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Abstract
In the framework of structuredmatrix low-rank approximation, we propose implemen-
tation improvements and extensions of a gradient systemmethodology that is based on
the iterative integration of a system of ODEs. The improvements are based on numer-
ical techniques for the computation of SVDs and rank-1 matrices projection. Some
extensions of the numerical method to variations of the classical structured low-rank
approximation problems are then proposed.

Keywords Numerical optimization · Structured low-rank approximation · ODEs
integration · Matrix nearness problems

Mathematics Subject Classification 15A24 · 41A29 · 65F45 · 65K10

1 Introduction

The problem of approximating a structured matrix with another one of lower rank
(Structured Low-Rank Approximation, SLRA) is an important problem in the numer-
ical linear algebra community. This is a difficult non-convex optimization with no
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closed-form solution [1], for which several formulations of the problem based on dif-
ferent cost functions to be minimized and associated constraints exist. New algorithms
for solving this problem are based onmodern numerical techniques aiming to improve
the computational speed and/or the accuracy of the error on the computed solution.
Following these ideas, in this paper, we want to propose computational improve-
ments and extensions of a recent methodology for the numerical solution of some
SLRA problems based on the integration of ordinary differential equations (ODEs).
The methodology was introduced in [2, 3] for the computation of approximate com-
mon factors of polynomials (Sylvester low-rank approximation) and in [4] for Hankel
low-rank approximation. The intent to improve these algorithms is motivated by their
numerical performance. In comparison with other existing methods, they showed an
improvement in the accuracy of the computed solutions, but sometimes they lacked
from the point of view of the computational speed.

The goal of the paper is twofold: on the one hand, we propose improvements in
terms of computational cost and time for the main numerical computations in ODE-
based algorithms; on the other hand, we show how to adapt some of these algorithms
in order to deal with other applications and with more general structures than the ones
considered in the previous works. However, as discussed in the final part of the paper,
this is only a small part (even if still relevant) of the possible improvements that can be
tested for thismethodology.We remark that some of the observed results are numerical
evidence only.

Paper organization

Thepaper is organized as follows: inSect. 2we recall themain points and features of the
algorithms in [2–4]; in particular, we provide a unified view of several algorithms and
a formulation that naturally covers other types of structured matrices. Sections3 and 4
deal with the problems of Sylvester and Hankel low-rank approximation, respectively,
describing the improvements in the computational performance and testing them on
numerical examples. Finally, Sect. 5 describes how to adapt the considered algorithm
to the estimation of time series with missing coefficients (Sect. 5.1) and to block struc-
tured matrices (Sect. 5.2). A general discussion about possible directions for further
improvements is given in Sect. 6.

Nomenclature The numerical algorithms considered in the paper are variations of
a methodology based on the iterative integration of a system of ODEs. Implementa-
tion details and numerical techniques differ among the various versions. To ease the
readability of the manuscript, we give some short names to the different versions of
the gradient system methodology:

• Syl-eig [2]: SLRA of a Sylvester matrix by the minimization of the smallest (in
modulus) eigenvalue;

• Syl-svd [3]: SLRA of a Sylvester matrix by the minimization of the smallest
singular values;

• Hank-svds [4]: SLRA of a Hankel matrix by the minimization of the smallest
singular values.
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In the next sections, we define new acronyms to underline the numerical techniques
that characterize the numerical computations in the corresponding variation of the
algorithm.

2 The algorithm

In this section we briefly summarize the computational steps of the algorithms Syl-svd
[3] and Hank-svds [4] for the problems of Sylvester and Hankel structured low-rank
approximation, respectively.

2.1 Structured low-rank approximation problems

Sylvester and Hankel matrices are functions of a parameter vector p ∈ R
n p and they

are in the image of an affine function S : Rn p → R
m×n (usually 1 ≤ n p � mn).

Definition 1 (Sylvester matrices) Given p = { p̄1; . . . ; p̄n}, where each p̄i ∈ R
d+1

represents the d+1 coefficients of a degree-d polynomial (possibly paddingwith zeros
the missing leading coefficients), the Sylvester matrix Syl(p) ∈ R

nd×2d is defined as
the block column matrix

Syl(p) =
⎛
⎜⎝
T ( p̄1)

...

T ( p̄n)

⎞
⎟⎠ ,

where the matrix T (·) is defined on a degree-d polynomial as

T (q) =

⎛
⎜⎜⎜⎝

qd · · · q1 q0 0 · · · 0
0 qd · · · q1 q0 · · · 0

. . .
. . .

. . .
. . .

0 · · · 0 qd · · · q1 q0

⎞
⎟⎟⎟⎠ ∈ R

d×2d .

Definition 2 (Hankel matrices) Given a vector p ∈ R
n p , a Hankel matrix withm rows

is defined as

Hm(p) =

⎛
⎜⎜⎜⎝

p1 p2 · · · pnp−m+1

p2 p3 · · · pnp−m+2
...

...
...

pm pm+1 · · · pnp

⎞
⎟⎟⎟⎠ ∈ R

m×(n p−m+1). (1)

We assume that the parameter vector p is such that the starting matrix is full-rank
and the problem objective is to compute an approximation p̂ such that the structured
matrix (Sylvester or Hankel) is of lower rank. More formally,
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Problem 1 Given a vector p ∈ R
n p , a structure specification S : Rn p → R

m×n (in
this paper S can be Syl or Hm) and a bound on the rank r < min(m, n), we want to
solve the optimization problem

min
p̂∈Rn p

‖S(p) − S( p̂)‖W such that rank S( p̂) ≤ r , (2)

where ‖ · ‖W is an elementwise weighted (semi-)norm on the space of m × n matrices,
defined by a positive semidefinite matrix W ∈ R

mn×mn:

‖X‖2W = vec(X)�Wvec(X), (3)

and vec(X) is the standard vectorization operator.

The value of r in (2) is usually context dependent. There exist applications where a
rank reduction by one is suitable, such as the distance to uncontrollability [5, Section
3] or identification of autonomous linear systems [4, Section 2.1].

A typical choice of the seminorm is the Frobenius norm (with W = Imn in (3)),
as in Syl-svd [3]. In other papers, SLRA is stated as minimization of the error on the
parameter vector p̂ (see [1, 6]), such as in Hank-svds [4]. As it is shown in [7, Lemma
2.2], the two formulations are equivalent.

Example 1 For an m × n Hankel matrix, m ≤ n, the 2-norm approximation of the
parameter vector is achieved by

W = diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0, 1︸ ︷︷ ︸
m

, . . . , 0, . . . , 0, 1︸ ︷︷ ︸
m

),

so that ‖p− p̂‖2 = ‖S(p)−S( p̂)‖W for such choice of the matrixW . There are other
alternative weighting matrices, for example, the matrixW∗ proposed in [7, Section 3].

Remark 1 In this paper, we work with real vectors and matrices. But all the ideas can
be naturally extended to the complex case, as discussed in [3, Section 5.2].

2.2 ODE-basedmethodology

The solution method exploits the equivalence between the rank constraint on the
consideredmatrix and the nullity of a set of singular values.More formally, it computes
the smallest structured perturbation εE = S( p̂)−S(p) to the structuredmatrix whose
(r +1)-th largest singular value is minimized until an admissible solution is obtained:

ε∗ = min{ε ∈ R : σr+1(S(p) + εE) = 0, ‖E‖W = 1}.

The methodology iteratively integrates a suitable system of ODEs that describes a
descent direction for the singular value σr+1 by preserving the matrix structure. The
main idea is to split the perturbation into two factors that are updated iteratively and
independently on two iteration levels:
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• at the inner level, the norm of the perturbation is fixed and we compute a normal-
ized perturbation E which minimizes the (r + 1)−th singular value σr+1 of the
matrix S(p)+εE . This is done by integrating the following system of ODEs (that
describes a descent dynamic for σr+1 over the ball of matrices whose norm is at
most ε):

ν Ė = −PS(uvT ) + 〈PS(uvT ), E〉W E, (4)

where u, v are the singular vectors of S(p) + εE corresponding to σr+1, P(·)S
denotes the orthogonal projection of the argument matrix onto the set of structured
matrices S, and ν is the weighted norm of the expression on the right-hand side.

• at the outer level, we update the norm ε of the total perturbation εE , which can be
done by a root-finding algorithm, e.g. a Newton iteration that requires computing
the norm of the projection PS(uvT );

• in some of the algorithms, such as Hank-svds [4], additional steps of free (uncon-
strained) dynamics are performed by removing the constraint on the norm of E in
(4). In this case, we get an analogous gradient system that increases the norm on
the perturbation on the data, and where the computations are similar to (4).

Remark 2 All the matrices in (4) have the same structure S, hence E = S(q1), Ė =
S(q̇1),PS(uvT ) = S(q2) for some vectors q1, q2 ∈ R

n p . By replacing each matrix
with the corresponding generating vector, (4) can be rewritten as a vectorial equation.
This idea is developed in the algorithm Hank-svds [4].

Remark 3 The weighted semi-norm formulation unifies the algorithms in Syl-svd [3]
and Hank-svds [4] in the following sense: it can be shown that the updates (4) for
Hankel matrices and the choice of the weighted norm as in Example 1 becomes
equivalent to the updates described in Hank-svds [4].

By looking at the scheme above, we see that the main computational cost lies in the
numerical integration of systems of ODEs. These integrations require the numerical
computation of the (r + 1)-th singular triplet, and then the projection of a rank-one
matrix onto the set of structuredmatrices. Therefore,wediscuss alternative (numerical)
computations for these two operations.

3 Sylvester low-rank approximation

The Sylvester low-rank approximation problem is usually linked to the approximate
common factor computation of polynomials. It is a well-known problem because of
its applications in the field of systems and control [1, 5]. A short review of the related
literature is presented in [3, 8], and its numerical solution using Syl-svd is in [3].

Abrief descriptionof the problem is: given a set p̄1, . . . , p̄n of coprimepolynomials,
find some polynomials p̂1, . . . , p̂n (as close as possible to the starting ones) having a
common factor of degree d. It can be recast in the framework of Problem 1 because
of the relation between polynomials common factors and the rank of the associated
Sylvester matrix [9]. Therefore, given a full rank Sylvester matrix, we aim at finding
a rank-deficient Sylvester matrix that is as close as possible to the original one. The
degree of the sought common factor determines the value of r in Problem 1.
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We are interested in possible numerical improvements with respect to the algorithm
Syl-svd in [3]. Looking back at Sect. 2, we discuss:

1. the projection of a rank-one matrix onto the set of Sylvester matrices;
2. the computation of the (r + 1)-th singular triplet of a Sylvester matrix.

A classical algorithm for the projection of an arbitrary matrix onto the set of
Sylvester matrices (used in Syl-svd) is to partition it into blocks (whose dimensions
match the blocks T ( p̄1), . . . , T ( p̄n)) and to replace the entries in each block with the
average of the corresponding diagonal, following the pattern of zeros of the Sylvester
matrix. As a preliminary step, we have to build the rank-one matrix to be projected.
The computational cost of this method is quadratic in the dimension of the involved
(square)matrix. The same operations can be performed efficiently (via the Fast Fourier
Transform) by exploiting the fact that the startingmatrix has rank one. In particular, we
can adapt the algorithm in [10, Section 5] (described for Hankel matrices) by replac-
ing antidiagonals with diagonals. The solution is computed directly from the vectors
u, v without building the matrix uvT . The computational cost drops from O(n2) to
O(n log n), where n is the dimension of the matrix.

About the computation of the (r + 1)−th singular triplet, Syl-svd computed the
whole SVD of the matrix to get the sought triplet (via the Matlab function svd). Since
we only need the (r + 1)−th singular value with the associated singular vectors, we
can use the function svds. We exclude the techniques based on eigenvalues: the gain
in the use of svd in place of eig has been observed in [3], and the use of eigs would
not be very efficient. A further term of comparison (that works for the computation of
the smallest singular triplet only) is [11, Algorithm 1]; this is an SVD-based inverse
iterationmethod that is connected with the following equalities (satisfied by thematrix
A and its smallest singular triplet un, σn, vn)

Avn = σnun

vTn vn = 1.

Numerical experiments

For simplicity, we consider only two polynomials, but the same ideas can be naturally
extended to sets of more polynomials, as illustrated in [3]. We consider the following
variations of the algorithm Syl-svd:

1. Syl-svd-fft: it still computes the whole SVD to get the (r + 1)-th singular triplet,
but it uses the FFT-based formula for the projection of the rank-one matrix;

2. Syl-svds: it uses the Matlab function svds to compute the (m − r)-th smallest
singular triplet and theFFT-based formula for the projection of the rank-onematrix.

Remark 4 To avoid confusion, we remark that the (r + 1)−th (largest) singular triplet
is the same as the (m − r)−th smallest singular triplet. The term smallest means
that the singular values are increasing (in the function svds above, we add the option
smallest). The same terminology is used in the rest of the paper.
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The algorithm Syl-svd-fft only tests the numerical performance of the different
method proposed for the projection, while Syl-svds also uses a different technique to
compute the singular triplet. While the previous two algorithms work for every value
of m, r , if we restrict to the rank reduction by one (r = m − 1 in Problem 1), we can
add a further algorithm for comparison (that works for the computation of the smallest
singular triplet only):

3. Syl-apsvd: it uses [11, Algorithm 1] for the computation of the smallest singular
triplet and the FFT-based formula for the projection of the rank-one matrix.

A different numericalmethod for comparison comes from the literature on the topic,
and it is the function gcd-nls from the slra toolbox [8].

The setup of the experiments is as follows:

• we fix a common factor c of degree 1;
• we multiply c by two random polynomials (of degree d − 1) in order to have two
polynomials p̄01, p̄

0
2 of degree d having one common root;

• we generate the coprime polynomials as p̄i = p̄0i +σ s‖ p̄0i ‖2, i = 1, 2, where s is
a norm 1 vector whose entries come from i.i.d. standard normal distributions and
σ is a constant denoted as noise level.

By adding Syl-apsvd in the comparison, we restrict the experiment to the compu-
tation of a common factor of degree 1, that is a rank reduction by 1 of the starting
Sylvester matrix. In the numerical experiment (whose code is available at [12]) we fix
the noise level σ = 0.1 and we gradually increase the degrees of the polynomials to
analyze the numerical performances for matrices of increasing dimension. We mainly
focus on the computational times needed by the different algorithms and the relative
errors on the computed solutions. We do not consider large degree polynomials in
the paper, but we expect the general behavior to be clear enough. All the results are
the average over ten different perturbations on the same data polynomials to lower
the effect of possible misleading results. We discarded from the experiments the runs
where at least one of the methods needed more than 200 iterations to converge (the
convergence test is to check that the smallest singular value of S( p̂) is lower than
10−6). All the experiments in the paper have been run with MATLAB R2023a on a
laptop with a 2.7 GHz Intel Core i5 processor. The outcome of the experiment is in
Table 1.

In Table 1, by comparing the first two columns, we can appreciate the gain in the use
of the Fast Fourier method for the projection, since the times in the second column are
lower without changing the relative error on the solution (the two different algorithms
that project the rank-one matrix return the same result, up to machine precision). We
observe that Syl-apsvd is even faster than Syl-svd-fft, but the cost to be paid is the
slightly higher error on the computed solutions, due to the different algorithms that
compute the smallest singular triplet. Syl-svds is faster than Syl-svd-fft only when the
dimension of the problems increases, but its performance is, in general, worse than
Syl-apsvd.

However, the observed computational times are still not competitive with the func-
tion gcd-nls from the SLRA toolbox [8]. About the errors on the computed solutions
in Table 1, most of the time gcd-nls achieves better results than Syl-svds and Syl-
apsvd, and sometimes the improvement is significant. On the other hand, looking
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at the errors of Syl-svd and Syl-svd-fft, they are the smallest overall for the higher
dimension problems (from the third row on).

Remark 5 The same ideas to speed up the algorithm Syl-svd can be adapted to the
computation of approximate common factors of matrix polynomials (polynomials
whose coefficients are matrices), presented in [13].

4 Hankel low-rank approximation

We switch now to the problem of Hankel low-rank approximation. These matrices
play a leading role in system theory and identification since a well-known result [14,
Theorem 7.2] links the order of a linear time-invariant autonomous system with the
rank of the Hankel matrix built from one of its trajectories. We remark that the Hankel
matrices considered in these problems (and in the paper) are, in general, rectangular
Hankel matrices with more columns than rows.

The problem we aim to solve can be briefly described as follows: given a full rank
Hankel matrixHm(p), compute a vector p̂ (as close as possible to p) such thatHm( p̂)
is rank deficient. We observe that, differently from Sect. 3, the problem Hank-svds in
[4] is stated directly on the parameter vector p instead of the Hankel matrix Hm(p).

As we did in Sect. 3, we take into account the following two main computations
performed during the integration of the associated gradient systems:

1. the projection of a rank-one matrix onto the set of Hankel matrices;
2. the computation of the (r + 1)-th singular triplet of a Hankel matrix.

For the first point, we can apply directly the algorithm in [10, Section 5].
For the second point, [11, Algorithm 1] cannot be used onHm(p) since thematrix is

not square, and we avoid buildingHm(p)THm(p) since it would square the condition
number.

The size of the involved Hankel matrices (that have a few rows and many columns)
can be exploited to use a randomized SVD algorithm [15] which computes a truncated
SVD; this turns out to be efficient since the involved matrices always have a few rows.

Numerical experiments

Weare now ready to run some simulations to test alternative numerical computations in
the scheme of the algorithm Hank-svds. We recall that Hank-svds [4] used the Matlab
function svds to compute the needed singular triplet and the antidiagonal averaging
to project the matrix uvT onto the set of Hankel matrices. We consider the following
variations

1. Hank-svds-fft: it still uses the function svds for the computation of the smallest
(m − r)-th singular triplet, but the FFT-based formula for the projection of the
rank-one matrix;

2. Hank-rsvd: it uses a randomized SVD to get the (r + 1)−th singular triplet (we
run this computation using the function in [16]) and the FFT-based formula for the
projection of the rank-one matrix.
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The algorithm Hank-svds-fft tests the numerical performances of the projection algo-
rithm only, while Hank-rsvd also uses a different technique to compute the (r + 1)-th
singular triplet. Another term of comparison is the function slra from the homonymous
toolbox [6].1

The setup of the numerical experiments follows:

• we build a (random) state-space model sys of fixed order k = 5;
• we consider a time series p0 as the response to a (random) initial condition of the
given state-space model sys (observe that the Hankel matrix Hk+�(p0) has rank
k ∀ � > 0 [14]);

• we generate the problem data by perturbing the time series p0 as p = p0 +
σ s‖p0‖2, where s is a normalized vector whose entries come from i.i.d. standard
normal distributions and σ is a constant denoted by noise level;

• we aim at approximating p with a vector p̂ such that the rectangular Hankel matrix
Hk+�( p̂) has rank k.

We run two different numerical experiments (whose codes are available at [12]): in
both of them we fix the noise level σ = 0.1 and we consider time series of increasing
length, but the involved matrices have different dimensions (hence the rank reductions
are different since the system order is 5 in both experiments): we consider � = 2 in
the first experiment and � = 5 in the second.

All the results are the average over ten different perturbations on the same time
series.We discarded from the simulations all the runs where at least one of themethods
needed more than two minutes to get a solution. The outcomes of the numerical
experiments are in Tables 2 and 3, respectively.

First of all, we compare the first two columns to observe the performance of the
FFT-based method for the projection of the rank-one matrix (implemented in Hank-
svds-fft) with respect to the antidiagonal average [4, Lemma 2] used in Hank-svds.
Differently from Table 1, all the computational times are now very close, and Hank-
svds-fft is slightly faster than Hank-svds in Table 2 but not in Table 3. This is probably
due to the fact that the size of thematrices increases in one dimension only (the number
of columns).

Looking at all four columns, Hank-rsvd has the smallest computational times in
both Table 2 and Table 3. The computational times of Hank-svds and Hank-svds-fft
are close to (andmost of the times slightly smaller than) the ones of slra. Regarding the
relative errors in the computed solutions, there are no significant differences among
all the computational methods and the two tables.

5 Possible extensions

We saw how the considered algorithm works on the problems of Sylvester and Hankel
low-rank approximation, but a larger class of (structured) low-rank approximation
problems can be approached by the same method. We describe now two possible
extensions that are of interest in an application setting: the identification of time series

1 The function slra can only dealwith problemswhere the rank reduction is one. To dealwith rank reductions
greater than one, we have to appropriately weight the entries of p.
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Table 2 Low-rank approximation of Hankel matrices: rank reduction by 2. Comparison of different imple-
mentation techniques for time series of increasing length

length(p) size(S(p)) Hank-svds Hank-svds-fft Hank-rsvd slra

51 time (sec) 0.5048 0.4948 0.2040 0.5566

—— —— —— —— ——

7 × 45 rel. err 0.0968 0.0968 0.0970 0.0916

101 time (sec) 2.2634 2.2568 0.9745 2.3330

—— —— —— —— ——

7 × 95 rel. err 0.0953 0.0953 0.0956 0.0931

151 time (sec) 15.1904 13.7776 6.3698 15.3719

—— —— —— —— ——

7 × 145 rel. err 0.1010 0.1010 0.1023 0.0958

201 time (sec) 5.9258 5.8425 2.4479 6.0902

—— —— —— —— ——

7 × 195 rel. err 0.0981 0.0981 0.0982 0.0967

251 time (sec) 4.9840 4.2523 2.4723 5.0937

—— —— —— —— ——

7 × 245 rel. err 0.0993 0.0993 0.1009 0.0975

301 time (sec) 16.6570 15.6608 8.8651 16.9055

—— —— —— —— ——

7 × 295 rel. err 0.0979 0.0979 0.1094 0.0975

withmissing coefficients and the low-rank approximationof block-structuredmatrices.
On the other hand, it has already been described in [3] how to deal with complex
coefficients and how to fix some entries of the starting parameter vector.

5.1 Time series withmissing coefficients

The considered problem is the identification of a linear time-invariant system (that is,
low-rank approximation of a rectangular Hankel matrix) with the additional assump-
tion that some entries of the parameter vector p are unknown. This is achieved by
choosing the weights as in Example 1, but by setting any weight for missing observa-
tions to 0. The missing values are initialized by averaging their neighbors.

The following simulation shows the numerical performance of the proposed
approach. The results are compared with the algorithm in [7] on the following numer-
ical example. The true (noiseless) signal is the sum of two exponentially modulated
cosines:

y0(t) = y0,1(t) + y0,2(t)

y0,1(t) = 0.9t cos
(π

5
t
)

y0,2(t) = 1

5
1.05t cos

( π

12
t + π

4

) (5)
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Table 3 Low-rank approximation of Hankel matrices: rank reduction by 5. Comparison of different imple-
mentation techniques for time series of increasing length

length(p) size(S(p)) Hank-svds Hank-svds-fft Hank-rsvd slra

51 time (sec) 0.5238 0.4955 0.2693 0.5775

—— —— —— —— ——

10 × 42 rel. err 0.0867 0.0867 0.0883 0.0893

101 time (sec) 1.8284 1.8334 0.9495 1.9196

—— —— —— —— ——

10 × 92 rel. err 0.0932 0.0932 0.0942 0.0920

151 time (sec) 1.8569 1.8585 1.0527 1.9693

—— —— —— —— ——

10 × 142 rel. err 0.0966 0.0966 0.0972 0.0960

201 time (sec) 7.3412 6.2034 3.9425 7.5193

—— —— —— —— ——

10 × 192 rel. err 0.1008 0.1008 0.1017 0.0984

251 time (sec) 10.6441 10.1989 7.3877 10.8229

—— —— —— —— ——

10 × 242 rel. err 0.0989 0.0989 0.1055 0.0970

301 time (sec) 17.1525 17.4631 11.7912 17.3553

—— —— —— —— ——

10 × 292 rel. err 0.0994 0.0994 0.0996 0.0987

for t = 1, . . . , 50. The rank of any rectangular Hankel matrix (having more than 4
rows) is k = 4, and in this example, we chooseH9(y0(t)). The data for the numerical
experiment are built by adding a random perturbation as follows

y(t) = y0(t) + 0.2
e(t)

‖e(t)‖2 ‖y0(t)‖2 (6)

where the entries of the vector e(t) come from independent standard normal distribu-
tions. Starting from the (full rank) noisyHankelmatrixH9(y(t)), wewant to compute a
rank 4 approximation under the assumption that some of the coefficients are unknown
(missing). In particular, as stated in [7], since the system generating the signal (5)
has order 4, standard system identification algorithms need at least 5 consecutive data
points. Tomake the problem harder, we remove every fifth data point in the time series.
In Fig. 1 we plot the true (unknown) signal and two different reconstructions from the
available data: the first comes from Hank-rsvd, while the second from the algorithm
in [7] (labeled as slra-reg2) starting from the matrixH9(y(t)).

As we can see from Fig. 1, the observed results are similar to the ones in Tables
2 and 3. The distances between the computed signals and the true one are both very

2 slra-reg can deal with rank reductions greater than one, differently from the function slra used in Sect. 4.
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Fig. 1 Identification of a time serieswithmissing coefficients: comparison between twodifferent approaches

small, that is the errors have the same order of magnitude, and the computational time
of slra-reg is slightly higher than Hank-rsvd (despite the solution method of slra-reg
being different than slra, see [7]).

5.2 Extension to block structuredmatrices

The Sylvester and Hankel low-rank approximation problems can be extended to more
general block matrices whose blocks have Toeplitz/Hankel structure.

The first application of this problem is the identification of linear time-invariant
systems which are not autonomous, but depend on both inputs and outputs. In this
case, each entry of the Hankel matrix (1) is a vector built from inputs and outputs.
The formulation of the problem is similar, that is we need to compute a low-rank
approximation of a block-Hankel matrix [1] with a possible rank reduction greater
than one. The value of the rank is associated with the dimension of the corresponding
system (see, for example, [14]).

Hankelmatrices can be extended tomosaicHankel, which are blockmatriceswhose
blocks are rectangular Hankel matrices stacked in a row [6]

K = [Hm(p1), · · · ,Hm(pN )].

Such structure arises, e.g., in the problem of common dynamics estimation, which can
be restated as a generalized structured low-rank approximation problem with multiple
rank constraints [17]. The proposed algorithm can also be adapted to reduce the rank of
the matrix K : this can be done by perturbing all the time series p1, . . . , pN to reduce
the rank of each block Hm(pi ) and by imposing the rank reduction on the matrix
K at the same time. In detail, we first compute the needed singular triplet σ, u, v of
the matrix K , then we split the vector v in N blocks v1, . . . , vN , according to the
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column dimensions of the different blocks of K . The (sub-optimal) perturbations of
the different time series p1, . . . , pN which decrease the singular value σ of K come
from the N different projections of the corresponding rank-one matrices:

[−P(uvT1 ), . . . , −P(uvTN )
]
.

This algorithm has been already proposed for the common dynamics estimation prob-
lem [18].

The proposed perturbation strategy on different time series can allow us to deal
with structured low-rank approximation problems involving different block matrices
whose blocks are not necessarily stacked in one row/column.

6 Conclusion and possible future work

We analyzed some possible computational improvements and extensions of a recent
algorithm for solving structured low-rank approximation problems involving Sylvester
and Hankel matrices. Concerning this, we proposed some numerical techniques to
speed up twomain computations in the recursive integration of some systems ofODEs:
the numerical computation of a given singular triplet and the orthogonal projection
of a rank-one matrix onto the set of Toeplitz/Hankel matrices. The identification of
a time series with missing coefficients and the structured low-rank approximation of
block matrices are discussed as possible extensions of the same methodology.

We remark that we intentionally did not change the ideas behind the algorithms
proposed in the previous works. A possible improvement could be to change the
initial estimates in the gradient systems in order to reduce the number of iterations.
Moreover, one can try to modify the size of the Hankel matrices to possibly improve
the estimate of the computed solution (see [19]).

Alternative possible improvements are related to the choice of the integration
scheme.We list, as examples, higher order Runge–Kutta, implicit methods or low-rank
integrators.
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