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Abstract— The applicability of subspace-based system identi-
fication methods highly depends on the disturbances acting on
the system. It is well-known, e.g., that the standard implemen-
tations of the MOESP, N4SID or CVA algorithms yield biased
estimates when closed-loop noisy data is considered. In this
paper, we suggest pre-estimating the innovation term from the
available data in order to bypass this difficulty. By doing so,
the subspace-based identification problem can be written as a
deterministic problem for which efficient methods exist. When
the system description does not belong to the model class, a
structured least-squares solution is proposed. The performance
of the methods is illustrated through the study of simulation
examples.

I. INTRODUCTION

In almost three decades, the subspace-based state-space
system identification (4SID) techniques have proved their
effectiveness in estimating accurate models of linear systems
[1], [2], [3]. These 30 years have given rise to the develop-
ment of many algorithms yielding consistent estimates of
discrete-time or continuous-time linear time-invariant (LTI),
linear parameter-varying, and bi-linear systems working un-
der open-loop or closed-loop conditions and disturbed by
input, process and/or output noises [4], [5], [6], [7]. The
robustness of the tools used in subspace-based identification
is probably the main reason why the 4SID techniques are
considered as a good alternative and a good initial step of
the standard maximum likelihood methods [8] for state-space
model identification.

As described in [9, Section 2.4], the 4SID methods are
multi-step techniques consisting of a pre-estimation step
requiring high-order ARX model estimates followed by least-
squares regressions to extract the system’s state sequence or
observability subspace from which the state-space parameters
can be estimated. Following this observation, the problem
of estimating accurate black-box discrete-time LTI models
under open-loop or closed-loop conditions in a subspace-
based identification framework is revisited hereafter through
a unified formulation. Inspired by the developments in [10],
[11], we suggest a two-step approach.

First, in order to bypass the standard noise related issues
in subspace-based identification (bias, correlation with the
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input signals, . . . ), we estimate the innovation term using a
high-order ARX model [9], [12]. Second, we describe the
data equations obtained for the standard innovation form
[4] as well as the predictor form [13] as a structured least-
squares regression problem. We focus on the lower triangular
Toeplitz structure of matrices. Using the high-order ARX
model [10], [13], [14], [9], [12] is the keystone for getting a
consistent (in the Rouché-Capelli theorem sense [15]) struc-
tured linear least-squares regression problem. This change of
viewpoint, i.e., focusing on the innovation term instead of the
Markov parameters directly, is the main difference between
the method proposed in this paper and the ones in [13], [14].
This change allows us to select any deterministic subspace-
based technique for the actual estimation of state-space
model parameters. In this paper, specific attention is given to
data-driven algorithm [16] for systems working under open-
loop and/or closed-loop conditions. Such an approach further
allows us to incorporate prior information about the system.
However, incorporation of prior knowledge will be treated
elsewhere.

The paper is organized as follows. After the introduction
of the main notations in Section II, the system identification
problem is defined in Section III. The main contribution of
the paper, i.e., the description of the open-loop and closed-
loop 4SID algorithms, is given in Section IV. These new
methods are then compared on simulation examples with the
state space auto-regressive exogenous (SSARX) technique
[14] and the standard N4SID methods in Section V. Sec-
tion VI concludes the paper.

II. NOTATIONS
For any vector r(t) ∈ Rnr and natural number ` ∈ N+

∗ ,
we define
• the finite past stacked vector r−` (t) ∈ R`nr×1

r−` (t) =
[
r>(t− `) · · · r>(t− 1)

]>
, (1)

• the finite future stacked vector r+` (t) ∈ R`nr×1

r+` (t) =
[
r>(t) · · · r>(t+ `− 1)

]>
. (2)

By having access to these finite stacked vectors, the past
and future Hankel matrices (resp. R−`,M (t) ∈ R`nr×M and
R+

`,M (t) ∈ R`nr×M ) are defined as

R−`,M (t) =
[
r−` (t) · · · r−` (t+M − 1)

]
, (3)

R+
`,M (t) =

[
r+` (t) · · · r+` (t+M − 1)

]
. (4)

Using the state space parameters A, B, C and D, for
` ≥ nx, we defined the extended observability matrix

Ω`(A,B) =
[
A`−1B · · · AB B

]
, (5)



the extended reversed controllability matrix

Γ`(A,B) =


B

BA
...

BA`−1

 , (6)

and the block lower-triangular Toeplitz matrix

H`(A,B,C,D) =


D 0 · · · 0

CB D · · · 0
...

. . . . . .
...

CA`−2B · · · CB D

 . (7)

III. PROBLEM FORMULATION

In this paper, we consider finite-dimensional, discrete-
time, LTI dynamical systems, described by a state-space
representation of the form

x(t+ 1) = Ax(t) + Bu(t) + w(t), (8a)
y(t) = Cx(t) + Du(t) + v(t), (8b)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the
input vector, y(t) ∈ Rny is the output vector, v(t) ∈ Rny

is the output measurement noise vector and w(t) ∈ Rnx is
the process noise vector. (A,B,C,D) are the state-space
parameters of the system. We consider systems working
under open-loop or closed-loop conditions

The following standard assumptions are made in the
sequel.

Assumption 1: The noise terms v and w in the LTI state-
space representation (8) are independent zero-mean white
Gaussian noises with finite covariance matrices, i.e.,

E
{[

v(k)
w(k)

] [
v>(`) w>(`)

]}
=

[
R S>

S Q

]
δk`,

where δk` is the Kronecker delta function.
Assumption 2: The LTI state-space system (8) is minimal,

i.e., (A,C) is observable and (A, [B,Q1/2]) is controllable.
Assumption 3: The input u is assumed to be quasi-

stationary and exciting of sufficient order [17].
Assumption 4: The feedback loop is assumed to contain

at least one sample delay, i.e., the controller or the process
has no direct feed-through [18], [19].
In the following, when closed-loop conditions are consid-
ered, we will assume that D = 0. Theoretically, Assump-
tion 4 ensures the identifiability of the transfer function of
the plant S (see [18], [19] for a discussion about this property
and the following consequences).

Assumption 5: The closed-loop system is assumed to be
asymptotically stable.

By Assumptions 1 and 2, the state-space model (8) is
equivalent to the innovation form

x(t+ 1) = Ax(t) + Bu(t) + Ke(t), (9a)
y(t) = Cx(t) + Du(t) + e(t), (9b)

where K is the steady-state Kalman filter gain and e is called
the innovation vector [8]. As a consequence of Assumption 1,

the innovation is a stationary, zero-mean white Gaussian
noise with covariance Re. Under open-loop condition, u(k)
and e(k) are uncorrelated. Under closed-loop conditions,
Assumption 4 guarantees that the innovation sequence e(j)
and the input u(k) are uncorrelated ∀ j ≥ k [20].

When open-loop systems (9) are considered, straightfor-
ward recursion yields

Y+
f,M = Γf (A,C)x+

M (t) + Hol,u
f U+

f,M + N+
f,M , (10)

where

Hol,u
f = Hf (A,B,C,D), (11a)

N+
f,M = Hf (A,K,C, Iny

)︸ ︷︷ ︸
Hol,e

f

E+
f,M . (11b)

Under closed-loop conditions, in order to bypass the problem
of correlation between the innovation term and the input
signal, most techniques [13], [14], [9], [12], [21], [22] we
use a different data equation obtained by considering similar
recursions as used in open-loop case but, now, from the
predictor state-space model defined as follows

x(t+ 1) = Ãx(t) + B̃u(t) + Ky(t), (12a)
y(t) = Cx(t) + Du(t) + e(t), (12b)

where

Ã = A−KC, B̃ = B−KD. (13)

We have

Y+
f,M = Γf (Ã,C)x+

M (t) + Hcl,u
f U+

f,M

+ Hcl,y
f Y+

f,M + E+
f,M , (14)

where

Hcl,u
f = Hf (Ã, B̃,C,D), (15a)

Hcl,y
f = Hf (Ã,K,C,0). (15b)

The main difficulties encountered in subspace-based identi-
fication are the following.
• In Eq. (10) and Eq. (14), the matrices Γf (A,C),

Γf (Ã,C), Hol,u
f , Hcl,u

f , Hcl,y
f as well as the state

sequence x+
M are unknown. Because of products of

unknowns, a least-squares solution cannot be directly
implemented.

• Both equations contain a noise term, unknown by con-
struction, which is either colored or correlated with the
input signal.

We circumvent the first issue by replacing the state sequence
in Eq. (10) and Eq. (14) with linear combinations of past
input and output signals [23], [24]. For the second problem,
instead of introducing a user-defined instrumental variable
(as done in [25], [26], [27]) or pre-estimating Hcl,u

f and
Hcl,y

f (as done in [13], [14], [12]), we suggest pre-estimating
the innovation term as considered (as done in [11]). This
solution can indeed be used independent of the considered
practical conditions (open-loop or closed-loop). Both so-
lutions are detailed in the next section. Notice right now



that the corresponding algorithms will be called SSinnov1 in
Section V.

IV. OPEN AND CLOSED LOOP SUBSPACE-BASED
IDENTIFICATION METHODS

A. From a Stochastic to a Deterministic Identification Prob-
lem

The state sequence x+
M in Eq. (10) and Eq. (14) can be

described as linear combinations of past data [28], [25], [29],
[30]. This is true also closed-loop condition [13], [14], [12].
More precisely, by starting from the predictor form (12),
with standard recursions, it is clear that, for any user-defined
p ∈ N∗,

x(t) = Ãpx(t− p)
+ Ωp(Ã,K)y−p (t) + Ωp(Ã, B̃)u−p (t). (16)

From this equation, by assuming that
Assumption 6: The LTI state-space form (9) is strict min-

imum phase i.e.,

λmax(A−KC) < 1,
the state sequence approximation x̄ defined as follows

x̄(t) = Ωp(Ã,K)y−p (t) + Ωp(Ã, B̃)u−p (t), (17)

can be viewed as the the optimal linear estimate of x (in
the mean-square error sense) given u−p (t) and y−p (t) [24],
[26]. By using this state approximation, Eq. (10) and Eq. (14)
become

Y+
f,M = Γf (A,C)Ωp(Ã,

[
K B̃

]
)Z−p,M

+ Hol,u
f U+

f,M + N+
f,M ,

(18a)

Y+
f,M = Γf (Ã,C)Ωp(Ã,

[
K B̃

]
)Z−p,M

+ Hcl,u
f U+

f,M + Hcl,y
f Y+

f,M + E+
f,M ,

(18b)

respectively, where Z−p,M is defined via Eq. (3) with

z(t) =

[
y(t)
u(t)

]
∈ Rny+nu . (19)

In [23], [31], [14], [12], this equation is used to estimate the
unknown block matrices (e.g., Γf (A,C) and Hol,u

f when
Eq. (18a) is considered). Herein, we focus on the estimation
of the innovation. If the noise is known, the aforementioned
issues related to the disturbances acting on the system are
circumvented. In order to reach this goal, specific attention
is paid to the first ny rows of Eq. (18). These rows satisfy

y+
M (t) = CΩp(Ã,

[
K B̃

]
)Z−p,M

+ Du+
M (t) + e+

M (t), (20)

whatever the used equation. Eq. (20) is nothing but the
VARX model used in [13], [14]. From this standard model
representation, using the idea of the proof of [27, Theo-
rem 9.5], we can prove that, under Assumption 3,

rank

(
lim

M→∞

1

M

[
Z−p,M
u+
M (t)

] [
Z−p,M
u+
M (t)

]>)
= p(nu + ny) + nu, (21)

while

• under open-loop conditions, with Assumption 1, we
have

lim
M→∞

1

M
e+
M (t)

[
Z−p,M
u+
M (t)

]>
= 0, (22)

• under closed-loop conditions, with Assumption 1 and
the constraint that D = 0, we have

lim
M→∞

1

M
e+
M (t)

(
Z−p,M

)>
= 0. (23)

Thanks to these results, the optimal prediction (in the least-
squares sense) of y+

M (t) given the past input and output data
as well as u+

M (t) is thus given by

ŷ+
M (t) = y+

M (t)/

[
Z−p,M
u+
M (t)

]
(24)

where •/• stands for the oblique projection [25], i.e., for two
matrices N and P of appropriate dimensions,

N/P = NP†P, (25)

where •† is the Moore Penrose pseudo inverse [32]. An
optimal estimate in the least-squares sense of e+

M (t) is then
obtained as follows

ê+
M (t) = y+

M (t)− y+
M (t)/

[
Z−p,M
u+
M (t)

]
. (26)

Once ê+
M (t) is available, the system identification problem

considered in this paper becomes, in a way, a deterministic
system identification problem [11]. Thus, once the innovation
term is estimated, several solutions suggested in the literature
can be applied to get reliable estimates of the unknown
matrices (A,B,C,D,K).

In this paper, we focus on the extraction of the unknown
matrices Hol,e

f , Hol,u
f , Hcl,u

f , Hcl,y
f , respectively. The reasons

why we focus on these matrices is twofold. First, it is clear
from the definition Hol,e

f , Hol,u
f , Hcl,u

f , Hcl,y
f , respectively,

that they contain the Markov parameters of the unknown
system. It is known from the 70’s that standard realization
techniques like the famous Kung’s method [33] can be used
to extract the matrices (A,B,C,D) from Markov param-
eters. Second, as a perspective for a future work, such an
approach will allow us to incorporate prior information about
the system by imposing prior knowledge on the impulse
response (see [34] for more details about this idea).

B. Impulse response estimation (open loop case)

As explained previously, thanks to the VARX model (20),
the innovation term involved in Eq. (18) is now known.
Knowing1 the Hankel matrices Z−p,M , E+

f,M , U+
f,M , Y+

f,M

1In practice, we do not have access to these Hankel matrices but shifted
version of them because the former step gives only access to e(t), t =
p, p + 1, . . .. For the sake of simplification, we keep however the same
notations afterwards.



a priori, with straightforward manipulations, the data equa-
tions gathered in Eq. (18a) can be written as the following
regression equations

Y+
f,MΠ⊥

Z−
p,M

=
[
Hol,u

f Hol,e
f

] [U+
f,MΠ⊥

Z−
p,M

E+
f,MΠ⊥

Z−
p,M

]
, (27)

where Π⊥
Z−

p,M

stands for the orthogonal projection onto

Z−p,M . Eq. (27) then defines a system of linear equations
for the impulse response[

D CB CAB · · · CAf−2B
]
, (28a)[

Iny CK CAK · · · CAf−2K
]
, (28b)

of the system. In Section IV-D, we explain how to solve this
structured linear problem.

For users familiar with the data-driven impulse response
estimation technique developed in [35, Chapter 3], a slight
modification of the impulse response computation algorithm
called w2h in [35, page 78] can be easily suggested in order
to take into account the estimated innovation and to give
reliable estimates in a noisy framework. Indeed, instead of
only considering u and y as the inputs of the function w2h,
using the estimated innovation ê as new input signals allows
the user to have access to the impulse response coefficients
given in Eq. (28). This technique, called SSinnov2 in the
following, will be used for the comparisons performed in
Section V.

C. Impulse response estimation (closed-loop case)

With straightforward manipulations, the data equa-
tions gathered in Eq. (18b) can be written as well as the
following linear regression problem

E+
f,MΠ⊥

Z−
p,M

=[
−Hcl,u

f Iny
−Hcl,y

f

] [U+
f,MΠ⊥

Z−
p,M

Y+
f,MΠ⊥

Z−
p,M

]
. (29)

Again, we have access to a set of linear equations in terms
now of [

D CB̃ CÃB · · · CÃf−2B
]
, (30a)[

0ny
CK CÃK · · · CÃf−2K

]
, (30b)

respectively.

D. Structured Least-Squares Solution

In Eq. (27) and (29), it is important to notice that, besides
sharing the same least-squares regression problem structure,
the unknown matrices Hol,u

f , Hol,e
f , Hcl,u

f and Iny −Hcl,y
f ,

respectively, all satisfy the same lower triangular Toeplitz
structure. As shown, e.g., in [31], [36], [9], this structural
constraint must be taken into account when standard 4SID
techniques are used in order to ensure causality and consis-
tency. In our case, the situation is a bit different and two
cases can be considered.

1) When

• the system to identify belongs to the selected
model structure, i.e., when the system’s behavior
can be described by Eq. (9),

• the innovation term is estimated optimally,
the over-determined sets of equations given in Eq. (27)
and (29), respectively, are both consistent since, in this
case,(

Y+
f,MΠ⊥

Z−
p,M

)>
∈

range
[(

U+
f,MΠ⊥

Z−
p,M

)> (
E+

f,MΠ⊥
Z−

p,M

)>]
,

(
E+

f,MΠ⊥
Z−

p,M

)>
∈

range
[(

U+
f,MΠ⊥

Z−
p,M

)> (
Y+

f,MΠ⊥
Z−

p,M

)>]
,

respectively. Then, because
[
Hol,u

f Hol,e
f

]
and[

−Hcl,u
f Iny −Hcl,y

f

]
are both full rank, the linear

regression problems given in Eq. (27) and (29) have
each a unique solution which satisfies the Toeplitz
structural constraint.

2) In many practical cases, it is difficult to ensure that
the system to identify belongs to the chosen LTI
model class. In this case, the linear regression problems
become inconsistent and structural constraints are nec-
essary to guarantee that the estimates of Hol,u

f , Hol,e
f ,

Hcl,u
f and Iny

−Hcl,y
f , respectively, are lower triangular

Toeplitz.

In order to guarantee the aforementioned structural con-
straint, we suggest a structured least-squares solution of the
following generic problem

UXV = W, (31)

where the matrices U, X, V and W are of appropriate
dimensions, U, X and W are assumed to be known while
the matrix X is constrained to be a lower triangular Toeplitz
matrix. This structured least-squares problem appears four
times in Eq. (27) and Eq. (29). Such a constrained least-
squares problem can be solved as follows. Given a generic
lower triangular Toeplitz matrix X ∈ Rxi×yi of the form

X =


X0

X1 X0

...
. . .

Xi−1 · · · X1 X0

 , (32)

with individuals blocks having dimensions Xk ∈ Rx×y , k =
0, . . . , i− 1, we can prove that

X =

i−1∑
k=0

Fk ⊗Xk, (33)



where the basis matrices Fk are defined as follows

F0 = Ii, (34a)

F1 =

[
01×i−1 0
Ii−1 0i−1×1

]
, (34b)

F2 =

[
02×i−1 02

Ii−2 0i−2×2

]
, (34c)

... (34d)

Fi−1 =

[
0i−1×1 0i−1

1 01×i−1

]
, (34e)

while ⊗ stands for the Kronecker product [32]. Going
back to Eq. (31), using the fact that vec(UXV) =(
V> ⊗U

)
vec(X) [32], we get

(
V> ⊗U

)
vec

(
i−1∑
k=0

Fk ⊗Xk

)
= vec(W). (35)

Focusing now on vec
(∑i−1

k=0 Fk ⊗Xk

)
, it can be proved

that

vec(X) =

i−1∑
k=0

((Ii ⊗Kyi) (vec(Fk)⊗ Iy)⊗ Ix)

× vec(Xk), (36)

where Kyi ∈ Ryi×yi is a commutator matrix (see [37]
for details). Using standard manipulations, Eq. (35) can be
written as follows

(
V> ⊗U

)
F

 vec(X0)
...

vec(Xi−1)

 = vec(W), (37)

where
F =

[
F0 · · · F i−1

]
(38)

with, for k = 0, . . . , i− 1,

Fk = ((Ii ⊗Kyi) (vec(Fk)⊗ Iy)⊗ Ix). (39)

The determination of X is finally possible via the calculation
of the pseudo inverse of

(
V> ⊗U

)
F followed by the re-

assembling of the elements {X0, . . . ,Xi−1} into the lower
triangular Toeplitz matrix X.

V. EXAMPLES

Two simulation examples under open-loop and closed-loop
conditions, respectively, are now considered. In each case,
• a Monte Carlo simulation is carried out with 100 dif-

ferent realizations of the the zero-mean white Gaussian
noise e,

• the techniques described in Sub-Sections IV-B-IV-C-IV-
D (called SSinnov1 afterwards) are compared with the
SSinnov2 method, i.e., a modified w2h algorithm [35]
(which uses the innovation estimate as a new input), the
SSARX algorithm [14] as well as the famous N4SID
algorithm (implemented in MATLAB (function n4sid
called with the default parameters)).

In order to quantify the performance of the algorithms
compared hereafter, we use the following fit measurements.

BFT = 100×max

(
0, 1− ‖y − ŷ‖2

‖y −mean(y)‖2

)
, (40a)

VAF = 100×max

(
0, 1− var(y − ŷ)

var(y)

)
, (40b)

eG =
‖G− Ĝ‖2
‖G‖2

, (40c)

eh =
‖h− ĥ‖2
‖h‖2

, (40d)

where y is the system’s output, ŷ is the model’s output, h
is the system’s impulse response, ĥ is the model’s impulse
response, G is the system’s representation while Ĝ is the
model’s representation.

A. Open-loop case

We consider the discrete-time system (see [25, Sec-
tion 4.4.5] for details) with

A = 0.749, B = 1.8805, C = 0.8725,

D = −2.0895, K = −0.0580, R = 6.705,

where E
[
e2(t)

]
= R. The sampling period is chosen equal

to 1 s. For this specific system, the state-space representation
of which perfectly matches the innovation model given
in Eq. (9), we compare the algorithms described in Sub-
Section IV-B (denoted hereafter by SSinnov1 and SSinnov2)
with N4SID and SSARX. For this simulation example,
we consider 4000 samples for each realizations with u a
zero mean, white, random process drawn from the standard
normal distribution with a unit standard deviation.
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Fig. 1: Comparison, for each realization, of the estimated and
randomly generated innovation signals. BFT on the left-hand

side, VAF on the right-hand side.

First, Figure 1 illustrates the efficiency of the technique
described in Sub-Section IV-A to estimate the innovation
term. We see from these figures that the reconstruction of the
innovation term is reliable for this open-loop system. Once
this innovation term is available, the techniques SSinnov1
and SSinnov2 can be compared to N4SID and SSARX,
respectively. This comparison is done by computing, for
each realization, the performance indices eG and eh, i.e.,



by quantifying the capabilities of the techniques involved in
this comparison to mimic the impulse response of the system
as well as its input-output representation. Figure 2 shows that
(i) all the techniques perform quite well, (ii) the best results
are obtained with SSARX, (iii) SSinnov1 is as efficient as
SSARX to mimic the global behavior of the system while
(iv) SSinnov2 and N4SID perform similarly.
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Fig. 2: Relative errors eG and eh for SSinnov1, SSinnov2,
SSARX and N4SID, respectively.

B. Closed-loop case

We use now the simulation example suggested in the
System Identification Toolbox of MATLAB, i.e., a second-
order system corrupted by white noise and generated as
follows

N = 1000;
K = 0.5;
r = randn(N,1);
z = zeros(N,1);
u = zeros(N,1);
y = zeros(N,1);
e = randn(N,1);
v = filter([1 0.5],[1 1.5 0.7],e);
for k = 3:N

u(k-1) = -K*y(k-1) + r(k);
z(k) = 1.5*z(k-1) - 0.7*z(k-2) +...

u(k-1) + 0.5*u(k-2);
y(k) = z(k) + 0.8*v(k);

end

Again, we compare SSinnov1 (implemented using the steps
described in Sub-Sections IV-C-IV-D) and SSinnov2 with
N4SID and SSARX but, in this case, by comparing the
capabilities of the models to simulate the system’s output.
The system’s description does not satisfy the innovation

model given in Eq. (9) anymore. The FIT and VAF values
gathered in Figure 3 show that (i) the best performance is
obtained with SSARX, (ii) SSinnov1 is right on SSARX’s
heels as far as the reconstruction of the output signal is
concerned, (iii) SSinnov2 is less efficient for this simulation
example.
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Fig. 3: Comparison, for each realization, of the capabilities
of the models estimated with SSinnov1, SSinnov2, SSARX
and N4SID, respectively, to reconstruct the system’s output.

BFT at the top, VAF at the bottom.

VI. CONCLUSIONS AND FUTURE WORKS

In order to bypass usual difficulties occurring when noisy
data are handled, a two-step 4SID procedure is suggested
in this paper. Starting from the estimation of the innovation
term using a VARX model, least-squares-based solutions are
developed to estimate the Markov parameters of the system
to identify. The impulse response realization problem is a
well-known problem for which efficient techniques are now
available. In this paper, we focus on solutions (i) working
under open-loop and closed-loop conditions, respectively,
(ii) dealing with Toeplitz matrices usually encountered in
subspace-based system identification. The future works will
consist in modifying these algorithms in order to take into
account prior knowledge described as constraints on the
impulse response, e.g., steady-state gain, overshoot, and rise
time, via equality or inequality constraints.
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