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Abstract— We present a new connection between higher-
order tensors and affinely structured matrices, in the context
of low-rank approximation. In particular, we show that the
tensor low multilinear rank approximation problem can be
reformulated as a structured matrix low-rank approximation,
the latter being an extensively studied and well understood
problem.

We first consider symmetric tensors. Although the symmetric
tensor problem is at least as difficult as the general unstructured
tensor problem, the symmetry allows us to simplify and clearly
show the relation to the matrix structured low-rank approx-
imation problem. By imposing linear equality constraints in
the optimization problem, the proposed approach is applicable
to unstructured tensors, as well as to affinely structured
tensors. Therefore, it can be used to find (locally) optimal low
multilinear rank approximation with a predefined structure.

An advantage of the proposed approach is that it can deal
with more difficult variations of the main problem, including
having missing and fixed elements in the given tensor or ap-
proximating with respect to a weighted norm. The drawback is
its higher computational cost, compared to existing algorithms,
partially due to the generality of the approach.
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I. INTRODUCTION

The problem of approximating a matrix by a matrix of
lower rank has been extensively studied and well-understood.
Such approximations are widely used in data mining, ma-
chine learning and signal processing as a tool for dimen-
sionality reduction, feature extraction, and classification. The
optimal solution can be obtained from the truncated singular
value decomposition (SVD).

This paper aims at relating two generalizations of low-rank
approximation: one to affinely structured matrices and one
to higher-order tensors. Structured matrix approximations
[12] are used in system identification, signal processing
and computer algebra, among others. The goal of struc-
tured low-rank approximation (SLRA) is to approximate a
given structured matrix, e.g., symmetric, Hankel or Sylvester
matrix, by a low-rank matrix with the same structure. On
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Fig. 1. Overview of tensor low-rank decompositions

the other hand, data are often naturally multi-dimensional
(multi-way) [15], [11], [10]. For example, term-document
matrix in text mining or user-item matrix in recommender
systems are naturally extended to term-document-time and
user-item-time tensors under the realization that topics and
user preferences change in time. An important problem then
is approximating tensors by ‘low-rank’ tensors. Note that the
concept of tensor rank is not uniquely defined. A schematic
overview of the most common low-rank approximations,
corresponding to different rank concepts, is presented in
Fig. 1. In this paper, we establish a new connection between
tensors and affinely structured matrices, in the context of
multilinear rank approximation (denoted ml_rank approxi-
mation and also called Tucker-type approximation) [6], [7],
and its variations. A connection between symmetric tensors
and structured matrices, for the case of decomposing tensors
as a sum of rank-1 terms (called canonical decomposition or
parafac) [2], [5], has been exploited in [1].
The contributions of the paper are, as follows:

e We establish a new link between tensors and affinely
structured matrices.

o This link allows us to solve the tensor low multilinear
rank approximation problem by using techniques from
structured low-rank approximation. We show how to
easily perform symmetric low multilinear approxima-
tion. In addition, by imposing a simple constraint on the
approximating kernel matrix, our approach is applicable
to general (non-symmetric) tensors as well. We are also
able to deal with affinely structured tensors and find
(locally) best low multilinear approximation with the
same structure. Moreover, all three variations of the



problem are solved in a unified way, whereas existing
techniques for the symmetric and unstructured tensors
in the literature need essentially different solution meth-
ods, due to the fact that the symmetric problem is not
linear in the factor matrices.

o Finally, we note that the proposed solution approach
readily solves the more difficult variations of the main
problem, where the given data has fixed or missing
elements, or where weighted norm has to be used as
a distance measure between the given data and its
approximation.

The drawback of the current approach is its higher com-
putational cost, compared to existing algorithms. This is
partially due to the fact that the proposed scheme is more
general and is able to solve several problems in the same
way.

Outline

The remainder of this paper is organized as follows. In
Section II, the low multilinear rank approximation problem
is defined and discussed. Next, the structured low-rank
approximation problem is briefly presented in Section III.
The main link between these two problems is presented in
Section IV, in the case of symmetric tensors. The extension
to unstructured and affinely structured tensors is briefly
discussed in Section V. Preliminary numerical experiments
are presented in Section VI. Finally, in Section VII we draw
our final conclusions.

Notation

We denote tensors and structure specifications by cal-
ligraphic letters (A, A,... and S, respectively), matrices
by bold-face capitals (P, L,...), and vectors by lower-case
letters (p, P, . . .). The identity matrix is denoted by I and the
zero matrix is denoted by 0.

In this paper, we illustrate our ideas in terms of third-
order tensors. However, the results are trivially generalizable
to tensors of higher orders as well.

II. LOW MULTILINEAR RANK APPROXIMATION
A. Problem formulation

Third-order tensors are generalizations of matrices to 3-
way arrays and find applications in chemometrics, biomed-
ical signal processing, and telecommunications, among oth-
ers. As a natural generalization of the matrix column- and
row-rank, the multilinear rank [6], [7], denoted here as
ml_rank(A), of a third-order tensor A, is the triplet of the
numbers of linearly independent mode-1 vectors (columns),
mode-2 vectors (rows), and mode-3 vectors, respectively.
It is also useful to define matrix representations of the
tensors, stacking each set of vectors in a pre-specified order
in a matrix A(;),7 = 1,2,3. Note that the entries of the
multilinear rank can also be defined as the ranks of these
matrices, i.e.,

ml_rank(A) = (rank(A;),rank(As),rank(A3)). (1)

Given a third-order tensor .4 and a multilinear rank spec-
ification (71,72, 73), the low multilinear rank approximation
problem can be formulated as

min || A — Al%, st mlrank(A) < (r1,72,73), (2)
A

where || - || stands for the Frobenius norm. If the given
tensor has some affine structure, and in particular, if the
original tensor is symmetric, it is desirable that this structure
is preserved in the approximation as well. This results in
adding an additional constraint in (2), i.e.,

-~

ml_rank(A) < (rq,72,73),
A is structured.

min||A— A|%, st {
A
3)

B. Multilinear singular value decomposition

The best (unstructured or symmetric) matrix low-rank
approximation can be obtained from the truncated SVD [4,
§2.5, §8.6]. The multilinear singular value decomposition
(MLSVD) [3], [17], [18] is a generalization of the SVD
to higher-order tensors. Every tensor A € R™*"2%"3 cap
be decomposed as a product of a tensor B € R *"2Xn"s
called core tensor, and three orthogonal matrices U ¢
R™ixmi 4 =1,2,3, ie.,

A=DBe um . u® o U(3)7

where eo; stands for the tensor-matrix multiplication with
respect to mode-i¢ of the tensor. The factor matrices are
computed such that the matrix slices of B in any direction
are orthogonal to each other (i.e, their inner product is 0) and
have decreasing norm (when increasing the indices). These
properties reduce to having a diagonal core matrix if the
original tensor is a matrix, i.e., a second-order tensor.

Computing the MLSVD requires computing three SVDs.
The columns of the singular matrices U®) i = 1,2,3 are
obtained as the left singular vectors of A;),i =1,2,3. The
core tensor can then be computed as

B=Ae, UV o, U o, UG 4)

A striking difference with the matrix case is, however, that
the truncated MLSVD results, in general, in a suboptimal
solution of (2). This is due to the fact that, in general,
tensors of order higher than two, cannot be decomposed with
a diagonal core tensor B. Thus, (2) and, in the symmetric
case, (3), are solved by iterative algorithms, usually starting
from the truncated MLSVD approximation.

III. STRUCTURED MATRIX LOW-RANK APPROXIMATION
A. Problem formulation

Affinely structured matrices, e.g., Hankel, Toeplitz, or
Sylvester matrices, appear naturally in system identification,
signal processing, and computer algebra [12]. These matrices
have a pattern for the position of their elements and can
be defined by a vector of distinct elements p € R™ and a
structure specification S,

S: Rw — R™*?
p — S(p),



where m and n are the dimensions of the matrix.

The structured low-rank approximation problem is defined
as follows: Given a structure specification S, a structure
parameter vector p, and a rank specification 7,

H%nlls(p)—S(ﬁ)H%, 5.t rank(S(p)) <. (5)

To illustrate the meaning of the structure specification S
in the context of third-order tensors, consider the following
example. For a given symmetric tensor (tensor invariant
under permutation of the indices)! A € R3*3%3 its matrix
representation A () is a linearly (and thus also affinely)
structured matrix with p € R'? and

A(1) = S(p)

P1r P2 P3| P2 P4 P5|P3 Ps5  De
P2 P4 Ps | P4 Pt Ps|DPs P8 DP9
pPs Ps Pe |Ps Ps P9 |Pe6 P9 DPio

B. Solution approaches

Existing algorithms solve (5) i) by local optimization, ii)
by using relaxations, or iii) using heuristics. In this paper, we
consider two recent local optimization approaches, namely
the kernel approach slra [13] and the image approach
penalized slra [9]. The difference between these two
approaches is in the way the rank constraint in (5) is treated.
The kernel approach, is based on the fact that the rank of an
m X n matrix and the dimention of its left kernel sum to m.
Thus, the rank constraint is reformulated as

rank(S(p)) <r <= RS(p) =0, 7

for some full row rank matrix R € R(m=7)Xm_Second, the
image approach is based on the fact that a matrix has low
rank if and only if it can be represented as a product of two
matrices with reduced dimension, i.e.,

rank(S(p)) <r < S(p) = PL, (8)
for some P € R™*" L € R™*".
IV. CONNECTING TENSORS TO AFFINELY STRUCTURED
MATRICES

For simplicity of the presentation, in this section we
consider symmetric tensors and thus problem (3) becomes

-~

min [|A— A%, st mlrank(A) < (r,7,7). (9)
sy

m. A

In order to reformulate this problem as a structured low-
rank matrix approximation problem, recall first that the
Frobenius norm is defined element-wise, and thus

[A—All7 = [|[Aq) — A7

Second, symmetric tensors are tensors invariant under per-
mutation of the indices, i.e.,

= A(j. k, i) = A(k, 1, j) = A(k, j, ©).

'Symmetric tensors are sometimes called supersymmetric.

As a consequence, the matrix representations A, =
1,2,3, of a symmetric tensor A are equal to each other?
and thus have equal ranks. We then have

mlrank(A) < (r,r,7) <=  rank(A)) <7

Finally, by considering a structure specification S corre-
sponding to a matrix representation of a symmetric tensor
(as in the example in Section III), ie., Any = S(p),
we can reformulate problem (9) as the structured low-rank
approximation problem

mgn A —S@)IF, st rank(S(p)) <r.| (10)

Problem (10) is readily solved by existing algorithms [12],
[9].

Thus, we established a new connection between tensors
and affinely structured matrices, in the context of multilinear
rank approximation (2). On one hand, compared to other
tensor algorithms in the literature, e.g., [8], the proposed
approach has higher computational cost. On the other hand,
the matrix structured low-rank approximation problem read-
ily offers additional features, underdeveloped in the tensor
world. For example, the proposed approach allows:

o Using the parameter norm ||p — p||3, instead of the
Frobenius norm in (10), where p contains the distinct
elements of A. This way each distinct element of the
tensor has equal weight;

« Using the more general weighted norm (p—p)' W (p—
D), e.g., if prior knowledge about the importance or
the correctness of each (noisy) structure parameter is
available;

o Working in the presence of missing or fixed elements
[12], [9] in (2).

V. EXTENSION TO UNSTRUCTURED AND AFFINELY
STRUCTURED TENSORS

With some modifications, the proposed approach is ap-
plicable to unstructured and to affinely structured tensors.
The matrix representations of the tensor are not equal to
each other anymore, but still contain the same elements.
Thus, the structure parameter vector is still the vector of
distinct elements, but the structure specification S changes,
namely S(p) becomes a larger matrix containing all matrix
representations of the tensor.

A. Unstructured tensors

The most studied low multilinear rank approximation
problem is the one for general unstructured tensors. It is
sometimes also utilized in the symmetric case, since practical
experience shows that approximating a symmetric tensor
by using general purpose algorithms leads to symmetric
approximations (although no theoretical proof is known yet).

In the unstructured case, the structure specification S :
R" — R37X"° combines the information for all three

2This is a generalization of the fact that for any symmetric matrix M,
MT =M.



structure specifications, corresponding to each of the matrix
representations of the tensor. This is necessary in order to
have a single rank constraint, rather than three different
ones. Existing algorithms for structured matrix low-rank
approximation can then be applied with slight modifica-
tions, namely by considering additional fixed zeros in the
optimization matrix variables. In the kernel representation,
the kernel matrix R would be a block-diagonal matrix with
blocks corresponding to each of the matrix representations
of the tensor. In the image representation, the fixed zeros are
inherent to one of the factors. For example, it is enough that
the P factor is block-diagonal, with blocks corresponding to
each of the matrix representations of the tensor.

These become more difficult problems than the one in
the symmetric case (10), but can still be solved by slra
[13] in the kernel setting and by penalized slra [9] in
the image representation. Note that the fixed zeros can be
considered as linear equality constraints.

B. Affinely structured tensors

In [14], in the context of exponential data fitting, low mul-
tilinear rank approximations of tensors with Hankel structure
are needed. Currently, unstructured approximations are used,
but Hankel-structured approximations could potentially lead
to better results.

Solving the structured low multilinear rank approximation
problem is similar in spirit to solving the unstructured
problem. The difference is in the definitions of S;, namely
now

2
S; : R™ — R

with n, < n3. If we have a large number of repeated ele-
ments in the structure, n,, will be small compared to n? in the
unstructured case. This would reduce the computational cost
but probably not essentially. On the other hand, in this case
it is possible to have more local optima due to the increased
number of constraints (elements in the approximation being
equal to each other).

VI. NUMERICAL ILLUSTRATIONS

In this section, we compare the results obtained with the
proposed approach, implemented by the methods of [13] and
[9], to the results from Tensorlab [16], which is a recent
MATLAB toolbox for tensor computations. In the case of
symmetric tensors, in addition, we also compare with the
state-of-the-art Jacobi algorithm [8].

A. Symmetric tensor approximation

Consider the example from [8, §4.2],

1.2753 —0.5811 —0.0725
A(;,5,1) = | —05811 —0.8475  0.0379 |,
| —0.0725  0.0379 —1.0573 |
[ —0.5811 —0.8475  0.0379 ]
A(5,,2) = | —0.8475 —1.0771 —0.6544 |,
| 0.0379 —0.6544 —0.7375 |
[ —0.0725  0.0379 —1.0573 ]
A(:,,3) = 0.0379 —0.6544 —0.7375 |,
| ~1.0573 —0.7375  0.1491 |

where we used MATLAB’s notation A(:,:,%),7 = 1,2, 3, for
denoting the i-th frontal slice of A. We have A () = S(p),
with S as in (6) and

p=[1.2753
—1.0573

—0.5811
—1.0771

—0.0725
—0.6544

—0.8475  0.0379...
—0.7375  0.1491].

Let r = 2, as in the original example, i.e., we are aiming at
a rank-(2, 2, 2) approximation.

We ran Tensorlab’s [16] 1mlra function, the Jacobi
algorithm from [8], and the two variants of the method
proposed in this paper ((10) with the kernel (7) and with the
image (8) representation). We used the default initializations,
which are based on the truncated SVD of A (). The results
on the relative error ||.A— Al|2./[A||% of the approximation
are given in Table I (left). As it can be seen, all algorithms

TABLE I
COMPARISON OF ALGORITHMS FOR SOLVING (9) ON THE SYMMETRIC
TENSOR APPROXIMATION EXAMPLE FROM [8]. LEFT: RELATIVE
APPROXIMATION ERROR || A — .ZH%/HAH% OF lmlra [16], Jacobi
[8], AND THE KERNEL AND IMAGE APPROACHES TO (10). RIGHT:
RELATIVE APPROXIMATION ERROR ||p — P||2/||p||3 OF THE KERNEL AND
IMAGE APPROACHES FOR THE MODIFIED PROBLEM (9) WITH
PARAMETER NORM.

1A — A3 /LAl llp — B3/ IplI3
Imlra | Jacobi | (10), (1) [ (10), ®) || (10), (D | (10), ()
02827 | 02827 | 02827 | 02827 || 0.1927 | 0.1927

give the same result*. In addition, if we are interested in the
parameter norm ||p — p||3 (instead of in the Frobenius norm)
in (9), we can apply a weighted version of the proposed
method. The relative approximation error ||p — p||3/||p||3 is
reported in Table I (right) for both the kernel and the image
representation approaches. The other two algorithms (1mlra
and Jacobi), in their current form, cannot be applied in this
case.

3 Although 1mlra is meant for unstructured tensors only, it can still
be applied on symmetric tensors. Practical experience shows that the
approximation obtained from lmlra is symmetric, although no proof is
known.

4The numbers differ from the fifth decimal digit on due to numerical
errors.



B. Symmetric tensor completion

Let 7 € R3*3X3 be a symmetric rank-(2,2,2) tensor.
Such tensors can be constructed as a product of a symmetric
core tensor C € R2%2%2 and a matrix M € R3**2, in the
following way

T:C01M.2M03M.

Let the distinct elements of 7 be collected in (or come from)
po € R0 and suppose that the elements of p, are affected
by additive noise,

p=po+0.1le.

In our experiment, the elements of C, M, and e were
drawn from the normal distribution with zero mean and
unit variance. After the noise has been added, some of the
elements of p were removed and only then the vector was
given to our algorithm. We removed the third and the sixth
elements and ran (10) with (7) (kernel approach) and (10)
with (8) (image approach) to obtain a rank-(2,2,2) full
tensor from the partially observed noisy tensor. Since the
noise has been added to the distinct elements of the tensor,
it is more natural to optimize with respect to the parameter
norm ||p — p||3. The results from one representative example
are reported in Table II. As it can be seen, the kernel and
image based algorithms can ‘guess’ the missing elements
with high precision.

TABLE I
RESULTS OF A SYMMETRIC TENSOR LOW-MULITLINEAR RANK
COMPLETION EXPERIMENT. THE TRUE STRUCTURE PARAMETER
VECTOR IS AFFECTED BY ADDITIVE NOISE AND, ADDITIONALLY, 2
ELEMENTS HAVE BEEN REMOVED. WE PRESENT THE TRUE, THE NOSIY
AND THE GIVEN VECTOR, AS WELL AS THE RESULTS FORM THE
PROPOSED KERNEL AND IMAGE APPROACH.

True Noisy Given  Kernel solution  Image solution
6.2440  6.1010  6.1010 6.0656 6.0618
-7.1795  -7.0727  -7.0727 -7.1897 -7.1902
-1.7843  -1.8658 NaN -1.8810 -1.8702
7.3515 7.4720  7.4720 7.3414 7.3433
0.9617 1.0307 1.0307 0.9483 0.9416
-0.8049  -0.8676 NaN -0.8072 -0.7982
-7.0476  -6.9657  -6.9657 -7.0150 -1.0174
-0.4057  -0.3564  -0.3564 -0.4460 -0.4421
0.5695 0.3586  0.3586 0.4417 0.4362
-0.1993  -0.3468  -0.3468 -0.3087 -0.3036

The numerical experiments presented in this paper aim at
confirming the correctness of the proposed method. Com-
parisons with other algorithms, such as tensor completion
algorithms, and examples with unstructured and affinely
structured tensors are to be reported in a follow-up paper.

VII. CONCLUSIONS

We have established a new link between tensors and
affinely structured matrices, allowing us to solve the ten-
sor low multilinear rank approximation problem by using
techniques from structured low-rank approximation. Three
variations of the problem can be solved in this unified way,
namely the case of symmetric, general unstructured and

daffinely structured tensors, where we find (locally) best low
multilinear approximation with the same structure. Moreover,
the proposed solution approach readily solves the more
difficult variations of the main problem, where the given data
has fixed or missing elements, or where weighted norm has
to be used as a distance measure between the given data and
its approximation.

The drawback of the current approach is its higher com-
putational cost, compared to existing algorithms. This is
partially due to the fact that the proposed scheme is more
general and is able to solve several problems in the same way.
A topic of further investigation is how the computational cost
of proposed approach can be reduced by using the sparse
structure of the involved matrices.
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