
Consistent estimation of autonomous linear time-invariant

systems from multiple experiments

I. Markovsky 1, R. Pintelon 1

1 Vrije Universiteit Brussel, Department ELEC

Pleinlaan 2, Building K, B-1050 Brussels, Belgium

e-mail: Ivan.Markovsky@vub.ac.be

Abstract
Operational modal analysis from impulse response data can alternatively be viewed as an identification of a

stable autonomous linear time-invariant system. For example, earthquake response data of civil engineering

structures and impulsive excitation of bridges leads to this problem. Identification from a single experiment,

however, does not yield a consistent estimator in the output error setting due to the exponential decay of the

noise-free signal. Using data from multiple experiments, on the other hand, is not straightforward because

of the need to match the initial conditions in the repeated experiments. Consequently, we consider the

identification from arbitrary initial conditions and show that consistent estimation is possible in this case.

The computational method proposed in the paper is based on analytic elimination of the initial conditions

(nuisance parameter) and local optimization over the remaining (model) parameters. It is implemented in a

ready to use software package, available from http://slra.github.io/software.html

1 Problem formulation

The class of scalar autonomous linear time-invariant systems of order less than or equal to n is denoted by

L0,n. A system B ∈ L0,n is a set of trajectories [4]. The statement y ∈ B is a short-hand notation for "y is a

trajectory of B".

Consider N trajectories

yi =
(
yi(1), . . . ,yi(Ti)

)
, i = 1, . . . ,N,

with possibly different lengths T1, . . . ,TN of a system B ∈ L0,n. The data

D := {y1, . . . ,yN }

for the identification problem considered in the paper is generated in the output error setup:

yi = yi + ỹi, where yi ∈ B ∈ L0,n and

ỹi is a zero mean white Gaussian

process with covariance matrix σ 2

and ỹi is independent of ỹ j for all i 6= j.

(1)

Here yi is the “true value” of the trajectory yi and B is refered to as the “true system”. In addition, we

assumed that

0 < c1 ≤ ‖yi‖2
2 ≤ c2 < ∞. (2)

http://slra.github.io/software.html


Our aim is to estimate the true system B from the data D and the prior knowledge that the true system

belongs to the model class L0,n.

Problem 1. (Maximum likelihood identification from multiple trajectories) Given a set of trajectories D

and a model class L0,n, specified by a natural number n, find a maximum likelihood estimate B̂ of the true

data generating system B.

The log likelihood function for the data generating model (1) is

L(B̂,D̂) =





const− 1

2σ 2

N

∑
i=1

‖yi − ŷi‖2
2 if D̂ ⊂ B̂

−∞ otherwise.

The maximum likelihood principle leads to the following optimization problem:

minimize over D̂ and B̂
1

N

N

∑
i=1

‖yi − ŷi‖2
2

subject to D̂ ⊂ B̂ ∈ L0,n.

(3)

2 Solution method

A scalar autonomous linear time-invariant system with simple poles can be represented by the "sum-of-

exponentials model"

B = {y =
n

∑
j=1

c j expz j
| c ∈ C

n }. (4)

Here expz is the exponential function expz(t) := zt . The complex numbers z1, . . . ,zn are the poles of the

system. In the representation (4), they are assumed to be distinct, i.e., zi 6= z j, for all i 6= j.

A finite trajectory y =
(
y(1), . . . ,y(T )

)
of a sum-of-exponentials model (4) can be expressed as

y = PT (θ)c,

where PT (θ) is the (extended) Vandermonde matrix

PT (θ) :=




1 · · · 1

z1 · · · zn
...

...

zT−1
1 · · · zT−1

n




and z1, . . . ,zn are the roots of the polynomial

θ(z) := θ1 +θ2z+ · · ·+θnzn−1 + zn.

The maximum-likelihood identification problem (3) specialized for the sum-of-exponentials model becomes

minimize over D̂ , θ , c1, . . . ,cN 1

N

N

∑
i=1

‖yi − ŷi‖2
2

subject to ŷi = PTi
(θ)ci, for i = 1, . . . ,N

or

minimize over θ , c1, . . . ,cN 1

N

N

∑
i=1

‖yi −PTi
(θ)ci‖2

2 (5)



Applying the variable projections method to (5), leads to N decoupled problems

minimize over ci 1

N
‖yi −PTi

(θ)ci‖2
2, for i = 1, . . . ,N. (6)

These are ordinary least squares problems with solutions

ŷi = PTi
(θ)

(
P⊤

Ti
(θ)PTi

(θ)
)−1

PTi︸ ︷︷ ︸
ΠTi

(θ )

yi,

where ΠTi
(θ) is an idempotent matrix (Π2

Ti
(θ) = ΠTi

(θ)) Therefore, the cost function of the sum-of-

exponentials model is

f (θ) =
1

N

N

∑
i=1

(yi)⊤
(
I −ΠTi

(θ)
)
yi.

Proposition 2 (Consistency). Assuming that the data D is generated in the output error setup (1), the

estimator defined by (5) is strongly consistent, i.e.,

θ̂ → θ with probability 1 as N → ∞.

3 Numerical examples

In this section, we illustrate the consistency property of the estimator on a simulation example. The data

generating system is a continuous-time linear time-invariant system of order n = 6 with with resonance

angular frequencies

ω̄1 = 2π 80rad/s, ω̄2 = 2π 130rad/s, ω̄3 = 2π 200rad/s

and poles’ damping ratios

ζ1 = 0.15, ζ2 = 0.1, ζ3 = 0.2.

The system is sampled with a period ts = 10−3. A specific response y is shown in Figure 1.
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Figure 1: Specific trajectory of B.

The identification data D is generated via the output error model (1) with random true trajectories y1, . . . ,yN .

The lengths T1, . . . ,TN of the responses are determined, so that the trajectories have sufficient decay.



The number of experiments N varies from 1 to 50 and the signal to noise ratio is 100. For each value of N,

the identification experiment is repeated K = 200 times and the average parameter error

e =

√
1

K

K

∑
k=1

‖θ − θ̂ k‖2
2.

is computed. The results obtained (see Figure 2) show the convergence of the average parameter estimation

error. The convergence rate is close to 1/
√

N.
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Figure 2: Error convergence.

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European

Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement number 258581 “Structured low-

rank approximation: Theory, algorithms, and applications”, the Research Foundation Flanders (FWO-Vlaanderen), the

Flemish Government (Methusalem Fund, METH1), and the Belgian Federal Government (Interuniversity Attraction

Poles programme VII, Dynamical Systems, Control, and Optimization).

References

[1] I. Markovsky, A software package for system identification in the behavioral setting, Control Engineering

Practice 21 (2013), 1422–1436.

[2] I. Markovsky, J. Goos, K. Usevich, and R. Pintelon, Realization and identification of autonomous linear

periodically time-varying systems, Automatica (2014).

[3] I. Markovsky and K. Usevich, Software for weighted structured low-rank approximation, J. Comput.

Appl. Math. 256 (2014), 278–292.

[4] J. Polderman and J. C. Willems, Introduction to mathematical systems theory, Springer-Verlag, 1998.

[5] J. Schoukens, G. Vandersteen, Y. Rolain, and R. Pintelon, Frequency response function measurements

using concatenated subrecords with arbitrary length, IEEE Trans. on Instr. and Measurement 61 (2012),

no. 10, 2682–2688.


	Problem formulation
	Solution method
	Numerical examples

