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Identification of linear time-invariant systems

from multiple experiments

I. Markovsky and R. Pintelon

Abstract

A standard assumption for consistent estimation in the errors-in-variables setting is persistency of excitation of

the noise free input signal. We relax this assumption by considering data from multiple experiments. Consistency

is obtained asymptotically as the number of experiments tends to infinity. The main theoretical and algorithmic

difficulties are related to the growing number of to-be-estimated initial conditions. The method proposed in the

paper is based on analytic elimination of the initial conditions and optimization over the remaining parameters.

The resulting estimator is consistent, however, achieving asymptotically efficiency remains an open problem.

Index Terms

maximum likelihood system identification, sum-of-damped exponentials modeling, consistency, structured

low-rank approximation.

EDICS: SSP-IDEN, SSP-PARE, SSP-SYSM

I. INTRODUCTION

Although in static estimation problems the data is collected from repeated experiments, the default

setting in system identification is data consisting of a single trajectory. The rationale for this is that more

data can be obtained by increasing the measurement time instead of the number of experiments. Then, as

the measurement time tends to infinity, under suitable assumptions it is possible to estimate consistently

the model parameters.

In some cases, however, increasing the measurement time is either not possible or does not allow

consistent estimation. When the input is given and fixed (can not be chosen) and the system is unstable,

the output can be exponentially growing. This essentially restricts the measurement time. In a sense, the

opposite case is when the system is stable and autonomous. Then, the true response decays exponentially,

so that with a fixed noise power, the signal-to-noise ratio is diminishing as the measurement time is
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growing. Indeed, an assumption required for identifiability of the system is that the input is persistently

exciting [1] and the autonomous system does not satisfy this assumption. We show that consistency can

be achieved without a persistently exciting input by collecting data from multiple experiments.

The multiple experiments identification problem is considered in [2] where the trajectories of the

different experiments are concatenated into a single long trajectory. The transition from one trajectory to

another is taken into account by including pulses in the input at the transition times. Identification from

multiple experiments is implemented in the System Identification Toolbox of Matlab. The prediction error

methods [3], [4] perform the optimization over the model parameters and the set of the initial conditions

for all experiments.

In [5] as well as in the System Identification Toolbox, the initial conditions are treated as part of the

model parameters. Consequently the nonlinear optimization problem for the prediction error minimization

is solved over an increasing number of optimization variables. As a result the computational cost grows

cubically in the number of the experiments. This makes the identification from a large number of

experiments unpractical.

System identification in the errors-in-variables setting from multiple experiments is considered in [6] in

the setting of structured low-rank approximation [7], [8], [9]. The initial conditions as well as the estimated

inputs are eliminated from the optimization problem analytically, reducing the problem to optimization

over the model parameters only. In this way the number of optimization variables for the nonlinear

optimization is independent of the number of experiments. It is shown in [10] that the elimination step

can be done efficiently with computational cost that is linear in the number of experiments. Linear cost

and readily available software [11] make the identification from a large number of experiments as cheap

and easily as identification from a single long trajectory.

The approach used in [6] to eliminate analytically the initial conditions is known in the numerical

linear algebra literature as the variable projections method [12] for solution of separable nonlinear least

squares problems. The nonlinear optimization problem problem is solved with the Levenberg-Marquardt

algorithm, using the pseudo-Jacobian [13]. In this paper we prove that the approach of [6] leads to a

consistent estimation method.

The paper is organized as follows. In Section II we introduce the notation. The considered identification

problem from multiple experiments is defined in Section III. Section IV presents the variable projection

method. The main results of the paper—the consistency proof of the variable projections method—is

given in Section V. A special case of the results—consistent estimation of autonomous systems in the

output error setup—is presented in Section VI. Section VII illustrates the theoretical results on a numerical

example.
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II. NOTATION

We use the behavioral language [14], [15]. The class of linear time-invariant systems with m inputs

is denoted by Lm. A system B ∈ Lm is a set of trajectories [15]. The statement w ∈ B is a short-hand

notation for "w is a trajectory of B". There is a non-unique partitioning of the variables into inputs and

outputs, however, the number of inputs and the number of outputs are invariant of the system and do not

depend on the choice of the input-output representation.

A discrete-time system B is a collection of vector time-series w : Z→ Rq, where q is the number of

variables: m inputs and p := q−m outputs. A discrete-time linear time-invariant system B ∈ L
q
m admits

a representation (refered to as a kernel representation) by a constant coefficients difference equation

B(R) := {w | R0w+R1σw+ · · ·+Rℓσ
ℓw = 0}, (KER)

where σ is the shift operator

(σw)(t) = w(t +1).

It can be written more compactly as the kernel

ker
(
R(σ)

)
:= {w | R(σ)w = 0}

of the operator R(σ), where

R(z) := R0z+R1z+ · · ·+Rℓz
ℓ

is a polynomial matrix. The minimal natural number ℓ, for which there exists an ℓth order difference

equation representation for B is an invariant of the system, called the lag. Let wp∧wf be the concatenation

of the trajectories wp and wf. The restriction of B to the interval [1,T ] is the set of all T -samples long

trajectory of B, i.e.,

BT := {w =
(
w(1), . . . ,w(T )

)
| there are wp and wf,

such that wp ∧w∧wf ∈ B}.

For T ≥ ℓ, the dimension of BT is bounded by Tm+ℓ(q−m). The subset of linear time-invariant systems

Lm with lag at most ℓ is denoted by Lm,ℓ.

III. PROBLEM FORMULATION

Consider N trajectories

wi =
(
wi(1), . . . ,wi(Ti)

)
, i = 1, . . . ,N,

with possibly different lengths T1, . . . ,TN of a system B ∈ Lm,ℓ. The data

D := {w1, . . . ,wN }
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for the identification problem considered in the paper is generated in the errors-in-variables setup:

wi = wi + w̃i, where wi ∈ BTi
, B ∈ Lm,ℓ

w̃i is zero mean white Gaussian

process with covariance s2I

and w̃i is independent of w̃ j

for all i 6= j.

(EIV)

Here wi is the “true value” of the trajectory wi and B is refered to as the “true system”. In addition, we

assume that there are scalars c1 and c2, such that

0 < c1 ≤ ‖wi‖2
2 ≤ c2 < ∞, for i = 1, . . . ,N. (A)

Our aim is to estimate the true system B from the data D and the prior knowledge that the true system

belongs to the model class Lm,ℓ.

Problem 1. (Maximum likelihood identification from multiple trajectories) Given a set of trajectories

D and a model class Lm,ℓ, specified by the natural numbers m and ℓ, find a maximum likelihood estimate

B̂ of the true data generating system B.

The log likelihood function for the data generating model (EIV) is

L(B̂,D̂) =





const− 1

2s2

N

∑
i=1

‖wi − ŵi‖2
2 if ŵi ∈ B̂Ti

,

for i = 1, . . . ,N

−∞ otherwise.

The maximum likelihood principle leads to the following optimization problem:

minimize
1

N

N

∑
i=1

‖wi − ŵi‖2
2 over ŵ1, . . . , ŵN and B̂

subject to ŵi ∈ B̂Ti
, for i = 1, . . . ,N, and B̂ ∈ Lm,ℓ.

(ML)

Note 2 (Parameterization of a trajectory by input and initial conditions). The condition ŵi ∈ B̂Ti
implies

that in an input/output partitioning of the variables w = (u,y), there is an input ûi and initial conditions

ŵi
ini =

(
ŵi

ini(−ℓ+1), . . . , ŵi
ini(−1), ŵi

ini(0)
)
,

such that ŷi is the response of B̂, generated by ûi, under the initial conditions ŵi
ini. As shown in the

next section, ŵ1, . . . , ŵN (and therefore the corresponding inputs and initial conditions) can be eliminated

analytically, resulting in an equivalent optimization problem over B̂ only.

Note 3 (Parameterization of the model by a representation). A finite dimensional linear time-invariant

model B admits many representations, e.g., the kernel representation (KER). Once a representation is
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chosen the model can be associated with the parameters of the representation, e.g., the polynomial matrix

R(z) in the case of the kernel representation. Consequently, the likelihood L can be written as a function

of the model parameters and the maximum likelihood estimation problem (ML) becomes a parameter

optimization problem.

Following the behavioral approach, we formulate the problem and state our results without involving a

model representation. (The numerical solution of the problem, however, requires a choice of a particular

model representation.) The decision to work in the behavioral setting posses the question of what means

that a model converges to another model. This question is handled in [16] by defining the convergence

B̂ → B̄ ⇐⇒ ∠(B̄,B̂)→ 0

in the sense of the gap metric ∠(B̄,B̂), see [17].

IV. ELIMINATION OF ŵ1, . . . , ŵN

In this section we consider the problem of evaluating the likelihood

M(B̂,D) = min
ŵ1∈B̂T1

,...,ŵN∈B̂TN

1

N

N

∑
i=1

‖wi − ŵi‖2
2 (M)

of a given model B̂ ∈ Lm,ℓ. The problem decouples into N independent sub-problems

M(B,D) =
N

∑
i=1

M(B,wi),

where

M(B,w) = min
ŵ∈B̂T

1

N
‖w− ŵ‖2

2,

which are classical least-norm problems. Their solution is given by

M(B,w) = ‖Π⊥
BT

w‖2
2,

where Π⊥
BT

is the projector on the orthogonal complement B⊥
T of the subspace BT .

The elimination of ŵ1, . . . , ŵN from (ML) results in the equivalent problem

minimize M(B̂,D) over B̂ ∈ Lm,ℓ, (ML’)

where

M(B̂,D) =
1

N

N

∑
i=1

‖Π⊥
BTi

wi‖2
2.
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V. CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR

Theorem 4 (Consistency). Assuming that the data D is generated in the errors-in-variables setup (EIV)

and (A) holds true, the estimator defined by (ML’) is strongly consistent, i.e.,

B̂ → B with probability 1 as N → ∞.

Proof. Under the assumptions of the errors-in-variables model, the expected value of M(B̂,wi) is

E
(
M(B̂,wi)

)
= E(wi + w̃i)⊤Π⊥

BT
(wi + w̃i)

= (wi)⊤Π⊥
BT

wi +E
(
(w̃i)⊤Π⊥

BTi
w̃i
)
.

(∗)

Using the fact that w̃ is white noise with covariance σ 2I and Π⊥
BT

is a projector, we have for the second

term

E
(
(w̃i)⊤Π⊥

BTi
w̃i
)
= σ 2 trace(Π⊥

BTi
) = σ 2

(
mTi + ℓ(q−m)

)
.

Therefore, the second term of (∗) does not depend on the model B̂. The first term of (∗) is minimized

for B̂ = B. Indeed, by definition of the projection matrix

(wi)⊤Π⊥
BTi

wi = 0.

We have shown that B is a global minimizer of EM. By the strong law of large numbers [18],

lim
N→∞

M(B̂)→ EM(B̂) with probability 1.

The limit is finite and nonzero by (A). Then, by [19], the minimizer of M, i.e., the estimator B̂ converges

with probability 1 to the minimizer of EM, which is B.

The result of Theorem 4 is illustrated next in the case of an autonomous linear time-invariant system,

parameterized by their poles, i.e., 1) m= 0 and 2) a specific representation of the system is chosen. See

[20] for an application of this special case in operational modal analysis.

VI. AUTONOMOUS SYSTEMS

A scalar autonomous linear time-invariant system with simple poles can be represented by the "sum-

of-exponentials model" [21], [22]

B =
{

y =
n

∑
j=1

c j expz j
| c ∈ C

n

}
. (SDE)

Here expz is the exponential function expz(t) := zt . The complex numbers z1, . . . ,zn are the poles of the

system. In the representation (SDE), they are assumed to be distinct, i.e., zi 6= z j, for all i 6= j.

A finite trajectory y =
(
y(1), . . . ,y(T )

)
of a sum-of-exponentials model (SDE) can be expressed as

y = PT (θ)c,
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where PT (θ) is the (extended) Vandermonde matrix

PT (θ) :=




1 · · · 1

z1 · · · zn
...

...

zT−1
1 · · · zT−1

n




and z1, . . . ,zn are the roots of the polynomial

θ(z) := θ1 +θ2z+ · · ·+θnzn−1 + zn.

In the autonomous case, the errors-in-variables setup (EIV) coincides with the output error setup

yi = yi + ỹi, where yi ∈ B ∈ L0,n

ỹi is zero mean white Gaussian

process with covariance s2I

and ỹi is independent of ỹ j

for all i 6= j.

(OE)

The maximum-likelihood identification problem (ML) specialized for the sum-of-exponentials model

becomes

minimize
1

N

N

∑
i=1

‖yi − ŷi‖2
2 over θ , c1, . . . ,cN , ŷ1, . . . , ŷN

subject to ŷi = PTi
(θ)ci, for i = 1, . . . ,N

or

minimize
1

N

N

∑
i=1

‖yi −PTi
(θ)ci‖2

2 over θ , c1, . . . ,cN . (MLaut)

Applying the variable projections method to (MLaut), leads to N decoupled problems

minimize
1

N
‖yi −PTi

(θ)ci‖2
2 over ci, for i = 1, . . . ,N.

These are ordinary least squares problems with solutions

ŷi = PTi
(θ)

(
P⊤

Ti
(θ)PTi

(θ)
)−1

PTi︸ ︷︷ ︸
ΠTi

(θ )

yi,

where ΠTi
(θ) is an idempotent matrix (Π2

Ti
(θ) = ΠTi

(θ)) Therefore, the cost function of the sum-of-

exponentials model is

M(θ) =
1

N

N

∑
i=1

(yi)⊤
(
I −ΠTi

(θ)
)
yi.
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Proposition 5 (Consistency in the autonomous case with (SDE) representation). Assuming that the data

D is generated in the output error setup (OE), the estimator defined by (MLaut) is strongly consistent,

i.e.,

θ̂ → θ with probability 1 as N → ∞.

Proposition 5 is a corollary of Theorem 4, however, since the aim of this section is to illustrate how

the general result specializes in the autonomous case and by choosing a particular model representation,

an independent proof of Proposition 5 is given in the Appendix.

VII. NUMERICAL EXAMPLE

As mentioned in the introduction, there is readily available software [6], [11] for identification of linear

time-invariant systems from multiple experiments. In this section, we use the software of [6], [11] to

illustrate the consistency and asymptotic efficiency properties of the maximum likelihood estimator (ML)

on a simulation example.

A. Consistency

The data generating system is an autonomous continuous-time linear time-invariant system of order

n= 6 with with resonance angular frequencies

ω̄1 = 2π 80rad/s, ω̄2 = 2π 130rad/s, ω̄3 = 2π 200rad/s

and poles’ damping ratios

ζ1 = 0.15, ζ2 = 0.1, ζ3 = 0.2.

The system is sampled with a period ts = 10−3. A specific response y is shown in Figure 1.

20 40 60 80
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20

30

40

50

t

y

Fig. 1. Specific trajectory of B.
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The identification data D is generated via the output error model (OE) with random true trajectories

y1, . . . ,yN . The lengths T1, . . . ,TN of the responses are determined, so that the trajectories have sufficient

decay.

The number of experiments N varies from 1 to 50 and the signal-to-noise ratio is 100. For each value

of N, the identification experiment is repeated K = 200 times and the average parameter error

e =

√√√√ 1

K

K

∑
k=1

‖θ − θ̂ k‖2
2.

is computed. The results obtained (see Figure 2) show the convergence of the average parameter estimation

error. The convergence rate is close to 1/
√

N.

10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

 

 

N

e

1/
√

N
empirical

Fig. 2. Error convergence.

B. Efficiency

In this section, we compare empirically the maximum-likelihood estimate covariance matrix V
θ̂
=

cov(θ̂) and the Cramér-Rao lower bound C, see [2, Chapter 19]. Both are evaluated for an experiment

with N data sets, where N is increased from 1 to 50. In the simulation setup of the example in Section

VII-A the criterion

e′ =
‖C−V

θ̂
‖2

‖C‖2
,

where ‖ · ‖2 is the spectral norm, is shown in Figure 3 shows as a function of N.

The result suggests that the maximum-likelihood estimate covariance matrix does not converge to the

Cramér-Rao lower bound, however, for high signal-to-noise ratio the discrepancy is small. This empirical

observation can be shown analytically. The question of whether the maximum likelihood estimator is

asymptotically inefficiency or the Cramér-Rao lower bound is conservative remains open.
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Fig. 3. Relative error between the maximum-likelihood estimate covariance matrix and the Cramér-Rao lower bound.

APPENDIX

Under the data generation assumptions (OE), the expected value of the cost function is

EM(θ) =
1

N
E

N

∑
i=1

‖
(
I −ΠTi

(θ)
)
(yi + ỹi)‖2

2

=
1

N

N

∑
i=1

‖
(
I −ΠTi

(θ)
)
yi‖2

2

+
1

N

N

∑
i=1

E‖
(
I −ΠTi

(θ)
)
ỹi)‖2

2.

For the second term we have

E‖
(
I −ΠTi

(θ)
)
ỹi‖2

2 = E
(
(ỹi)⊤

(
I −ΠTi

(θ)
)
ỹi
)

=
Ti

∑
j=1

Ti

∑
k=1

(
δ jk −ΠTi, jk(θ)

)
E(ỹi

jỹ
i
k),

where δ jk = 1 if j = k and 0 otherwise. By (OE), E(ỹi
jỹ

i
k) = s2Ipδ jk, so that

E‖I = ΠTi
(θ)‖2

2 = trace
(
I −ΠTi

(θ)
)
s2.

Since I −ΠTi
(θ) is a projector matrix of rank Tip− n, its eigenvalues are Tip− n ones and n zeros.

Therefore,

E‖
(
I −ΠTi

(θ)
)
ỹi‖2

2 = (Tip−n)s2

and is independent of θ .

For the true parameter vector θ we have that M(θ) = 0, so that θ is a global minimizer of EM. By

the strong law of large numbers,

lim
N→∞

M(θ)→ EM(θ) with probability 1.
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The limit is finite and nonzero by (A). Then, by [19], the minimizer of M, i.e., the estimator θ̂ converges

with probability 1 to the minimizer of EM, which is θ .
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