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Abstract— We consider the problem of computing (approx-
imate) greatest common divisors for matrix polynomials and
we present some related facts and applications in system and
control theory. The main application is to compute the distance
of a controllable multi-input multi-output system to the set
of uncontrollable ones; then we describe some related results.
Index Terms— Matrix polynomial common factor - Distance to
uncontrollability - Behavioral approach

I. INTRODUCTION
Consider the problem of computing a Greatest Common

Divisor (GCD) L(z) for two matrix polynomials M(z) and
N(z), which are matrices whose coefficients are polyno-
mials, or equivalently polynomials with matrix coefficients.
This is an important topic in the framework of multivariable
control systems, and it has been studied by several authors
and through different techniques. Some authors find the GCD
as a combination of polynomials [1] or transform the block
matrix [M(z) N(z)] into [L(z) 0] [2]. Other methods use the
generalized Sylvester matrix [3], [4]. However in practical
applications we could deal with coprime matrix polynomials,
because the coefficients can be noisy or corrupted, so we
need to compute an approximate common factor.

The computation of approximate common factors has
been extensively studied in the case of scalar polynomials
(e.g. [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] and
some references therein) and it is still an active research
topic. However, the case of matrix polynomials has not been
considered in the scientific literature. The formulation of the
problem we consider is to fix the degree d of the sought
common factor, and to compute the smallest perturbation
on the polynomials coefficients which leads to two matrix
polynomials having a common factor of degree d:

minimize over M̂, N̂ ‖M − M̂‖F + ‖N − N̂‖F
subject to M̂ = LM̄ N̂ = LN̄ degL ≥ d

(1)

This is a straightforward generalization of the approximate
GCD computation for scalar polynomials ([5], [15], [12],
[9], [10]). As in the case of scalar polynomials, matrix
polynomials having a common divisor define a variety of
the Grassman type [16]. In order to have a unique common
factor, we should apply some normalization, for example on
the leading coefficient.
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The approximate greatest common divisor problem is
a non-convex optimization problem. To the best of our
knowledge, there is no algorithm in the scientific literature
for approximate GCD computation for matrix polynomials,
so we propose a generalization of the algorithm in [5] (based
on a local optimization approach) from scalar to matrix
polynomials. We describe in the appendix how the algorithm
works, and we use it later on a numerical example.

In the following we present some applications which are
related to (approximate) greatest common divisor computa-
tion.

II. DISTANCE TO UNCONTROLLABILITY

We present in this section an application of approximate
common factors computation for matrix polynomials. It
extends the computation of distance to uncontrollability from
Single Input Single Output systems (presented in [17]) to
Multi Input Multi Output systems.

Consider the linear time invariant system B(A,B,C,D)
defined by its state space representation

B = {(u, y) | ẋ = Ax+Bu, y = Cx+Du} (2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m
are parameters of the system, n denotes the number of
states, while m and p are the number of inputs and outputs,
respectively. For a given system B the parameters of its state
space representation A,B,C in (2) are not unique: a change
of basis x̄ = V x leads to the equivalent representation
B(V AV −1, V B,CV −1, D).

Controllability is a qualitative property of control sys-
tems and it is one of the fundamental concepts in modern
mathematical control theory. A system described by the
representation (2) is said to be controllable if the state
function x(t) can be directed from any given state to a
desired state in finite time by an input u(t). This classical
notion of controllability [18] for the system (2) is related
to the possibility of changing the state of the system, hence
it is only a property of the parameters A and B; from the
mathematical point of view it involves a rank test on the so
called controllability matrix

C(A,B) =
(
B AB · · · An−1B

)
. (3)

In particular it holds true that the system (2) is controllable
if and only if the matrix (3) is full rank.

Asking whether a system is controllable or not is a yes-
no answer involving the computation of the numerical rank
of matrix (3). However arbitrary small perturbation on the



parameters of the system can switch its controllability prop-
erty. Nearly uncontrollable systems are associated with ill
conditioned computational problems (e.g. [19], [20]). More-
over a nearly uncontrollable system can signal fundamental
trouble with the mathematical model or even the underlying
physical system [21]. Because of this fact, it is useful to
have a measure which defines how far a controllable system
is from the nearest uncontrollable system. This leads to the
problem of computing the distance to uncontrollability.

The definition of distance to uncontrollability considered
in the scientific literature [22] is only a property of the
parameters A and B of the state representation of the system.
It is defined as the structured distance to singularity of the
matrix C(A,B) in (3), so it involves the computation of the
smallest pair (w.r.t. the Frobenius norm) (∆A,∆B) so that

C(A,B) + C(∆A,∆B)

is singular. It was shown by Eising [23], [24] that this is
equivalent to the following global optimization problem in
two real variables:

min
λ∈C

σn(A− λI B) (4)

where σn denotes the n-th (the smallest) singular value.
Since these definitions depend on the state space representa-
tion, they are not invariant because of the nonuniqueness
of the parameters A,B (anyway for physical state space
descriptions it is the fixed parameters which are important). .
In order to avoid these issues we adopt the behavioral setting
[25], [26], [27], where the notion of controllability and
the associated distance problems become a (representation
invariant) property of the system and not of the parameters
we choose for its representation. In this framework, the
dynamical system (2) is viewed as the set of its trajectories.
The controllability property is described by the possibility of
concatenating any two trajectories, up to a delay of time.

Definition 1: Let B be a linear time invariant dynamical
system, which is a set of trajectories (vector valued functions
of time). B is said to be controllable if for all w1, w2 ∈ B
there exists a T > 0 and a w ∈ B such that

w(t) =

{
w1(t) for t < 0

w2(t) for t ≥ T

A system is uncontrollable if it is not controllable.
The controllability property (in the behavioral setting)

involves a rank test on a particular representation of the
system. Any linear time invariant system can be described
by a kernel representation [28]; hence given the system B,
there exists a matrix polynomial R(z) ∈ Rp×(m+p)[z] such
that

B(R) = {w | R0w +R1σw + · · ·+Rlσ
lw = 0}, (5)

where σ is the shift operator (in the discrete case) or the
derivative operator (in the continuous case). The controlla-
bility property is related to the rank of the matrix polynomial
R(z), and in particular we have the following Lemma [25]:

Lemma 2: The system B is controllable (according to
Definition 1) if and only if the matrix polynomial

R(z) = R0 +R1z + · · ·+Rlz
l

is left prime, i.e., R(z) is full row rank for all z ∈ C.
Alternatively to (5), a Multi Input Multi Output linear

time invariant system can be represented by its input/output
representation

Bi/o(P,Q) =

{(
u
y

) ∣∣∣∣P (z)y = Q(z)u

}
.

This is done, starting from the kernel representation (5), by
splitting the variables w into two sets (the inputs u and
the outputs y) and partitioning the columns of R(z) =
(Q(z) P (z)) accordingly.

As a consequence of Lemma 2 we have the following
result [29]:

Corollary 3: The system B is controllable if and only if
the matrix polynomials P (z) and Q(z) are (left) coprime.
The presence of left common factors in P (z) and Q(z) leads
to loss of controllability.

Proof: Because of Lemma 2 we show that P (z) and
Q(z) have no (left) common factors if and only if the block
matrix (P (z) Q(z)) is full row rank ∀z. Assume that P and
Q have no left common factors, so they are left coprime.
Hence [2] there exists a unimodular matrix U 1 such that

(P (z) Q(z))U(z) = (I 0),

so the matrix is full rank for all z.
On the other hand, suppose P (z) = C(z)P̄ (z), Q(z) =

C(z)Q̄(z). We can factorize the block matrix (P (z) Q(z))
as C(z)(P̄ (z) Q̄(z)). The zeros of C(z) are the only points
which makes the matrix (P (z) Q(z)) lose rank, since P̄ , Q̄
are coprime.

Hence the system B is controllable if and only if the
matrices P (z) and Q(z) have no left common factors of
degree one or more.

Let Luc be the set of uncontrollable linear time-invariant
systems with m ≥ 1 inputs and p ≥ 1 outputs,

Luc = {B | B uncontrollable LTI system}

and define the distance between two arbitrary systems by

dist(B(P,Q),B(P̄ , Q̄)) = ‖(P Q)− (P̄ Q̄)‖F , (6)

where, with an abuse of notation, we identified the matrix
polynomials by the vectors containing their coefficients2. The
problem of computing the distance to uncontrollability is the
following:

Problem 4: Given a controllable system B(P,Q), find

d(B) = min
B̄∈Luc

dist(B, B̄),

1A unimodular matrix is a matrix polynomial whose determinant is a non
zero constant.

2The parameters P and Q which identify the system are not unique, but
an equivalent representation can be obtained multiplying both P and Q by
the same unimodular matrices. In order to have a well posed definition of
distance we need to apply some normalization, e.g. we can assume P to be
monic; this assumption is not general though.



where the distance is the one defined in (6).
Problem 4 is an approximate left common factor computation
problem (1) with d = 1.

In the following, we propose a numerical example in
order to show the benefits of our approach (the behavioral
setting) and the performances of our algorithm (the one we
briefly illustate in the Appendix; it generalizes the local
optimization method proposed in [5], based on integration of
a system of ODEs describing the gradient system associated
with a suitable functional). Problem 4 could be stated in
the same way it was developed for Single-Input Single-
Output systems; the novelty consists in the algorithm we
have for its numerical solution (there is no algorithm in
the scientific literature for computing approximate common
factors of matrix polynomials, to the best of our knowledge).

A. Numerical examples

Consider the following system given by its state space
representation:

B(A,B,C,D)

A =


1 1 1 0

0.1 3 5 0
0 −1 −1 0
0 0 0 1

 , B =


1 2

0.1 0.5
0 1
` `

 ,

C =

(
1 2 0.1 0.3
3 0.1 0.1 0.5

)
, D =

(
1 1
1 1

)
.

(7)

Observe the particular structure of the system. If we set
` = 0, the system is uncontrollable independently of all the
other values (the last row of the controllability matrix (3)
is `[1, 1, . . . , 1]). Arbitrary perturbations on the parameter `
make the system controllable (again check the rank of the
controllability matrix (3) for ` 6= 0), so modifying the value
of ` we are able to build a controllable system which is
arbitrarily close to an uncontrollable system.

If we want to move to the behavioral setting, we need a
way to switch from the state representation (7) to the kernel
representation

B = {w|R0w +R1σw + · · ·+Rrσ
rw = 0}.

In order to compute the matrix polynomial R(z), we can
write the system (2) in extended form (discretizing and
rewriting the equations): y(k)

y(k + 1)
y(k + 2)

 =

 C
CA
CA2

x(k)

+

 D
CB D
CAB CB D

 u(k)
u(k + 1)
u(k + 2)

 .

(8)

Since we want to eliminate the state x in order to get the
matrices P and Q of the input/output representetion, we can
premultiply the equation (8) by the matrix in the left null

space of the observability matrix (C;CA;CA2):

(P2, P1, P0)

 y(k)
y(k + 1)
y(k + 2)

 = (P2, P1, P0)

 C
CA
CA2

x(k)

+(P2, P1, P0)

 D
CB D
CAB CB D

 u(k)
u(k + 1)
u(k + 2)


(9)

We denote by P (z) = P0 +P1z+P2z
2, while Q(z) is given

by the coefficients in the matrix product on the last row of
(9):

Q2 = P2D + P1CB + P0CAB;

Q1 = P1D + P0CB;

Q0 = P0D.

In this way we have a kernel representation for the system
in (7).

If we set ` = 0, the system (7) is uncontrollable, and the
two polynomials which give the kernel representation are
the following (all the numerical values are rounded to three
decimal places):

P (z) =

(
1 0
0 1

)
z2 +

(
0.516 −0.064
0.173 −0.460

)
z

+

(
−0.700 0.670
0.242 −0.232

)
Q(z) =

(
1.434 −1.092
0.328 −0.135

)
z2 +

(
−1.378 1.142
−0.912 0.487

)
z

+

(
0.249 −0.267
0.739 −0.463

)
.

(10)
We can check that the two matrices P (z) and Q(z) in (10)

have as common factor
(

0 1
z − 1 0.509

)
, and the associated

Sylvester resultant S(P,Q) (according to the classical defi-
nition presented in the literature [30], [31]) is rank deficient
with co-rank 1 (observe the correspondence among the co-
rank of the controllability matrix (3), the co-rank of the
Sylvester resultant and the degree of the determinant of the
common factor). If we perturb the value of ` in (7), the cor-
respondng system is controllable (the controllability matrix
(3) is full rank) and the controllability is reflected also in the
behavioral sense, since the corresponding matrix polynomials
P̂ , Q̂ coming from the kernel representation are coprime (the
associated Sylvester resultant S(P̂ , Q̂) is full rank). However
if we consider the problem of computing the distance from a
controllable system to the closest uncontrollable system, the
values of the distance problems are different.

In the following experiment (Table I) we consider the
system in (7) and we list some values of the computed
distance to uncontrollability corresponding to different per-
turbations of the parameter `. The distance in the classic
sense is computed by looking for the numerical solution of
(4). In [32] are listed several problems arising by solving
the non convex global optimization problem (4) by local
optimization approaches. The algorithm we use for solving



(4) is the one proposed in [33], where the authors underline
there are no standard methods for computing distance to
uncontrollability, which is a more difficult problem than other
distance problems, such as distance to singularity or distance
to instability.

The distance in the behavioral sense involves the com-
putation of an approximate left common factor between
P̂ (z) and Q̂(z), the two matrix polynomials coming from
the input/output representation, which are coprime since the
corresponding system is controllable (the algorithm we use
for computing these values of distance is the one briefly
summarized in the Appendix).

We consider then the converse problem: we start from an
uncontrollable system in the behavioral sense (i.e. two matrix
polynomials having a left common factor) and we switch,
after a perturbation on the polynomials, to the state space
representation in order to analyze the values of the distance
to the closest uncontrollable system.

Consider again the polynomials in (10). We switch from
the kernel to the state space representation calling the func-
tion lmf2ss from the Polyx Toolbox [34]. The computed
representation is:

B = B(A,B,C,D)

A =


1.018 1 −0.438 0
−0.191 0 0.567 0
0.646 0 1.932 1
−0.542 0 −1.010 0

D =

(
0 2

−3.040 7.90

)

B =


0.330 −0.374
−1.364 0.808
−3.769 2.676
−1.714 −0.769

C =

(
0 0 2 0

−3.040 0 7.90 0

)
.

(11)
Since the system is uncontrollable by construction, the

associated controllability matrix (3) is singular, as expected.
We now add some random perturbations to the coefficients

of the polynomials, in order to see how the corresponding
state space representation changes (in terms of distance to
uncontrollability). The results are given in Table II.

This last experiment confirm the results we observed in
Table I, that is the distances in the bahvioral setting are
smaller than the ones in the classic sense, so the behavioral
approach seems to be more accurate in finding which is the
closest uncontrollable system. We notice the difference in
the computed values of the distance in the classic sense
comparing Table I and Table II, as a consequence of the
different parameters we adopted for the state space represen-
tation. We do not observe such a variation in the distances

TABLE I
DISTANCE TO UNCONTROLLABILITY FOR A PERTURBED STATE SPACE

REPRESENTATION AND THE CORRESPONDING KERNEL REPRESENTATION

` d. uncontr. (classic) d. uncontr. (behavioral)
10−4 5.4 · 10−5 9 · 10−9

10−3 5.4 · 10−4 6.6 · 10−6

10−2 5.4 · 10−3 6.6 · 10−5

in the behavioral sense, where the computed values reflect
the perturbations on the data.

All the previous numerical experiments are online avail-
able [35] and they can be reproduced. In the first example
the perturbation is deterministic, so the numerical results
are exactly the same; on the other side we remark that the
perturbation in the second example is randomly generated,
so we cannot expect to get exactly the same results but only
similar ones.

III. OTHER APPLICATIONS INVOLVING
COMMON FACTORS COMPUTATION

A. Controllable and uncontrollable subsystems

In section II we described how to compute the distance
of a controllable linear time invariant system from the
uncontrollable ones. Once we compute a solution of Problem
4, we can split the system into two parts, controllable and
uncontrollable [28]. A nice way to define the controllable
part of a system is via subsystems. If B1,B2 are two
dynamical systems, we say B1 is a subsystem of B2 if
the set of trajectories of the first system is a subset of the
ones of the second system. This can be expressed also in
terms of kernel representation: if R1(z), R2(z) are the kernel
representations of B1 and B2, respectively, then B1 is a
subsystem of B2 if there exist a matrix polynomial F (z)
such that R2(z) = F (z)R1(z).

Definition 5: The controllable part of a system B, denoted
by Bc, is defined as the largest controllable linear time-
invariant subsystem of B.
Assume that the system B is defined by the difference
equation R(z)w = 0 for a certain matrix polynomial R(z) ∈
Rg×q , and we are interested in computing Bc. If the matrix
R can be factored as R(z) = C(z)R̂(z), with C(z) ∈ Rg×g ,
det(C(z)) 6= 0, R̂(z) ∈ Rg×q , then the system represented
by the difference equation R̂(z)w = 0 is the controllable part
of B (assuming R̂(z) is left prime). If such a factorization
does not exist, we could consider an approximate common
factor computation between the two blocks P (z), Q(z) of
the matrix R(z) in the input/output representation.

B. Minimal kernel representation

A further problem involving GCD computation is to
compute a minimal kernel representation starting from a non-
minimal one [25]. A non-minimal kernel representation is a
vector R̃(z) whose elements are gi × q matrix polynomi-
als, such that the trajectories w of the dynamical system

TABLE II
DISTANCES TO UNCONTROLLABILITY OF A PERTURBED KERNEL

REPRESENTATION AND THE CORRESPONDING STATE SPACE

REPRESENTATION

norm perturbation d. uncontr. (behavioral) d. uncontr. (classic)
3.98 · 10−5 3 · 10−6 0.120
4.38 · 10−4 2.5 · 10−4 0.119
4.7 · 10−3 4.5 · 10−4 0.119



satisfy the difference equation R̃(σ)w = 0. The kernel
representation is minimal if R̃(z) has no redundant rows.
In the matrix autonomous case we can compute a minimal
kernel representation by looking at the GCD of the elements
Ri(z) ∈ Rgi×q[z] of R̃, i.e.,

Rmin(z) = GCD (R1(z), . . . , Rl(z)). (12)

C. Intersection of behaviors

The common dynamics estimation problem has been pre-
sented in [17] in the case of scalar polynomials. We refor-
mulate it in the framework of matrix polynomials.

Problem 6: Given a set of N multivariable autonomous
linear time invariant systems B1, . . . ,BN (with the same
number of variables), find their common dynamic, defined
as the intersection of the systems B1, . . . ,BN , i.e.,

B = B1 ∩ · · · ∩ BN .
Consider for each system its kernel representation

Bi = ker(Pi(σ)) := {w | P0w+P1σw+ · · ·+Pnσnw = 0}.
(13)

where each Pi is a gi × q matrix polynomial. Problem 6
is equivalent to a greatest common divisor computation for
the matrices P1, . . . , PN . In the case there is no an exact
common factor we can consider the problem of computing
an approximate common factor. The following illustration
can be extended from 2 to any number N of systems.

B1 = ker(R1), B2 = ker(R2),

B = B1 ∩ B2 = ker

(
R1

R2

)
= ker

(
GCD(R1, R2)

)
.

IV. CONCLUSION

Given a controllable linear time invariant Multi-Input
Multi-Output system, we proposed a representation invariant
measure for computing the distance to uncontrollability.
In the proposed framework (the behavioral approach) the
controllability property is regarded as a property of the
whole system, and not only of the (non unique) parameters
choosen for its state space representation. The problem is
restated as an approximate left common factor computation
between two matrix polynomials; we have now an algorithm
for the numerical solution of this problem (whose ideas
are briefly summarized in the Appendix). More applications
related to GCDs computation for matrix polynomials are:
decomposition of a given system into controllable and un-
controllable subsystems, converting a kernel representation
into a minimal one and finding the intersection of linear
time-invariant systems.

APPENDIX: AN ALGORITHM FOR COMPUTING
APPROXIMATE COMMON FACTORS OF MATRIX

POLYNOMIALS

We describe here the ideas behind the algorithm for
computing the numerical solution of Problem 4, i.e. the
computation of approximate left common factors for two
matrix polynomials. It generalizes the algorithm presented
in [5] from scalar to matrix polynomials.

The starting data are two left coprime matrix polynomials
P (z), Q(z) (having the same number of rows) and the
associated modified Sylvester resultant Sw(P,Q) (as defined
in [30]), which is full rank. A rough starting estimate for
the distance to uncontrollability can be the smallest singular
value of Sw(P,Q); however the sought solution is given by
the structured distance to singularity. The goal is to perturb
the coefficients of the matrix polynomials (in a minimal way)
till the associated Sylvester resultant becomes singular. This
is done by iteratively adding a structured perturbation of the
form εE, where ε ∈ R is the norm of such a perturbation,
while E is a Sylvester matrix of (Frobenius) norm 1 which
identifies as εE the minimizer of the smallest singular value
of Sw+εE over the ball of matrices whose norm is at most ε.
In this way we can move E and ε separately on two different
levels:
• at the inner level we fix the value of ε and we aim at

minimizing the smallest singular value σ of Sw + εE
by looking for the stationary points of the associated
gradient system;

• at the outer level we know the value of E and we want
to move the value of ε in order to find the smallest
perturbation which vanishes the value of σ.

During the inner iteration we look for minimizing the
value of σ for a fixed value of ε. Hence we need to compute
an optimal perturbation E which minimizes the smallest
singular value σ of Sw + εE over the set of matrices of
unit Frobenius norm. This is done by looking for a smooth
path of matrices E(t) (of unit Frobenius norm) along which
the value of σ is decreasing. This direction is computed
through the stationary points of the following gradient system
(omitting the time dependence)

Ė = −PS(uv>) + 〈PS(uv>), E〉E (14)

where PS(·) is the operator which project the argument
onto the Sylvester structure, while u, v are the left and
right singular vectors associated to σ. The system of ODEs
(14) comes from the combination of the expression of the
derivative of eigenvalues, the relation between eigenvalues
and singular values of a matrix and the solution of a
constrained minimization problem (the reader can check [5]
for further details and the formula for the projection PS in
the scalar case). It can be proved that the singular value
σ associated to u and v is actually decreasing along the
solution of (14), and it reaches the point of minimum in
correspondence to the stationary points of the equation (14).

Once we have computed the direction E and the corre-
sponding singular value, denoted by σ(ε), we need to move
the value of ε in order to find the smallest perturbation to
the original Sylvester matrix which decreases, up to a small
tolerance, the smallest singular value σ(ε) of the matrix
Sw + εE. This can be done by a root finding algorithm
(e.g. the Newton method), possibly coupled with a bisection
step, in order to look for possible better solutions once σ(ε)
reaches the fixed tolerance.

A more detailed description of the algorithm, its main
properties and features and the similarities and differences



with respect to the scalar case, can be found in [36]. We
remark that in [36] it is assumed (for the sake of simplicity)
that all the common factors have a full rank leading coeffi-
cient, while in this paper we used common factors with rank
deficient leading coefficients; this is done by changing the
functional to be minimized in a suitable way.
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