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Abstract

We define and analyze the operations of addition and intersection of linear time-
invariant systems in the behavioral setting, where systems are viewed as sets
of trajectories rather than input-output maps. The classical definition of addi-
tion of input-output systems is addition of the outputs with the inputs being
equal. In the behavioral setting, addition of systems is defined as addition of
all variables. Intersection of linear time-invariant systems was considered before
only for the autonomous case in the context of “common dynamics” estimation.
We generalize the notion of common dynamics to open systems (systems with
inputs) as intersection of behaviors. This is done by proposing trajectory-based
definitions. The main results of the paper are 1) characterization of the link be-
tween the complexities (number of inputs and order) of the sum and intersection
systems, 2) algorithms for computing their kernel and image representations and
3) a duality property of the two operations. Our approach combines polynomial
and numerical linear algebra computations.

Keywords: Behavioral approach, addition of behaviors, common dynamics.

1. Introduction

The behavioral setting [1, 2] is an approach to system theory where systems
are defined as sets of trajectories rather than input-output maps. Viewing
systems as sets has far-reaching consequences. Most importantly, the system is
separated from its numerous representations: a representation is an equation,
while the system is the solution set. In systems and control the fundamental
object of interest is the solution set and not the equation that defines it. The
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separation of the notion of a system from the one of a representation also allows
one to define equivalence of representations. Naturally, two representations are
equivalent when their solution sets are equal.

Another important aspect of the behavioral setting is that the variables of
interest are not a priori separated into inputs and outputs. An input/output
partitioning is, in general, not unique and may not be a priori given; however,
the classical approach imposes a fixed one. This may lead to inconsistencies [2].

In this paper, we analyze the basic operations of addition and intersec-
tion of linear time-invariant (LTI) systems in the behavioral setting. We give
trajectory-based definitions of these operations and algorithms that compute
their representations starting from given representations of the original sys-
tems. The notion of an addition in the behavioral setting differs from the one
in the classical setting. While in the latter only the outputs are added, leaving
the inputs the same, in the former, all variables (inputs and outputs) are added.
The notion of intersection is not even well-defined in the input-output setting.
Only the special case of intersection of autonomous systems is considered in the
context of the “common dynamics” estimation [3, 4, 5, 6].

1.1. Literature overview

The operations of addition and intersection in the behavioral setting ap-
pear in the literature. For two-dimensional systems [7, 8], conditions that allow
representing a system as a direct sum of two systems are given in [9]. For one-
dimensional systems (the topic of this paper), the sum is used in systems’ de-
compositions, such as controllable and autonomous [1], stable and unstable [10],
and zero input and zero initial condition. The decomposition into subsystems
also appears in the modeling by tearing, zooming and linking [2].

The intersection operation was used for control in the behavioral setting to
restrict the behavior by a controller. Control by intersection of the systems’
behaviors is equivalent to what is called full interconnection [11], that is the
case when the sets of control variables and to be controlled variables coincide.
This is a special case of interconnection [12] in the behavioral setting, where the
constraints are imposed only on a subset of the variables.

The computation of a kernel representation of the sum of two systems is
given in [13, Lemma 2.14]. A similar result for the intersection operation is
given in Section 3. All existing results involving the addition and intersection
of LTI systems compute them via their kernel representations.

1.2. Contribution and organization of the paper

Although various aspects of the addition and intersection operations for
dynamical systems are studied in the literature, a complete treatment of these
topics is not available. Also, the computational aspect, i.e., the question of how
to find the sum and intersection systems in practice, is missing. These gaps are
filled in the present paper.

First, we give trajectory-based definitions of the addition and intersection
operations. Then, we characterize the image and kernel representations of the
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sum and intersection systems in terms of the image and kernel representations
of the original systems. These characterizations lead us to new algorithms for
the computation of the image and kernel representations of the sum and inter-
section systems. The approach that we use is new: we represent polynomial
algebra operations by equivalent numerical linear algebra operations based on
structured matrices. This methodology is of independent interest and has appli-
cations beyond the particular problems we solve in the paper. The algorithms
for addition and intersection proposed in the paper are readily implementable
in practice. We provide Matlab implementation of the methods in

https://github.com/fazziant/Other/blob/main/kernel-rep-sum.pdf.

Finally, we show how the sum and intersection systems can be computed
directly from observed data from the original systems without resorting to any
parametric system representations, such as kernel, image, or state-space rep-
resentations. This approach is in the spirit of the newly emerged data-driven
methods for analysis, control, and signal processing [14, 15, 16].

The rest of the paper is organized as follows. Section 2 reviews results
and definitions from behavioral system theory that are used in the paper. We
define the trajectory-based operations of addition and intersection of behaviors
in Section 3, and we propose algorithms for their computation in Section 4.
Illustrative examples are given in Section 5.

2. Notation and preliminaries

A dynamical system is defined by a triple (T ,W,B), where T is the time
axis, W is the variable space (we consider W = Rq), and B ⊆ WT is the set
of admissible trajectories, the behavior. In the paper, we focus on discrete-time
systems, i.e., T = Z, and associate the system (T ,W,B) with its behavior B.

The system B ⊆ (Rq)T is linear if B is a subspace of (Rq)T and B is time-
invariant if it is invariant under the action of the shift operator

(σw)(t) = w(t+ 1).

The set of LTI systems with q variables is denoted by Lq. We denote with m(B)
/ p(B) the number of inputs / outputs of B, such that m(B) + p(B) = q.

In the paper, we consider a subclass of the LTI systems, the finite-dimensional
LTI systems. They admit (vector) difference equation, also called kernel repre-
sentation [17].

Lemma 1. A finite-dimensional LTI system B ∈ Lq has a kernel representation,
i.e., there is a matrix polynomial operator

R(z) = R0 +R1z + · · ·+R`z
` ∈ Rp(B)×q[z]

such that
B = { w ∈ (Rq)T | R(σ)w = 0 }. (1)

The smallest ` for which B has a kernel representation (1) with deg R(z) = ` is
invariant of the representation and is called the lag of B, denoted by `(B).
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A kernel representation is not unique. Given a representation (1), an equiva-
lent representation can be obtained by premultiplication of R(z) with a unimod-
ular matrix polynomial U(z), i.e., a square matrix polynomial whose determi-
nant is a nonzero constant. In addition, (1) may have redundant equations. The
representation (1) is called minimal if it has the smallest number of equations.
It can be shown (see [17]) that a minimal kernel representation corresponds to a
full row rank matrix polynomial R(z), whose degree is `(B). Note that in a min-
imal kernel representation, the number of rows of the polynomial matrix R(z)
is equal to the number of outputs p(B). Every kernel representation can be
reduced to a minimal one by a suitable transformation. Thus, in the following,
we assume that the kernel representations are minimal.

The variables w of B ∈ Lq can be partitioned element-wise into inputs u and
outputs y, i.e., there is a permutation matrix Π, such that w = Π [ uy ] [2]. This
leads to the input-output representation

B = {w = Π [ uy ] | Q(σ)u = P (σ)y }, (2)

where
R(z)Π =:

[
Q(z) −P (z)

]
, with

Q(z) ∈ Rp(B)×m(B)[z] and P (z) ∈ Rp(B)×p(B)[z].

The roots of the polynomial det P (z) are the poles of the system (associated
with the input/output partitioning w = Π [ uy ]). It can be shown that the degree
of det P (z) is invariant of the representation (as long as the representation is
minimal) and is, therefore, a property of the system. Indeed, det P (z) is the
order n(B) of B, which is usually defined in terms of a (minimal) state-space
representation of B.

As all system properties, in the behavioral setting, controllability is also
defined in terms of the behavior.

Definition 1. A system B is controllable if for all w1, w2 ∈ B, there exists a
t̄ > 0 and a w ∈ B such that

w(t) =

{
w1(t) for t < 0

w2(t) for t ≥ t̄.

The controllability property can be checked in terms of a kernel representa-
tion of the system: the system is controllable if and only if the matrix polynomial
R(z) in a minimal kernel representation of the system is left prime [18].

Another representation of an LTI system, used in the paper, is the image
representation [1].

Lemma 2. A controllable system B ∈ Lq has an image representation, i.e.,
there is a matrix polynomial operator M(σ), such that

B = {w ∈ (Rq)T | w = M(σ)v }. (3)

It holds that M(z) has (column) rank m(B) and its row dimension is q [1].
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Definition 2. The rows of the matrix polynomial operator R(σ) in (1) are called
annihilators of B. The columns of M(σ) in (3) are called generators of B.

Given B ∈ Lq, its complexity is defined as the pair
(
m(B),n(B)

)
. We denote

the behavior B restricted to the interval [1, L] with B|L. I.e., B|L is the set of
trajectories truncated to the interval [1, L]. The dimension of the restricted
behavior B|L is

dim B|L = n(B) + Lm(B), for L ≥ `(B). (4)

Next, we express B|L in terms of the polynomials R(z) and M(z) of a kernel
and image representations of the system. For this purpose, we use Hankel and
multiplication matrices. Given a time series w(t) ∈ Rq of length T , the block-
Hankel matrix HL(w) with L block-rows, where 1 ≤ L ≤ T is defined as

HL(w) :=


w(1) w(2) · · · w(T − L+ 1)
w(2) w(3) · · · w(T − L+ 2)
...

...
...

w(L) w(L+ 1) · · · w(T )

 ∈ RqL×(T−L+1). (5)

In what follows, we will refer to HL(w) simply as the Hankel matrix.
Given a polynomial

r(z) = r0 + r1z + · · ·+ r`z
` ∈ R1×q[z]

of degree `, the multiplication matrix TL(r) with L columns, where L ≥ ` + 1,
is defined as:

TL(r) :=


r0 r1 · · · r`

r0 r1 · · · r`
. . .

. . .
. . .

r0 r1 · · · r`

 ∈ R(L−`)×L. (6)

For a matrix polynomial R(z) ∈ Rp×q[z] we define the (generalized) multiplica-
tion matrix TL(R) with L columns in terms of the rows R1(z), . . . , Rp(z):

TL(R) := ker

TL(R1)
...

TL(Rp)

 .
Definition 3. A time series u =

(
u(1), u(2), . . . , u(T )

)
is persistently exciting

of order L if the Hankel matrix HL(u) is full row rank.

We can now state the connection between a (finite length) behavior and the
Hankel matrix built from an observed trajectory w [19].

Lemma 3. If B ∈ Lq is controllable, w ∈ B|T , and the input component u of w
is persistently exciting of order L+ n(B) (L ≥ `(B) + 1), then

B|L = imageHL(w).
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Lemma 3 is a classic result known as the fundamental lemma. It has been
recently shown [16] that the assumptions of Lemma 3 (controllability, given
input/output partitioning, and persistency of excitation of the input) can be
replaced by the following condition

rankHL(w) = n(B) + Lm(B). (7)

We refer to (7) as the generalized persistency of excitation condition. Observe
that the right-hand side of (7) is the same as in (4), hence under the generalized
persistency of excitation condition, we have that

dim B|L = rankHL(w). (8)

This allows us to compute the complexity of B directly from an observed tra-
jectory w by solving a system of linear equations, see Algorithm 1.

Algorithm 1 Computation of system complexity from a trajectory

Input: a trajectory w ∈ (Rq)T of B
1: let L = bT+1

q+1 c
2: compute r1 = rankHL(w) and r2 = rankHL−1(w)
3: solve the system of equations[

L 1
L− 1 1

] [
m
n

]
=

[
r1
r2

]
(9)

Output: data-generating system’s complexity (m,n)

Proposition 1. Given a trajectory w ∈ B|T , such that the generalized per-
sistency of excitation condition (7) holds for L := bT+1

q+1 c and L ≥ `(B) + 1,
Algorithm 1 computes the complexity of B.

Proof. The matrix in the left-hand side of (9) is nonsingular, so a solution exists
and is unique. The fact that m = m(B) and n = n(B), as claimed, is a direct
consequence of (7), which holds by the assumptions of the proposition.

Lemma 4. For an LTI system B with a kernel representation B = kerR(σ),

B|L = ker TL(R), for L ≥ `(B) + 1.

Proof. Consider a finite trajectory w ∈ B|T of B = ker R(σ). For each row Ri(σ)
of R(σ), with degree `i := deg Ri(σ), we have

Ri0w(t) +Ri1σw(t) + · · ·+Ri`iσ
`w(t) = 0,

for t = 1, . . . , T − `i and i = 1, . . . ,p(B), (10)

Written in matrix form, the system of equations (10) is TL(R)w = 0.
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Lemmas 3 and 4 are useful because they link behaviors, trajectories, repre-
sentations, and structured matrices. Hence these results connect system theory
using the behavioral approach, linear algebra, and matrix computation. The
result in Lemma 4 allows the construction of finite-length trajectories start-
ing from the system kernel representation. This is used in [20] to define a
representation-invariant distance between behaviors.

Remark 1. This work deals with deterministic systems and exact (noiseless)
data. If the data are affected by noise, the Hankel matrix HL(w) is full rank for
all L. A possible approach for dealing with noisy data is to preprocess the data
via Hankel low-rank approximation [21, 22] to satisfy the rank condition in (7).

3. Addition and intersection of behaviors

We define the operations of addition and intersection of two LTI behaviors
by looking at the relation between their dimensions and the ones of the original
systems. Then, we state how to compute the representations of the addition
and intersection systems starting from the ones of the original systems. These
results can be naturally extended to more than two behaviors.

Definition 4. Given two behaviors, A and B, with the same number of vari-
ables, their sum is naturally defined as the set of the sums of the elements of A
and B, while their intersection is defined as the set of elements that belong to
both A and B:

B+ = A+ B := {w = a+ b | a ∈ A, b ∈ B}.
B∩ = A ∩ B := {w | w ∈ A and w ∈ B}.

(11)

It can be checked that if A,B ∈ Lq, then B+,B∩ ∈ Lq. In this case, the
following result states the link between the starting systems’ dimensions and
the ones of their sum and intersection.

Lemma 5. Let A|L,B|L ∈ Lq be two behaviors restricted to the interval [1, L],
and consider their sum B+|L and their intersection B∩|L. The dimensions of the
sum and intersection systems are related to the ones of A|L and B|L as follows

dim (B+|L) = dim (A|L) + dim (B|L)− dim (B∩|L) for L ≥ `(B+). (12)

Proof. Equation (12) is a consequence of (4). If we expand all the terms, we
get

dim (B+|L) = n(B+) + m(B+)L

dim (A|L) = n(A) + m(A)L

dim (B|L) = n(B) + m(B)L

dim (B∩|L) = n(B∩) + m(B∩)L.

The result follows from the straightforward definitions

n(B+) = n(A) + n(B)− n(B∩)

m(B+) = m(A) + m(B)−m(B∩)
(13)
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Remark 2. Depending on the number of inputs m(A) and m(B), the systems
B+ and B∩ may be trivial systems (systems where all the variables are inputs).

If the systems B+ and B∩ are in Lq, they admit kernel representations, which
can be expressed in terms of the kernel representations of A and B. If these
systems are also controllable, they admit image representations too, that can
be characterized in terms of the image representations of A and B.

Theorem 1. Let A,B ∈ Lq. The following hold true:

1. If A,B are controllable, let Pa, Pb be their image representations. An
image representation of their sum is given by the union of generators:

B+ = A+ B = imageP+(σ) := image
[
Pa Pb

]
(σ).

2. Let Ra, Rb be the kernel representations of A,B. A kernel representation
of their intersection is given by the union of annihilators:

B∩ = A ∩ B = kerR∩(σ) := ker

[
Ra
Rb

]
(σ). (14)

Proof. Consider the first point. First of all, the controllability assumption
guarantees the existence of the image representations. If wa = Pa(σ)`a and
wb = Pb(σ)`b are two trajectories of A and B, respectively, then

wa + wb =
[
Pa Pb

]
(σ)

[
`a
`b

]
∈ A+ B.

Hence, the image representation of the sum system is obtained by stacking next
to each other the two image representations of the starting systems.

For the second point, let 0 = Ra(σ)z = Rb(σ)z for a certain trajectory
z ∈ A ∩ B. Then

0 =

[
Ra
Rb

]
(σ)z.

Therefore it follows the expression for the kernel representation of the intersec-
tion system starting from the given kernel representations (14).

Theorem 1 shows a duality between the addition and the intersection of
behaviors and the corresponding representations as union of generators and
intersection of annihilators of the starting behaviors. This means that the rep-
resentations of the sum and intersection systems can be computed with opposite
operations by switching annihilators with generators, union with intersection,
and row-wise with column-wise operations on some matrices (that are built from
the given representations). We expect that similar relations still hold true by
reversing the computations of the sum and intersection systems as intersection
of annihilators and generators, respectively, as shown in Table 1. However,
these computations (intersection of annihilators or generators) need to be im-
plemented in an algorithm.
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Table 1: Duality between addition and intersection behaviors representations and their rela-
tion with respect to the starting systems representations.

generators P annihilators R
A+ B ∪ ∩
A ∩ B ∩ ∪

4. Intersection of annihilators and generators

The union of generators and annihilators is easy to be computed. But we
may need to find the sum or intersection systems representations by the inter-
section of annihilators or generators, respectively. We describe, in the following,
the problem of intersection of annihilators. Then, we can apply the observed
duality property to get the dual computational algorithm for the intersection of
generators.

Problem 1. Given minimal kernel representations of the two behaviors A,B ∈
Lq, i.e.,

A = kerRa(σ) and B = kerRb(σ),

with polynomials

Ra(z) = Ra,0z
0 +Ra,1z

1 + · · ·+Ra,`az
`a ∈ Rpa×q[z],

Rb(z) = Rb,0z
0 +Rb,1z

1 + · · ·+Rb,`bz
`b ∈ Rpb×q[z],

find a kernel representation R+(σ) of the sum A+ B, where

R+(z) = R0z
0 +R1z

1 + · · ·+R`z
`.

By solving this problem, we obtain a computational method for (Ra, Rb)→
R+, which is a direct way to get the kernel representation of the sum from the
kernel representations of the starting systems. The computational algorithm for
this problem is Algorithm 2, whose correctness is proved below.

Algorithm 2 Sum of two behaviors by intersection of annihilators

Input: Ra, Rb minimal kernel representations of the starting systems
Output: R+ kernel representation of the sum system

Compute the number of outputs of the sum p(B+) = q −m(B+)
Build the Sylvester matrix

SL =

[
TL(Ra)
TL(Rb)

]
(15)

by choosing L such that the left kernel of SL has dimension p(B+)
Compute the left kernel basis

[
Za −Zb

]
of the Sylvester matrix SL

Define R+ as [
R0 R1 · · · R`

]
:= ZaTL(Ra) = ZbTL(Rb).
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Proposition 2. Algorithm 2 computes the kernel representation R+ of the sum
of the two starting behaviors A+ B.

Before proving Proposition 2, we make some comments on the parameter L
that defines the dimension of the Sylvester matrix (15). The Sylvester matrix
has two multiplication blocks generated by the starting representations, whose
dimensions are p(A)(L − `a) × qL and p(B)(L − `b) × qL, respectively, for a
certain L ≥ max(`a, `b)+1. If p(B+) > 0, we can always choose L such that SL
has a non-trivial left kernel of dimension p(B+). This means that the difference
between the number of rows and the number of columns of SL is (at least) p(B+),

leading to L = p(B+)+`ap(A)+`bp(B)
p(A)+p(B)−q . The parameter L defines the number of

(block) columns of the two multiplication matrices TL(Ra) and TL(Rb). But
these blocks can have different row dimensions, depending on the number of
outputs and the lag of the two behaviors.

Proof. The number of outputs of the sum system is needed to understand the
number of rows of the sought (minimal) representation, and it can be computed
from the starting systems by (13).

Consider then two trajectories a ∈ A ⊂ A + B and b ∈ B ⊂ A + B. If
the Sylvester matrix SL has a nontrivial left kernel, the sought representation
R+(σ) satisfies

• R+(σ)a = 0 =⇒ R+ is in the row span of TL(Ra) =⇒ R+ = ZaTL(Ra);

• R+(σ)b = 0 =⇒ R+ is in the row span of TL(Rb) =⇒ R+ = ZbTL(Rb);

leading to the equation ZaTL(Ra) = ZbTL(Rb) =⇒
[
Za −Zb

]
SL = 0. Ob-

serve that, by construction,
[
Za −Zb

]
has (at least) p(B+) rows. We can

define the coefficients of R+(z) as[
R0 R1 · · · R`

]
:= ZaTL(Ra) = ZbTL(Rb).

Since R+ is the kernel representation of both the behaviors A and B, it is also
a representation of their sum A+ B.

Algorithm 2 always computes a solution for the kernel representation if the
sum system is nontrivial. But, if p(B+) = q − m(B+) = 0, the kernel rep-
resentation is trivial (the behavior has no annihilators different from the zero
polynomial). In this case, the Sylvester matrix S always has more columns than
rows for each value of L (or possibly it is square), so the left kernel is trivial (we
assume the matrix polynomials Ra and Rb have no common factors, see [23]).

Next, we state the dual problem for the intersection of generators, where
the controllability of the behaviors is assumed to guarantee the existence of the
image representation.
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Problem 2. Given image representations of the two controllable behaviors
A,B ∈ Lq, i.e.,

A = imagePa(σ) and B = imagePb(σ),

with polynomials

Pa(z) = Pa,0z
0 + Pa,1z

1 + · · ·+ Pa,`az
`a ∈ Rq×ma [z],

Pb(z) = Pb,0z
0 + Pb,1z

1 + · · ·+ Pb,`bz
`b ∈ Rq×mb [z],

find an image representation P∩(σ) of the intersection A ∩ B, where

P∩(z) = P0z
0 + P1z

1 + · · ·+ P`z
`.

The computational procedure to approach this problem is dual with respect
to the previous case and it is illustrated in Algorithm 3.

Because of the duality, the multiplication blocks are now stacked in a row,
and the (transposed) Sylvester matrix should have a kernel of dimension m(B∩).
The key point is to observe that the image representation of the intersection lies
in the column span of both the starting representations Pa and Pb.

Algorithm 3 Intersection of two behaviors by intersection of generators

Input: Pa, Pb image representations of the starting systems
Output: P∩ image representation of the intersection system

Compute the number of inputs of the intersection m(B∩)
Build the (transposed) Sylvester matrix

SL =
[
T TL (PTa ) T TL (PTb )

]
by choosing L such that the kernel of SL has dimension m(B∩)

Compute the kernel basis

[
Za
−Zb

]
of the Sylvester matrix SL

Define P∩ as [
P0 P1 · · · P`

]
:= T TL (PTa )Za = T TL (PTb )Zb. (16)

5. Examples

We show here some examples that illustrate the results derived in the pre-
vious sections. We propose simple analytical computations dealing with the
addition and intersection of some LTI systems.
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5.1. Scalar autonomous systems with simple poles

Consider two scalar autonomous LTI systems A,B defined by their minimal
kernel representations

A = ker Ra(σ) and B = ker Rb(σ),

where Ra, Rb are scalar polynomials of degree na = n(A), nb = n(B), respec-
tively. Assuming that all the poles are simple, the trajectories of A and B are
the sum of damped exponentials:

a =

na∑
i=1

aiλ
t
ai and b =

nb∑
i=1

biλ
t
bi , (17)

for some coefficients ai, bi. By (17) and the definition of addition of behaviors
(11), the trajectories of the sum of two LTI systems with simple poles are still
sums of damped exponentials, i.e.,

w+(t) =

na∑
i=1

aiλ
t
ai +

nb∑
i=1

biλ
t
bi =

n+∑
i=1

ciλ
t
+i
, (18)

where the poles λ+ are the union of the poles of A and B: λ+ = λ(A + B) =
λ(A) ∪ λ(B). The order n+ is the number of distinct elements in λ(A) ∪ λ(B),
that is na + nb − nc (where nc is the number of common poles).

By (17) and the definition of intersection of behaviors (11), also the trajec-
tories of the intersection of two LTI behaviors contains sums of damped expo-
nentials whose poles are the common poles of the two behaviors:

w∩(t) =

na∑
i=1

aiλ
t
ai ∩

nb∑
i=1

biλ
t
bi =

n∩∑
i=1

diλ
t
∩i
, (19)

λ∩ = λ(A∩B) = λ(A)∩λ(B). The order of A∩B is the number of common
poles nc between A and B.

The previous results are summarized in the following lemma.

Lemma 6. Let A and B be two scalar autonomous LTI behaviors with minimal
kernel representations Ra(σ), Rb(σ), defined by the scalar polynomials Ra(z), Rb(z).
The polynomials for the minimal kernel representations R+(z) of A + B and
R∩(z) of A ∩ B are given by, respectively, the least common multiple and the
greatest common divisor of Ra(z) and Rb(z).

Proof. The expression of the trajectories of the sum and intersection systems
are given in (18) and (19), respectively. The systems poles of the two starting
systems are the exponents λai , λbi , which are also roots of the (scalar) polyno-
mials Ra(z) and Rb(z), respectively. From (18), we can see that the poles of the
sum system are the union of λai and λbi , hence the roots of R+(z) are the union
(without repetitions) of the roots of Ra(z) and Rb(z). Similarly, from (19), it
follows that the roots of R∩(z) are the intersection of the roots of Ra(z) and
Rb(z). Since all the poles are simple, the thesis follows.
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Remark 3. The result of Lemma 6 can be naturally extended to the case of
Multi-Input Multi-Output systems by replacing scalar with matrix polynomials.

The fact that λ+ is the union of the poles of the two systems can also be
checked in Matlab. Two (random) systems can be generated (in state-space
form) by the function drss, once we fix the number of inputs, outputs and the
orders (in the input-output setting, the sum is well-defined only for systems
with the same number of inputs and outputs).

pole(sys1) % poles first system

pole(sys2) % poles second system

pole(sys1 + sys2) % poles of the sum

While the addition of systems can be easily obtained by the sum, the intersec-
tion of two systems is not immediate to compute, and we should use some ad
hoc algorithms (only algorithms for the common dynamic estimation of scalar
autonomous systems exist at the moment). Anyway, the Matlab function inter-
sect can be called to check the presence of common poles among the poles of
the two systems.

Remark 4. If the coefficients of the given representations are inexact, the pres-
ence of common poles between the polynomials in the kernel representations
could not be detected; they can be estimated by computing approximate com-
mon divisors, e.g., via the algorithms developed in [24] for scalar polynomials
(in the SISO case) or in [23] for matrix polynomials (in the MIMO case).

5.2. A single-input single-output system and an autonomous system

Consider a single-input single-output system and an autonomous system
with simple poles. The kernel representation of the first is given by a 1 × 2
matrix polynomial:

A = ker
[
qa(σ) pa(σ)

]
.

The kernel representation of autonomous systems involves a square matrix poly-
nomial R(σ) whose determinant is nonzero. The poles are then the roots of the
determinant of R(σ). We consider the following kernel representation:

B = ker

[
1 0
0 pb(σ)

]
.

By choosing an input / output partition of the set of variables1 w = (u, y), the
trajectories of the first system satisfy the equation

qa(σ)u = −pa(σ)y ⇐⇒ y = −qa(σ)/pa(σ)u = ha ∗ u,

1This partition is always possible if there are at least two variables. Starting from a
difference equation of the form R(σ)w = 0, it is enough to switch to an input / output
representation by splitting w = (u; y) into a set of inputs and outputs and to partition R =
[Q,P ] accordingly.
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where the star denotes the convolution product. We need to add to these trajec-
tories the free response ya,f ∈ ker pa(σ), which are the trajectories corresponding
to zero input. Hence, the trajectories of the system A have the general form

wa =

[
u

ya,f + ha ∗ u

]
.

Observe that both the free response ya,f as well as the impulse response ha are
sums of damped exponential signals of the form

∑na

i=1 αiz
t
a,i where na is the

degree of the polynomial pa, while za,1, . . . , za,na
are the roots of pa.

The trajectories of the system B satisfy the equation
[ u
pb(σ)y

]
= 0. We see

that the input can only be zero so that the output is constrained to the free
response, i.e., yb,f ∈ ker pb(σ). The trajectories of the system B have the general
form wb =

[
0
yb,f

]
. The free response yb,f is still a sum of damped exponentials

whose exponents are the poles of the system B.
The sum A + B is a single-input single-output system whose trajectories

have the form w+ = wa +wb, and the poles λ(A+B) are the union of the poles
λ(A)∪λ(B). But the poles λ(B) appear only in the free response and not in the
convolution with the input. A kernel representation of the sum A+ B is given
by

R+(z) = pb(z)
[
qa(z) −pa(z)

]
. (20)

The kernel representation (20) shows that the sum of a single-input single-
output system with an autonomous system is always uncontrollable because of
the presence of the common factor pb(z) [1] (i.e., the matrix R+(z) is not left
prime).

The trajectories of the intersection A ∩ B should be of the form wa and wb
at the same time. Hence, the input is constrained to be zero and the output
contains only the free response y∩,f , which should be in the kernels of both
pa(z) and pb(z), i.e., in the kernel of their greatest common divisor. Hence,
the intersection is an autonomous system whose kernel representation has the
following expression:

R∩(z) =

[
1 0
0 gcd

(
pa(z), pb(z)

)] . (21)

6. Conclusion

We studied the two basic operations of addition and intersection of LTI sys-
tems in the behavioral setting, showing that they are different from the classical
definitions in the input-output setting. The proposed trajectory-based definition
of sum and intersection allows us to perform such computations directly from
the data. Moreover, we saw how the resulting system representations depend
on the representations of the starting systems, and we proposed algorithms for
their computations based on structured matrices and polynomial computations.
We summarize some of the main advantages due to the proposed definitions and
results:
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1. the intersection has been extended to open systems (systems with inputs);

2. the two operations can be performed directly using the system trajectories
(observed data); the system representations, if needed for the problem, can
be computed at a later stage;

3. we can sum and intersect systems with different numbers of inputs and
outputs (but the same number of variables!).

The development and implementation of an algorithm to estimate the com-
mon dynamics among open systems can be object of future research.

Acknowledgment

Ivan Markovsky is an ICREA research professor. The research leading to
these results has received funding from: the Catalan Institution for Research
and Advanced Studies (ICREA), the Fond for Scientific Research Vlaanderen
(FWO) projects G090117N and G033822N; and the Fonds de la Recherche Sci-
entifique FNRS–FWO EOS Project 30468160. Antonio Fazzi was supported
by the Italian Ministry of University and Research under the PRIN17 project
Data-driven learning of constrained control systems, contract no. 2017J89ARP.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] J. W. Polderman, J. C. Willems, Introduction to Mathematical Systems
Theory, Vol. 26 of Texts in Applied Mathematics, Springer New York,
New York, NY, 1998. doi:10.1007/978-1-4757-2953-5.

[2] J. C. Willems, The behavioral approach to open and interconnected sys-
tems: Modeling by tearing, zooming, and linking, IEEE Control Syst. Mag.
27 (2007) 46–99.

[3] J. Papy, L. De Lathauwer, S. Van Huffel, Common pole estimation in multi-
channel exponential data modeling, Signal Processing 86 (4) (2006) 846–
858.

[4] I. Markovsky, A. Fazzi, N. Guglielmi, Applications of polynomial com-
mon factor computation in signal processing, in: Y. D. et al. (Ed.), La-
tent Variable Analysis and Signal Separation, Vol. 10891 of Lecture Notes
in Computer Science, Springer, 2018, pp. 99–106, https://doi.org/10.
1007/978-3-319-93764-9_10.

15



[5] I. Markovsky, T. Liu, A. Takeda, Data-driven structured noise filtering
via common dynamics estimation, IEEE Trans. Signal Process. 68 (2020)
3064–3073. doi:10.1109/TSP.2020.2993676.

[6] A. Fazzi, N. Guglielmi, I. Markovsky, K. Usevich, Common dynamic es-
timation via structured low-rank approximation with multiple rank con-
straints, in: 19th IFAC Symposium on System Identification, Vol. 54, 2021,
pp. 103–107. doi:10.1016/j.ifacol.2021.08.342.

[7] M. Valcher, Characteristic cones and stability properties of two-dimensional
autonomous behaviors, IEEE Trans. Circuits Systems I - Fund. Theory
Appl. 47 (2000) 290–302.

[8] M. Valcher, On the decomposition of two-dimensional behaviors, Multidi-
mens. Systems Signal Process. 11 (2000) 49–65.

[9] M. Bisiacco, M. Valcher, A note on the direct sum decomposition of two-
dimensional behaviors, Trans. Circuits Systems V Fund. Theory Appl. 48
(2001) 490–494.

[10] B. M. Chen, A simple algorithm for the stable unstable decomposition of
a linear discrete-time system, Int. J. Control 61 (1995) 255–260.

[11] T. Maupong, P. Rapisarda, Data-driven control: the full interconnection
case, in: 22nd International Symposium on Mathematical Theory of Net-
works and Systems (11/07/16 - 14/07/16), 2016.

[12] J. C. Willems, On interconnections, control, and feedback, IEEE Transac-
tions on Automatic Control 42 (3) (1997) 326–339. doi:10.1109/9.557576.

[13] P. Rocha, J. Wood, Trajectory control and interconnection of 1D and nD
systems, SIAM J. Control Optim. 40 (2019) 107–134.

[14] I. Markovsky, F. Dörfler, Behavioral systems theory in data-driven analysis,
signal processing, and control, Annual Reviews in Control 52 (2021) 42–64.
doi:10.1016/j.arcontrol.2021.09.005.

[15] I. Markovsky, L. Huang, F. Drfler, Data-driven control based on behavioral
approach: From theory to applications in power systems (2023).

[16] I. Markovsky, F. Dörfler, Identifiability in the behavioral setting, IEEE
Trans. Automat. Contr. (2023). doi:10.1109/TAC.2022.3209954.

[17] J. C. Willems, From time series to linear system. Part I. Finite di-
mensional linear time invariant systems, Automatica 22 (1986) 561–580.
doi:10.1016/0005-1098(86)90066-X.

[18] A. Fazzi, N. Guglielmi, I. Markovsky, Computing common factors of matrix
polynomials with applications in system and control theory, in: Proc. of the
IEEE Conf. on Decision and Control, Nice, France, 2019, pp. 7721–7726.
doi:10.1109/CDC40024.2019.9030137.

16



[19] J. C. Willems, P. Rapisarda, I. Markovsky, B. De Moor, A note on persis-
tency of excitation, IEEE Control Syst. Lett. 54 (4) (2005) 325–329.

[20] A. Fazzi, I. Markovsky, Distance problems in the behavioral setting, Eur.
J. Control (2023). doi:https://doi.org/10.1016/j.ejcon.2023.100832.

[21] A. Fazzi, N. Guglielmi, I. Markovsky, A gradient system approach for Han-
kel structured low-rank approximation, Linear Algebra its appl. (2021).
doi:10.1016/j.laa.2020.11.016.

[22] I. Markovsky, K. Usevich, Software for weighted structured low-rank ap-
proximation, J. Comput. Appl. Math. 256 (2014) 278–292.

[23] A. Fazzi, N. Guglielmi, I. Markovsky, Generalized algorithms for the ap-
proximate matrix polynomial GCD of reducing data uncertainties with ap-
plication to MIMO system and control, J. Comput. Appl. Math. 393 (2021).
doi:10.1016/j.cam.2021.113499.

[24] A. Fazzi, N. Guglielmi, I. Markovsky, An ODE based method for comput-
ing the Approximate Greatest Common Divisor of polynomials, Numer.
Algorithms 81 (2019) 719–740. doi:10.1007/s11075-018-0569-0.

17


