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Abstract— In SIAM J. Matrix Anal. Appl., 26(4):1083–1099, 2005, we presented an algorithm for solving Toeplitz structured
total least squares problems. The computation of an approximate common divisor of two polynomials is a Sylvester structured
total least squares problem. In this paper we adapt the algorithm developed for Toeplitz matrices for the purpose of computing
an approximate common divisor of two scalar polynomials. Per iteration the proposed algorithm has linear computational
complexity in the degree of the given polynomials.
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I. I NTRODUCTION

Let Pn be the set of all scalar polynomials of degree less than or equal to n, i.e.,

Pn := { p∈ R[ξ ] | degree(p) ≤ n}.

The setPn is isomorphic toR
n+1. Associated with

p(ξ ) := p0 + p1ξ + · · ·+ pnξ n ∈ Pn

is a coefficient vector
p := col(p0, p1, . . . , pn) ∈ R

n+1

and vice versa. We say that the polynomialsp(ξ ) ∈ Pn and p̂(ξ ) ∈ Pn are “close” to each other if the distance measure

dist
(
p(ξ ), p̂(ξ )

)
:= ‖p− p̂‖2

2

is “small”, i.e., if the sum of squared coefficients of the differencep(ξ )− p̂(ξ ) is small.

Note1. dist
(
p(ξ ), p̂(ξ )

)
might not be an appropriate distance measure in applications where the polynomial roots rather

than coefficients are of primary interest. Polynomial rootsmight be sensitive (especially for high order polynomials)to
perturbations in the coefficients, so that closeness of coefficients does not necessarily imply closeness of roots. Using the
quadratic distance measure in terms of the polynomial coefficients, however, simplifies the solution of the approximate
common divisor problem defined next.

Problem 1 (Approximate common divisor). Given a(ξ ),b(ξ ) ∈ Pn, andd ∈ N, find polynomials ˆa(ξ ), b̂(ξ ) ∈ Pn that
have a common divisorc(ξ ) of degreed and minimize the approximation error dist

(
a(ξ ), â(ξ )

)
+dist

(
b(ξ ), b̂(ξ )

)
. The

polynomialc(ξ ) is an optimal (in the specified sense) approximate common divisor of a(ξ ) andb(ξ ).

Note 2. The object of interest in solving Problem 1 is the approximate common divisorc(ξ ). The approximating
polynomials ˆa(ξ ) and b̂(ξ ) are auxiliary variables introduce for the purpose of defining c(ξ ).

Note3. In the generic case whena(ξ ) andb(ξ ) have no common divisor of degree greater thand, c(ξ ) can be called
approximategreatestcommon divisor ofa(ξ ) andb(ξ ). We prefer to skip the word greatest in order to account for the
case whenc(ξ ) is a factor of the (exact) greatest common divisor.

Problem 1 has the following system theoretic interpretation. Let σ be the forward shift operator(σu)(t) := u(t +1)
in the discrete-time case and the derivative operatorσu := du/dt in the continues-time case. Consider the single-input
single-output linear time-invariant (LTI) systemB described by the difference or differential equationa(σ)u = b(σ)y.
It is well known that the systemB is controllable if and only isa(ξ ) and b(ξ ) have no common factor. Therefore,
Problem 1 has the system theoretic meaning of finding the nearest uncontrollable system̂B (described by ˆa(σ)u= b̂(σ)y)
to a given LTI system. The bigger the approximation errorf (c) is, the more robust the controllability property ofB is.
In particular, with f (c) = 0, B is uncontrollable. Since the order of̂B is at mostn−d, Problem 1 has relevance for
model reduction.

Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems, Kyoto, Japan, July 24-28, 2006

MoP05.5

274



II. EQUIVALENT OPTIMIZATION PROBLEM

By definition, the polynomialc(ξ ) ∈ R[ξ ] is a common divisor of ˆa(ξ ) and b̂(ξ ) if there arev(ξ ),u(ξ ) ∈ R[ξ ], such
that

â(ξ ) = u(ξ )c(ξ ), b̂(ξ ) = v(ξ )c(ξ ). (1)

With the additional auxiliary variablesv(ξ ) andu(ξ ), Problem 1 becomes the following optimization problem:

min
â(ξ ),b̂(ξ )∈Pn

u(ξ ),v(ξ ),c(ξ )∈R[ξ ]

dist
(
a(ξ ), â(ξ )

)
+dist

(
b(ξ ), b̂(ξ )

)
subject to

â(ξ ) = u(ξ )c(ξ )

b̂(ξ ) = v(ξ )c(ξ )
degree

(
c(ξ )

)
= d

(2)

If d > n, Problem 1 has no solution and ifd = n, it has a trivial solution. Therefore we can assume without loss of
generality thatd < n.

Theorem 1. The optimization problem (2) is equivalent to

min
c0,...,cd−1∈R

trace
([

a b
]⊤

(

I −T(c)
(
T⊤(c)T(c)

)−1
T⊤(c)

)[
a b

])

, (3)

where T(c) ∈ R
(n+1)×(n−d+1) is a lower triangular banded Toeplitz matrix with first column equal to

col(c0, . . . ,cd−1,1,0, . . . ,0).

Proof: The polynomial equations (1) are equivalent to the following systems of algebraic equations
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(All missing elements are zeros.) Rewriting and combining the above equations, we have thatc(ξ ) ∈ R[ξ ] is a common
factor (with degree(c(ξ )) ≤ d) of â(ξ ) and b̂(ξ ) if and only if the system of equations
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has a solution.
The condition degree(c(ξ )) = d implies that the highest power coefficientcd of c(ξ ) is different from 0. Sincec(ξ ) is

determined up to a scaling factor, we can impose the normalization cd = 1. Conversely, imposing the constraintcd = 1
in the optimization problem to be solved ensures that degree(c(ξ )) = d. Therefore problem (2) is equivalent to

min
â,b̂∈R

n+1

u,v∈R
n−d+1

c0,...,cd−1∈R

trace
(([

a b
]
−

[
â b̂

])⊤ ([
a b

]
−

[
â b̂

]))

subject to
[
â b̂

]
= T(c)

[
u v

]
.

(The variablecd appearing inT(c) has been substituted with 1.) Substituting
[
â b̂

]
in the cost function and minimizing

with respect to
[
u v

]
by solving a least squares problem gives the equivalent problem (3).
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Theorem 1 is the best we could do in attempting to solve Problem 1 analytically. Compared with the original
optimization problem (2), in (3) we have eliminated the constraint and the auxiliary decision variables ˆa, b̂, u, andv.
This already achieves a significant simplification from a numerical optimization point of view. The equivalent problem (3)
is a nonlinear least squares problem and can be solved by standard local optimization methods. Define

f (c) := trace
([

a b
]⊤

(

I −T(c)
(
T⊤(c)T(c)

)−1
T⊤(c)

)[
a b

])

,

to be the cost function of (3). The resulting algorithm for approximate common divisor computation is outlined in
Algorithm 1.

Algorithm 1 Optimal approximate common divisor computation.

Input: Vectorsa,b∈ R
n+1 and an integerd.

1: Compute an initial approximationcini ∈ R
d+1.

2: Execute a standard optimization algorithm, e.g., the BFGS quasi-Newton method, for the minimization (3) with
initial approximationcini .

3: if â and b̂ have to be displayedthen
4: Solve the least squares problem

[
a b

]
= T(c)

[
u v

]
for u andv.

5: Define â = u⋆ c and b̂ = v⋆ c, where⋆ denotes discrete convolution.
6: end if

Output: The approximationc ∈ R
d+1 found by the optimization algorithm upon convergence, the value of the cost

function f (c) at the optimal solution, and if computed ˆa and b̂.

Since
f (c) = dist

(
a(ξ ), â(ξ )

)
+dist

(
b(ξ ), b̂(ξ )

)

the value of the cost functionf (c) shows the approximation errors in treatingc(ξ ) as an approximate common divisor
of a(ξ ) and b(ξ ). Optionally Algorithm 1 returns a “certificate” ˆa and b̂ for the claim thatc(ξ ) is an approximate
common divisor ofa(ξ ) andb(ξ ) with approximation accuracyf (c).

In order to complete Algorithm 1 we need to choose an initial approximationcini . This is discussed in Section III.
Also the fact that the analytic expression forf (c) involves the highly structured matrixT(c) suggests that it (and its
derivatives) can be evaluated efficiently. This is briefly discussed next.

Efficient cost function evaluation

The most expensive operation in the cost function evaluation is solving the least squares problem
[
a b

]
= T(c)

[
u v

]
.

Since T(c) is a lower triangular, banded, Toeplitz matrix, this operation can be done efficiently. One approach is to
compute efficiently the QR factorization ofT(c), e.g., via the generalized Schur algorithm [KS95]. Anotherapproach
is to solve the normal system of equations

T⊤(c)
[
a b

]
= T⊤(c)T(c)

[
u v

]
,

exploiting the fact thatT⊤(c)T(c) is banded and Toeplitz structured. The first approach is implemented in the function
MB02ID from the SLICOT library [VSV+04] and the second approach is used in [MVK04], [MVP05] in solving related
structured total least squares problem.

Once the least squares problem is solved, the productT(c)
[
u v

]
has to be computed. Note that this product computes

the convolutions
[
c⋆u c⋆ v

]
. It is well known that convolution can be performed efficiently by FFT. Exploiting the

structure ofT(c) in solving the least squares problems and doing the convolving operations efficiently, we obtain cost
function evaluation inO(n) operations. In [MVK04], [MVP05] it is shown that the first derivative f ′(c) can be evaluated
also inO(n) operations, so assuming thatd ≪ n, the overall cost per iteration for Algorithm 1 isO(n).
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III. STRUCTURED LOW RANK APPROXIMATION AND SUBOPTIMAL SOLUTION BY SVD

Suboptimal initial approximation can be computed by the singular value decomposition (SVD) of the Sylvester matrix

S(a,b) :=
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. . .

...
. . .

...
an bn
















∈ R
(2n−d+1)×(2n−2d+2).

In order to motivate the SVD method, first we show that problem(2) is a structured low rank approximation problem.
Then ignoring the Sylvester structure constraint, a suboptimal solution is obtained from an unstructured low rank
approximation, which computation is carried out by the SVD.

From (1) we see thatc(ξ ) is a common divisor of ˆa(ξ ) andb̂(ξ ) if and only if there areu(ξ )∈R[ξ ] andv(ξ )∈ R[ξ ],
such that

â(ξ )v(ξ ) = b̂(ξ )u(ξ ).

With degree(c(ξ )) = d, this polynomial equation is equivalent to the system of algebraic equations

S(â, b̂)

[
v
−u

]

= 0.

The matrixS(â, b̂) is called a Sylvester matrix for the polynomials ˆa(ξ ) and b̂(ξ ). The degree constraint forc(ξ ) is
equivalent to degree(u(ξ )) = n−d, or equivalentlyun−d+1 6= 0. Sinceu(ξ ) is defined up to a scaling factor, we can
impose the normalizationun−d+1 = 1. This shows that problem (2) is equivalent to

min
â,b̂∈R

n+1

u,v∈R
n−d+1

un−d+1=1

∥
∥
[
a b

]
−

[
â b̂

]∥
∥

2
F

subject to S(â, b̂)

[
v
−u

]

= 0, (5)

where‖ · ‖F denotes the Frobenius norm.
The approximate common factorc(ξ ) is not explicitly computed in (5). Once the optimalu(ξ ) andv(ξ ) are known,

however,c(ξ ) can be found from (1). (By construction these equations haveunique solution). Alternatively, without
using the auxiliary variables ˆa and b̂, c(ξ ) can be computed from the least squares problem

a(ξ ) = u(ξ )c(ξ ), b(ξ ) = v(ξ )c(ξ ),

or in linear algebra notation [
a
b

]

=

[
T(u)
T(v)

]

c, (6)

whereT(u) andT(v) are defined in (4).
Problem (5) is a structured low rank approximation problem:it aims to find a Sylvester rank deficient matrixS(â, b̂)

as close as possible to a given matrixS(a,b) with the same structure. Ifa(ξ ) and b(ξ ) have no common divisor of
degreed, S(a,b) is full rank so that an approximation is needed.

It is well known that the (unstructured) low rank approximation problem

min
M,w

‖S(a,b)−M‖2
F subject to Mw = 0, ‖w‖ = 1 (7)

has an analytic solution in terms of the SVD ofS(a,b) [EY36]. The vectorw∈ R
2(n−d+1) corresponding to the optimal

solution of (7) is equal to the right singular vector ofS(a,b) corresponding to the smallest singular value. The vector
col(v,−u) composed of the coefficients of the approximate divisorsv(ξ ) and −u(ξ ) is up to a scaling factor (that
enforces the normalization constraintun−d+1 = 1) equal tow. (The scaling is irrelevant for the computation ofcini and
can be skipped.) This gives Algorithm 2 as a method for computing a suboptimal initial approximation.

IV. N UMERICAL EXAMPLES

We verify the results obtained by Algorithm 1 on examples from [ZY04] and [KL98]. Up to the number of digits
shown our results match the ones reported in the literature.In the implementation of Algorithm 1, we use the function
fminunc from the Optimization Toolbox of MATLAB with cost function evaluations only. The functionfminunc
performs unconstrained nonlinear local optimization using a BFGS quasi-Newton method.
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Algorithm 2 Suboptimal approximate common divisor computation.

Input: Vectorsa,b∈ R
n+1 and an integerd.

1: Compute the right singular vectorw of the Sylvester matrixS(a,b), corresponding to the smallest singular value.
2: Let col(v,−u) := w, whereu,v∈ R

n−d+1.
3: Solve the least squares problem (6).

Output: The solutionc of the least squares problem.

Example 4.1 from [ZY04]

The given polynomials are

a(ξ ) = (4+2ξ + ξ 2)(5+2ξ )+0.05+0.03ξ +0.04ξ 2

b(ξ ) = (4+2ξ + ξ 2)(5+ ξ )+0.04+0.02ξ +0.01ξ 2

and an approximate common divisorc(ξ ) of degreed = 2 is sought. Algorithm 1 converges in 4 iteration steps with
the following answer

c(ξ ) = 3.9830+1.9998ξ +1.0000ξ 2.

To this approximate common divisor correspond approximating polynomials

â(ξ ) = 20.0500+18.0332ξ +9.0337ξ 2+2.0001ξ 3

b̂(ξ ) = 20.0392+14.0178ξ +7.0176ξ 2+0.9933ξ 3

and the approximation error is

f (c) = dist
(
a(ξ ), â(ξ )

)
+dist

(
b(ξ ), b̂(ξ )

)
= 1.5831×10−4.

Example 4.2, case 1, from [ZY04] (originally given in [KL98])

The given polynomials are

a(ξ ) = (1− ξ )(5− ξ )= 5−6ξ + ξ 2

b(ξ ) = (1.1− ξ )(5.2− ξ )= 5.72−6.3ξ + ξ 2

and an approximate common divisorc(ξ ) of degreed = 1 (a common root) is sought. Algorithm 1 converges in 6
iteration steps with the following answer

c(ξ ) = −5.0989+1.0000ξ .

The corresponding approximating polynomials are

â(ξ ) = 4.9994−6.0029ξ +0.9850ξ 2

b̂(ξ ) = 5.7206−6.2971ξ +1.0150ξ 2

and the approximation error isf (c) = 4.6630×10−4.

V. D ISCUSSION AND CONCLUSIONS

The proposed solution method is closely related to a method for solving structured total least squares (STLS) problems
presented in [MVK04], [MVP05]. As shown in Section III, Problem 1 is a Sylvester structured low rank approximation
problem. The previously published STLS algorithm, however, does not apply (directly) to problems with Sylvester
structure. The difficulty is that the Sylvester matrix is a special Toeplitz matrix in which the upper–right and lower–left
corners are filled with zeros (that should not be modified in the approximation), while the method of [MVK04], [MVP05]
applies to full Toeplitz matrices.

An alternative method for solving STLS problems, called structured total least norm (STLN), has been modified
for Sylvester structured matrices and applied to computation of approximate common divisor in [ZY04]. The STLN
approach is rather different from the approach present herebecause it solves directly the original problem (2) and is not
based on the elimination idea leading to the equivalent problem (3). In addition, the method of [ZY04] requires rank
reduction byd while (for scalar polynomials) our method always needs rankreduction by 1. Finally we address the
efficiency of the computations issue, which is not discussedin [ZY04].

A topic for future work is to extend the proposed algorithm tomatrix valued polynomials. In this case one needs
to treat block-Sylvester matrix and rank reduction by more than one. The corresponding (full) block-Toeplitz case has
been solved in [MVP05].
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