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Abstract

Wiener systems are nonlinear dynamical systems, consisting of a linear dynamical system and a static

nonlinear system in a series connection. Existing results for analysis and identification of Wiener systems as-

sume zero initial conditions. In this paper, we consider the response of a Wiener system to initial conditions

only, i.e., we consider autonomous Wiener systems. Our main result is a proof that the behavior of an au-

tonomous Wiener system with a polynomial nonlinearity is included in the behavior of a finite-dimensional

linear system. The order of the embedding linear system is at most
(n+d

d

)
— the number of combinations

with repetitions of d elements out of n elements — where n is the order of the linear subsystem and d is

the degree of the nonlinearity. The relation between the eigenvalues of the embedding linear system and the

linear subsystem is given by a rank-1 factorization of a symmetric d-way tensor. As an application of the

result, we outline a procedure for exact (deterministic) identification of autonomous Wiener systems.

Keywords: block-oriented models, Wiener system, behavioral approach, system realization, nonlinear

system identification.

1 Introduction

Interconnections of linear dynamic and nonlinear static systems is a popular class of nonlinear systems, refered

to as block-oriented models [Giri and Bai(2010), Billings and Fakhouri(1982), Schoukens and Tiels(2017)].

Block-oriented models are simpler to identify from data and simpler to use for simulation and control due

to the restriction of the nonlinear subsystems to be static. Among the variety of block-oriented models, the sim-

plest special case is the Wiener system. A Wiener system consists of a linear system followed by a nonlinear

static system. Despite of its limited modeling power in comparison to other block-oriented models, the Wiener

system is the natural first step in the study of the class of block-oriented models and has practical applications.
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A special case of an input-output system when the input dimension is zero is the autonomous system.

To the best of our knowledge, currently there are no methods for autonomous Wiener system identification.

The existing methods depend on a persistently exciting input and can not be used in the autonomous case

(which corresponds to a response due to nonzero initial conditions and zero input). In contrast, linear time-

invariant identification methods such as the prediction error and subspace methods can deal seamlessly with

the autonomous case.

Our main result is that an autonomous Wiener system with a polynomial nonlinearity is embedded in a

finite-dimensional linear system. In order to outline the result, consider the autonomous Wiener system Bw,

shown in Figure 1. It consists of an order-n linear time-invariant subsystem B and a degree-d polynomial

nonlinearity g. We prove that Bw is included in a linear time-invariant system of order nw ≤
(n+d

d

)
— the

number of combinations with repetitions of d elements out of n elements. Moreover, there is a relation between

the eigenvalues of the embedding system and the eigenvalues of B: an eigenvalue of the embedding system is

a product of up to d eigenvalues of B. This relation is characterized by a rank-1 factorization of a symmetric

d-way tensor, constructed from the eigenvalues of the embedding system.

B g(·) y

Bw

Figure 1: An autonomous Wiener system Bw is a series connection of an autonomous linear time-invariant

system B and a nonlinear static system g. In this paper, g is polynomial. We prove that in this case the

behavior of Bw is a subset of the behavior of a finite-dimensional linear time-invariant system.

2 Notation

The notation used in the paper is standard: R is the set of real values, C is the set of complex values, and N

is the set of natural numbers. The set of scalar real-valued signals over N is denoted by RN. An autonomous

linear time-invariant system B admits a minimal state space representation

B = B(A,c) := {z ∈ RN | there is x, such that σx = Ax, z = cx, x(1) ∈ Rn }, (1)

where A ∈ Rn×n and c ∈ R1×n are parameters of the system and σ is the shift operator (σx)(t) = x(t +1). The

eigenvalues λ1, . . . ,λn of A are invariant of the representation and are, therefore, a property of the system B.

In this paper, we consider a single output Wiener system and assume that the eigenvalues of its linear

subsystem are distinct. In this case, the linear time-invariant subsystem admits a sum-of-damped-exponentials
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representation

B = B(λ ) :=
{

z ∈ RN | z =
n

∑
i=1

αi expλi
, α ∈ Cn

}
, (2)

where expλi
(t) := λ t

i and λ is the vector of the system’s eigenvalues λ =
[
λ1 · · · λn

]>
∈ Cn.

Restricting ourselves to the single output case with distinct eigenvalues simplifies the notation. The results

in the paper can be generalized mutatis mutandis to the case of multi-output systems. Dealing with repeated

eigenvalues requires a generalization of the sum-of-damped-exponentials representation, which complicates the

analysis but does not change our main results.

The static nonlinearity g is a dth order polynomial, represented by a given monomial basis v

y = g(z) := θ
>v(z), where v(z) =

[
z0 z1 · · · zd

]>
∈ Rd+1. (3)

Putting together (2) and (3), we obtain the autonomous Wiener system

Bw(λ ,θ) := {y ∈ RN | (2,3) hold for α ∈ Cn},

parameterized by the vector of the coefficients θ =
[
θ0 θ1 · · · θd

]>
∈ Rd+1 of the nonlinear part and the

eigenvalues λ of the linear part.

3 Main result

Theorem 1. Consider an autonomous Wiener system Bw(λ ,θ) with order-n linear subsystem and a degree-d

nonlinear subsystem. Assume that the eigenvalues λ are distinct , i.e., λi 6= λ j for all i and 1 is not an eigenvalue

of B(λ ). Then, there is an autonomous linear time-invariant system B(λw) with eigenvalues λw ∈ Cnw , where

nw ≤ n̄w :=
(

n+d
d

)
=

(n+1)(n+2) · · ·(n+d)
d!

, (4)

such that

Bw(λ ,θ)⊆B(λw). (5)

The eigenvalues λw of the embedding system B(λw) are products of d elements of the set {λ0,λ1 . . . ,λn}, where

λ0 := 1, i.e., there are indices ki,1, . . . ,ki,d ∈ {0,1, . . . ,n}, such that

λw,i =
d

∏
j=1

λki, j , for i = 1, . . . ,nw. (6)

Proof. By definition

B(λw) :=
{

y ∈ RN | y =
nw

∑
i=1

βi expλw,i
, β ∈ Cnw

}
, (7)

In order to prove the relation (5), we compare the output of (7) with the expression for the output of the

autonomous Wiener system Bw(λ ,θ).
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Consider a general basis element

v j
(
z(t)
)
=
(
z(t)
) j

=

( n

∑
i=1

αiλ
t
i

) j

.

For j = 0 and 1, v0 = 1 and v1 = y are of the form of sum-of-damped-exponentials with n0 = 1 and n1 = n

exponents, respectively. For j > 1, v j is also of the form of a sum-of-damped-exponentials with exponents that

are products of j elements of the set λ , i.e.,

v j
(
z(t)
)
=

n j

∑
i=1

γiµ
t
i, j, where µ

t
i, j =

j

∏
`=1

λki, j,`

for some indices ki, j,` ∈ {1, . . . ,n}. The number of terms n j is equal to the number of combinations with

repetitions of j elements out of the n elements of λ . Therefore,

n j =

(
n+ j−1

j

)
=

(n+ j−1) · · ·n
j!

.

Consider now the output

y(t) = g
(
z(t)
)
= θ

>v
(
z(t)
)
.

It is also of the form of a sum-of-damped-exponentials

y(t) =
nw

∑
i=1

ζiλ
t
w,i, where {λw,1, . . . ,λw,nw }=

j⋃
i=0

d⋃
j=0

µi, j. (8)

The elements of λw are products of d elements of the set {1,λ1, . . . ,λn }. The number of such products is

n̄w =
d

∑
j=0

n j =

(
n+d

d

)
=

(n+1)(n+2) · · ·(n+d)
d!

.

The number of distinct elements nw, which is the order of B(λw) is therefore upper bounded by n̄w.

We’ve shown that both the output (7) of the autonomous Wiener system Bw(λ ,θ) and the output (8) of the

linear system B(λw) are of the form of sum-of-damped-exponentials with the same exponents. The coefficients

βi in (7) however are restricted only by the condition of being in complex conjugate pairs (since the signal is

real), while the coefficients ζi in (8) range over an n-dimensional manifold of Cnw . This proves (5).

Next, we give an alternative characterization of the relation (6) between the eigenvalues of λ and λw, using

the notation "◦" for the vector outer product.

Corollary 2 (Link between λw and λ ). The symmetric, rank-1, d-way tensor

T := λ ◦λ ◦ · · · ◦λ︸ ︷︷ ︸
d times

,

has as unique elements λw,1, . . . ,λw,nw .
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4 Application of the result in system identification

The problem considered in this section is: Given a monomial basis v, a finite trajectory

yd =
(
yd(1), . . . ,yd(T )

)
of an autonomous Wiener system Bw(λ ,θ), and the order n of its linear part, find parameters λ̂ , θ̂ , such that

Bw(λ ,θ) = Bw(λ̂ , θ̂).

Theorem 1 suggests the following solution method:

1. identify the embedding system B(λw) from the given output data,

2. compute the linear subsystem B(λ ) from B(λw), and

3. compute the nonlinear subsystem g from B(λw) and B(λ ).

Assuming that the given trajectory yd is persistently exciting of order nw, the embedding system B(λw) is

identifiable from yd [Willems et al.(2005)]. The remaining problems, resolved in steps 2 and 3, are to find from

the identified system B(λw), the linear and nonlinear subsystems of the autonomous Wiener system. Note that

due to exchange of gain, between B and g, the linear and nonlinear subsystems are not identifiable from the

data alone. As shown next, however, the eigenvalues of B can be determined uniquely and g can be determined

up to a scaling factor.

Identification of B(λw) from the given output data

The identification of an autonomous linear time-invariant system Bw(λ ,θ) from the finite trajectory yd ∈

Bw(λ ,θ) is a classical problem, see for example, [Kung(1978), Kumaresan and Tufts(1982)] and [Markovsky(2019),

Section 5.1.3]. One possible solution [Kumaresan and Tufts(1982)] is to form the Hankel matrix

Hnw+1(yd) :=



yd(1) yd(2) · · · yd(T −nw)

yd(2) yd(3) · · · yd(T −nw +1)

yd(3) yd(4) · · · yd(T −nw +2)
...

...
...

yd(nw +1) yd(nw +2) · · · yd(T )


and compute its left kernel (which can be shown to be one dimensional)

pHnw+1(yd) = 0.
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The roots of the polynomial

p(s) = p0 + p1s+ · · ·+ pnwsnw

are the eigenvalues of the embedding system. Another solution (called Kung’s method [Kung(1978)]) is based

on realization theory: 1) compute the rank revealing factorization

Hnw+1(yd) = OC , with O ∈ RL×nw and C nw×(T−L)

of the Hankel matrix HL(yd), where L is a design parameter, satisfying the constraints

nw +1≤ L≤ T −nw

and 2) solve the system of linear equations OÂ = O, for Â, where O is the matrix O with the first row removed

and O is the matrix O with the last row removed. The eigenvalues of Â are the eigenvalues of the embedding

system.

The minimal number of samples needed for the identification of the system B(λw) is Tmin = 2nw +1. The

identification data, however, can be collected from nw experiments with nw + 1 samples instead of a single

experiment with Tmin samples. Let y1
d, . . . ,y

nw
d be the data of the multiple experiments of length nw +1. Then,

the identification procedure is modified by replacing the Hankel matrix Hnw+1(yd) by the matrix[
y1

d · · · ynw
d

]
of the stacked next to each other responses. More generally, using date from multiple experiments of length

T1, . . . ,Tnw > nw, the identification method is based on the computation of the left kernel or rank revealing

factorization of the mosaic Hankel matrix [Heinig(1995), Markovsky and Pintelon(2015)]

Hnw+1(y1
d, . . . ,y

nw
d ) :=

[
Hnw+1(y1

d) · · · Hnw+1(y
nw
d )
]
.

Computation of the linear subsystem B(λ ) from B(λw)

After finding B(λw), the next step is the computation of the linear subsystem. We are interested in the transition

from λw to λ , i.e., extracting the linear subsystem B(λ ) from B(λw). Using Corollary 2, we can find λ by

computing a rank-1 factorization of a symmetric tensor T constructed from λw. Checking whether T has rank

equal to one can be done by checking the rank of the d unfoldings of the tensor: T is rank-1 if and only if all

unfoldings of T are rank-1 [De Lathauwer et al.(2000), De Lathauwer(1999)].

Another characterization of (6) that leads to a more efficient method is given in terms of the "frequencies"

ωi :=∠λi and ωw,i :=∠λw,i of B(λ ) and B(λw), respectively. From (6), we have the following linear relation

among the ωw,i’s and the ωi’s

ωw,i =
d

∑
j=1

ωki, j (mod 2π).
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Therefore, there is an nw×n matrix K, such that

ωw = Kω (mod 2π). (9)

Relation (9) shows that the problem of extracting B(λ ) from B(λw) can be solved by computing the

frequencies of B(λw) and solving a system of linear equations. The ordering of the ωw’s however is unknown,

so that all permutations of the ωw’s should be tested for existence of an exact solution. (The order of the to-be-

found frequencies ω is not important.) This method requires the same number of subproblems to-be-solved as

in the procedure using Corollary 2. The subproblem (9) however is a linear system, which is simpler and faster

to solve than the rank-1 factorization of a symmetric tensor.

Computation of the nonlinear subsystem g from B(λw) and B(λ )

Finally computing the nonlinear function g requires a simultaneous rank-1 factorization of d tensors. General

theory and methods, called structured data fusion, for solving simultaneous tensor factorization problems is

developed in [Sorber et al.(2015), Vervliet et al.(2016)]. In general, the structured data fusion problem has

no analytical solution and requires iterative solution methods. Applied to the autonomous Wiener system

identification problem, however, when g contains a first and/or second order terms the structured data fusion

problem has a trivial solution. When g has a first order term, the coefficients θ can be obtained directly from

the coefficients γ in (8) without extra computations. When g has a second order term, the coefficients θ can

be obtained from the coefficients γ in (8) by a Cholesky factorization of a symmetric matrix constructed from

the γ’s.

5 Numerical example

The autonomous Wiener system Bw(λ ,θ) used in the simulation example consists of a second order linear

subsystem with eigenvalues λ1,2 = −0.5± 0.7i and a (dead zone) nonlinear subsystem defined by the third

order polynomial

g(z) = θ0 +θ1z+θ2z2 +θ3z3,

with coefficients

θ =
[
1 1 1 1

]>
.

According to Theorem 1, Bw(λ ,θ) is included in a linear time-invariant system of order

nw ≤
(

n+d
d

)
=

(
5
3

)
= 10. (10)
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In order to verify this property empirically, we generate a T = 25 samples long trajectory yd of the system

Bw(λ ,θ) due to a random initial condition and check the rank of the square Hankel matrix H13(yd). The fact

that rank
(
H13(yd)

)
= 10 confirms (10).

Next, we verify (6), namely the statement that the eigenvalues λw of the embedding system are products of

up to d eigenvalues λ of the linear subsystem. First, using an exact identification method, e.g., Kung’s method

described in Section 4, we obtain the linear time-invariant system B(λw) that contains Bw(λ ,θ). Then, we

form the set {
λk0λk1 · · ·λkd | λ0 := 1 and k0,k1, . . . ,kd ∈ { 0,1 . . . ,n}

}
(11)

of all products of up to d eigenvalues of B. Finally, we compare the identified eigenvalues λw and the theo-

retically predicted ones (11). For the simulation example, described above, we confirm that they coincide, see

Figure 2.

Figure 2: The eigenvalues λw (plotted as red ×’s) of the embedding system coincide with the products (plotted

as blue ◦’s) of up to d eigenvalues of the linear subsystem B(λ ). + — eigenvalues λ , dotted line — unit circle.

For higher values of n and d it is possible to obtain after identification from data only a subset of the eigen-

values of Bw. This is due to ill-conditioning of the identification problem and the finite precision arithmetic

used in the numerical computations. The problem can be partially resolved using data of multiple experiments

generated by properly selected initial conditions (design of the experiments). However, the ill-conditioning of

the system identification problem remains an important practical issue that will be addressed elsewhere.
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6 Conclusion

We showed that the behavior of an autonomous Wiener system with polynomial nonlinearity is included in

the behavior of a finite-dimensional linear time-invariant system. The order of the embedding linear system

depends combinatorially on the order of the linear subsystem and the degree of the static nonlinearity. The

relation between the eigenvalues of the embedding system and the linear subsystem is given by a rank-1 factor-

ization of a symmetric tensor: the unique elements of the tensor are the eigenvalues of the embedding system

and the factors contain the eigenvalues of the linear subsystem. The result suggests an autonomous Wiener

system identification procedure that is based on linear time-invariant system identification followed by a rank-1

tensor factorization. Challenges that need to be addressed in order to make this procedure practically useful

are ill-conditioning of the linear identification step and combinatorial number of rank-1 factorization problems

that have to be solved for the computation of the eigenvalues of the linear subsystem from the eigenvalues of

the identified system.
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