
System theory without transfer functions and state-space? Yes, it’s possible!

Ivan Markovsky

Abstract— The paper demonstrates the claim in the title using
missing data estimation as a generic example. The missing data
estimation problem includes simulation, Kalman smoothing,
and linear quadratic control as special cases. The solution
method proposed uses an idea from subspace identification:
under a persistency of excitation condition, the image of a Han-
kel matrix constructed from the data is equal to the behavior
of the data-generating system. This fact allows construction
of trajectories of the system directly from observed raw data.
The construction of trajectories is the key for solving analysis,
signal processing, and control problems without parametric
model identification. The resulting methods require solution of
systems of linear equations, however, the data is assumed exact
and obtained from a linear time-invariant system.

I. INTRODUCTION

System theory and the related fields of signal processing
and control are currently going through a paradigm shift. The
new data-driven paradigm aims to achieve a direct map from
data to desired result—filtered, predicted, or control signal—
without identification of a parametric model of the data
generating process. This paper explains how the behavioral
paradigm [1], [2] contributed to the data-driven paradigm and
how they are both related to low-rank approximation [3].

The key feature that distinguishes the behavioral from the
classical and modern paradigms is that a dynamical system
is defined as a set of signals, called the behavior. This shift
of perspective led to a result that gives sufficient conditions
under which the image of a Hankel matrix constructed from
data coincides with the behavior of a discrete-time linear
time-invariant system [4]. Due to its importance the result be-
came known as the fundamental lemma. Under the conditions
of the fundamental lemma, the image of a Hankel matrix is a
nonparametric representation of the data-generating system.
In the last years generalizations and alternative proofs of the
fundamental lemma appeared [5], [6], [7], [8].

The fundamental lemma and the Hankel matrix represen-
tation opened the path to system theoretic interpretation of
the N4SID and MOESP subspace identification methods [9],
[10], new identification methods [11], data-driven simulation
and linear-quadratic tracking control methods [12]. The
method of [12] for linear-quadratic tracking yields an open-
loop solution. Combined with receding horizon predictive
control, it led to a practical control procedure called data-
enabled predictive control (DeePC) [13], [14], [15], [16].

Data-driven methods based on the Hankel matrix repre-
sentation have the following desirable features:
• generality—they are applicable for any high-order mul-

tivariable linear time-invariant system;
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• simplicity—require concepts and methods from the be-
havioral system theory and linear algebra only;

• practicality—lead directly to algorithms that are easily
implementable in practice.

In comparison, model-based methods require choice of
model representation, identification and validation. Depend-
ing on the choice of the model representation, the method
may have limited generality, e.g., single-input single-output,
finite impulse response, and zero initial conditions. If the
method is generalizable to multivariable infinite impulse
response systems and nonzero initial conditions, the general-
izations may require nontrivial modifications and increase the
complexity. The complexity of a model-based method is fur-
ther increased by the complexity of the identification method,
used to obtain the model. Finally, the model representation
obtained by an identification method may be different from
the one used by the model-based method. As a result, the
model uncertainty delivered by the identification method may
be incompatible with the one used by the model-based design
method. For example, the identification method may deliver a
confidence ellipsoid for a transfer function model parameters
while the design method may be based on H∞ robust design
for a state-space model. These and other issues related to
model-based methods motivate the shift to the data-driven
paradigm, which provides an end-to-end solution.

In order to illustrate the claim that the data-driven methods
are general, simple, and practical, we consider the problem of
missing data estimation—given some elements of a trajectory
of a dynamical system, find the missing ones. As shown in
[17], [18] the missing data estimation problem is generic
and includes as special cases various signal processing and
control problems, such as simulation, Kalman smoothing,
and linear quadratic tracking control. The data-driven method
presented uses a complete trajectory of the data-generating
system without identifying a parametric model of the system.

In solving the missing data estimation problem, we assume
that the given complete trajectory is exact. The resulting
missing data recovery problem, called data-driven dynamic
interpolation, is solved in [17]. The issue of dealing with
noisy data is not considered in this paper. It leads to mosaic-
Hankel structured low-rank approximation and completion
problem [3]. Since this is a nonconvex optimization problem,
convex relaxation techniques are used for its solution.

Outline of the paper: Section II shows a Matlab demo. The
reader can copy and paste the code from the paper into the
Matlab’s command line, reproducing the results. Section III,
explains how and under what conditions the method used in
the demo recovers exactly the missing data. Conclusions and
directions for future work are given in Section IV.



II. MATLAB DEMO

This section presents a Matlab demo of a generic data-
driven method. The problem setup given in Section II-A is
recovery of missing values of a linear time-invariant system’s
trajectory. The method is illustrated in Section II-B for
recovery of a partially specified trajectory where the given
elements are randomly sampled in time. Section II-C shows
how the method solves also the simulation problem where
the given elements are the initial conditions and the rest of
the trajectory is the to-be-recovered missing data. Finally,
Section II-D shows how the same method can be used also
for noise filtering, where the whole trajectory is given but it
is corrupted by zero mean additive noise.

A. Setup

We start by defining a linear time-invariant system sys
(the data-generating system) and simulating a trajectory wd
of sys (the data trajectory):
n = 6; Td = 100;
z = [1.0110 * exp(i * 1.0518)

1.0128 * exp(i * 0.5207)
1.0085 * exp(i * 0.0066)];

sys = ss(zpk([], [z; conj(z)], 1, 1));
wd = initial(sys, rand(n, 1), Td-1);

The system is of order n=6 and is defined by its poles. It
is unstable and is represented in Matlab by the state-space
object sys. The trajectory wd has Td=100 samples. It is
generated from initial conditions only (free response).

Another T=30 samples long free response trajectory w of
sys is simulated and ng=10 samples are randomly selected:
T = 30; ng = 10;
x0 = [100 10 -7 -1 .5 -1.5]';
w = initial(sys, x0, T-1);
t_given = randperm(T, ng);
w_given = w(t_given);

The problem considered is to reconstruct w, using the data
trajectory wd and the ng given samples w_given of w. Note
that the system sys and its order n are not given. The only
prior knowledge about the data-generating system sys used
by the method is that it is linear time-invariant.

B. Random samples

The solution method presented next does not identify the
data-generating system sys from the data trajectory wd.
Instead it computes an estimate wh of w directly from wd
and w_given. The method leads to the following algorithm:

1) construct a Hankel matrix H from wd,
2) solve the system of linear equations

g = H(t_given, :) \ w_given,
3) define wh = H * g.

It is implemented in the following two lines of Matlab code:
H = hankel(wd(1:T), wd(T:end));
wh = H * (H(t_given, :) \ w_given);

The estimate of the missing values w(t_missing), where
t_missing = setdiff(1:T, t_given);

is wh(t_missing). In the simulation example, the recon-
struction of w(t_missing) is exact up to numerical errors
due to the finite precision arithmetic:
norm(w - wh) % -> 2.1405e-12

The signals w, wh, and the given samples w_given are
shown in Figure 1.

Fig. 1. Reconstruction of a trajectory w of a 6th order single-output
linear time-invariant system from randomly selected samples w_given.
The trajectory wh reconstructed by the data-driven method matches w.

C. Simulation

In Section II-A, the trajectory w is simulated by the
function initial of Matlab, using the state-space rep-
resentation sys. Next, we show an alternative data-driven
simulation method: w is obtained from the first n samples of
w (initial condition) and the data trajectory wd. The solution
is given by the missing data recovery method of Section II-B:
t_given = 1:n; w_given = w(t_given);
wh = H * (H(t_given, :) \ w_given);
norm(w - wh) % -> 2.8294e-11

Indeed, simulation is a special case of missing data recovery,
so that a new method is not needed. The result is shown in
Figure 2, top. Alternatively, w can be recovered from its last
n samples (terminal conditions):
t_given = T-n+1:T; w_given = w(t_given);
wh = H * (H(t_given, :) \ w_given);
norm(w - wh) % -> 1.8593e-10

The result is shown in Figure 2, bottom.

D. Smoothing

In this section, we consider a signal from noise separa-
tion problem. The true (noise free) signal w0 is a trajec-
tory of a linear time-invariant system sys and the noise
wn is a stochastic process. The errors-in-variables Kalman
smoother [19] minimizes the `2-norm of the approximation
error norm(w - wh), where w = w0 + wn is the noisy
data and wh is a trajectory of sys. The Kalman smoother
assumes that a state space representation of the system sys
is a priori given. In this section, we consider the data-driven
version of this problem: as in Sections II-B and II-C, instead
of sys we are given the trajectory wd of sys.

In the simulation example, we add zero-mean white Gaus-
sian noise to the trajectory w

w0 = w; wn = randn(T, 1);
w = w0 + 0.1 * norm(w0) * wn / norm(wn);

so that, now, w is a "noisy signal" and w0 is the true value of
w. The goal of the smoothing problem is to estimate w0 from



Fig. 2. Simulation of a trajectory w from initial conditions w(1:n)
(top) and terminal conditions w(end-n+1:end) (bottom). The simulated
trajectories wh by the data-driven method match w exactly.

w and the prior knowledge that w0 is a trajectory of sys.
The data-driven smoothing problem is a direct map from w
and wd to an estimate wh of w0.

The data-driven smoothing problem can be solved again by
the method of Section II-B. The only modification needed is
to replace the exact solution of the system of linear equations
(the backslash operator \ in Matlab) by an approximate
solution in the least-squares sense (the pinv function):
wh = H * pinv(H) * w;

The results are shown in Figure 3. We verify that there is
indeed a reduction of the noise-to-signal ratio:
[norm(w0 - w) norm(w0 - wh)] / norm(w0)
% -> 0.1000 0.0399

Fig. 3. Smoothing of a noisy trajectory w. The smoothed trajectory wh
obtained by the data-driven method is an approximation of the true value
w0. Visually wh is a better approximation of w0 than the noisy data w.

E. Summary

Using the data-driven method it is possible to solve general
signal processing problems where some of the data is exact,
some is noisy, and some is missing. The exact data is
interpolated, the noisy data is smoothed, and the missing data
is estimated. The data-driven smoothing method presented
in Section II-D can deal with missing and noisy data. The
method is implemented by the following Matlab code:
H = hankel(wd(1:T), wd(T:end));
wh = H * pinv(H) * w;

III. DERIVATION OF THE METHOD

A. Notation and preliminary results

The key advantage of adopting the behavioral setting in
data-driven signal processing and control is that a dynamical
system is defined abstractly as a set of trajectories without a
priori reference to a parametric representation of this set. In
this paper, we consider linear time-invariant systems, so that
the models are shift-invariant subspaces. The notation used
in the rest of the paper is summarized in Table I.

TABLE I
SUMMARY OF THE NOTATION.

w ∈ (Rq)N q-variate discrete-time signals w : N→ Rq

w|L restriction of w to the interval [1,L],
i.e., w|L:=

(
w(1), . . . ,w(L)

)
σ the shift operator, (σw)(t) := w(t +1)
B ⊂ (Rq)N discrete-time dynamical system B
L q linear time-invariant systems with q variables
mmm(B) number of inputs of B
`̀̀(B) lag of B
nnn(B) order of B
ccc(B) complexity of B, ccc(B) :=

(
mmm(B), `̀̀(B),nnn(B))

L q
c := {B ∈L q | ccc(B)≤ c}

HL(w) Hankel matrix with L block rows constructed from w

Associated with a linear time-invariant system B are the
natural numbers mmm(B)—number of inputs, `̀̀(B)—lag, and
nnn(B)—order. They are defined as properties of the system
and not as properties of its representations [1]. The restriction
B|L of the system B ∈L q to the interval [1,L] is the set
of L-samples long trajectories of B. By the linearity of B,
B|L is a subspace of RqL. Its dimension dim B|L is [7]

dim B|L = mmm(B)L+nnn(B), for L≥ `̀̀(B). (1)

Given a "long" trajectory wd ∈ (Rq)Td of B, we can create
multiple "short" L-samples-long (L < Td) trajectories of B
by exploiting the shift-invariance property. A systematic way
of doing this is by using the Hankel matrix:

HL(wd) :=


wd(1) wd(2) · · · wd(Td−L+1)
wd(3) wd(4) · · · wd(Td−L+3)

...
...

...
wd(L) wd(L+1) · · · wd(Td)

 .
The columns of HL(wd) are vectors in RqL. Viewed as L-
samples long signals, they are trajectories of B. Combining
this fact with (1), it follows that the rank of HL(w) is
bounded by dim B|L. The result extends to multiple trajec-
tories. Let wd ∈B|Td and w ∈B|T with Td ≥ T ≥ `̀̀(B),

rank
[
HL(wd) HL(w)

]
≤ mmm(B)L+nnn(B),

for any L ∈ [`̀̀(B),T ]. (2)

Equation (2) is a link between system theory (trajectories
of a linear time-invariant system) and linear algebra (rank
deficiency of a matrix). It allows us to pose problems for
linear time-invariant systems without involving a parametric
model representation. The solution is obtained directly from
data by low-rank matrix completion and approximation.



For any wd ∈B|Td and L ∈ [1,Td], we have that B|L ⊆
image HL(wd). However, under the condition

rankHL(wd) = mmm(B)L+nnn(B), L > `̀̀(B) (3)

equality holds, i.e., B|L = image HL(wd). Then, the con-
straint w′ ∈ B|L is equivalent to existence of a solution
g ∈ RTd−L+1 of the system HL(wd)g = w′.

B. Problem formulation

Consider the signal w∈ (Rq)T . For a vector of indices I ∈
{1, . . . ,qT }K , we define w|I :=

[
wI1 · · · wIK

]> ∈ RK as
the subvector of w∈RqT with indices I. Similarly, HT (wd)|I
is the submatrix of HT (wd) with row indices I. In what
follows, Igiven denotes the indices of the given elements of w.
The set of indices Imissing of the missing elements of w is then
the set difference of {1, . . . ,qT } and Igiven.

The missing data estimation problem is defined as follows:
Given a trajectory wd ∈B|Td of a linear time-invariant system
B ∈L q and a partially specified trajectory w|Igiven , w∈B|T ,

minimize over ŵ ‖w|Igiven − ŵ|Igiven‖
subject to ŵ ∈B|T .

(4)

Theorem 1. Assuming that (3) holds, the missing data data-
driven estimation problem (4) is equivalent to

minimize over ŵ ‖w|Igiven − ŵ|Igiven‖
subject to rank

[
HL(wd) HL(ŵ)

]
≤ mL+n.

(5)

Problem (5) is mosaic-Hankel structured low-rank matrix
completion and approximation [20].

C. Solution method

Due to the rank constraint (5) is a nonconvex optimization
problem. A convex relaxation is given by regularization with
the nuclear norm (‖ · ‖∗):

minimize over ŵ ‖w|Igiven − ŵ|Igiven‖
+ γ
∥∥[HL(wd) HL(ŵ)

]∥∥
∗.

Another approach for solving (4), used in [17], is to take
L = T . Then, the constraint of (5) is ŵ = HT (wd)g and
problem (5) becomes a standard least-squares problem:

minimize over g ‖w|Igiven −HT (wd)|Igiven g‖, (6)

which solution is given in closed form by the pseudo-inverse:

ŵ = HL(wd)
(
HL(wd)|Igiven

)+w|Igiven . (7)

Note 2 (Simultaneous missing data estimation and interpo-
lation). A generalization of the data-driven missing data
approximation problem (4) is to add equality constraints
in order to achieve exact interpolation of certain specified
data points. Up to rankHT (wd)|Igiven equality constraints can
be added as exact interpolation conditions, while retaining
feasibility. Note that rankHT (wd)|Igiven ≤ mmm(B)T + nnn(B).
The resulting problem is equality constrained least-squares
minimization, so that it is still convex.

IV. CONCLUSIONS

The behavioral paradigm defines a dynamical system as
a set of trajectories, thus decoupling it from its parametric
representations by equations. For an exact trajectory of a
discrete-time linear time-invariant system, under the persis-
tency of excitation condition (3), the image of a Hankel
matrix constructed from the data coincides with the restricted
behavior of the system. We illustrated the generality, simplic-
ity, and practicality of a data-driven method for missing data
estimation and approximation. The method applies to general
linear time-invariant systems and has no hyper parameters.
It requires a solution of a system of linear equations only.
Efficient implementation is a topic of current research.
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