

minimize over θ 6= 0 ‖θ>Φ(w)‖2

is easy to compute, but biased (E(θ ) 6= θ̄ ) in the EIV setup

w = w̄ + w̃ , where w̄ ∈ B̄ and w̃ ∼ N(0,σ2I)
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The bias can be corrected for

define Ψ := Φ(w)Φ>(w) and Ψ̄ := Φ(w̄)Φ>(w̄)

goal: construct “corrected” matrix Ψc, such that

E(Ψc) = Ψ̄

then solve

minimize over θ 6= 0 ‖θ>Ψc(w)‖2
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Derivation of the correction
Hermite polynomials hk (x) have the property

E
(
hk (x̄ + x̃)

)
= x̄k , where x̃ ∼ N(0,σ2) (∗)

with w = (u,y), the (i , j)th element of Ψ = ΦΦ> is

∑(ū + ũ)nu,i+nu,j (ȳ + ỹ)ny ,i+ny ,j

then, by (∗)

φc,ij := ∑hnu,i+nu,j (u)hny ,i+ny ,j (y)

has the desired property

E(ψc,ij) = ∑ ūnu,i+nu,j ȳny ,i+ny ,j =: ψ̄ij
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Unbiased estimator

the corrected Ψc is an even polynomial in σ

Ψc(σ
2) = Ψc,0 + σ

2Ψc,1 + · · ·+ σ
2nψ Ψc,nψ

estimate: Ψc(σ2)θ = 0

computing simultaneously σ and θ is polynomial EVP
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