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Abstract— Efficient and reliable fault detection methods are
needed for monitoring and evaluation of processes, e.g., in
structural health assessment. Most existing methods, however,
rely on a priori given model. Thus, these methods require a
model suitable for fault detection. Obtaining such a model is
nontrivial and is often the bottleneck in applications. Direct
data-driven methods were recently developed in signal process-
ing and control. These methods avoid the model identification
step and were shown to outperform state-of-the-art model-based
methods in practical applications. In this paper, we propose a
direct data-driven method for fault detection. The monitored
process is modeled as a linear time-invariant system with
unobserved deterministic disturbance. We use the behavioral
approach to systems theory in order to define a representation
invariant measure for the distance between data and model.
The main contribution of the paper is computing the distance
directly from offline and online data without parametric model
identification. A second contribution of the paper is a direct
data-driven method for input estimation.

Index Terms— fault detection, input estimation, direct data-
driven methods, behavioral approach.

I. INTRODUCTION

Fault detection is a real-time monitoring problem aimed
to determine based on data of a dynamical system if the
system is in a “healthy” mode of operation [1], [2]. The
healthy mode of operation, as well as possible “faulty”
modes of operation, are specified by parametric models or
data collected offline when the system in the corresponding
mode.

There are two fundamentally different approaches for
fault detection. The first one is based on parametric model
identification [3]. The existence of a fault is detected by
monitoring the estimated model parameters. The rationale
for this approach is that a fault causes a change in the
model parameters. The second approach is based on a signal,
call a residual, that measures the discrepancy between the
data and the model. The occurrence of a fault is detected
by thresholding the residual signal. The rationale for this
approach is that the residual is “small” (ideally zero) when
the system is in the corresponding mode of operation and
“large” otherwise. Residuals are defined in terms of represen-
tations of the system. For linear of time-invariant systems, the
representation could be impulse response, transfer function,
or state-space, and possible residuals are the prediction error,
output error, or equation error.

I. Markovsky is with Catalan Institution for Research and Advanced
Studies and Centre Internacional de Mètodes Numèrics en Enginyeria
(CIMNE) (e-mail: imarkovsky@cimne.upc.edu), A. Muixí, S. Zlotnik, and
P. Diez are with CIMNE and the Universitat Politècnica de Catalunya,
LaCaN, DECA, (e-mails: alba.muixi@upc.edu, sergio.zlotnik@upc.edu, pe-
dro.diez@upc.edu).

The approach in this paper is reminiscent to the residual
thresholding approach, however, it uses a data–model dis-
crepancy measure that is not based on a representation of
the system and can be computed directly from data. The
new representation invariant distance measure, is defined in
the behavioral setting, where dynamical systems are viewed
as sets of trajectories [4]. This view is naturally suited for
data-driven analysis and design. In contemporary machine
learning language, the behavioral setting is non-parametric
and unsupervised since the data does not have to be labeled
into inputs and outputs.

In the behavioral setting, a natural choice for the discrep-
ancy, called misfit, between the system and a signal is the
orthogonal distance from the signal to the system, i.e., the
projection of the signal on the system. This operation is
equivalent to errors-in-variables Kalman smoothing [5]. It
is statistically optimal under the assumption that the signal
is generated in the errors-in-variables setting, i.e., it is a
trajectory of the system corrupted by measurement error,
which is assumed to be a zero mean, white, Gaussian process.
The misfit attributes the lack of fit between the data and
the model to measurement error. An alternative data–model
discrepancy measure, called latency, attributes the lack of
fit between the data and the model to an unobserved latent
signal, referred to as disturbance [6]. In the latency setting,
the model describes the joint dynamics of the disturbance
and the observed variables. The latency is defined as the size
of the smallest disturbance that makes the observations com-
patible with the model. The latency computation corresponds
to Kalman smoothing [7]. As the misfit, the latency is also
statistically optimal under suitable stochastic assumptions
about the disturbance signal.

We define a new distance measure that combines misfit and
latency with disturbance signal that is an unknown determin-
istic signal. Relaxing the assumptions about the disturbance
allows us to apply the new distance in applications where
there is no prior information about the disturbance or either
of the zero-mean, whiteness, and Gaussianity assumptions is
not satisfied. The new measure reduces to the misfit when the
system has no disturbance. Also, the new distance measure
is zero when there is no measurement error, i.e., the signal
is exact. As a byproduct of its computation, the disturbance
signal is estimated. Thus, an independent contribution is a
new input estimation method.

Based on the representation invariant distance measure,
we propose a fault detection method. In addition to being
representation invariant, the new distance measure and re-
sulting fault detection method allow for direct computation
from offline data of the system, bypassing the parametric



model identification required by model-based methods. The
approach of using data as a representation of the system is
called direct data-driven and is successfully used in signal
processing and control, where it is shown to have advantages
over alternative model-based methods [8], [9], [10]. The
direct data-driven method proposed in the paper applies to
data obtained from a transient response, forced response due
to observed excitation signal, as well as forced response
due to unobserved excitation signal. It can be computed
efficiently in real-time and is validated on simulated data.

Section II introduces the terminology, notation, and results
from the behavioral systems theory that are used in the paper.
Section III defines the concepts of misfit, latency, and the
new distance measure that unifies them. Section IV presents
the direct data-driven fault detection method based on the
new distance measure. Section V validates the method on
simulated data.

II. PRELIMINARIES AND NOTATION

We use the behavioral approach [4], [11], [9]. A real-
valued q-variate signal w with time axis T ⊂R is a map from
T to Rq. The set of signals w : T →Rq with q variables is
denoted by (Rq)T . In this paper, the signals are discrete-time
and T = N — the time axis is the set of natural numbers.
The unit shift operator is (σw)(t) := w(t +1).

In the behavioral setting, a dynamical system B with q
variables is defined as a subset of the set of signals (Rq)T .
A system B is linear if B is a linear subspace of (Rq)T

and time-invariant if B is invariant to the action of the shift
operator, i.e., σ B = B. The set of linear time-invariant
systems with q variables is denoted by L q.

The restriction of a signal w ∈ (Rq)N and a system B ⊂
(Rq)N to the interval 1, . . . ,T is denoted by w|T and B|T ,
respectively. The restricted behavior B|T is a subspace of
the set (Rq)T . When B is linear time-invariant,

dim B|T = mT +n, for all T ≥ `,

where m, `, and n are natural numbers that are properties of
the system B:
• m is the number of inputs (in an input/output represen-

tation of the system),
• `, called the lag of B, is the minimal degree of a

difference equation representation of B, and
• n, called the order of B, is the minimal total degree of

a difference equation representation of B.
The triple (m, `,n) characterizes the complexity of B ∈L q.
The set of linear time-invariant systems with q variables and
complexity bounded by (m, `,n) is denoted by L q

(m,`,n).
The variables w can be partitioned into inputs u (free vari-

able) and outputs y (dependent variable) via a permutation
matrix Π∈Rq×q, i.e., w = Π [u

y ] . The inputs u can be chosen
freely while the outputs y are uniquely defined by the model,
the given inputs u, and the initial conditions. As shown
in [12, Lemma 1], the initial conditions for a trajectory
w =

(
w(1), . . . ,w(T )

)
can be specified by Tini ≥ ` “past”

samples wini =
(
w(−Tini+1), . . . ,w(0)

)
. A partitioning of the

variables into inputs and outputs is not unique. In the context
of fault detection, we use an input/output partitioning in order
to model user defined excitation signals and disturbances.

The restricted behavior B|T of a linear time-invariant
system B ∈L q is an r := dim B|T = T m+ n dimensional
subspace and, therefore, it can be represented by a basis

B|T = imageB, where B :=
[
b1 · · · br

]
∈ RqT×r. (B)

We refer to the matrix B of the basis vectors as the basis. The
representation (B) of B|T is nonparameteric. A trajectory
w∈B|T is specified using the data-driven representation (B)
via the equation w=Bg, where g∈Rr. For T ≥ `̀̀(B)+1, the
basis B for the finite-horizon behavior B|T uniquely defines
the system B [13, Lemma 13].

Consider a finite trajectory wd ∈B|Td (the subscript index
“d” stands for “data”) of a bounded complexity linear time-
invariant system B ∈L q

(m,`,n). The following result from [13,
Theorem 17], is used for obtaining a basis B for B|T from
the data wd. Define the Hankel matrix HL(wd) with depth L

HL(wd) :=
[
w|L (σw)|L · · · (σTd−Lw)|L

]
∈RqL×(Td−L+1).

For any L≥ `, B|L = image HL(wd) if and only if

rankHL(wd) = mL+n. (GPE)

The condition (GPE), called generalized persistency of ex-
citation, is verifiable from the data wd and the model’s
complexity (m, `,n). The result of [13, Theorem 17] is a
generalization of the fundamental lemma [14]. For detailed
discussion on the similarities and differences between the
generalized persistency of excitation and the conditions of
the fundamental lemma, see [15].

Linear time-invariant systems can be represented in differ-
ent ways by equations. The most popular ones—convolution,
transfer function, and state-space—assume a priori given
input/output partitioning of the variables. In this section, we
do not review parametric representations because they are
not used in the paper. For more details on the behavioral
approach to systems theory, it’s relation to the classical
input/output approach, and its relevance to direct data-driven
signal processing and control, we refer the reader to [9].

III. DATA–MODEL DISCREPANCY MEASURES

Stochastic system identification problems and methods can
be classified into errors-in-variables [16] and auto-regressive
moving-average exogenous (ARMAX). Deterministic coun-
terparts of the likelihood functions in the errors-in-variables
and the ARMAX settings are, respectively, the misfit and the
latency. In this section, we propose a new distance measure
that combines and generalizes the misfit and the latency.

We model the disturbance as an unknown deterministic
input, i.e., no prior about it is imposed. Under conditions
on the system however the disturbance can be inferred from
the observed variables. In this section, we assume that the
system is given. In the next section, we show how the new
distance measure can be estimated directly from data.



The misfit between a signal w ∈ (Rq)T and a system B ⊂
L q is defined as the minimum norm perturbation of w that
makes the perturbed signal ŵ consistent with the system B,

misfit(w,B) := min
ŵ∈B|T

‖w− ŵ‖. (M)

The misfit(w,B) is the likelihood of w given B in the errors-
in-variables setting: w = w+ w̃, where w ∈B|T and w̃ is a
zero-mean, white, Gaussian process [17].

Lemma 1. Assuming that the data w is generated in the
errors-in-variables setting, misfit(w,B)≤ ‖w̃‖.

Proof: For w = w+ w̃, where w ∈B|T , we have that
misfit(w,B) = min∆w∈B|T ‖w̃−∆w‖. Since ∆w = 0 ∈B|T ,
misfit(w,B)≤ ‖w̃‖.

An alternative way of measuring the discrepancy between
data and model is an unobserved signal e∈ (Rne)N acting on
the system. In this case, the system B describes the extended
signal (e,w) ∈ (Rne+q)N. The latency of w ∈ (Rq)T , given
B ∈L ne+q is defined as

latency(w,B) = min
(ê,w)∈B|T

‖ê‖. (L)

For latency(w,B) to be well-defined, problem (L) should
have a unique solution. A necessary and sufficient condition
for existence and uniqueness of solution is that w is compat-
ible with B, i.e., w ∈ΠwB|T , where Πw is the projection of
(e,w) on the w component. The condition is satisfied when
1) e is an input of B and 2) ne = p, where p is the number
of outputs of B. These assumptions are standard in the
ARMAX setting [3]: (e,w) ∈B|T , where the disturbance e
is a zero-mean, white, Gaussian process. The latency is
the likelihood of w given B in the ARMAX setting. The
following statement follows directly from the assumption that
(e,w) ∈B|T , and the definition of latency(w,B).

Lemma 2. Assuming that the data w is generated in the
ARMAX setting, latency(w,B)≤ ‖e‖.

Consider next the missing data estimation problem: Given
a system B ∈L ne+q with variables partitioned as (e,w) and
a signal w ∈ (Rq)T , find e, such that (e,w) ∈B|T . The goal
is to ensure exact recovery of e from w, i.e., there should be
a unique signal e ∈ (Rne)T that is compatible with the data
w and the model B. The following result from [18] gives
necessary and sufficient conditions for exact recovery.

Lemma 3. Consider a system B ∈L ne+q
(m,`,n), let w∈ΠwB|T ,

and let B be a basis for B|T . There is a unique e ∈ (Rne)T ,
such that (e,w) ∈B|T if and only if rankΠwB = mT +n.

A necessary condition for unique recovery is p > ne,
where p denotes the number of outputs of B. Note that in
the ARMAX setting unique recovery of e is not possible.

In the missing data estimation problem, the data w may
be corrupted by measurement noise. Then, generically, there
is no e ∈ (Rne)T , such that (e,w) ∈B|T . In this case, under
the assumptions of Lemma 3, we choose the signal ê that

achieves the best in the least-squares sense fit to the data w:

dist(w,B) := min
(ê,ŵ)∈B|T

‖w− ŵ‖. (dist)

Problem (dist) is a generalization of (M). Indeed, under the
assumptions of Lemma 3, when there is no latent input, (dist)
coincides with (M). Moreover, dist(w,B) is the likelihood
of w, given B, when

w = w+ w̃, where (e,w) ∈B|T , (EIV-ARMAX)

for some e∈ (Rne)T and measurement noise w̃ that is a zero-
mean, white, Gaussian process.

Lemma 4. Under the assumptions of Lemma 3, if the data w
is generated in the (EIV-ARMAX) setting, dist(w,B)≤ ‖w̃‖.

Proof: By Lemma 3, we have that

dist(w,B) = misfit(w,ΠwB). (dist↔misfit)

Lemma 4 follows then from Lemma 1.
Next, we show how misfit(wd,B) and dist(w,B) can be

computed in practice and derive a direct data-driven fault
detection method based on dist(w,B).

IV. DIRECT DATA-DRIVEN FAULT DETECTION

In the data-driven fault detection problem considered, the
monitored process is a bounded complexity linear time-
invariant system with variables (e,w). Its nominal behavior
B0 is implicitly specified by offline data (e0

d,wd
0) ∈B0|Td ,

that satisfies the generalized persistency of excitation condi-
tion (GPE). The fault detection problem aims to check if an
observed signal w ∈ (Rq)T , generated in the (EIV-ARMAX)
setting, is compatible with B0. This is done by computing
and comparing the distance measures di := dist(w,Bi) to
the nominal behavior B0 and possible faulty behaviors Bi,
i = 1, . . . ,N, also specified by offline data (ei

d,wd
i) ∈Bi|Td

satisfying the generalized persistency of excitation condition.
The method proposed has two phases:
1) using the offline data (ei

d,wd
i) and the complexity

specification c, find orthonormal bases Bi for Bi|T ,
2) using Bi, compute di := dist(w,Bi).

In phase 1, the bases Bi can be computed by low-rank
approximation, i.e., truncation of the singular value decom-
position of the Hankel matrices HT (wd

i) to the theoretical
rank mT + n. Although this method is cheap and easy to
compute, it does not preserve the shift-invariant structure
and is suboptimal [19]. Alternatively, a Hankel structured
low-rank approximation can be used [20], [21], however, it
leads to a nonconvex optimization problem.

Problem (M) is a projection of w on the subspace B|T .
Thus, with B being an orthonormal basis for B|T , we have

misfit(w,B) = min
g
‖w−Bg‖=

√
w>(IqT −BB>)w,

where IqT is the identity matrix of size qT .
Next, we consider the computation of the new measure

dist(w,B). Note that by the assumption of Lemma 3 Bw :=



ΠB is a basis for ΠwB|T . (However, it need not be an
orthonormal basis.) Using (dist↔misfit), we have

dist(w,B) = min
g
‖w−Bwg‖=

√
w>(IqT −BwB+

w )w,

where B+
w is the pseudo-inverse of Bw.

V. EMPIRICAL VALIDATION

For the validation of the method, we use a mechanical
system consisting of three masses interconnected via springs
and dampers as shown in Figure 1. The system is excited
by an external force u, applied on the first mass, and a
disturbance e acting on the third mass. Both u and e are
generated as random independent and uniformly distributed
in the interval [0,1] processes. The nominal system B0 has
parameters m1 = m2 = m3 = 10, k1 = k2 = k3 = 1, b1 = b2 =
b3 = 0.5. A scenario of a fault B1 is considered, where k3
is changed by 5%, i.e., k3 = 1.05 with the other parameters
being the same as in the nominal case.

The observed variables w are the external force and the
positions of the three masses. Data w0 ∈ (R4)100, w1 ∈
(R4)100 is collected from the nominal and faulty behav-
iors, respectively, in the (EIV-ARMAX) setups. Using the
data, the four distance measures d j

i := dist(w j,Bi), i = 0,1,
j = 0,1 are computed for increasing measurement noise w̃
variance. Figure 2 shows the distance measures d j

i , averaged
over 100 Monte-Carlo repetitions of the experiment.

Fig. 1. The empirical validation is done on an interconnected mass-spring-
damper system with external force u applied on mass m1 and disturbance e
acting on mass m3. The observed signals are the force u and the positions
of the masses. The fault is a change of the elasticity coefficient k3 by 5%.
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Fig. 2. The distances from the data to the corresponding behaviors, plotted
in the figure as a function of the norms of the measurement noises, show
that di

i ≤ ‖w̃i‖ (Lemma 4) and fault detection can be done by comparison
of the distances to the nominal and faulty behaviors.

The empirical results confirm that di
i ≤ ‖w̃i‖ (Lemma 4),

d0
0 < d0

1 , and d1
1 < d1

0 . The margin between the distances
d0 := dist(w,B0), d1 := dist(w,B1) to the nominal and faulty
behaviors allows us to do reliable fault detection. Indeed.
d0 < d1 implies no fault, while d1 < d0 implies a fault. Note
that the test does not require a thresholding hyper-parameter.
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