
Proceedings of Machine Learning Research vol vvv:1–11, 2024

The Behavioral Toolbox

Ivan Markovsky IMARKOVSKY@CIMNE.UPC.EDU

Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona,
and Int. Centre for Numerical Methods in Engineering (CIMNE), Gran Capità, 08034 Barcelona, Spain

Abstract
The Behavioral Toolbox is a collection of Matlab functions for modeling, analysis, and design of
dynamical systems using the behavioral approach to systems theory and control. It implements
newly emerged direct data-driven methods as well as classical parametric representations of linear
time-invariant systems. At the core of the toolbox is a nonparameteric representation of the finite-
horizon behavior by an orthonormal basis. The paper presents five problems—checking systems
equality, interconnection of systems, errors-in-variables least-squares smoothing, missing input es-
timation, and data-driven forecasting—and describes their solution by the methods in the toolbox.
Keywords: Behavioral approach, Data-driven methods, System identification, Matlab, Software.

1. Introduction

At the core of the behavioral approach is the notion of a dynamical system as a set of trajectories—
the behavior Willems (1986, 1987, 2007). For numerical computations, however, a representation
of the behavior is needed. The representation used in the Behavioral Toolbox is a basis for the be-
havior restricted to a finite-horizon. It is nonparameteric and has close connection to newly emerged
data-driven methods, inspired by Willems et al. (2005) fundamental lemma. Unlike classical nonpa-
rameteric representations, such as the convolution, a basis for the restricted behavior doesn’t assume
an input/output partitioning of the variables and is a direct application of the behavioral approach.

For an in-depth introduction to the philosophy of the behavioral approach, its differences from
the classical approach, and its relation to data-driven methods for systems and control, refer to the
overview papers Markovsky and Dörfler (2021); Markovsky et al. (2023a). The notation used in
this document is also the same as the one in the overview papers. A summary is given in Table 1.

w ∈ (Rq)N, w : N→ Rq q-variate real discrete-time signal with time axis N
w|T :=

(
w(1), . . . ,w(T)

)
restriction of w to the interval [1,T]

w = wini∧wf concatenation of trajectories wini and wf
B ⊂ (Rq)N discrete-time dynamical system with q variables
B|T := {w|T | w ∈B } restriction of B to the interval [1,T]
mmm(B) / `̀̀(B) / nnn(B) number of inputs / lag / order of B
HT (w) Hankel matrix with T block rows constructed from w

Table 1: Summary of notation.

We showcase the Behavioral Toolbox in five examples. They admit solutions in the classical
setting as well as the behavioral setting. The latter are based on standard linear algebraic operations.
They are conceptually simple and easy to implement. They are also applicable when the underlying

© 2024 I. Markovsky.

THE BEHAVIORAL TOOLBOX

system is unknown but data are available from the system. In this case, the methods in the toolbox
achieve a direct map from the observed data to the desired solution. Classical solutions require
a preliminary identification step. The current implementation of the methods in the Behavioral
Toolbox, however, makes them less efficient computationally than alternative classical methods.

First, we consider the basic question when two systems are equal. In the classical setting, equal-
ity of linear time-invariant systems represented in state-space can be verified by finding a state
transformation that makes the corresponding systems’ parameters equal. In the behavioral setting,
the question is equivalent to verifying equality of subspaces—a classical linear algebra problem.
The second example is interconnection of systems. As a specific example, we show that series con-
nection in the input/output setting can be obtained by intersection of behaviors. The third example
is optimal signal-from-noise separation. The classical solution, which uses a state-space represen-
tation of the data-generating system, is the celebrated Kalman smoother. The interpretation of the
problem in the behavioral setting is projection on the behavior, i.e., finding the nearest trajectory
of a system to a given signal. The fourth example is the observer problem in the behavoral setting,
i.e., inferring one set of variables of a dynamical system from another set of variables. The observer
is applied for estimation of a missing input. The fifth example illustrates the direct data-driven
approach on a forecasting problem, where instead of a system a trajectory of the system is given.

The toolbox, the examples in this paper, and additional examples are available from

https://imarkovs.github.io/bt.tar

2. When are two systems equal?

The question “How to check if two systems are equal?” immediately leads to the questions “How
are the systems specified?” and “What does it mean that they are equal?”. Intuitively we consider
two systems equal when they have the same “external behaviors”. The behavioral approach turns
this intuition into a definition: the system is the external behavior. Transfer functions and state-
space equations can be used to represent systems, but are not systems. Thus, from the behavioral
perspective, statements such as “transfer function system” and “the system x(t+1) =Ax(t)+Bu(t)”
are nonsense. This is not just a terminology convention. As discussed next, the distinction between
a system (set of trajectories) and representation (equation that represents the system) is essential.

Let’s create a random discrete-time linear time-invariant system, defined by a state-space repre-
sentation:

m = 2; p = 2; n = 3; sys1 = drss(n, p, m);

and another system that is obtained from the first one by a random change of the state-space basis:

sys2 = ss2ss(sys1, rand(n));

The external behaviors of the two systems are the same and in this sense the systems are equal. This
fact, however, can not be inferred by comparing directly their state-space parameters and the equal
to operation == is not supported in the Control System Toolbox of Matlab:

sys1 == sys2 % -> error

gives error “Operator ’==’ is not supported for operands of type ’ss’.”
The problem of finding when two systems are equal admits many solutions. The reason == is

not supported is due to the perception that linear time-invariant systems (ss objects in particular) are

2

https://imarkovs.github.io/bt.tar

THE BEHAVIORAL TOOLBOX

not comparable. In fact, systems when viewed as behaviors are comparable. The shift of perception
brought by the behavioral approach that system are not parameters of a particular representation has
far reaching consequences. In the behavioral setting, the answer to the question when a system B1

is equal to a system B2 follows directly from the definition of a system as a set of trajectories:
“when B1 = B2”. The answer doesn’t suggest methods for doing the job, however. For this, one
has to choose particular representations of the systems; hence the many possible solution methods.

Another shift of perception brought by the behavioral approach is that definitions (e.g., “B1

equals B2” means “B1 = B2”) are stated in terms of the behavior, i.e., systems’ definitions do
not involve systems’ representations. Also, problems related to systems (e.g., check if B1 = B2)
are stated without involving systems’ representations. The problem statement shows “what we
are after”, irrespective of how we may go about achieving it. Indeed, when the systems are initially
given by some representations, say state-space, it may be advantageous to switch to another one, say
transfer functions. Choosing the representation is part of the solution, not the problem formulation.

The Behavioral Toolbox makes the abstract set theoretic framework of the behavioral approach
actionable by restricting the infinite-horizon behavior B to a finite time-horizon [1,T], resulting in
a finite-dimensional subspace B|T ⊂ (Rq)T , and constructing a basis {b1, . . . ,br } for B|T , i.e.,

B|T = image
[
b1 · · · br

]︸ ︷︷ ︸
BT

, where r := dim B|T . (BT)

Provided that the horizon T is “long enough” (this often means T larger than the lag of the sys-
tem), a problem about B can be reduced to an equivalent problem about B|T . In particular,
one can check B1 = B2 by checking equality of finite-dimensional subspace B1|T = B2|T , with
T = max{ `̀̀(B1), `̀̀(B2)}— a basic linear algebra problem, for which there are existing methods.

The function equal of the toolbox implements the check for equality of systems:

equal(sys1, sys2) % -> true

First, it converts the ss objects sys1 and sys2 to bases B1
T and B2

T for the finite-horizon behaviors
B1|T and B2|T . This is done by a “data-driven approach” that simulates a random trajectory of
the system, constructs a Hankel matrix of the trajectory, and computes a basis for the image of the
Hankel matrix (see Section 7.1). Then, B1|T =B2|T is checked numerically by 1) verifying that the
distance, defined as the principal angle (Golub and Van Loan, 1996, Section 12.4), between B1|T
and B2|T is smaller than a tolerance related to the numerical errors and 2) dim B1|T = dim B2|T .

3. Interconnection of systems

In the classical setting, interconnection of systems is done by input-to-output connection: the output
of one system is fed to an input of another system. In the behavioral setting, interconnection is
viewed as variables sharing: some variables of one system are set equal to some variables of another
system. Input-to-output connection is a special case of variables sharing. Indeed, the former restricts
the latter by selecting input/output partitionings of the variables of the systems and equating input
to output variables only. Willems (2007) argues that interconnection of physical systems is always
variables sharing and only incidentally (typically in man-made systems) input-to-output assignment.

Next, we show how series connection fits into the general setting of interconnection by variables
sharing. Consider two single-input single-output linear time-invariant systems B1 and B2 with

3

THE BEHAVIORAL TOOLBOX

input/output partitionings

w1 =

[
w1

1
w1

2

]
=

[
u1

y1

]
and w2 =

[
w2

1
w2

2

]
=

[
u2

y2

]
.

n1 = 2; B1 = drss(n1);
n2 = 2; B2 = drss(n2);

The variables sharing corresponding to the series connection of B1 and B2 is w1
2 = w2

1, or written
in a “kernel form”: [

0 1 −1 0
][w1

w2

]
= 0. (w1

2 = w2
1)

R3 = [0 1 -1 0];

Equation (w1
2 = w2

1) defines the static system B3 := {w | w1
2 = w2

1 }.
In order to construct the interconnection system Bint, first, we define the joint behavior

append(B1,B2) :=
{ [w1

w2

] ∣∣∣ w1 ∈B1, w2 ∈B2
}

(append)

of B1 and B2 without the interconnection law. The interconnection system Bint is obtained then as
the intersection of the joint behavior append(B1,B2) with B3,

Bint = append(B1,B2)∩B3.

It can be shown that the interconnected system Bint is fully specified by its finite horizon be-
havior with horizon T = `̀̀(B1)+ `̀̀(B2). Thus, for the computation of Bint, we restrict to [1,T]. In
the example, the systems are single output, so that the lags of the systems are equal to their orders.

T = n1 + n2;

The functions B2BT and R2BT construct orthonormal basis for the finite horizon behavior B|T of a
linear time-invariant system B, specified by a state-space and a kernel representation, respectively:

BT1 = B2BT(B1, T); BT2 = B2BT(B2, T); BT3 = R2BT(R3, 4, T);

The function BTappend constructs a basis for the finite-horizon behavior of append(B1,B2) and
BTintersect computes the intersection of of two subspaces:

BT12 = BTappend(BT1, 2, BT2, 2);
BT12int = BTintersect(BT12, BT3);

Next, we verify that the resulting interconnected system Bint corresponds to the series connec-
tion of B1 and B2:

B12 = B2 * B1;

For this purpose, we project the behavior of Bint on the
[

w1
1

w2
2

]
variables (thus eliminating the vari-

ables w1
2 and w2

1):

BT12_ = BTproject(BT12int, q, [1 4]);

and, using the equal function, verify that the systems defined by B12 and BT12_ are equal:

equal(B12, BT12_) % -> 1

We found the behavior of the series connection of B1 and B2 directly from the behaviors of B1
and B2 without computing parametric representations of B1 and B2 and using their parameters.

4

THE BEHAVIORAL TOOLBOX

4. Signal from noise separation

The signal from noise separation problem considered in this section is defined as follows.

Given a system B and a “noisy” signal w = w + w̃, where w ∈ B|T is the to-be-
estimated “true” signal and w̃ is a zero-mean white Gaussian noise, find the maximum-
likelihood estimate ŵ of w.

The setup where the data w is a true value w plus noise w̃ is called errors-in-variables Söderström
(2018). Like the behavioral approach, it treats all variables on an equal footing without separating
them into inputs and outputs. By definition, the errors-in-variables setup is statistical and leads
to stochastic estimation problems. Thus, it complements the behavioral approach, which is by
definition deterministic. (Currently there is no fully developed extension of the behavioral approach
to stochastic systems, see Willems (2013) for behavioral approach of static stochastic systems.)

In order to simulate data in the errors-in-variables setup, we use the function B2w which returns
a random trajectory w ∈B|T .

m = 1; p = 1; n = 3; q = m + p; B = drss(n, p, m);
T = 10; w0 = B2w(B, T); wn = randn(size(w0));
w = w0 + 0.1 * norm(w0) * wn / norm(wn);

The maximum-likelihood estimate ŵ of w in the errors-in-variables setup is the solution of the
optimization problem

minimize over ŵ ‖w− ŵ‖ subject to ŵ ∈B|T , (KS)

i.e., the statistically optimal estimate ŵ has a geometric interpretation as the projection of the noisy
signal w on the finite-horizon behavior B|T of the data-generating system B.

Problem (KS) does not involve a particular representation of the system B. It states what we
are after without suggesting a method for solving the problem. The solution can be obtained using
a state-space representation, which leads to a Riccati equation Markovsky and De Moor (2005). An
alternative solution using the nonparameteric representation of the restricted behavior is:

BT = B2BT(B, T); wh = BT * BT' * vec(w'); wh = reshape(wh, q, T)';

Since the basis BT of BT is orthonormal, BT * BT’ is the orthogonal projector on BT and wh is
the solution of (KS).

The solution using the Riccati equation is a computationally efficient method for solving (KS),
i.e., for finding the projection ŵ of w on B|T . It produces the same result as wh = BT * BT’

* vec(w’), however, it is more difficult to derive and implement. Also, as shown in Section 6,
the solution based on the nonparametric representation of the finite-horizon behavior, is applicable
when the data-generating system B is unknown but data wd ∈B|Td is available. In this case, the
solution presented above becomes a direct data-driven method for errors-in-variables smoothing.
The transition from model-based to data-driven becomes trivial using the behavioral approach and
the nonparametric representation (BT) of the finite-horizon behavior.

The solution of the smoothing problem presented in this section is easily generalizable to situ-
ation where some variables are exact (noise free), other variables are inexact (corrupted by noise),
and a third set of variables are missing (not specified). This more general setup is considered in
Markovsky and Dörfler (2022), where the problem is interpolation and approximation of trajecto-
ries of dynamical systems. The next section presents a special case of missing data estimation.

5

THE BEHAVIORAL TOOLBOX

5. Missing input estimation

Consider a linear time-invariant system B, which variables w are separated as follows:

w =

umissing
ugiven

y

 .
As the notation suggests, umissing is an unknown / to-be-estimated input, ugiven is an known / observed
input, and y is known / observed outputs.

m_missing = 1; m_given = 1; m = m_missing + m_given;
p = 2; n = 3; q = m + p; B = drss(n, p, m); T = 10; w = B2w(B, T);
w_missing = w(:, 1:m_missing); w_given = w(:, m_missing+1:end);

The missing input estimation problem is defined as follows.

Given the data ugiven, y, and the system B, find the missing input umissing of B.

It is a special case of the observer problem in the behavioral setting Bisiacco et al. (2006). Using
the nonparameteric representation of the restricted behavior (BT), the solution is given as an explicit
map from the given data

[ugiven
y
]

to the estimate ûmissing of the missing input umissing:

ûmissing = BT |Imissing

(
BT |Igiven

)+[ugiven
y

]
.

Here BT |Imissing and BT |Igiven are the submatrices of BT corresponding to the missing and the given
data, respectively, and (·)+ denotes the pseudo-inverse. In Matlab code, the solution is:

BT = B2BT(B, T);
[BT_missing, BT_given] = BT2UYT(BT, m_missing, m_given + p);
wh_missing = BT_missing * BT_given' * vec(w_given');
wh_missing = reshape(wh_missing, m_missing, T)';

As before, the first step of the solution is the construction of the nonparameteric representation (BT)
of B. The function BT2UYT selects the submatrices BT |Imissing and BT |Igiven of BT . In BT_missing
* BT_given’ * vec(w_given’), we exploited the fact that BT is orthonormal, replacing the
pseudo-inverse

(
BT |Igiven

)+ with the transposed
(
BT |Igiven

)>.
Under the verifiable from the data condition

rankBT |Igiven = mmm(B)T +nnn(B),

rank(BT_given) == T * m + n % -> 1

the missing input estimation problem has a unique solution, i.e., ûmissing = umissing and therefore
umissing is recovered exactly. Indeed,

e = norm(w_missing - w_missing) / norm(w_missing) % -> 0

In summary, applying standard linear algebra operations (pseudo-inverse and matrix multiplica-
tion) on the basis BT of the finite-horizon behavior B|T and the data

[ugiven
y
]
, we recovered umissing.

Moreover, under verifiable from the data assumptions, the recovery is possible and is exact.

6

THE BEHAVIORAL TOOLBOX

6. Direct data-driven forecasting

The behavioral toolbox is based on the nonparametric representation (BT) of the finite-horizon be-
havior B|T . Such a representation can be obtained from another representation or from data, i.e., a
trajectory wd ∈ (Rq)Td of the system B. Leveraging the linearity and time-invariance properties of
the system, for wd ∈B|Td with Td > T , the image of the Hankel matrix HT (wd) constructed from wd
is included in the finite-horizon behavior B|T . Moreover, assuming that T ≥ `̀̀(B) and

rankHT (wd) = mmm(B)T +nnn(B), (GPE)

we have that (Markovsky and Dörfler, 2023, Corollary 21)

image HT (wd) = B|T . (DD-REPR)

The raw data wd in the form of the Hankel matrix HT (w) serves as a nonparameteric representation
of B|T . The key assumption (GPE) is called generalized persistency of excitation. It is verifiable
from the data and the prior knowledge of the system’s complexity: number of inputs mmm(B), lag
`̀̀(B), and order nnn(B). (Markovsky et al. (2023b) compare and contrast (Markovsky and Dörfler,
2023, Corollary 21) with the fundamental lemma of Willems et al. (2005).)

In case of noisy data obtained in the errors-in-variables setup, the maximum-likelihood solution
leads to a Hankel structured low-rank approximation problem Markovsky (2019), which is a non-
convex optimization problem. Currently existing methods are heuristics for solving this nonconvex
problem. Next, we show the performance of the methods in the toolbox on real-data from data-base
for system identification DAISY, De Moor et al. (1997). The problem considered is prediction, i.e.,
simulation of a “future” trajectory of unknown system and the data set is the “Robot arm” bench-
mark. For comparison, as a reference method we use the classical model-based approach, where a
model is first identified from the data and then the model is used for finding the predicted signal.

robot_arm_; m = 1; p = 1; n = 8;
wd = [u y]; [Td, q] = size(wd);

The data is split into an identification part followed by a validation part. The last Tini = 20 samples
of the identification part are also used for estimation of the initial conditions for the validation part.

Tv = 50; Ti = Td - Tv;
wi = wd(1:Ti, :); wv = wd(Ti+1:end, :);
Tini = n; w_ini = wi(end - Tini + 1:end, :);

The prediction method based on the nonparameteric finite-horizon representation of the behavior is
implemented in the function u2y. With Tini chosen, u2y has no hyper-parameters.

tic, yh_dd = u2y(hank(wi, Tv + Tini), q, wv(:, 1:m), w_ini);
t_dd = toc % -> 0.0186

The corresponding model-based method is the function forecast from the System Identification
Toolbox of Matlab, which requires a model. The model is obtained by a subspace identification
method, implemented in the n4sid function, which has a hyper-parameter—the model order n. It
is chosen as n = 8 by trial-and-error using the validation data.

tic, Bh = n4sid(iddata(wi(:, m+1:end), wi(:, 1:m)), n);
f = forecast(Bh), iddata(w_ini(:,m+1:end), w_ini(:,1:m)), Tv, wv(:,1:m));
yh_mb = f.OutputData; t_mb = toc % -> 1.4176

7

THE BEHAVIORAL TOOLBOX

Note that although the direct data-driven approach is computationally less efficient than the model-
based approach, in the example, it is faster.

The results of the two methods are compared in terms of the relative prediction error: e :=
‖yv− ŷv‖/‖yv‖, where yv is the to-be-forecast validation output and ŷv is the forecast.

e = @(yh) 100 * norm(wv(:, m+1:end) - yh) / norm(wv(:, m+1:end));
[e(yh_dd), e(yh_mb)] % -> 3.5531 3.8398

In the example, the results of the two methods are similar. The model-based method, however,
required tuning of a hyper-parameter (for which we’ve selected optimal value using the validation
data), while the direct data-driven method is hyper-parameters free.

7. Implementation details

Section 7.1 presents details about the implementation of the “data-driven” approach for construct-
ing (BT). Sections 7.2 and 7.2 show how input/output partitioning and analysis problems can be
found directly from (BT). Section 7.4 presents methods for computing parametric representations.

7.1. Nonparameteric representation of the restricted behavior

The restricted behavior B|T of a linear time-invariant system is a shift-invariant subspace of (Rq)T .
The methods developed in the toolbox use (BT) as a representation of B. With some abuse of
notation, we refer to the matrix BT :=

[
b1 · · · br

]
∈ RqT×r of the basis vectors as the basis.

The representation (BT) of B|T is nonparameteric because it involves r := dim B|T parameters
g1, . . . ,gr ∈R to specify w ∈B|T via w = BT g. For T ≥ `̀̀(B)+1, B|T defines B (Markovsky and
Dörfler, 2023, Lemma 13), so (BT) is a nonparameteric representation of B.

The function B2BT implements a data-driven approach. Instead of using the parameters of the
state-space representation of B, it computes a random trajectory wd of B, forms the Hankel matrix
HT (wd), and computes an orthonormal basis for B|T :

(A,B,C,D)
lsim7−−−−→ wd

hank7−−−−→ HT (wd)
orth7−−−−→ B|T

The computation of a basis BT from a trajectory wd ∈ B|Td requires finding the dimension
of B|T . Under (GPE) (which is almost certainly satisfied for a sufficiently long random trajectory
wd ∈B|T), dim B|T = rankHT (wd). Thus, dim B|T can be found by rank computation. A robust
way of computing rankHT (wd) is thresholding the singular values of HT (wd). The functions of
the toolbox that construct BT from data therefore have an optional threshold parameter tol. Al-
ternatively, the user can specify model’s complexity, in which case the rank is computed from the
relation (Markovsky and Dörfler, 2023, Corollary 5)

rankBT = dim B|T = mmm(B)T +nnn(B), for T ≥ `̀̀(B). (dim B|T)

7.2. Input/output partitionings

A partitioning of the variables w(t) ∈ Rq into inputs u(t) ∈ Rm and outputs y(t) ∈ Rp is defined by
a permutation matrix Π ∈ Rq×q as follows:

w 7→ (u,y) :
[

u
y

]
:= Πw and (u,y) 7→ w : w = Π

>
[

u
y

]
. (I/O)

8

THE BEHAVIORAL TOOLBOX

Πw reorders the variables w, so that the first m variables are the inputs and the remaining p :=
q−m variables are the outputs. The restricted behavior with permuted variables is created with the
function BT2BT. The function BT2UYT extracts from BT its input and output components.

The number of inputs m is uniquely defined by the behavior. However, an input/output parti-
tioning of the variables is in general not unique. The currently available methods in the literature
for finding an input/output partitioning of a system B are based on parametric representations of
the system. Next, we present a data-driven method for checking if an given partitioning is a valid
input/output partitioning directly from the finite-horizon behavior B|T . The key observation is that
(I/O) is an input/output partitioning of B if and only if it is possible to simulate any trajectory of B
by choosing the input u and the initial conditions, specified by a past trajectory wini, i.e., for any
wini ∈ (Rq)Tini with Tini ≥ ` and uf ∈ (Rm)Tf with Tf ≥ `, there exist a unique yf ∈ (Rp)Tf , such that

wini∧Π
>
[

uf
yf

]
∈B|Tini+Tf .

Let BTini+Tf be a basis for B|Tini+Tf and let
[

Wini
Uf

]
be the the submatrix of BTini+Tf , corresponding to

the initial trajectory wini and input uf. Then, (I/O) is an input/output partitioning of B if and only if

rank
[
Wini
Uf

]
= m(Tini +Tf)+n.

The method is implemented in is_io, which checks if a given partitioning is a possible in-
put/output partitioning, and BT2IO, which finds all possible input/output partitionings.

7.3. Analysis

Properties of the system, such as system’s complexity, controllability, and H∞-norm can be found
directly from its restricted behavior rather than from parametric representations as done by classical
analysis methods. The complexity ccc(B) of a linear time-invariant system B is defined as the triple:
number of inputs mmm(B), lag `̀̀(B), and order nnn(B). Although in the classical setting the order
nnn(B) is defined via a minimal state-space representation, it is a property of the system B and can
be computed directly from the restricted behavior B|T (provided T ≥ `̀̀(B)+1). Also, the number
of inputs mmm(B) can be computed from B|T without reference to a particular input/output repre-
sentation. The method for finding mmm(B) and nnn(B) from B|T is based on (dim B|T). Evaluating
dim B|ti for t1 6= t2 ≥ `̀̀(B), e.g., t1 = T and t2 = T −1, we obtain the system of equations[

T 1
T −1 1

][
m
n

]
=

[
dim B|T

dim B|T−1

]
,

from which m = mmm(B) and n = nnn(B) can be found. The resulting method is implemented in the
function BT2c. The system’s complexity connects nonparameteric and parametric representations
and is a critical first step in finding a parametric representation of the system.

The following subbehaviors of B are used by methods in the toolbox: Y0 — zero-input sub-
behavior, i.e., the set of transient responses, U0 — zero-output subbehavior, i.e., the set of inputs
blocked by the system, B0 — zero initial conditions subbehavior, i.e., the set of zero initial condi-
tions trajectories, Bc — controllable subbehavior, i.e., the set of trajectories that are patchable with

9

THE BEHAVIORAL TOOLBOX

zero past trajectory, and Bp — periodic subbehavior, i.e., the set of periodic trajectories. Finite-
horizon representations of these subbehaviors are computed from (BT) by the following functions:
BT2Y0, BT2U0, BT2B0, BT2BC, and BT2BP. The subbehaviors Y0, U0, B0, Bc, and Bp have
also independent interest and some of them are used in identification, signal processing, and control
methods. For example, finding Y0 is a key step in the MOESP-type subspace identification methods
Verhaegen and Dewilde (1992) and Bp allows frequency-domain analysis of the system.

Using the zero initial conditions subbehavior B0 ⊂ B|T , we can find the input-output map
HT : u|T 7→ y|T . Let B0 be the matrix of the basis vectors for B0 and let U0, Y0 be the submatrices of
B0 corresponding to the inputs and the outputs. Then, HT = Y0U−1

0 . The corresponding function is
BT2HT. The pT ×mT matrix HT is the finite-horizon representation of the transfer function H(z)
of the system B corresponding to the input/output partitioning (I/O). Using HT , we can find also
the finite-horizon H∞-norm of the system. The method is implemented in the function BT2Hinf.

The controllable subbehavior Bc ⊂B|T for T ≥ `̀̀(B) is mT +n-dimensional if and only if B
is controllable. This leads to a data-driven controllability test. Moreover, mT + n− dim Bc|T is
the number of uncontrollable modes of B. Based on Bc, a quantitative test for controllability—a
distance to uncontrollability—is implemented.

7.4. Parametric representations

Computing a kernel representation from B|T is essentially applying the null function on B>`̀̀(B)+1.
The method is implemented in the functions B2R and BT2R. The inverse operation—finding the
restricted behavior from a kernel or a state-space representation—is done by the functions R2BT
and ss2BT, which implement the model-based approach, i.e., they construct BT from the model
parameters R and (A,B,C,D), respectively. The basis computed by ss2BT is not orthonormal. It
consists of observability and convolution matrices.

Contrary to BT2R (which is essentially Matlab’s null function), computing a state-space rep-
resentation from the restricted behavior is nontrivial. Indeed, it requires to do 1) state construction
and 2) detect a possible input/output partitioning of the variables. The data-driven approach for
these operations is implemented in the function BT2ss. Similarly, the transformation from a kernel
representation to a state-space representation is nontrivial. A data-driven method for this operation
is implemented in the function R2ss.

For multi-output systems, the function B2R computes a nonminimal kernel representation.
Computing a minimal kernel representation or converting a nonminimal kernel representation to
a minimal one are also nontrivial operations. Data-driven methods for them are implemented in
the functions BT2Rmin and R2Rmin. The dichotomy of parametric vs nonparametric representa-
tions is misleading—there is a range of nonminimal parametric representations that cover the gap
between minimal parametric and nonparametric representations. The problem of detecting when a
parametric representation is minimal is equivalent to the one of finding the model’s complexity. It is
also essential in the case of identification from noisy data where the key issue is the one of achieving
an accuracy–complexity trade-off.

Acknowledgments

The research leading to these results received funding from the Catalan Institution for Research and
Advanced Studies (ICREA) and Fond for Scientific Research Vlaanderen (FWO) project G033822N.

10

THE BEHAVIORAL TOOLBOX

References

M. Bisiacco, M.-E. Valcher, and J. C. Willems. A behavioral approach to estimation and dead-beat
observer design with applications to state-space models. IEEE Trans. Automat. Contr., 51(11):
1787–1797, 2006.

B. De Moor, P. De Gersem, B. De Schutter, and W. Favoreel. DAISY: A database for identification
of systems. Journal A, 38(3):4–5, 1997. Available from http://homes.esat.kuleuven.
be/~smc/daisy/.

G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, third edition,
1996.

I. Markovsky. Low-Rank Approximation: Algorithms, Implementation, Applications. Springer,
2019. doi: 10.1007/978-3-319-89620-5.

I. Markovsky and B. De Moor. Linear dynamic filtering with noisy input and output. Automatica,
41(1):167–171, 2005.

I. Markovsky and F. Dörfler. Behavioral systems theory in data-driven analysis, signal processing,
and control. Annual Reviews in Control, 52:42–64, 2021. doi: 10.1016/j.arcontrol.2021.09.005.

I. Markovsky and F. Dörfler. Data-driven dynamic interpolation and approximation. Automatica,
135:110008, 2022. doi: 10.1016/j.automatica.2021.110008.

I. Markovsky and F. Dörfler. Identifiability in the behavioral setting. IEEE Trans. Automat. Contr.,
68:1667–1677, 2023. doi: 10.1109/TAC.2022.3209954.

I. Markovsky, L. Huang, and F. Dörfler. Data-driven control based on behavioral approach: From
theory to applications in power systems. IEEE Control Systems Magazine, 43:28–68, 2023a. doi:
10.1109/MCS.2023.3291638.

I. Markovsky, E. Prieto-Araujo, and F. Dörfler. On the persistency of excitation. Automatica, page
110657, 2023b. doi: 10.1016/j.automatica.2022.110657.

T. Söderström. Errors-in-Variables Methods in System Identification. Springer, 2018.

M. Verhaegen and P. Dewilde. Subspace model identification, Part 1: The output-error state-space
model identification class of algorithms. Int. J. Contr., 56:1187–1210, 1992.

J. C. Willems. From time series to linear system—Part I. Finite dimensional linear time invariant
systems, Part II. Exact modelling, Part III. Approximate modelling. Automatica, 22, 23:561–580,
675–694, 87–115, 1986, 1987.

J. C. Willems. The behavioral approach to open and interconnected systems: Modeling by tearing,
zooming, and linking. Control Systems Magazine, 27:46–99, 2007.

J. C. Willems, P. Rapisarda, I. Markovsky, and B. De Moor. A note on persistency of excitation.
Systems & Control Lett., 54(4):325–329, 2005. doi: 10.1016/j.sysconle.2004.09.003.

Jan C. Willems. Open stochastic systems. IEEE Trans. Automat. Contr., 58(2):406–421, 2013. doi:
10.1109/TAC.2012.2210836.

11

http://homes.esat.kuleuven.be/~smc/daisy/
http://homes.esat.kuleuven.be/~smc/daisy/

	Introduction
	When are two systems equal?
	Interconnection of systems
	Signal from noise separation
	Missing input estimation
	Direct data-driven forecasting
	Implementation details
	Nonparameteric representation of the restricted behavior
	Input/output partitionings
	Analysis
	Parametric representations

