
Distance problems in the behavioral setting

Antonio Fazzi1 and Ivan Markovsky2

Abstract— Motivated by the distance to uncontrollability prob-
lem, we define a distance between finite-length linear time-
invariant behaviors. The method proposed in this paper for
computing the distance exploits the principal angles associated
with structured matrices representing the systems.

I. INTRODUCTION

The concept of distance between linear time-invariant
(LTI) systems is important in systems and control theory.
For example, it is used to measure the robustness of a given
system with respect to a property, e.g., controllability or
stability. In the input-output setting, the gap metric [1], [2],
[3] defines a distance between LTI systems. An equivalent
metric (i.e., inducing the same topology) is the graph metric
[4], [5]. The computation of the gap metric [6] was shown
to be equivalent to the solution of an optimization prob-
lem involving (right) coprime factorizations of the systems.
Another metric called the Vinnicombe metric, or the ν-gap
[7], [8], is used for stability analysis. It can provide a more
stringent test for robustness with respect to the gap metric
and it is easier to compute since it involves the computation
of the winding number of a rational function. Both the gap
metric and the Vinnicombe metric are implemented in the
Matlab function gapmetric [9]. More distances associated
with input-output maps are the L2 gap, which is cheap to
compute since it involves only a norm computation but is not
useful in the context of robust stability [8], and the Sasane-
Ball metric [10] which extends the notion of gap to linear
systems having nonzero initial conditions.

The work by Ball and Sasane connects the classical
gap metric with the behavioral approach to system theory
[11], [12] introduced by J. C. Willems. In the behavioral
framework, LTI systems are defined as sets of trajectories,
without distinction between input and output variables. The
behavioral approach motivated the study of the connection
between the classical gap metric defined for input-output
maps and the distance between behaviors [13], [14], [10],
[15], [16]. In particular, [15] extends four of the previously
mentioned metrics (the classical gap metric [1], the L2 metric
[8], the Sasane-Ball metric [10] and the Vinnicombe metric
[8], [7]) from the classical input-output setting to the be-
havioral setting by using a rational behavioral representation
[17], [18].
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The recent work in [16], on the other hand, proposes a
trajectory-based idea of distance for finite length behaviors
by showing its connection with the classical concept of gap.
Its computation is easy and is based on the singular value
decomposition of the Hankel matrix built from an observed
trajectory. We remark that all these distances are restricted
to the subset of controllable behaviors. The controllability
assumption is removed in [16] by assuming a rank condition
on the Hankel matrix generated by the system trajectory
[19]. A definition of distance between behaviors without
restrictions is motivated by a model reduction problem in
the behavioral setting [20].

The goal of this paper is to define a new metric in the be-
havioral setting that is intuitive, computationally cheap, and
applies to an arbitrary LTI system (unstable, uncontrollable,
etc.). Such a metric is useful in distance problems, e.g., the
distance to uncontrollability, where systems representations
are used in the definition of distance (see [21] for details).
Therefore, in this paper, we define a distance independent
of the choice of the system representation. Inspired by the
previous works, we propose an adaptation of the concept of
principal angles, and we define different distance measures
as functions of the principal angles.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Behavioral system theory

In the behavioral setting [11], LTI systems are defined
as sets of trajectories. This allows for stating and defining
system properties in terms of the observed trajectories of the
system.

An LTI dynamical system with q variables, Bq , is charac-
terized by a set of integer invariants [22]: q is the number
of variables, m is the number of inputs, p is the number
of outputs, ` the lag, and n the order. These integers are a
property of the system and do not depend on the choice of
representation. The complexity of the system is defined as
the pair (m,n) — (number of inputs, order).

We denote by B|L the behavior B restricted to the interval
[1, L], that is we truncate all trajectories to time L. By
restricting the behavior to time L, we can write its dimension
(as a vector space) in terms of the complexity [23]:

dim B|L = n+mL.

B. Structured matrices

Given a linear time-invariant system, there are different
ways of representing its behavior. The notation w ∈ B|L
means that w is a L-samples long trajectory of the system.



A length-T trajectory w satisfies a difference equation:

B(R) = {w|R0w(t)+R1σw(t)+ · · ·+Rlσ
lw(t) = 0}, (1)

for all t = 1, . . . , T − l, where R(σ) ∈ Rp×q[σ] is a matrix
polynomial of degree `, usually called kernel representation,
and σ is the shift operator σw(t) = w(t+ 1).

By writing (1) in extended form as

(R0, R1, · · · , R`)


w(1) w(2) · · · . .

.

w(2) w(3) · · ·
...

... . .
.

w(`+ 1) w(`+ 2) w(T )

 = 0,

(2)
we observe the arising of a Hankel matrix H`+1(w) (the
subscript denotes the number of rows) generated by the
entries of the trajectory w. A classical result in the behavioral
setting, also known as fundamental lemma [24], states that,
under suitable assumptions, the finite-length behavior BL can
be generated by one observed trajectory only by considering
linear combinations of the columns of the Hankel matrix
H`+1(w):

Lemma 1: Given a behavior Bq of order n, let w ∈ BqT .
Assume w = (u, y) is an input-output partition of the
variables. If

1) Bq is controllable,
2) the input component u is persistently exciting of order

L+ n1, for a certain 1 ≤ L ≤ T ,
then BqL = image HL(w)
It has been recently shown in [19] that the assumptions in
Lemma 1 can be replaced by a rank condition on the Hankel
matrix HL(w): this is important since it allows extending the
same result to systems that are not necessarily controllable.
However, a trajectory-based definition of distance has been
already proposed in [16], so we plan to use a different
structured matrix associated with the full behavior BqL.

By writing (2) in a different way, we get the following
result from [25]:

Lemma 2: Given a behavior BL expressed by its kernel
representation BL = ker R(σ), let R1(σ), . . . , Rp(σ) be the
rows of R(σ). Then we have

B|L = ker TL(R) = ker

TL(R1)
...

TL(Rp)

 , for L ≥ `+ 1,

where ` is the degree of R(σ) and TL(R1), . . . , TL(Rp) are
generalized Toeplitz matrices with L block columns

TL(Ri) =


Ri

0 Ri
1 · · · Ri

`

Ri
0 Ri

1 · · · Ri
`

. . .
. . .

. . .

Ri
0 Ri

1 · · · Ri
`

 , (3)

for i = 1, . . . , p.

1u is persistently exciting of order L if the Hankel matrix HL(u) is full
row rank.

The previous result holds true for any linear time-invariant
system. Moreover, the kernel representation does not change
with the length of the trajectory, even if the Toeplitz matrix
TL(R) does. But the kernel representation R(σ) is not
unique. The goal is to define a distance measure that does not
depend on the particular choice for the kernel representation.

C. Problem statement

As already stated, the kernel representation R(σ) is not
unique, but it is well known that an equivalent kernel
representation can be obtained by pre-multiplication by a
unimodular matrix U(σ), that is a square matrix polynomial
whose determinant is a nonzero constant. First of all, we will
work with minimal kernel representations.

Remark 3: Kernel representations are matrix polynomials
having q columns and (at least) p rows. If the number of
rows is exactly p, the kernel representation is minimal, that
is its rows are linearly independent on the ring of (scalar)
polynomials. Every kernel representation can be reduced to
a minimal one by applying suitable transformations on its
rows, therefore we can assume all the kernel representations
to be minimal without loss of generality.
We observe that the pre-multiplication by an arbitrary uni-
modular matrix U(σ) can, in general, change the degree
of R(σ), that is deg(U(σ)R(σ)) > deg(R(σ)). However,
by considering Hankel matrices with ` + 1 rows (we recall
that the lag ` is an invariant integer for the system) and
their left kernel(s), we can also assume that all the kernel
representations have the same (minimum) degree `.

Remark 4: By constraining the degree of all the kernel
representations to be minimum, we need to restrict the
class of equivalent representations. The unimodular matrix
polynomial has, in this case, a special form. It is a (square)
invertible matrix whose entries are scalar.

The goal is to define a distance between two behaviors
B1
L(R1) and B2

L(R2) which does not change by premulti-
plying R1 and R2 by invertible matrices (see Remark 4).
More formally:

Problem 5: Given two finite-length behaviors
B1
L(R1),B2

L(R2), define a distance which satisfies the
following property:

dist(B1
L(R1),B2

L(R2)) =

dist(B1
L(Θ1R

1),B2
L(Θ2R

2)) ∀Θ1,Θ2 ∈ Rp×p.
(4)

III. MOTIVATING APPLICATION

The distance to uncontrollability problem in the behavioral
setting has been already studied and analyzed in [26] for
SISO systems and in [21] for MIMO systems. This prob-
lem was stated as a distance to singularity for the kernel
representation R(σ). Once we split the set of variables
into inputs and outputs, w = (u, y), the key idea is to
partition accordingly the kernel representation as R(σ) =
[P (σ), Q(σ)]. This distance problem was shown, then, to be
equivalent to a distance to common divisibility for the two
(matrix) polynomials P (σ), Q(σ) appearing in this input-
output representation. And it was solved numerically with
the gradient system methodology proposed in [27], [28] for



scalar polynomials and in [29] for matrix polynomials. The
considered polynomial distance was the classical norm of the
difference between the polynomial coefficients.

But the distance between polynomial coefficients is repre-
sentation invariant in the SISO case only. When we deal
with MIMO systems, we need to fix a particular kernel
representation to get a well-posed definition of distance.
To solve this issue, we are going to propose an alternative
definition of distance which still depends on the kernel
representations of the systems, but it has the same value for
each equivalent kernel representation:

dist(R1(σ), R2(σ)) =

dist(θ1R
1(σ), θ2R

2(σ)) ∀θ1, θ2 ∈ Rp×p

We observe that controllability is a classical example
of a property that is usually defined in terms of system
trajectories (see, e.g., [23, Section 7.5]), but its test relies
on the system kernel representation. There are no trajectory-
based characterizations of distance to uncontrollability, up to
our knowledge.

Remark 6: There are differences in the distance measures
to uncontrollability between the SISO [26, Section 3] and
the MIMO [21, Section II] cases. Distance measures for
SISO systems are representation invariant (see Section IV-A),
while the same is not true in the MIMO case. This motivates
the introduction of the proposed distance.

IV. PRINCIPAL ANGLES BETWEEN BEHAVIORS

The principal angles are an extension of the classical angle
between two lines, and they are some quantities that are
invariant under isometric transformations. The distance we
are going to propose is based on the principal angles between
the subspaces generated by the Toeplitz matrices representing
the two behaviors, as shown in Lemma 2. The choice of the
principal angles is motivated by the following

Theorem 7: [30, Theorem 2] Any notion of distance be-
tween k-dimensional subspaces in Rn that depends only on
the relative positions of the subspaces, i.e., it is invariant
under any rotation, must be a function of their principal
angles.
Moreover, by looking at [31, Section 4.3], several distance
measures in terms of the principal angles are proposed, so
it is also possible to choose the one which best fits the
considered problem. Because of Lemma 1 and the rank
condition on the Hankel matrix [19], behaviors can be seen as
low-order subspaces in a bigger vector space, that is as points
on a Grassmann manifold [32]. Therefore, suitable choices
could be the arc-length distance dist = ‖θ‖2 (this is the
geodesic distance [33]) or the classical projection distance
[34] (which is the choice adopted in [16]).

The computation of such angles between the two Toeplitz
matrices follows the algorithm in [34, Chapter 12]. This is
based on two simple steps: the (tiny) QR factorization of
the two matrices and the computation of a singular value
decomposition. We list the main steps for the computation
of the angles and the associated distance in the following:

1) Compute the tiny QR decomposition of the two matri-
ces

TL1
(R1)T = Q1T1

TL2(R2)T = Q2T2

2) Compute the singular values Σ of the matrix QT
1 Q2

3) θ = arccos Σ
4) Compute the distance as a function of θ.

To fix the ideas, we define dist(R1, R2) = ‖θ‖2, but other
functions of the principal angles can be fair alternative
distances (see [31, Section 4.3]).

Remark 8: The considered matrices need to have more
rows than columns to get a non-trivial solution (not all the
singular values of the orthogonal matrix, that is the cosines
of the angles, equal to 1). This is why we transposed the
Toeplitz matrices in the first step. For the same reason, we
need to consider a tiny QR decomposition instead of a full
one.

The Toeplitz matrices and their QR decompositions actu-
ally still depend on the particular kernel representation. The
problem of defining a representation invariant measure of
distance (according to the previous angle-based definition)
is equivalent to the fact that the matrix Q in the QR
decomposition does not change by replacing R with ΘR in
the kernel representation. We show how to make it possible
in the following sections, by analyzing separately the SISO
and the MIMO case.

A. The SISO case
In the SISO case, a kernel representation of a system has

the general form R(z) = [q(z), p(z)], where p(z), q(z) are
two scalar polynomials. The number of outputs p equals
1, therefore Θ1 and Θ2 in (4) are scalars. Given two
SISO behaviors B1(R1),B2(R2) having the same order, we
consider two different equivalent kernel representations for
each of them,

Ri(z) = [qi(z), pi(z)] i = 1, 2

ΘiRi(z) = [Θiqi(z),Θipi(z)] Θi ∈ R, i = 1, 2.
(5)

The problem is to understand when dist(R1(z), R2(z)) =
dist(Θ1R1(z),Θ2R2(z)) ∀Θ1,Θ2.

We need the following result:
Lemma 9: Given a matrix A and its QR factorization

A = QT , multiplying A (on the right) by an upper trian-
gular matrix S does not change the matrix Q in the QR
factorization.

Proof: AS = QTS = Q(TS). Since S is upper
triangular, the matrix TS is the upper triangular factor in
the QR decomposition of AS.

The multiplication of all the coefficients in kernel repre-
sentation by Θ changes the Toeplitz matrix from TL(R) to
TL(ΘR) such that

TL(ΘR) = diag(Θ)TL(R)⇒
TL(ΘR)T = TL(R)T diag(Θ)T = TL(R)T diag(Θ)

(6)

Remark 10: Since Θ, as well as all the coefficients, are
scalar, in the SISO case we do not care about left and right
multiplications.



By combining Lemma 9 and (6), the matrix Q does
not change in the QR factorization by changing the kernel
representation. That is, in the SISO case, the choices for the
distance measure (depending on the principal angles) and the
behaviors representations automatically give a representation
invariant distance.

B. The MIMO case

In the MIMO case, a kernel representation R(σ) =
[Q(σ), P (σ)] is, in general, a matrix polynomial (a poly-
nomial with matrix coefficients). Changing kernel represen-
tation, according to Remark 4, means pre-multiplying by a
p × p invertible matrix. We wonder if the same results of
Section IV-A hold true also in this case, but the answer is
negative, in general.

Given a matrix polynomial R(σ), we observe that its pre-
multiplication by Θ changes the corresponding transposed
Toeplitz matrix as follows:

TL(ΘR)T =


RT

0 ΘT

RT
1 ΘT RT

0 ΘT

...
. . .

RT
` ΘT

 =

=


R̄T

0

R̄T
1 R̄T

0
...

. . .

R̄T
`


ΘT

. . .

ΘT

 =

= TL(R)T diag(Θ)T

(7)
The key point is now the structure of the matrix diag(ΘT ):

if ΘT is upper triangular, diag(ΘT ) is upper triangular too,
and the same result from Section IV-A (based on Lemma
9) still holds true. But this is not general, though. If ΘT

is not upper triangular, Lemma 9 cannot be applied and
the orthogonal matrix in the QR decomposition changes by
switching kernel representation.

To deal with this issue, we can use a block QR decompo-
sition which takes into account the dimension of the matrix
Θ and computes a block-upper triangular matrix in the QR
decomposition. This means that the diagonal coefficients of
such a matrix are p×p blocks (of the same dimension of ΘT ).
Doing so, we expect similar invariance properties as the ones
observed in Section IV-A. But such decomposition is not
available in standard software packages, so its computation
needs to be implemented in an algorithm.

The idea for this block factorization comes from the
extension of the classical Householder method [35], [36],
[37]. We summarize in Algorithm 1 the code from [35].

By applying Algorithm 1, the orthogonal factor Q still
preserves its properties (in the classical sense), but the
structure of the triangular factor T is a bit different from the
classical one, since its diagonal elements are r × r matrices
(see Figure 1 for an example with r = 2).

We can state now the following result:
Lemma 11: Given a matrix A and its block QR factoriza-

tion A = QT , multiplying A (on the right) by a block upper

Algorithm 1: Block QR decomposition
Data: A (matrix to be decomposed), r (size of square

blocks on the diagonal of rectangular factor)
Result: Q (orthogonal), T (block upper triangular) such

that A = QT
begin

1 Get the number of block columns `
2 for i = 1 : ` do
3 Let C be the i-th block column of A
4 Compute C = XZ (tiny QR factorization)
5 Set as X̂ the first r rows of X
6 Compute the SVD X̂ = WDV T

7 Set Y = X +

(
WV T

0

)
8 Compute Y = US (tiny QR factorization)
9 Set Qi = I − 2UUT ,

Ti = Qi ∗A, Q̂i =

(
I 0
0 Qi

)
10 Delete from A the first r columns and the first

r rows
11 for j = 1 : ` do

Q = Q ∗ Q̂j

12 Q = Q(:, 1 : r`), T = T (1 : r`, 1 : r`)

Fig. 1. Illustrative example of a block upper triangular factor in a block
QR decomposition. The dimension of the blocks is 2× 2.

triangular matrix does not change the orthogonal factor Q in
the block QR factorization.

Proof: It can be checked that multiplying two block
upper triangular matrices gives a matrix with the same
structure. Hence, if S is a block upper triangular matrix,
AS = (QT )S = Q(TS). Since T is block upper triangular,
the matrix TS is the block upper triangular factor in the
block QR decomposition of AS.

To conclude, by applying this block factorization, we leave
unchanged the orthogonal matrix Q in the QR factorization.
The computation of the principal angles, the choice for
the behavior representation and Lemma 11 allow having a
representation invariant measure of distance.



V. NUMERICAL EXAMPLES

We show some numerical examples with MIMO systems
to illustrate the previous results.

We consider first the distance between a controllable
system and the closest uncontrollable one. This problem
was stated and solved numerically by a local optimization
approach in [21]. The problem in [21] was solved as an
approximate polynomials common factor computation, hence
the considered (representation-based) distance depends on
the coefficients of the polynomials. The proposed method, on
the other hand, is invariant on the choice of the representation
(despite its computation requiring a representation).

Therefore, differently from [16], both these distances are
representation based. The classical definition of controlla-
bility in the behavioral setting is the possibility of linking
any two system trajectories, up to a delay of time. It can
be checked by a rank-test on the system representation.
Therefore, a distance measure based on the representations
is advisable.

We consider a MIMO system with two inputs and two
outputs, by generating two matrix polynomials (of degree 2)
which form its kernel representation [Qc(z), Pc(z)] = Rc(z).
We look for the closest uncontrollable system Ru(z) =
[Qu(z), Pu(z)] by an approximate common factor between
Qc(z) and Pc(z) (see [21] for the details). We compute then
the two distances

1) distance between polynomials coefficients: dPQ =√
‖Pc − Pu‖2F + ‖Qc −Qu‖2F

2) distance defined by principal angles (see Section IV):
dist(Rc, Ru) = ‖θ‖2

Qc(z) =

(
−2 0
0 2

)
z2 +

(
2 −3
3 0

)
z +

(
−5 0
−3 1

)
Pc(z) =

(
1 0
0 1

)
z2 +

(
−2 −1
5 1

)
z +

(
0 −2
2 −5

) (8)

It can be checked that Pc(z) and Qc(z) have no common
roots, hence the system associated with Rc = [Qc, Pc] is
controllable. The representation of the closest uncontrollable
system (computed by the algorithm in [29]) is (the following
coefficients are rounded to the third decimal digit)

Qu(z) =

(
−1.276 −0.536
0.657 1.398

)
z2 +

(
2.125 −2.973
3.206 −0.142

)
z+(

−5.078 0.007
−2.990 1.042

)
Pu(z) =

(
0.462 0.280
−0.175 1.207

)
z2 +

(
−2.089 −0.843
4.875 1.117

)
z+(

−0.010 −2.019
1.954 −5.042

)
(9)

We have dPQ = 1.483 and dist(Rc, Ru) = 0.598. What
happens by switching to equivalent representations for both

(8) and (9)? Consider

R̄c =

(
1 1
1 2

)
Rc =

(
1 1
1 2

)
[Qc, Pc] = [Q̄c, P̄c]

R̄u =

(
1 2
2 1

)
Ru =

(
1 2
2 1

)
[Qu, Pu] = [Q̄u, P̄u]

(10)

R̄c and R̄u represent the same systems (the same trajec-
tories satisfy the associated difference equations). Hence,
it would be nice if the computed value of distance does
not change with the representation. However, this is true
only for the distance proposed in the paper because the
polynomial coefficients are completely different. Indeed we
have dP̄ Q̄ = 19.623 and dist(R̄c, R̄u) = 0.598.

Remark 12: The value dP̄ Q̄ only shows that the value of
the distance between the coefficients changes with the system
representation. It is not the distance of R̄c to the closest
uncontrollable system. Despite Rc and R̄c representing the
same system, the algorithm in [29] optimizes with respect to
the starting polynomials (hence the need to fix a representa-
tion). Equivalent representations lead to different solutions.

The invariance property of the proposed distance can be
further checked on equivalent representations of random
systems, generated as follows:

q = 4; % number of variables
m1 = 2; % inputs first system
m2 = 2; % input second system
l1 = 1; % lag first system
l2 = 1; % lag second system
T = 100; % time span

p1 = q - m1; % output first system
p2 = q - m2; % output second system
n1 = l1 * p1; % order first system
n2 = l2 * p2; % order second system

sys1 = drss(n1, p1, m1);% first system
sys2 = drss(n2, p2, m2);% second system

u1 = randn(T, m1); % random input
y1 = lsim(sys1, u1); % output sys 1
w1 = [u1 y1]; % trajectory sys 1
u2 = randn(T, m2); % random input
y2 = lsim(sys2, u2); % output sys 2
w2 = [u2 y2]; % trajectory sys 2

% kernel representations
R1 = null(blkhank(w1, l1 + 1, T - l1)’)’
R2 = null(blkhank(w2, l2 + 1, T - l2)’)’

%alternative representations
P1 = randn(p1, p1);
R3 = P1 * R1;
P2 = randn(p2, p2);
R4 = P2 * R2;

By using the factorization in Algorithm 1, the principal an-
gles give dist(R1, R2) = dist(R3, R4) = dist(R1, R4) =



dist(R3, R2). This is because the principal angles do not
change by switching between equivalent representations.

VI. CONCLUSION

Working in the behavioral setting, where linear time-
invariant systems are defined as sets of trajectories, we
proposed a new definition of distance measure based on the
principal angles associated with some structured matrices
representing finite-length behaviors. The proposed definition
of distance is based on the system kernel representation;
such a representation is nonunique, but a suitable matrix
factorization allows to return the same distance measure for
each equivalent representation.

We remark that we only defined a distance measure. Such
a measure can be used to develop algorithms that compute
the numerical solution of some (representation invariant)
distance problems.
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