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Abstract— Linear time-invariant system identification is con-
sidered in the behavioral setting. Nonstandard features of the
problem are specification of missing and exact variables and
identification from multiple time series with different length.
The problem is equivalent to mosaic Hankel structured low-
rank approximation with element-wise weighted cost function.
Zero/infinite weights are assigned to the missing/exact data
points. The problem is in general nonconvex. A solution method
based on local optimization is outlined and compared with
alternative methods on simulation examples.

In a stochastic setting, the problem corresponds to errors-in-
variables identification. A modification of the generic problem
considered is presented that is a deterministic equivalent to
the classical ARMAX identification. The modification is also a
mosaic Hankel structured low-rank approximation problem.

Index Terms— system identification; behavioral approach;
missing data; mosaic Hankel matrix; low-rank approximation.

I. INTRODUCTION

System identification aims at deriving a dynamical

model B̂ (i.e., a mathematical description) of a to-be-

modeled physical plant from observed data D . The data

is typically obtained by sampling and quantization in time-

domain. One or more independent measurement experiments

can be performed. Each experiment yields a real-valued

vector time series. We refer to the individual observations

of the variables of the system as measurement points. The

model postulates a relation among the observed variables,

and possibly, some additional unobserved variables. An

example of the latter type of model is the auto-regressive

moving average exogenous (ARMAX) model. Prior knowl-

edge and/or assumptions about the plant are incorporated in

the identification problem by restricting the model to belong

to a set of models M , called the model class.

An identification problem is a map from data to model:

data

D

identification problem
−−−−−−−−−−−−−→

model

B̂ ∈ M

defined implicitly as a solution to an optimization problem,

i.e., the model B̂ minimizes (among all feasible models)

a specified cost function. Different identification problems

correspond to different choices of the model class and the

cost function.

This conference paper is an abbreviated and updated version of [1], with
new material in Sections V and VI-B.
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The objectives of achieving simultaneously

1) “simple” model, and

2) “good” fit of the data by the model

are contradictory. Independent on the data, an arbitrary good

fit can be obtained by increasing the model complexity.

Typically the model class is used to impose a hard bound

on the model complexity and the cost function is used to

measure the model-data misfit (lack of fit). It is possible,

however, to minimize the model complexity subject to a

hard bound on the misfit or, more generally, consider the

bi-objective minimization of misfit and complexity.

In exact identification, see, e.g., [2, Chapter 7], the model

complexity is minimized subject to the constraint that the

model fits the data exactly (zero misfit). If such a model

exists in the model class, it is called the most powerful

unfalsified model (of D in M ) [3]. Exact identification is

not a practical identification tool due to the presence of plant

disturbances (unobserved variables), measurement noises,

discretization and quantization errors. The concept of the

most powerful unfalsified model, however, is theoretically

important (it is a generalization of the realization problem

in system theory) and appears in approximate and stochastic

identification problems [4]. Moreover, methods for comput-

ing the most powerful unfalsified model lead directly to the

very successful class of the subspace identification methods.

An exact identification method for data with missing values

is presented in [5].

In this paper, we consider the model class of linear time-

invariant systems of bounded complexity, defined in Sec-

tion II. The approximation criterion, which specify the iden-

tification problem considered in the paper has the geometric

interpretation of the Euclidean distance between the data and

the model. In the stochastic setting, this criterion corresponds

to errors-invariables system identification [6], i.e., the identi-

fication problem considered defines the maximum-likelihood

estimator in the errors-invariables setting. In Section V, a

modification of the problem for ARMAX system identi-

fication is presented. Section III related the identification

problem to the weighted mosaic-Hankel structured low-rank

approximation. Solution methods for the latter are outlined

in Section IV and compared on simulation examples in

Section VI.



II. PROBLEM FORMULATION

Model class: bounded complexity linear time-invariant sys-

tems

A discrete-time dynamical system B is a collection of

trajectories — q-variables time-series w : Z→R
q. The class

of finite dimensional linear time-invariant systems with q

variables and at most m inputs is denoted by L
q
m . A linear

time-invariant system B ∈ L
q
m admits a representation by

constant coefficients difference equation

B =B(R) := {w | R0w+R1σw+ · · ·+Rℓσ
ℓw = 0}, (DE)

where σ is the shift operator

(σw)(t) = w(t + 1).

The minimal natural number ℓ, for which there exists an

ℓth order difference equation representation for B is an

important invariant of the system, called the lag. The number

of inputs and the lag specify the complexity of the system

in the sense that the dimension of the restriction of B to the

interval [1,T ], where T ≥ ℓ, is bounded by Tm+ ℓ(q− m).
The subset of L

q
m with lag at most ℓ is denoted by L

q

m,ℓ.

No a priori separation of the variables into inputs and

output is made, however, the variables w can always be

partitioned into inputs u (free variables) and outputs y

(dependent variables) and the system can be represented in

the input/state/output representation

B = B(A,B,C,D,Π) := {w = Π(u,y) | there is x,

such that σx = Ax+Bu, y =Cx+Du}, (I/S/O)

where Π is a permutation matrix. If Π= Iq, it will be skipped,

i.e., B(A,B,C,D) = B(A,B,C,D, I).
The number of inputs m, the number of outputs p= q−m,

and the minimal state dimension n of an input/state/output

representation of B are invariant of the representation and

in particular of the input/output partitioning. The order n

of a state-space representation of a linear time-invariant

system B = B(R) with lag ℓ and p outputs is n ≤ ℓp. In

the case when the block Pℓ ∈ R
p×p of Rℓ =

[
Qℓ −Pℓ

]
is

nonsingular, n= ℓp and w = (u,y) is a possible input/output

partition, i.e., Π can be chosen equal to I. This simplifying

assumption is made in the rest of the paper. The class of

systems with q variables and inputs, order, and lag bounded

by, respectively m, n, and ℓ is denoted by L
q,n
m,ℓ .

Approximation criterion: data-model misfit

We use the behavioral language [7]. The data used for

identification is a set

wd = {w1
d, . . . ,w

N
d } (wd)

of finite trajectories

wk
d =

(
wk

d(1), . . . ,w
k
d(Tk)

)
, where wk

d(t) ∈ R
q. (wk

d)

The misfit (lack of fit) between the data wd and a model B

is measured by the orthogonal distance from wd to B

M(wd,B) := min
ŵ1,...,ŵk∈B

√
∑

N
k=1 ‖wk

d − ŵk‖2
2. (M)

Missing elements in wd are marked by the symbol NaN

(not a number). Such elements are excluded from the ap-

proximation criterion, i.e., in (M) by definition

NaN− ŵk
i (t) = 0, for all ŵk

i (t) ∈ R.

The opposite extreme of a missing element is “exact ele-

ment”, i.e., wk
d,i(t) for which the constraint ŵk

d,i(t) = wk
d,i(t)

is imposed in the misfit computation (M).

Identification problem: misfit minimization

The optimal approximate modeling problem considered

aims to find a system B̂ in the model class L
q
m,ℓ that best

fits the data according to the misfit criterion.

Given a set of time series wd, specification of exact data,

and a complexity specification (m, ℓ), find a system

B̂ := arg min
B∈L

q
m,ℓ

M(wd,B). (SYSID)

Special cases of (SYSID) are static data modeling (ℓ= 0)

and output-only or autonomous system identification (m= 0).

The solution approach, described next, leads to an algorithm

that covers these special cases. In addition,

1) elements of the given time series wd can be specified as

“missing” by passing the symbol NaN for their value;

2) elements of the given time series wd can be specified as

“exact”, in which case they appear unmodified in the

approximation ŵ; For example, in output error identi-

fication problems the variables are a priori partitioned

into inputs and outputs, where the input variables

are exact while the output variables are perturbed by

measurement noise.

3) the approximation ŵ can be constrained to be a tra-

jectory of the model B, generated under a priori fixed

initial conditions wini, see [8], i.e.,
[

wini

ŵ

]
∈ B.

(Note that problem (SYSID) identifies the model with-

out prior knowledge about the initial conditions, under

which the data wd is generated, i.e., wini is a free vari-

able.) In identification from impulse or step response

data, however, the initial conditions are know exactly.

When available this prior information should be taken

into account by constraining wini.

III. STRUCTURED LOW-RANK APPROXIMATION

A. Mosaic-Hankel matrices

It is well known [9] that the realization problem (a

special exact identification problem when the data is the

impulse response) is closely connected to the rank revealing

factorization of a block-Hankel matrix

Hℓ+1(h) :=




h(1) h(2) · · · h(T − ℓ)
h(2) h(3) · · · h(T − ℓ+ 1)
...

...
...

h(ℓ+ 1) h(ℓ+ 2) · · · h(T )


 ,



constructed from the first T samples h=
(
h(1), . . . ,h(T )

)
of

the system’s impulse response. More generally (see [1]), if

the time-series w1
d, . . . ,w

N
d are exact trajectories of a model

B ∈ Lm,ℓ, the mosaic-Hankel matrix (a 1×N block matrix

with block-Hankel blocks [10])

Hℓ+1(wd) :=
[
Hℓ+1(w

1
d) · · · Hℓ+1(w

N
d )
]
,

has rank at most (ℓ+ 1)m+n.

As in the realization problem, parameters of a state-space

representation of the most powerful unfalsified model of wd

in Lm,ℓ can be obtained from the rank revealing factorization

of Hℓ+1(wd) or equivalently from its left kernel:

(
wk

d(1), . . . ,w
k
d(Tk − ℓ)

)
∈ B ∈ L

q,n

m,ℓ , for k = 1, . . . ,N

⇐⇒ rank
(
Hℓ+1(wd)

)
≤ (ℓ+ 1)m+n. (∗)

B. Dealing with exact and missing data

Let “vec” be a time series vectorization operation, which

acting on a trajectory wk produces a vector of the sequential

samples of wk,

pk = vec(wk) :=




wk(1)
...

wk(Tk)


 ∈ R

qTk .

The identification data wd is represented by the vector

p = vec(wd) :=




vec(w1
d)

...

vec(wN
d )


 ∈ R

q(T1+···+TN ).

The inverse operation “vec−1” produces the set of time

series wd back from p (and q, T1, . . . , TN):

vec−1 : p 7→ wd.

Define also the element-wise weighted 2-norm

‖p‖v :=
√

∑
np

i=1 vi p
2
i ,

specified by the nonnegative vector v∈ (R+∪+∞)np . Finally,

let Iexct be the set of indeces of the exact values of p.

Using the above notation, the approximation criterion (M)

can be written as a weighted 2-norm approximation

M(wd,B) := min
p̂

‖p− p̂‖v subject to vec−1(p̂)⊂ B,

with zero weights assigned to the missing data and infinite

weights assigned to the exact data, i.e.,

vi =





0 if pi is NaN (missing data),

∞ if i ∈ Iexct (exact data),

1 otherwise (noisy data).

Indeed, for the misfit to be finite, the equality constraints

p̂i = pi must hold for all i ∈ Iexct.

C. Structured low-rank approximation

By (∗), the identification problem (SYSID) is equivalent

to the element-wise weighted mosaic-Hankel structured low-

rank approximation problem

minimize over p̂ ‖p− p̂‖2
v

subject to rank
(
Hℓ+1

(
vec−1(p̂)

))
≤ r,

(SLRA)

where r = (ℓ+ 1)q−p.

IV. SOLUTION METHOD

Problem (SLRA) is in general a nonconvex optimization

problem. In this section, we review a local optimization

method based on a kernel representation of the rank con-

straint

rank
(
Hℓ+1(ŵ)

)
≤ r ⇐⇒ RHℓ+1(ŵ) = 0

and R ∈ R
p×(ℓ+1)q is full row rank (f.r.r.). (KER)

The matrix R in the right-hand-side of (KER) is related

to the parameters R0,R1, . . . ,Rℓ of the difference equation

representation (DE) of the exact model for ŵ as follows:

R =
[
R0 R1 · · · Rℓ

]
, where Ri ∈ R

p×q.

Using the kernel representation (KER), the structured low-

rank approximation problem (SLRA) is rewritten in the

following equivalent form

minimize over p̂ and R ∈ R
p×(ℓ+1)q ‖p− p̂‖2

v

subject to RHℓ+1(p̂) = 0 and R is f.r.r.
(SLRAR)

Problem (SLRAR) is a nonlinear least squares problem,

which, separable in the optimization variables p̂ and R. In

particular, the variable p̂ can be eliminated by analytically

minimizing over it. This reduces (SLRAR) to the equivalent

problem:

minimize over f.r.r. R ∈ R
p×(ℓ+1)q M(R), (OUTER)

where

M(R) := min
p̂

‖p− p̂‖2
v s.t. RS (p̂) = 0. (INNER)

The computation of M(R) for given R is refered to as the

inner minimization problem and the minimization (OUTER)

of the function M over R is referred to as outer minimization

problem.

The inner minimization problem (INNER) is a linear least

norm problem and admits an analytic solution. In [11], it

is sown how this problem can be solved in the presence of

exact (vi = +∞) and missing (vi = 0) values. In [12], it is

shown that fast O(T ) evaluation of M and its derivatives can

be performed for mosaic-Hankel-like structured matrices.

The approach for solving (SLRAR), based on elimination

of p̂, is closely related to the variable projection method [13].

In [13], however, an explicit function b̂ = A(θ )x, where x

is unconstrained, is considered, while in the context of

the structured low-rank approximation problem, an implicit

function (relation) RS (p̂) = 0 is considered, where the

variable R is constrained to have full row rank. This fact



requires new type of algorithms, where the nonlinear least

squares problem is an optimization problem on a Grassmann

manifold, see [14], [15].

In (OUTER), the cost function M is minimized over the set

of full row rank matrices R. Note that, M depends only on the

space spanned by the rows of R. In order to find a minimum

of M, the search space in (OUTER) can be replaced by the

matrices satisfying the constraint

RR⊤ = Ip,

or

R =
[
X Ip

]
Π,

where X is a free variable and Π is a q×q permutation ma-

trix. (In a system theoretic setting, Π defines an input/output

partitioning of the variables.)

A software package for mosaic-Hankel structured low-

rank approximation is presented in [16]. The Levenberg-

Marquardt algorithm [17] implemented in the GNU Scientific

Library [18], is used for the solution of the nonlinear least

squares problem. This package is used in [1] for system

identification.

V. LATENCY MINIMIZATION: ARMAX SYSTEM

IDENTIFICATION

The classical setting for system identification is the AR-

MAX one [19], [20]. An ARMAX model is a linear time-

invariant system driven by an unobserved disturbance e as

well as the observed input u:

Bext(P,Q,E) =
{ [

e
u
y

] ∣∣∣ P(σ)y = Q(σ)u+E(σ)e
}
.

Here P, Q, and E are polynomial matrices parameterizing

the model. The disturbance e is modeled as a zero mean,

white noise process. The aim of the ARMAX identification

problem is to find the dynamical relation between the dis-

turbance and the output (the “noise dynamics”, defined by E

and P) as well as the dynamical relation between the inputs

and the output (the “signal dynamics”, defined by Q and P).

The identification problem (SYSID) and the solution

approach based on the structured low-rank approximation

problem (SLRA) do not included the ARMAX setting as a

special case. Vice verse, the ARMAX setting is considered

unrelated to the identification problem (SYSID), the stochas-

tic equivalent of which is errors-in-variables identification.

In [21], [22] a deterministic equivalent of the ARMAX

problem is proposed, in which the unobserved input e is

treated as a deterministic latent variable rather than stochastic

process. Using the notation in this paper, the deterministic

ARMAX identification problem is

minimize over B̂ext and ê ‖ê‖2

subject to

[
ê

wd

]
∈ B̂ext ∈ Lq,ℓ∩C ,

(ARMAX)

where

C = {B(P,Q,E) | Eℓ+1 = Ip and Pℓ+1 = Ip }. (1)

Given, data wd and model B̂ext ∈ Lq,ℓ, the quantity

L(wd,Bext) := min
ê

‖ê‖2 s.t.

[
ê

wd

]
∈ B̂ext (L)

is called the latency of wd with respect of Bext. The latency

computation in the deterministic setting corresponds to the

prediction errors or likelihood computation in the stochastic

setting. In both cases Kalman filtering or smoothing algo-

rithms are used. A deterministic equivalent of the Kalman

filter is considered in [23], [24], [25]

VI. SIMULATION EXAMPLES

A. Errors-in-variables setup

In this section, we show examples of identification prob-

lems with missing data. The data wd is generated in the

errors-in-variables setting

wd = w̄+ w̃,

where the true data w̄ is a trajectory of a true model B̄ ∈L
q
m,ℓ

and the measurement noise w̃ is white zero mean normally

distributed with covariance matrix that is a multiple of the

identity. The true model is single-input single-output linear

time-invariant system B̄ =B(R̄), where R̄ =
[
−Q̄ P̄

]
with

P̄(z) = z2 − 1.4z+ 0.7,

Q̄(z) =−z− 0.3.
(PAR)

Samples of wd are missing at moments of time t ∈Tm, where

Tm is specified in the examples.

An alternative method for solving the errors-in-variables

identification problem with missing data is proposed in [26].

This method uses a frequency domain approach [27]. A Mat-

lab implementation of the algorithm (called below sysid)

was kindly provided by the authors and is used below for

verification of the results obtained with the function ident,

based on the structured low-rank approximation method of

Section IV.

The identified models B̂ are evaluated by the angle

∠(P̄, P̂) = cos−1

(
P̄⊤P̂

‖P̄‖‖P̂‖

)
, (ERR)

between the true P̄ and estimated P̂ model parameter vectors.

The simulation parameters in the experiments are the

number of samples T , the set of missing values Tm, and

the noise standard deviation. The reported results show the

approximation error for the compared methods and for dif-

ferent noise levels. Three experiments are done for different

distribution of the missing values: sequential, periodic, and

random. Both input and output values are missing. A NaN

value in the table of results indicates that the corresponding

method fails in this case.

In an example with T = 100 and sequential missing data

in the interval [30,70], the ident and sysid functions

achieve comparable accuracy (see Table I). The ident

function is 9 time faster than sysid. Similar results (see

Table II) are obtained for small noise levels in the case of

periodic missing data in the interval [30,70] with period 3.



TABLE I

ESTIMATION ERRORS (ERR) IN THE ERRORS-INVARIABLES SETUP, WITH

SEQUENTIAL MISSING INPUT AND OUTPUT SAMPLES IN THE INTERVAL

[30,70], T = 100.

noise level 0 0.0025 0.0050 0.0075 0.0100

ident 10−8 0.0012 0.0078 0.0017 0.0067
sysid 0 0.0012 0.0078 0.0014 0.0065

TABLE II

ESTIMATION ERRORS (ERR) IN THE ERRORS-INVARIABLES SETUP, WITH

PERIODIC MISSING INPUT AND OUTPUT SAMPLES IN THE INTERVAL

[30,70] WITH PERIOD 3, T = 100.

noise level 0 0.0025 0.0050 0.0075 0.0100

ident 10−8 0.0014 0.0058 0.0077 0.0068
sysid 0 0.0014 0.0073 0.0082 0.0077

In this example, the ident function is 5 time faster than

sysid. Finally, results for a simulation example with T =
1000 data points from which 600 are randomly missing are

shown in Table III.

TABLE III

ESTIMATION ERRORS (ERR) IN IN THE ERRORS-INVARIABLES SETUP,

WITH RANDOMLY DISTRIBUTED MISSING INPUT AND OUTPUT SAMPLES,

T = 1000, 600 MISSING.

noise level 0 0.0025 0.0050 0.0075 0.0100

ident 10−5 0.0029 0.0087 0.0028 0.0123
sysid NaN NaN NaN NaN NaN

B. ARMAX identification

In this section, we validate on a numerical examples

the results of the method described in Section IV, applied

for solving the deterministic formulation (ARMAX) of the

ARMAX identification problem. Also we show results for

ARMAX identification with missing data, corresponding to

the ones in Section VI-A in the errors-in-variables setup.

The standard approach for ARMAX system identification

is prediction error minimization. Similarly to the method for

structured low-rank approximation, presented in Section IV,

the prediction error minimization methods are local opti-

mization methods and have a double minimization structure.

The inner minimization is the prediction error (or likelihood)

evaluation, which corresponds to the misfit computation in

the structured low-rank approximation problem. The outer

minimization is a nonlinear least squares problem over the

model parameters and the initial conditions.

Note 1 (Initial conditions). There is an important difference

in the way the initial conditions are taken into account in

the prediction error methods and the method of Section IV.

In the prediction error methods, the initial conditions are

optimization variables in the outer level—the nonlinear least

squares minimization, i.e., they are treated as additional

model parameters. In the variable projection method of

Section IV, the initial conditions are eliminated in the

inner minimization problem—the linear least norm problem.

Thus the minimization in the outer level is over a fewer

optimization variables. This may lead to improved efficiency

and robustness of the method described in this paper.

We use the functions pe and armax from the System

Identification Toolbox [28] of Matlab for, respectively, eval-

uation of the prediction errors and system identification by

prediction error minimization. The function armax is not

directly applicable for identification with missing data and

is used in combination with the function misdata from the

System Identification Toolbox [28] of Matlab. Contrary to the

case of no missing data, the combination of misdata and

armax is not an optimal estimation method. As explained in

Section IV, the structured low-rank approximation algorithm

deals with the missing values by minimizing a weighted cost

function with zero weights assigned to the missing values.

Therefore, no preprocessing step or adaptation is needed and

the method is optimal.

The data wd used in the simulation examples is generated

by a “true” ARMAX system Bext(P̄, Q̄, Ē), with parameters

Q̄ and P̄ given in (PAR) and Ē(z) = z+0.5. The number of

samples is T = 100. The input u is random and the system

starts from zero initial conditions. The disturbance e is a

zero mean white normally distributed signal. Table IV shows

the estimation errors in the case of no missing values. The

latency L(wd,B̂ext) of both models (computed with both

the SLRA package [16] and the function pe) is the same.

This result is a numerical confirmation that the deterministic

latency minimization corresponds to the prediction error

minimization. As shown in Tables V and VI, the results

obtained with the combination of the misdata and armax

methods are suboptimal.

TABLE IV

ESTIMATION ERRORS (ERR) IN THE ARMAX SETUP WITHOUT MISSING

VALUES.

noise level 0 0.025 0.05 0.075 0.1

armax 0 0.0041 0.0056 0.0050 0.0066
slra 0 0.0041 0.0056 0.0051 0.0063

TABLE V

ESTIMATION ERRORS (ERR) IN THE ARMAX SETUP WITH MISSING

INPUT AND OUTPUT SAMPLES IN THE INTERVAL [30,70], T = 100.

noise level 0 0.025 0.05 0.075 0.1

misdata+armax 0 0.0125 0.0113 0.0083 0.0457
slra 0.0216 0.0248 0.0137 0.0659 0.6532

TABLE VI

ESTIMATION ERRORS (ERR) IN THE ARMAX SETUP WITH PERIODIC

MISSING INPUT AND OUTPUT SAMPLES IN THE INTERVAL [30,70], WITH

PERIOD 3, T = 100.

noise level 0 0.025 0.05 0.075 0.1

misdata+armax 0 0.2205 0.0101 0.0143 0.1584
slra 0.0143 0.9133 0.9196 0.9604 0.9891



VII. CONCLUSIONS

The paper presented a generic problem for system iden-

tification in the behavioral setting. The data consists of

multiple time-series. Exact and missing values can be present

in arbitrary combination of variables (inputs and outputs)

and time instances. The identification problem is equiva-

lent and is solved as a mosaic Hankel structured low-rank

approximation with an element-wise weighted 2-norm cost

function. Zero weights are assigned to the missing values and

infinite weights are assigned to the exact values of the given

data. A method based on local optimization is presented and

tested on simulation examples. The computational cost of

the algorithm is linear in the number of data points. Despite

of its generality and flexibility, the developed software is

functionally equivalent to and computationally faster than

the existing alternatives. A modification of the problem and

solution method for ARMAX system identification is also

presented and illustrated on examples.
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