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1 Introduction

1.1 Definition of the problem

Consider a set of l polynomials p1, . . . , pl whose degrees are n1, . . . , nl respec-
tively. We assume that p1, . . . , pl are coprime (they have no common roots). A
challenging problem treated in the literature [14,9] is computing the closest set
(in a specified sense) of polynomials p̂1, . . . , p̂l which have an a priori specified
number of common roots. The problem has been widely studied in the past
years, especially in the case l = 2, and there exist several algorithms for its
solution [1,3,31,4,28].

In the following we will assume that all the polynomials have real coeffi-
cients. The extension to complex polynomials is straightforward. A polynomial
(of degree n) will be represented in its canonical form

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

or equivalently by the vector of its coefficients

p = (an, an−1, . . . , a1, a0).

We will define the distance between two sets of l polynomials as follows:

dist({p1, . . . , pl}, {p̂1, . . . , p̂l}) =

√√√√ l∑
i=1

ni∑
j=0

(aij − âij)2 (1.1)

where aij stands for the j-th coefficient of the i-th polynomial.
Defining the set

Dk = Dk(n1, . . . , nl) =

= {{p̂1, . . . , p̂l} : deg(p̂i) = ni ∀i, p̂1, . . . , p̂l have k common roots},

the Approximate GCD (AGCD) problem is the following one:

Problem 1.1 Given k ∈ N, a set of l polynomials p1, . . . , pl, and the distance
given in (1.1), compute:

inf
{p̂1,...,p̂l}∈Dk

dist({p1, . . . , pl}, {p̂1, . . . , p̂l}). (1.2)

1.2 Previous work

Problem 1.1 has been studied in the past years and several algorithms have
been proposed for its solution. Most methods for solving Problem 1.1 use local
optimization approaches. We list here some of these algorithms, which can be
divided in two main classes. One approach is based on the representation of
the polynomial as a product of a common factor and a quotient, and on the
minimization of the related cost function. This is a nonlinear least squares
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problem, firstly analyzed in [6]. The problem is solved by different iterative
methods in [31] and [2]. In this framework several authors use the variable
projection principle, starting from [11] and [15]. Further analysis in the case
of weighted and unweighted norms were developed in [7,23,21].

On the other hand there are algorithms which solve the problem approx-
imating a given structured matrix by a structured matrix of lower rank (a
structured low rank approximation, SLRA, problem [19]). This is done ex-
ploiting the link between the rank constraint on the resultant matrix and the
degree of the GCD. It is considered a classical Sylvester matrix in the case
of two polynomials [32], a generalized Sylvester matrix for more than two
polynomials [13,14,24]. More algorithms for the AGCD computation in the
same framework are the structured total least norm (STLN) approach [13,
16], the gradient projection method [26], and a recent Structured Low Rank
Approximation algorithm [25] based on a Newton-like iteration.

Some new methods have been proposed in more recent papers [5,17,30].

1.3 Contributions and structure of this paper

A new algorithm that restates the problem as a structured distance to singu-
larity of the Sylvester matrix associated to the data polynomials is presented in
[12]. It exploits the well known equivalence between the degree of the GCD and
the rank constraint on the Sylvester matrix. The method solves the nonconvex
optimization Problem 1.1 by a local optimization approach in the sub-variety
of polynomials which have a GCD: this is done by integrating a system of
ordinary differential equations describing the dynamic on the singular values
of the Sylvester matrix. The algorithm in [12] has been developed only for
computing an AGCD of degree one between two polynomials.

The goal of this paper is to improve and generalize the algorithm proposed
in [12]. Replacing the eigenvalues by the singular values speeds up the algo-
rithm making it competitive with other existing methods (this was a deficiency
in the case of eigenvalues). Moreover the singular values allow to work with
rectangular matrices (needed if we consider more than two polynomials), and
they simplify some computations since they are non negative real numbers.
Hence we can generalize the method considering an arbitrary number of poly-
nomials and an AGCD of fixed degree k ≥ 1. Moreover, similarly to the case
of eigenvalues, we can add constraints on the coefficients if some of them are
known exactly (such constraints can not be treated by other methods).

The paper is organized as follows. In Sections 2 we introduce some useful
contents in a general framework: the generalized Sylvester matrix and its sin-
gular values and the basic idea of the 2-level algorithm proposed in [12]. In
Sections 3 and 4 we examine the two levels of the algorithm, which are the
inner and the outer iterations; first we look for the stationary points of a gra-
dient system of ordinary differential equations describing the dynamic on the
singular values of the generalized Sylvester matrix, then we consider an iter-
ative method to compute the perturbed Sylvester matrix (or equivalently the
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set of non coprime polynomials). In Section 5 we recall some extensions of the
method to complex polynomials and constrained systems. Finally in Section 6
we test the performances of the algorithm and we discuss some implementation
issues.

2 Preliminaries

We introduce now some general topics which we use in the following.

2.1 Generalized Sylvester matrices

Consider the set of l polynomials p1, . . . , pl. Without loss of generality we can
assume that all the polynomials have the same degree, adding some zeros for
the missing coefficients if necessary. We will see that the method allows to add
constraints on the coefficients of the data polynomials, so that the added zero
coefficients can stay unchanged in the output solution in order to preserve the
starting degrees.

In the framework of polynomials coprimeness, it is usual to introduce the
Sylvester matrix, which is defined as follows:

Definition 2.1 Given the l polynomials p1, . . . , pl, assume without loss of
generality that they have the same degree n. We define the vector p = {p1, . . . , pl} ∈
Rln. The generalized Sylvester matrix [22] is the following ln× 2n matrix

S(p) =

R1

...
Rl

 (2.1)

where

Ri =

pi,n pi,n−1 . . . pi,0
. . .

. . .
. . .

. . .

pi,n pi,n−1 . . . pi,0

 (2.2)

for i = 1, . . . , l. All the blocks are n× 2n matrices assuming that some of the
leading coefficients are 0 when the degree of the corresponding polynomial is
less than n.

The main property of the Sylvester matrix is summarized in the next theorem
[29].

Theorem 2.1 The degree of the greatest common divisor of the polynomials
p1, . . . , pl is equal to the rank defect of the Sylvester matrix S(p) in (2.1).

This result suggests us how to proceed. We look for some perturbation
δp ∈ Rln such that the matrix S(p+ δp) is rank-deficient with co-rank k.
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Remark 2.1 A perturbation of the polynomials which makes the associated
Sylvester matrix singular will create (at least) a common root of the l poly-
nomials. If this root is complex, its conjugate will be a common root too, so
the Sylvester matrix will have one more null singular value. This is the same
situation which happens for two polynomials.

2.2 Structured matrices and their singular values

In Section 2.1 we stated that Problem 1.1 can be written as a (structured) ma-
trix perturbation problem. Essentially, given a matrix with a special stucture
(a generalized Sylvester matrix) we need to compute its (structured) distance
to singularity. We will denote by S the set of (generalized) real Sylvester ma-
trices with the extra zero pattern due to the different degrees. In a general
framework, the datum of the problem is a matrix S ∈ S and we look for a
singular matrix B = S + X, where X ∈ S and its norm is minimal (since
the distance is the one defined in (1.1) the corresponding matrix norm is the
Frobenius norm).

The singularity of a matrix can be checked through the computation of its
singular values, and in particular it holds that B is rank-deficient with co-rank
k if and only if 0 is a singular value of B with multiplicity k. Since the singular
values are non negative real numbers we can focus on the smallest ones; we
assume the singular values are increasing and we denote by σi(B), i = 1, . . . , k
the i-th smallest singular value. A further formulation of the problem in this
framework is
Problem 1.1’ Given S, compute

min
X∈S

σi(S+X)=0

‖X‖F i = 1, . . . , k (2.3)

Furthermore we write X = εE for a Sylvester matrix E ∈ S whose norm is 1.
We introduce then the set of structured singular values

ΣSε (S) = {σ ∈ svd(S + εE) : E ∈ S, ‖E‖F = 1} (2.4)

We aim to find the minimal value of ε such that there exists a matrix E ∈ S
of norm 1, with S + εE rank-deficient with co-rank k..

Remark 2.2 The constraint ‖E‖F = 1 in (2.4) seems restrictive and it should
be replaced by the inequality ‖E‖F ≤ 1. However it can be shown (see [12,
Lemma 4.4]) that there is no loss of generality in considering E a norm 1
matrix.

For given ε, the goal is to minimize all the k smallest singular values of
the matrix S + εE, where E ∈ S has norm 1. Since the singular values are
real positive numbers, the function we take into account is the singular value
σk(S + εE) (remeber we assumed the singular values are increasing, so if this
function vanishes, all the k smallest singular values automatically go to zero);
the basic idea to minimize this function is to compute its gradient and then
to apply a descent method.
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2.3 A 2-level algorithm

We started from Problem 1.1 and we arrived to the equation σk(S + εE) = 0
and to the search for the value

ε∗ = min{ε : σk(S + εE) = 0}.

This is a global optimization problem. We recall the method proposed in [12]
which uses a local approach.

Definition 2.2 A matrix E with ‖E‖F = 1 and such that S+εE has a small-
est singular value σ that locally minimizes ΣSε (S), is called a local extremizer.
The value σ is called a local minimum point.

The algorithm proposed in [12] has two levels: inner and outer. At the inner
level we fix the value of ε. We compute a (local) minimum point of ΣSε (S) and
we denote it by σk(ε). The proposed algorithm finds local optima looking for
the stationary points of a system of ODEs (the gradient system associated to
the functional σk(S + εE)).

At the outer level, we have σ(ε) which is a continuous branch of local
minima of ΣSε (S): we need to compute

ε∗ = min{ε : σk(ε) = 0}.

This computation can be done by a root finding algorithm (e.g. Newton’ s
method) exploiting the knowledge of the exact expression of the derivative
of the objective function. From the numerical point of view we don’t need
σk(ε) to be exactly 0, but it’s enough that σk(ε) < θ where θ is a small fixed
tolerance.

3 Approximation of local minima of ΣS
ε

In this section we consider the inner iteration of the algorithm, where the
value of ε is fixed, and we want to minimize the singular value σk of the
matrix function B(t) = S + εE(t), with E(t) ∈ S of norm 1.

The goal is to find an optimal direction Z = Ė(t) such that the singular
value σk of B(t) = S+εE(t) is characterized (locally) by the maximal possible
decrease. In order to compute this direction we remember that the squares
of the singular values of a matrix A are the eigenvalues of the symmetric
and positive semidefinite matrix ATA. We can exploit therefore the result in
Lemma 3.1 about differentials of eigenvalues for real symmetric matrices [18].

Lemma 3.1 Let C(t) be a differentiable real symmetric matrix function for t
in a neighborhood of 0, and let λ(t) be an eigenvalue of C(t) converging to a
simple eigenvalue λ0 of C(0) as t → 0. Let x0 be a normalized eigenvector of
C(0) associated to λ0. Then the function λ(t) is differentiable near t = 0 with

λ̇ = xT0 Ċx0.
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We assume that E(t) is a smooth function, and we apply the result in
Lemma 3.1 to the symmetric and positive definite matrix B(t)TB(t), where
B(t) = S + εE(t). If we denote by σ a generic singular value of B (in general
we can assume σ is differentiable, see Remark 3.2), and by u and v the cor-
responding left and right singular vectors (omitting the dependance on t, and
remembering that S is a constant matrix), we have

d

dt
σ2 = vT

d

dt
(BTB)v = 2εσuT Ėv

d

dt
σ = εuT Ėv.

(3.1)

So we found that the optimal direction Z = Ė is obtained (up to a constant
term) by minimizing the function uT Ėv. Moreover we observe that if Ė ∈ S ,
it holds that

uT Ėv = 〈uvT , Ė〉 = 〈PS(uvT ), Ė〉, (3.2)

where PS(·) denotes the orthogonal projection onto S. The following lemma
provides an explicit formula for the projection PS (check [12, Lemma 4.2] for
the proof).

Lemma 3.2 Let p1, . . . , pl be a set of l polynomials of degree n, and B ∈
Rln×2n. The orthogonal projection (with respect to the Frobenius inner product
〈·, ·〉) PS(B) is given by

PS(B) = Syl(a) (3.3)

where a = {a1, . . . , al} ∈ Rln and

ain−k =
1

n

n∑
j=1

Bj+(i−1)n,j+k, k = 0, . . . , n, i = 1, . . . , l.

Now we can derive the important property PS(uvT ) 6= 0 (where u and v
are the left and right singular vectors of B associated to its singular value σ).

Lemma 3.3 Let S,E ∈ S, with E of unit Frobenius norm, and ε > 0. Set
B = S + εE. If σ > 0 is a simple singular value of B and u and v are the
corresponding left and right singular vectors, then

PS(uvT ) 6= 0 (3.4)

Proof By assumption v is the eigenvector of BTB associated to σ2. Assume,
by contradiction, that PS(uvT ) = 0. It holds true that

0 = 〈PS(uvT ), B〉 = 〈uvT , B〉 =
1

σ
〈BvvT , S + εE〉

=
1

σ
vT (S + εE)T (S + εE)v = vTσv = σ‖v‖2 > 0

(3.5)

since v is a non-zero vector. Consequently (3.5) is false, and the claim follows.

Remark 3.1 Notice that Lemma 3.3 and the results in this last section are
valid for all the singular values σ: this is important since we are taking into
account the computation of an AGCD of fixed degree k ≥ 1.
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3.1 Optimal direction

Let σk be the k-th smallest singular value of the matrix B = S + εE, and
uk, vk be the corresponding left and right singular vectors, respectively. The
steepest descent direction for σk is given by

Z∗ = arg min
Ė∈S
‖Ė‖F=1

(uk)T Ėvk

subject to 〈E, Ė〉 = 0.

(3.6)

where the constraint on the norm guarantees the uniqueness of the solution
(since we look for a direction). We give the solution of the problem (3.6) in
the following lemma, whose proof is similar to that given in [12, Section 4.2].

Lemma 3.4 Let E ∈ S of unit Frobenius norm, and uk, vk non-zero real
vectors. If B = S + εE and E has full (column) rank and is not proportional
to PS(ukv

T
k ), then the solution of the optimization problem (3.6) is given by

νZ∗ = −PS(ukv
T
k ) + 〈E,PS(ukv

T
k )〉E (3.7)

where ν is the norm of the matrix in the right hand side of (3.7).

Optimality conditions. The Karush-Kuhn-Tucker conditions applied to
the optimization problem

min
σk∈Σ(S+εE)
E∈S, ‖E‖F=1

σk,

in the case when the minimum is not zero, give:

PS(ukv
T
k ) = sE∗ s < 0

‖E∗‖F = 1
(3.8)

where E∗ is an extremizer. Hence s < 0 characterizes a minimum point.
Lemma 3.4 suggests to consider the differential equation

Ė = −PS(ukv
T
k ) + 〈E,PS(ukv

T
k )〉E (3.9)

where B = S + εE for a certain fixed value ε, and uk, vk are the left and
right singular vectors of the matrix B associated to its singular value σk. It
is possible to prove now that the function σk(t) actually decreases along the
solutions of (3.9).

Theorem 3.1 Let E(t) ∈ S of unit Frobenius norm which satisfy the equation
(3.9). If σk(t) is a singular value of B = S + εE(t), then

d

dt
σk(t) ≤ 0 (3.10)



An ODE based method for computing the AGCD of polynomials 9

Proof In the proof we omit the index k since the result is actually true for any
singular value and the associated singular vectors. Recall that the expression of
σ̇ is given in (3.1) by uT Ėx (ignoring the multiplication by constant factors).
Replace Ė using the equation (3.9) and estimate the two terms.

uTPS(uvT )v = 〈uvT , PS(uvT )〉 = 〈PS(uvT ), PS(uvT )〉 =

= ‖PS(uvT )‖2F .

and
〈E,PS(uvT )〉uTEv = 〈E,PS(uvT )〉〈E, uvT 〉 =

= 〈E,PS(uvT )〉2

Since E has norm 1, by the Cauchy-Schwartz inequality we have

uT Ėv = (−‖PS(uvT )‖2F + 〈E,PS(uvT )〉2) ≤ 0. (3.11)

Remark 3.2 We could have a problem with the differentiability of σk when
the singular values σk and σk−1 coalesce. From a theoretical point of view
this problem can be solved allowing sign changes in the SVD factorization [8].
However, from the numerical point of view, we don’t observe this coalescence
generically.

Since the goal is to minimize σk, we look for the stationary points of the
equation (3.9). Their characterization is given in the following theorem, whose
proof is a consequence of the previous results.

Theorem 3.2 Consider a solution of (3.9) and assume σk 6= 0. The following
statements are equivalent:

1. σ̇k = 0;
2. Ė = 0;
3. E is a multiple of PS(ukv

T
k ).

Remark 3.3 There is no assurance that the computed values are global min-
ima, although this seems to be the case for experiments of small dimension,
where the solution computed by the proposed method is equal to or better
than the one found by other algorithms.

3.2 The system of ODE

We consider now the algorithm to compute the stationary points of the system
of ODEs. The scheme for the numerical integration of the equation and the
computation of the quantities of interest is similar to the one presented in [12]
with the replacement of eigenvalues by singular values. We summarize it in
Algorithm 1.

The choice of the explicit Euler method is due to the expensive function
evaluation (the computation of a SVD decomposition). This is the part of the
algorithm which requires more computations (and consequently more time).
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Algorithm 1: Numerical solution of the ODE (3.9) at the step j

Data: pj1, . . . , p
j
l (or equivalently Ej), σj

k, uj , vj , hj (step Euler method) and γ
(step size reduction), ε.

Result: Ej+1, σj+1
k , uj+1, vj+1 and h̄j+1

begin
1 Set h = hj

2 Compute Ėj = −PS(ujvjT ) + 〈Ej , PS(ujvjT )〉Ej

3 Euler step → Ej+1 = Ej + hĖj

4 Normalize Ej+1 dividing it by its Frobenius norm

5 Compute the singular value σk of the matrix Bj+1 = S + εEj+1

6 Compute the singular vectors u and v of the matrix Bj+1 associated to σk

7 if σk > σj
k then

reject the result and reduce the step h by a factor γ
repeat from 3

else

accept the result; set hj+1 = h, σj+1
k = σk, uj+1 = u, vj+1 = v

8 if σj+1
k − σj

k < tol or σj+1
k ≤ tol then

return

9 if hj+1 = hj then
increase the step size of γ, hj+1 = γhj

else
set hj+1 = hj

10 Go to the next iteration

The steps of the algorithm which deserve attention are 5 and 6. We need
to compute a singular value of the matrix B and the corresponding singular
vectors. This can be done in two different ways:

1. compute the SVD decomposition of B (using the Matlab function svd);
2. compute the eigenvalue decomposition of BTB (using the Matlab function

eig) in order to obtain v and σ2 and than compute σ =
√
σ2 and u = Bv/σ.

The SVD computation is more stable than the computation (possibly ill con-
ditioned) of the eigenvalue decomposition of BTB and the square root of its
eigenvalues. We will use the SVD decomposition in the experiments just to
have a reference code, but (numerically) it’s not always the faster method,
probably because the eigenvectors of BTB and the right singular vectors of B
(computed by Matlab) are not exactly the same.

For what concern the step size control we are not able to find an optimal
value or a strategy for its computation. After some investigation we found some
examples where the reduction or the increasing of the step size parameter (the
factor γ) leads to a remarkable improvement in terms of computational time,
but this depends on the particular problem so it seems there is no a general
rule.
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4 Approximation of the distance

We are able to compute the minima of ΣS
ε . The next step is to analyze the

outer iteration of the algorithm, i.e. the optimization on ε. We will use the
notation

σk(ε) = min
σk∈ΣSε

σk

to denote a smooth branch of local minima parametrized by ε and computed
through the solutions of the ODE (3.9).

In order to solve the optimization problem we can exploit the knowledge
of the derivative of σk(ε) with respect to ε. The expression for this derivative
is in the following theorem (whose proof can be obtained in a similar way to
the one given in [12, Theorem 5.1]).

Theorem 4.1 Assume that

1. ε ∈ (0, ε∗) such that σk(ε) 6= 0 for a simple singular value σk;
2. σk(ε) and E(ε) are smooth w.r.t. ε and let uk(ε), vk(ε) be the singular vec-

tors of B(ε) corresponding to σk(ε), where B(ε) = S + εE(ε).

Then it holds
d

dε
σk(ε) = −

∥∥∥∥PS(uk(ε)vk(ε)T )

∥∥∥∥
F

. (4.1)

The formula in (4.1) is useful in the computation of the optimal value for
ε∗. We underline that the derivative is negative, since the projection doesn’t
vanish.

The current problem is

ε∗ = min{ε : σk(ε) = 0}.

It can be seen as a root finding problem; we approach it by the Newton’s
method (since we know the expression for the derivative (4.1)). The function
ε→ σ(ε) is smooth, so we can apply a Newton’ s iteration in order to find its
zero (we stop when σk(ε) ≤ θ, for a given tolerance θ). The formula is given
by

εt+1 = εt +
σk(εt)

‖PS(uk(εt)vk(εt)T )‖F
, (4.2)

where σk(εt) is a singular value of the matrix S + εtE(εt). and E(εt) is the
extremizer obtained by integrating the ODE.

We now consider the algorithm for the computation of ε∗, analogous to
the one presented in [12] (Algorithm 2), which uses a combined Newton-
bisection step. When the value σ(εt+1) is bigger than a fixed tolerance we
update the value of ε, otherwise εt+1 is computed by a bisection step. This
prevents quadratic convergence when the algorithm takes several bisection
steps. The upper bound for the value of ε is the norm of the starting Sylvester
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matrix S while the lower bound is the smallest singular value of the matrix S,
i.e. the unconstrained distance to singularity.

Algorithm 2: Computation of ε∗

Data: tol and εmin. εmax lower and upper bounds, εt current value
Result: εf approximation of ε∗

begin
1 Set Bisect = False, t = 1
2 while |εt − εmax| ≥ tol do
3 if Bisect = False then

Store εt and σ(εt)
4 Compute ε̃t+1 by a Newton iteration
5 if ε̃t+1 /∈ (εmin, εmax) then

Set ε̃t+1 = (εmax + εt)/2

else
Set ε̃t+1 = (εmax + εt)/2

6 Compute σ(ε̃t+1) by integrating the ODE
7 if σ(ε̃t+1) < tol then

Set Bisect = True
Set εmax = ε̃t+1

else
Set Bisect = False

8 Set εt+1 = ε̃t+1

9 Set t = t+ 1

10 Set εf = εt

5 Extensions of the algorithm

The proposed algorithm can naturally be extended to a bigger class of related
problems (constrained systems, complex polynomials). They were just consid-
ered in [12] in the case of one common root between two polynomials, so we
recall them briefly since they can be naturally adapted to the computation of
k common roots for several polynomials.

5.1 Constrained systems

Suppose that only certain coefficients of the polynomials are allowed to be
perturbed. Then the method has the same structure and we have only to pay
attention to the projection operator. Indeed, if we call Ii the set of coefficients
of the i-th polynomial that can be perturbed, we have to consider in Lemma
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3.2 only the coefficients whose index is in Ii.

for i = 1 : l

ain−k =

{
1
n

∑n
j=1Bj+(i−1)n,j+k k ∈ Ii

0 k /∈ Ii

We remark that in this case we are not able to characterize the stationary
points as in Theorem 3.2, except for keeping a polynomial monic [12, Lemma
4.3]. But the numerical experiments ensure that the result is correct.

5.2 Complex polynomials

If the starting polynomials have complex coefficients we can proceed exactly
in the same way. In this case we have to consider the manifold of complex
Sylvester matrices with the extra zero pattern (so the projection operator will
change in the appropriate way). We recall that for real polynomials we could
find a complex common root, and consequently an AGCD of degree higher
than expected; this situation cannot happen if we work in the framework of
complex coefficients.

6 Numerical experiments

In this section we check the performance of the proposed methodology. The
main tasks are the following:

– make a comparison with the similar algorithm describing the dynamic on
eigenvalues [12] (implemented for one common root between two polyno-
mials);

– make a comparison with other existing algorithms which solve the same
problem; mainly the SLRA toolbox [28], the uvGCD function of the Nu-
merical Algebraic Computing Toolbox (NAClab) [31] and the subspace
method [24];

– sum up the results and make some comments about the algorithm and its
optimization

We recall that the available algorithms for uvGCD and SLRA are imple-
mented only for two polynomials. The SLRA methodology has some limita-
tions imposed by its solution method [27,10], and the algorithm requires a
suitable initial approximation to compute an accurate solution. The subspace
method needs to start ”close” to the solution in order to converge to the
sought local minimum; moreover it makes a bigger error on the coefficients of
the computed solution. On the other side, the proposed method doesn’t have
any restriction and allows to include constraints on the coefficients; further-
more it seems to be more robust to the initial data, as it is able to compute
an accurate solution independently on the starting polynomials.
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6.1 Compariosons with other methods

We take into account some examples in order to test the performance of the
proposed algorithm.

6.1.1 Example (AGCD of degree 1 with a constraint)

We consider the following two polynomials of degree 5, expressed by the vector
of their coefficients:

p1 = (1, 0, 1, 0, 2, 1)

p2 = (−2, 1, 1,−1, 0, 1).
(6.1)

We want to preserve the property that p1 is monic. Since we need to add the
constraint, we compare in this first example only the two ODE based methods,
which consider the dynamic on eigenvalues and singular values.

The perturbed polynomials found by the two algorithms coincide up to the
third decimal digit, and are

p̂1 = (1, 0.014, 0.972, 0.051, 1.903, 1.181)

p̂2 = (−1.977, 0.958, 1.078,−1.148, 0.279, 0.473),

consequently also the common root and the computed distance are about the
same. The difference is in the computational time, which is 0, 171 seconds
considering the singular values and 2.328 seconds considering the eigenvalues,
so the algorithm with singular values is about ten times faster!

6.1.2 Example (a complex common root)

We consider a second example from [12]; this time we consider also the com-
parison with SLRA and uvGCD. The datum is two polynomials of degree 3
whose coefficients are

p1 = (1, 2, 2, 2)

p2 = (2, 0, 1,−2).
(6.2)

First consider the fully unconstrained case. We focus the attention mainly
on the computed distance and the computational time; the results for the
computation of an AGCD of degree 1 are in Table 6.1.

AGCD of degree 1

SLRA uvGCD ODE-eig ODE-svd
time 0.29 s 0.05 s 39.22 s 1.684 s

distance 2.1054 3.4039 0.3568 0.3568

Table 6.1: Computation of the AGCD of degree 1 for the pair of polynomials in (6.2). We
compare the computational time (first row) and the distance (second row)



An ODE based method for computing the AGCD of polynomials 15

It happens that SLRA and uvGCD compute one real common root, while
the ODE methods find a closest complex common root: consequently the dis-
tances are different. Indeed if we look at the result of the computation of two
common roots (Table 6.2), all the algorithms find the same value of the dis-
tance, but this means that SLRA and uvGCD need this information a priori.
As expected, the approximation found by the proposed algorithm in the two
cases is exactly the same.

AGCD of degree 2

SLRA uvGCD ODE-svd
time 0.515 s 0.25 s 1.154 s

distance 0.3568 0.3568 0.3568

Table 6.2: Performance of 3 different algorithms for computing the AGCD of degree 2 for
the pair of polynomials in (6.2). We compare the computational time (first row) and the
distance (second row)

After these examples we noticed that the dynamic on singular values turns
out to be always faster than the one on eigenvalues, giving the same solution.
Looking at the comparison with other methods (SLRA and uvGCD) it seems
we are now able to achieve reasonable computational times.

6.1.3 Example (high degree polynomials)

We consider now two high degree polynomials whose roots are on two different
circles in the complex plane. We see how the proposed method is still able to
find an accurate solution, unlike it happens for the other algorithms. The two
polynomials are

p1(z) = z15 + 1;

p2(z) = z15 + 3;
(6.3)

We report the results of the computation of one closest common root be-
tween p1 and p2 in Table 6.3.

SLRA uvGCD ODE-eig ODE-svd
time 0.18 s 0.08 s 136.38 s 5.83 s

distance 0.5857 3.4503 0.3197 0.3201

Table 6.3: Performance of 4 different algorithms for computing the AGCD of degree 1 for
the pair of polynomials in (6.3). We compare the computational time (first row) and the
distance (second row)
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The distance computed by the ODE methods is the best one. The other
two methods find different local minima of the objective function. In the case
of the dynamic on eigenvalues the solution it is even better, but we notice that
the computational time becomes huge! This example shows how the proposed
method works better when the global optimization problem is more difficult.
However we can only state that the proposed method computes a better ap-
proximation, but we are not sure it matches the global minimum.

6.1.4 Example: polynomials of increasing degree

In the last examples we noticed how different methods can converge to dif-
ferent local minima. However we dealt with matrices of small dimension, so
the computational times could be misleading. In the following experiment we
want to make a computation with matrices of increasing dimension in order
to have more clear ideas about the performances. The problem is to find one
common root between the following polynomials:

p1 = (1, zeros(1, 10n), ones(1, 10n), 5)

p2 = (1, ones(1, 10n), zeros(1, 10n), 1)
(6.4)

for n = 1, . . . , 10. The results are in Table 6.4: we will notice how the proposed
method computes an accurate solution in a reasonable computational time.

n SLRA uvGCD ODE-svd
1 time 1.397 s 0.053 s 2.212 s

distance 1.0182 2.6354 0.0352
2 time 2.535 s 0.047 s 2.646 s

distance 1.0109 1.4747 0.0166
3 time 2.637 s 0.065 s 3.140 s

distance 1.1984 0.1689 0.0124
4 time 8.586 s 0.068 s 3.780 s

distance 1.0453 1.3561 0.0106
5 time 14.233 s 0.116 s 4.782 s

distance 1.0550 1.2847 0.0095
6 time 20.952 s 0.140 s 6.726 s

distance 1.0809 1.3967 0.0088
7 time 34.345 s 0.172 s 8.008 s

distance 1.0938 0.0843 0.0082
8 time 42.678 s 0.194 s 9.920 s

distance 1.1439 0.0891 0.0078
9 time 68.597 s 0.289 s 11.573 s

distance 1.1580 0.0743 0.0074
10 time 96.992 s 0.243 s 14.877 s

distance 1.1721 1.1493 0.0071

Table 6.4: Performances of the different algorithms for polynomials of increasing degrees.
We compute a common factor of degree 1 for the pair of polynomials in (6.4).
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We excluded from the comparison ODE-eig because it is too slow, and
we notice that the distance computed by uvGCD is at least ten times larger
than the one computed by the ODE method. Table 6.4 shows that SLRA is
faster than ODE for small dimensions, but it becomes too slow for higher
degree polynomials (and moreover it converges to a different local minimum
corresponding to a larger distance). In all these examples the ODE method
always does 2 iterations, so we can have an idea on how the computational
time per iteration increases with the dimension of the problem. However it is
quite difficult to check the complexity of the algorithm, since each iteration
has a different computational cost.

6.2 Performance for different perturbation levels

We make now some comparisons with the subspace method proposed in [24].
This algorithm converges to a local minimum, so we need to choose the starting
polynomials ”close” to the sought solution. The idea is to start from a set
of polynomials which have an exact GCD, and then to add some random
perturbations in order to check how the two algorithms behave depending on
the level of noise.

We do not dwell on the numerical values, but we briefly explain how we
build the data and then we observe how the average error on the perturbed
polynomials vary depending on the level of noise. The data are built in the
following way:

– fix the number of polynomials, their degrees and their GCD
– multiply the GCD by some rundom polynomials to obtain a set p of poly-

nomials which have an exact GCD
– the data come from the following perturbations: p̃i = pi + s‖pi‖ri where s

is the noise level and ri is a random vector of norm 1

We vary the level of noise uniformly between 0 and 1; for each level of noise we
run several experiments and we plot the average error (the distance divided
by the norm of the data).

In the first example we want to compute one common root starting from
three polynomials of degree eight.

In the second example we compute an AGCD of degree 2 of four polyno-
mials of degree 8.

We notice that the error on the solution computed by the ODE algorithm
is (on average) the smallest, independently of the level of noise. The advantage
of the subspace method is the computational time. However it converges only
to a local minimum, so if we start from an arbitrary set of polynomials it is
not able to compute a good approximation, unlike it happens for the ODE
method. Moreover we remark that several runs of the ODE algorithm are very
fast (but this is not a general fact), so in this cases we have a method which
is fast and accurate at the same time.
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Fig. 6.1: Computation of an AGCD of degree 1 for three polynomials: distribution of the
average error depending on an increasing level of noise

6.3 Final remarks and implementation issues

If we sum up briefly the results of the numerical experiments, we improved
the algorithm proposed in [12] to the computation of an approximate gratest
common divisor of degree k of several polynomials1. We did it taking into
account the generalized Sylvester matrix associated to the data polynomials
and considering the dynamic on the singular values, since the matrices are
rectangular; although we noticed that in the case of two polynomials, when
the Sylvester matrix is square, it’s worth to consider the singular values instead
of the eigenvalues since the algorithm runs faster. The singular values allow to
work with rectangular matrices, as it happens for more than 2 polynomials,
and the computation of an AGCD of degree k ≥ 1 is simplified since the
singular values are non negative real numbers. We noticed how the proposed
method is able to compute better approximations for some problems where
other algorithms converge to different local minima, and it appears to be
efficient when the dimensions of the matrices increase considerably.

In the following we make some comments on the efficiency of the whole
algorithm, which is briefly described in Algorithm 3 in the simple case of two
polynomials p and q.

1 The Matlab code is available upon request to the first author
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Fig. 6.2: Computation of an AGCD of degree 2 for four polynomials: distribution of the
average error depending on an increasing level of noise

We notice that the algorithm contains several parameters:

– the value th is a tolerance on the computed singular value which determines
if computing a new value of ε and consequently checking the convergence
condition;

– itmax, the maximum number of iterations;
– c, which determines the weights of εmin and εmax in the bisection steps;
– γ, which doesn’t appear explicitly in Algorithm 3, but is the step reduction

in the Euler’s method.

All these parameters can influence the speed of convergence, but it’s too dif-
ficult to find an optimal value for each of them. This is because they depend
on the particular problem, so apparently there is no a general technique which
allows to optimize the set of all the parameters. Anyway we can test how their
change can modify the performances.

In the numerical experiments of the previous section we fixed the values
of the parameters; we list here some examples to understand how the perfor-
mances can be influenced:

– changing the value of th can heavily modify the computational time (but
be careful, because if the value is too high also the distance can increase
considerably);
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Algorithm 3: Scheme of the main algorithm

Data: p, q and tol (stopping tolerance)
Result: E and σ.
From the data we compute εmin, εmax

ε0 = min{2ε0, .5(εmin + εmax)}
c = 0.5
itmax = 40
begin

1 integrate the ODE → compute σk
2 for it = 1 : itmax do
3 if σk > th then

Compute ε1 by a Newton iteration
4 if εmin < ε1 < εmax then
5 if |ε1 − ε0| < tol then

ε0 = ε1
break

else
ε0 = ε1

else
ε0 = (1− c)εmax + c εmin

else
bisection step, εmax = ε0
ε0 = (1− c)εmax + c εmin

6 integrate the ODE → compute σk

– modifying the step reduction γ can speed up the algorithm (we found some
examples where the code runs 20 times faster!).

The function which dominates the computational time of the algorithm
is the integration of the ODE. The condition σk > th is the crucial point of
the algorithm, as suggested before. Changing the value of th determines if the
inequality is verified (and consequently enter the cycle, update ε, and check the
convergence condition) or not (in this last case, skip the cycle and integrate one
more time the ODE without checking the convergence condition). And more
integrations of the ODE mean more computational time. On the other side,
changing the value of γ can avoid some integration of the ODE since we can
reach the minimum faster modifying the step-length of the Euler’s method.

The problem is that it’s very hard to optimize all the parameters; probably
we could do some statistics to determine which values are the best in the most
of the cases, even if this can become computationally expensive and it would
be only a statistic, not a proof. Maybe we could try to do some guesses if we
know the solution in advance; we only tried to change some values randomly
and observe if there is any improvement.

Finally, in all the experiments we always used the same algorithm, which
uses the SVD decomposition of the matrix B in the integration of the ODE;
but sometimes the code runs faster replacing the Matlab function svd(B) by
eig(B′ ∗ B). Hence not all the results shown in the previous sections are the
optimal ones, but they are good enough to support the performance of the
proposed method.
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6.4 Outlook

The future work will focus on the applications of the method in system and
control theory. However in many problems and practical applications we deal
with multivariable control theory and consequently polynomial matrices, i.e.
matrices whose elements are polynomials in an indeterminate. These matri-
ces can be equivalently represented by polynomials with matrix coefficients.
Consequently, a challenging task will be to adapt the method to polynomial
matrices, in order to model more complicated systems.
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