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Abstract— The paper presents initial results on a subspace
method for exact identification of a linear time-invariant system
from data with missing values. The identification problem
with missing data is equivalent to a Hankel structured low-
rank matrix completion problem. The novel idea is to search
systematically and use effectively completely specified sub-
matrices of the incomplete Hankel matrix constructed from
the given data. Nontrivial kernels of the rank-deficient com-
pletely specified submatrices carry information about the to-
be-identified system. Combining this information into a full
model of the identified system is a greatest common divisor
computation problem. The developed subspace method has
linear computational complexity in the number of data points
and is therefore an attractive alternative to more expensive
methods based on the nuclear norm heuristic.

Index Terms— subspace system identification, missing data,
low-rank matrix completion, nuclear norm, realization.

I. INTRODUCTION

Identification of dynamical systems from data with miss-

ing values is an important and current undeveloped topic in

system identification. A simple heuristic approach to solve

the problem is to use interpolation techniques, e.g., splines,

in order to complete the data in a preprocessing step and then

apply classical identification methods on the interpolated

data. Such an approach is theoretically unsatisfactory and

may produce bad results in practice.

Special identification problems with missing data can be

solved by existing methods. A famous one is the partial

realization problem [1] where the data is an impulse re-

sponse, all missing values are in the “future”, and the given

data is exact. Another example is when all input and output

variables are missing for at least as many sequential moments

of time as the lag of the system. In this case, the identification

problem with missing data is equivalent to identification from

two independent data sets: the one before the first missing

value and the one after the last missing value [2]. Finally,

the special case when the missing data is restricted to the

output variables is easily handled by classical identification

methods.

There are two main classes of methods for addressing the

general identification problem with missing data:

• methods based on convex relaxations [3], and

• methods based on local optimization [4].

To the best of our knowledge, the class of the subspace

methods [5] has not been extended to deal with missing

data. Our purpose is to fulfill this gap. This paper presents
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a method based on kernel computations of fully specified

submatrices of the incomplete Hankel matrix of the data.

We consider an exact (deterministic) identification prob-

lem. Throughout the paper we assume that the given data is

(a part of) an exact trajectory of the to-be-identified system.

In this setup, the identification problem is equivalent to low-

rank Hankel structured matrix completion.

It is well known that, in general, the unstructured low-rank

matrix completion problem is NP-hard [6]. In the context

of linear time-invariant system identification, in addition,

the matrix is Hankel structured. These facts show that the

identification problem considered is nontrivial.

The paper is organized as follows. We start in Section II

with a motivating example. Section III defines the notation.

Section IV formally states the identification problem and

outlines the proposed subspace method. Challenges and

future work is summarized in the conclusion.

II. MOTIVATING EXAMPLE

The identification data w is a T = 500 samples long

trajectory of n = 6 order lightly damped autonomous linear

time-invariant system. In total, 215 samples are missing in

a periodic pattern, see Figure 1. The precise simulation

parameters are specified in the following fragment of the

m-file reproducing the presented numerical results:

〈example〉+≡
sys0 = ss(diag([0.8889 + 0.4402i

0.8889 - 0.4402i

0.4500 + 0.8801i

0.4500 - 0.8801i

0.6368 + 0.7673i

0.6368 - 0.7673i]),

[], ones(1, 6), [], -1);

T = 500; n = 6;

w0 = initial(ss(sys0), ones(n, 1), T - 1);

Tm = sort(unique([1:7:T, 3:7:T, 5:7:T]));

w = w0; w(Tm) = NaN;

Two identification methods, described in the paper, are

applied on the data and the results are validated by the

distance between the characteristic polynomials of the true

and identified models:

〈example〉+≡
dist = @(sys1, sys2) norm(poly(eig(sys1))...

- poly(eig(sys2)));

The first method, implemented in the function hmc_nn,

uses the nuclear norm heuristic (see Appendix ). The second

method, implemented in the function mpum_md, is the new

subspace-type method (see Section IV).

〈example〉+≡
tic, sysh_nn = hmc_nn( w(1:Tp), n, 0);

t_nn = toc, e_nn = dist(sys0, sysh_nn)
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Fig. 1. The first 100 samples of the data. The red crosses denote the
location of the missing samples.

tic, sysh_ss = mpum_md(w(1:Tp), n, 0);

t_ss = toc, e_ss = dist(sys0, sysh_ss)

Zero errors e_nn and e_ss indicate that the identification

methods have recovered exactly the data generating system.

In the specific example, the results

t_nn =

54.6626

e_nn =

4.2057e-10

t_ss =

0.3936

e_ss =

2.0948e-15

show that both methods recover exactly the data generating

system. The subspace method mpum_md, however, does

not require nonlinear minimization and is in the example

two orders of magnitude faster than the method hmc_nn

using the nuclear norm heuristic. Efficient methods for

nuclear norm minimization of Hankel structured matrices

are currently under active development. Such methods will

make possible to use the nuclear norm approach in medium

scale system identification problems. With state-of-the-art

general purpose semidefinite programming solvers, such as

SeDuMi, however, the method is applicable only for small

size problems.

In the simulation example presented above, we used only

the first 100 samples of the data due to fast growing computa-

tion time of hmc_nn. The developed subspace identification

method has linear computational complexity in the number

of data points T and is applicable to medium (and, with some

software improvements, large) scale identification problems.

t_ss =

1.3768

e_ss =

1.4990e-13

III. DATA AND MODEL CLASS

Data

The input data for the considered identification problem

is a set

w = {w1, . . . ,wN }

of N, q-variate, sequences

wi =
(
wi(1), . . . ,wi(Ti)

)
, where wi(t) ∈ R

q

and Ti is the number of data points in the ith sequence wi.

The elements wi(t) of a sequence wi are called samples. Note

that the sequences w1, . . . ,wN must have the same number

of variables but may have different number of samples. If

the data consists of a single sequence, then the superscript

index is dropped and w itself is the sequence.

Missing data values are denoted by the symbol NaN (“not a

number”). The extended set of real numbers Re is the union

of the set of the real numbers R and the symbol NaN:

Re := R∪NaN.

A set of sequences w is parameterized by the column vector

vec(w) =




vec(wi)
...

vec(wN)


 , where vec(wi) =




wi(1)
...

wi(Ti)


 .

The subvector of vec(w) with indexes in I is denoted w|I .

Similarly, for a matrix M, M|I is the submatrix of M formed

by the rows with indexes in the set I , and M|I ,J is the

submatrix of M with elements mi j, such that i ∈ I , j ∈ J .

The set of indexes of missing elements in vec(w) is denoted

by Im and the set of the remaining indexes by Ig.

Linear time-invariant dynamical systems

We are interested in sequences w∈ (Rq)N that are trajecto-

ries of discrete-time linear time-invariant dynamical systems.

A linear time-invariant dynamical system B with q variables

is a subspace of the data space (Rq)N and can be represented

as the kernel of a polynomial operator R(σ),

B = ker
(
R(σ)

)
= {w | R(σ)w = 0}, (KER)

where σ is the backwards shift (σw)(t) := w(t + 1)

t → ··· 0 1 2 3 · · ·
w(t) → ··· · · · w(1) w(2) w(3) · · ·

(σw)(t) → ··· w(1) w(2) w(3) · · · · · ·

The minimal natural number ℓ, for which there exists an

ℓth order difference equation representation for B is an

important invariant of the system, called the lag.

The variables can always be partitioned element-wise into

inputs u and outputs y, i.e., w = Π [u
y ], for some permutation

matrix Π. The number of inputs m and the number of outputs

p= q−m are system invariant. With some loss of generality,

we assume that the first m elements of w(t) are inputs and the

remaining elements are outputs, i.e., we fix Π to the identity

matrix Iq.



Assuming that a discrete-time linear time-invariant dy-

namical systems B admits an input/output partitioning

w = vec(u,y), it can be represented in the classical in-

put/state/output form

B = Bi/s/o(A,B,C,D) := {w = [u
y ] ∈ (Rq)Z | there is x,

such that σx = Ax+Bu and y =Cx+Du}. (I/S/O)

The number of inputs and the lag or the order specify the

complexity of the system in the sense that the dimension

of the restriction B|[1,T ] of B to the interval [1,T ], where

T ≥ ℓ, is bounded by Tm+ ℓ(q− m). The subset of linear

time-invariant systems with at most m inputs, lag at most ℓ,
order at most n is denoted by L n

m,ℓ. If the order or the lag

are not bounded they are skipped from the notation.

Hankel matrices

The mosaic-Hankel matrix with L block rows, constructed

from the set of sequences w is defined as

HL(w) :=
[
HL(w

1) · · · HL(w
N)
]
,

where

HL(w
i) :=




wi(1) wi(2) · · · wi(T −L+ 1)
wi(2) wi(3) · · · wi(T −L+ 2)
wi(3) wi(4) · · · wi(T −L+ 3)
...

...
...

wi(L) wi(L+ 1) · · · wi(T )



.

IV. PROBLEM FORMULATION AND SUBSPACE

ALGORITHM

It is well known that there is a link between rank defi-

cient Hankel matrices and trajectories of finite dimensional

discrete-time linear time-invariant systems [7]. If the Hankel

matrix HL(w), where

L :=

⌈
T + 1

q+ 1

⌉
,

is rank deficient, its rank is equal to mL+n, where n is the

minimal order of a linear time-invariant system for which w

is an exact trajectory.

The considered problem is defined as follows.

Problem 1. Given a set of time series w, possibly with

missing values, and a model class L n

m,ℓ,

find B and ŵ such that ŵ|Ig
= w|Ig

and

ŵi ∈ B̂|[1,Ti] ∈ L n

m,ℓ, for i = 1, . . . ,N.

Theorem 2. Problem 1 is equivalent to the mosaic-Hankel

structured low-rank matrix completion problem:

find ŵ such that ŵ|Ig
= w|Ig

and

rank(HL(ŵ))≤ Lm+n. (HMC)

The method presented next is related to the class of the

subspace identification methods [5]. The procedure is based

on linear algebra operations, such as solution of a system of

linear equations and does not require nonlinear optimization.

First, we illustrate the main idea on a simple example. The

following section summarized the algorithm for the general

identification problem with missing data.

Example

Consider the data

w = (1,2,NaN,4,5,NaN,7,8,NaN,10,11).

The to-be-identified data generating system has lag ℓ = 2.

Therefore, there is a nonzero vector R ∈ R
1×3, such that

RH3(w̄) = 0,

where, w̄ is the unknown complete trajectory of the system.

The R vector is a parameter of a kernel representation of the

system and can be found from the left kernel of H3(w̄). The

Hankel matrix H3(w) of the given data



1 2 NaN 4 5 NaN 7 8 NaN

2 NaN 4 5 NaN 7 8 NaN 10

NaN 4 5 NaN 7 8 NaN 10 11


 ,

however, does not allow us to compute its left kernel due

to unspecified entries in every column of the matrix. (In this

sense, the periodic pattern of the missing values with a period

ℓ+ 1 or less is the worse distribution of the missing data.)

The main idea behind the proposed method is to consider

the extended Hankel matrix

H4(w)=




1 2 NaN 4 5 NaN 7 8

2 NaN 4 5 NaN 7 8 NaN

NaN 4 5 NaN 7 8 NaN 10

4 5 NaN 7 8 NaN 10 11




and select the two submatrices of H4(w)

H̃1 =




1 4 7

2 5 8

NaN NaN NaN

4 7 10


 and H̃2 =




2 5 8

NaN NaN NaN

4 7 10

5 8 11


 ,

which have a single row of NaN’s. The matrices H1 and H2,

obtained from H̃1 and H̃2, respectively, by removing the rows

of NaN’s have nontrivial left kernels

[
1 −3/2 1/2

]
︸ ︷︷ ︸

R1




1 4 7

2 5 8

4 7 10


= 0

and

[
1 −3 2

]
︸ ︷︷ ︸

R2




2 5 8

4 7 10

5 8 11


= 0.

Inserting zeros in the R1 and R2 vectors, we obtain vectors

R̃1 and R̃2 in the kernels of H̃1 and H̃2, respectively:
[
1 −3/2 0 1/2

]
︸ ︷︷ ︸

R̃1

H̃1 = 0

and [
1 0 −3 2

]
︸ ︷︷ ︸

R̃2

H̃2 = 0.



(By definition 0 × NaN = 0, i.e., the value of the NaN is

irrelevant.)

By construction
[

R̃1

R̃2

]
H4(w̄) = 0,

so that, the polynomial matrix

R̃(z) =

[
R̃1(z)

R̃2(z)

]
=

[
z0 − 3/2z1+ 1/2z3

z0 − 3z2 + 2z3

]

is a (nonminimal) kernel representation of the data generating

system. A minimal kernel representation [8] can be obtained

from R̃ by computing the greatest common divisor of the

polynomials R̃1 and R̃2

R(z) := GCD
(
R̃1(z)R̃2(z)

)
= z0 − 2z1 + z2.

Once the model is identified, it is trivial to fill the missing

data. In the example, we iterate the difference equation

w(t) = 2w(t − 1)−w(t− 2),

starting from the given initial condition w(1) = 1 and

w(2) = 2

w̄ = (1,2,3,4,5,6,7,8,9,10,11, . . .)

Note 3. The shortest length data sequence from which the

system is identifiable by the proposed method is

w = (1,2,NaN,4,5,NaN,7,8).

In this case the matrices H1 and H2 are 3× 2 and still have

the correct kernels

{α
[
1 −3/2 1/2

]
| α ∈R}

and

{α
[
1 −3 2

]
| α ∈ R},

respectively.

General method

The generalization of the procedure, used in the example

is summarized in Algorithm 1. An implementation of the

algorithm in Matlab is available from the author’s webpage:

http://homepages.vub.ac.be/ imarkovs

V. CONCLUSIONS AND DISCUSSION

We have presented a novel subspace-type exact linear

time-invariant system identification method for data with

missing values. The main idea of the method is to ex-

tract complete submatrices of the incomplete mosaic-Hankel

matrix, constructed from the data, and compute their left

kernels. The collection of the kernel parameters of the sub-

matrices, extended with zeros at the location of the missing

values in the full mosaic-Hankel matrix, gives a nonminimal

representation of the data generating system. The reduction

of the computed nonminimal representation to a minimal one

is a standard problem and can be implemented by a greatest

common divisor computation.

Algorithm 1 Subspace algorithm for linear time-varying

system identification with missing data.

Input: Set of sequence w∈ (R
q
e)

T1 ×·· ·×(R
q
e)

TN and natural

numbers ℓ and m.

1: Select real valued submatrices

H i ∈ R
mi×ni , with mi ≥ ni − 1,

of the mosaic-Hankel matrix HT (wext), where

wext = (w,NaN, . . . ,NaN︸ ︷︷ ︸
T

).

2: Compute bases Ri for the left kernels of H i, i.e., full

row rank matrices Ri ∈R
gi×mi of maximum row dimen-

sion gi, such that RiH i = 0.

3: Extend Ri ∈ R
gi×mi to R̃i ∈ R

gi×Tq by inserting zero

columns at the location of the rows removed from

HT (wext) in the selection of H i.

4: Compute the greatest common divisor R of R̃1, . . . , R̃K ,

where K be the number of complete submatrices.

Output: Minimal kernel representation R(z) of the data

generating system.

In the case of exact data without missing values, there

are sufficient identifiability conditions in the literature [9].

Generalization of these conditions to (or derivation of new

conditions) in the case of missing data is an open problem.

It is well known that minor modifications of exact subspace

identification methods result are very effective methods for

approximate and stochastic system identification. The mod-

ification of the method proposed in this paper for the noisy

case, however, is nontrivial due to the reduction step of the

computed (highly) nonminimal kernel representation to a

minimal one. An approximate version of this step is a hard

problem (approximate greatest common divisor [10] compu-

tation). The uncertainty related to the kernel parameters R̃i

may vary due to the fact that different amounts of data are

used for their computations. These and other issues are a

topic of current research.
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APPENDIX

A related problem to (HMC) is the mosaic-Hankel struc-

tured rank minimization problem:

minimize over ŵ ∈ (Rq)T rank
(
HL(ŵ)

)

subject to ŵ|Ig
= w|Ig

.

The number of block-rows L of the mosaic-Hankel matrix

is a design parameter. Our empirical experience shows that

best results are obtained for nearly squares matrix, so that L

is set to

L :=

⌈
T + 1

q+ 1

⌉
.

Replacing the minimization of the rank by minimization

of the nuclear norm [11], we obtain a convex optimization

problem:

minimize over ŵ ∈ (Rq)T
∥∥HL(ŵ)

∥∥
∗

subject to ŵ|Ig
= w|Ig

,

which, in turn, is equivalent to the following semidefinite

programming problem

minimize over ŵ, U , and V trace(U)+ trace(V )

subject to

[
U HL(ŵ)

⊤

HL(ŵ) V

]
� 0 and ŵ|Ig

= w|Ig
.

The semidefinite relaxation can be solved globally by exist-

ing methods. We use the CVX package [12] for this purpose.


