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Abstract

The behavioral system theory and in particular a result that became known as the "fundamental lemma" give the theoretical foundation
for nonparameteric representations of linear time-invariant systems based on Hankel matrices constructed from data. These "data-driven"
representations led in turn to new system identification, signal processing, and control methods. This paper shows how the approach can
be used further on for solving interpolation, extrapolation, and smoothing problems. The solution proposed and the resulting method are
general—can deal simultaneously with missing, exact, and noisy data of multivariable systems—and simple—require only the solution
of a linear system of equations. In the case of exact data, we provide conditions for existence and uniqueness of solution. In the case of
noisy data, we propose an approximation procedure based on `1-norm regularization and validate its performance on real-life datasets.
The results have application in missing data estimation and trajectory planning. They open a practical computational way of doing system
theory and signal processing directly from data without identification of a transfer function or state-space system representation.
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1 Introduction

Signal processing and control currently undergo a shift of
paradigm from model-based to data-driven. One of the ap-
proaches for data-driven analysis and design is based on
Hankel matrices constructed from observed data. A theoret-
ical basis for this approach is given in the behavioral setting
[23,19,16], where a dynamical system is defined as a set
of trajectories—vector-valued signals without a priori sepa-
ration of the variables into inputs and outputs. This makes
the behavioral setting intrinsically data-driven. A setting that
does not consider a dynamical system an input-output map
is both general and useful, as illustrated by ample examples
of modeling physical systems from first principles [24].

The key technical result that justifies the use of Hankel ma-
trices constructed from observed data in data-driven analy-
sis and design is the fundamental lemma [25]. It provides a
nonparametric representation of a linear time-invariant sys-
tem using observed data of the system, assuming that: 1. the
data is exact (noise free), 2. the data generating system is
controllable, and 3. an input component of the data is persis-
tently exciting of a "sufficiently" high order. The fundamen-
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tal lemma is originally derived for data consisting of a sin-
gle trajectory. It is subsequently generalized to data consist-
ing of multiple trajectories [22] and for uncontrollable sys-
tems [17]. The fundamental lemma and its generalizations
give sufficient conditions and assume a given input/output
partitioning of the data. An alternative result that gives nec-
essary and sufficient conditions and does not assume a priori
known input/output partitioning is [12, Theorem 15].

Both the fundamental lemma and [12, Theorem 15] lead to
a data-driven nonparametric representation of linear time-
invariant systems, which expresses the behavior of the sys-
tem restricted to a finite-horizon as the image of a Hankel
matrix constructed from data. The practical consequence of
this fact is that any finite-horizon trajectory of the system
can be expressed as a linear combination of the columns of
the Hankel matrix. This led to algorithms based on the raw
data rather than parametric representations, see [13].

This paper contributes to the line of research on data-driven
signal processing using model representations based on Han-
kel matrices. We consider data-driven versions of the follow-
ing well known system theory / signal processing problems
for discrete-time linear time-invariant system:

• simulation—given initial conditions and input, find the
corresponding output of the system;

• smoothing—given an inexact/noisy trajectory, find a tra-
jectory of the system that is the optimal (in some specified
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sense) approximation of the given trajectory; and
• prediction—given inexact/noisy "past" trajectory, find a

"future" trajectory of the system that is the optimal (in
some specified sense) continuation of the past trajectory.

In the simulation problem the given data—initial conditions
and input—is exact and the computed result—the output—
is exact. In the smoothing and prediction problems the given
data is a signal that is assumed to be an exact trajectory of
the system corrupted by additive zero-mean Gaussian noise.
This leads to maximum-likelihood estimation problems with
the optimality criterion being a (weighted) 2-norm mini-
mization of the fitting error. A recursive solution method is
given by the errors-in-variables Kalman smoother [6,11].
The problem formulation and solution method of [6] is based
on a transfer functions approach while the one of [11] on
a state-space approach. In this paper, we use instead a non-
parametric data-driven representation that requires a com-
pletely specified informative trajectory of the system. A re-
lated, more general, albeit less tractable solution approach
is Hankel structured low-rank matrix completion [10].

A generalization of the simulation problem is:

• interpolation—given a subsample of values of a trajectory,
find all trajectories of the system that fit the data.

The simulation problem is interpolation with the given val-
ues being the "past" inputs and outputs (initial conditions)
and the "future" inputs. The extra flexibility of the interpo-
lation problem, allowing for arbitrary combination of given
variables at arbitrary moments of time, can be used for miss-
ing data recovery: the part of the trajectory that is not given
is recovered from the given data and system. There are many
situations when missing data occurs in practice, e.g., partial
observations due to failing sensors, packet losses in commu-
nication networks, and event-triggered estimation [7]. An-
other application of the interpolation problem is trajectory
planning for control [5]. The design specification in trajec-
tory planning is that the desired trajectory passes through
some pre-specified points (the interpolation constraints).

Contrary to the simulation problem, which always has
a unique solution, the interpolation problem may have a
nonunique solution or no solution at all. We show that the
set of solutions is affine and characterize it explicitly. The
result can be used in optimal control for finding a trajectory
that satisfies the interpolation conditions and is moreover
optimal in some specified sense. In the case of no solution,
e.g., due to noisy data, we define an optimal approximation
problem with optimality criterion being a weighted 2-norm
minimization of the fitting error with respect to the given
data. This approximation problem includes as special cases
the smoothing and prediction problems. Thus, the general
problem considered includes the simulation, interpolation,
smoothing, and prediction problems.

In the data-driven versions of the problems, the data gen-
erating system is not given, and the aim is to find a direct

map from the given (possibly noisy) data to the desired re-
sult (simulated, smoothed, predicted, or interpolated signal),
without derivation of a parametric model representation. In-
stead of the data generating system one or more complete
trajectories of the system that specify it implicitly are given.

The main contribution of the paper is posing and solving the
data-driven dynamic interpolation and approximation prob-
lem. For exact data, we give existence and uniqueness con-
ditions that are easily verifiable from the data. In the case
of a nonunique solution, we show that the set of solutions
is affine and explicitly characterize it. For inexact data, we
propose an approximation procedure based on `1-norm reg-
ularization and validate its performance empirically. Empir-
ical results on real-life datasets from the data-base for sys-
tem identification DAISY [3] show that by tuning a hyper
parameter, the `1-norm regularization method may outper-
form alternative model-based approaches.

The paper is organized as follows. Section 2 introduces the
technical results used in the rest of the paper—specification
of initial conditions by a prefix trajectory, trajectory-based
representation, and its link to data-driven algorithms. The
basic interpolation problem and its solution are presented in
Sections 3. The assumptions needed for exact interpolation
are relaxed in Section 4. The set of interpolants is charac-
terized in case of a nonunique solution, an approximation
problem is introduced when an exact interpolant does not
exist, and a convex relaxation is proposed for dealing with
noisy data. Section 5 shows the performance of the relax-
ation on real-life data sets.

2 Preliminaries

The set of q-variate discrete-time signals w : N → Rq is
denoted by (Rq)N. The cut operator w|L restricts w to the
interval [1,L] 1 , i.e., w|L :=

(
w(1), . . . ,w(L)

)
. With some

abuse of notation, we view the finite L-samples long signal
w ∈ (Rq)L also as a qL-dimensional vector w ∈ RqL.

In the behavoral setting a discrete-time dynamical system
B is defined as a set of trajectories, i.e., B ⊂ (Rq)N. If
the system B is linear, B is a subspace, and if it is time-
invariant σB = B, where (σw)(t) := w(t + 1) is the shift
operator. The class of linear time-invariant systems with q
variables is denoted by L q.

The variables w(t) ∈ Rq of a system B can be partitioned
into inputs u(t) ∈ Rm and outputs y(t) ∈ Rp, i.e., there is
a permutation matrix Π ∈ Rq×q, such that w = Π [u

y ]. The
partitioning of the variables into inputs and outputs is in
general not unique. The number of inputs m(B), however,
is invariant of the choice of the partitioning and is, therefore,
a property of the system B.

1 [1,L] denotes the interval of the integers from 1 to L.
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Note 1 Considering all variables on an equal footing, i.e.,
not introducing an a priori fixed input/output partitioning, is
a more general modeling setting [24]. The difficulty of intro-
ducing an a priori fixed input/output partitioning is evident
for example in modeling dynamic networks, such as the ones
occurring in biological and complex man-made systems,
e.g., circuits. In machine learning, the shift of paradigm from
input/output maps to relations corresponds to the shift from
supervised to unsupervised learning.

For a linear time-invariant system B ∈L q, B|L is the re-
striction of the behavior to the interval [1,L], i.e., B|L :=
{w|L | w ∈B }. The restriction B|L is a subspace of RqL

with dimension dim B|L = m(B)L+n(B), for L ≥ l(B),
where m(B) is the number of inputs, l(B) is the lag, and
n(B) is the order of the system [12].

As shown in [14, Lemma 1], initial conditions for a trajectory
w ∈B can be specified by a prefix trajectory wini of length
greater than or equal to the lag l(B) of the system.

Lemma 2 (Initial conditions specification [14]) Let B ∈
L q admits an input/output partition w = (u,y). Then, for
any given wini ∈ (Rq)Tini , with Tini ≥ l(B), and u ∈ (Rm)L,
there is a unique y∈ (Rp)L, such that wini∧(u,y)∈B|Tini+L,
where wp∧wf denotes the concatenation of wp and wf.

Consider a system B ∈ L q. For any wd ∈ B|T and L ∈
N, 1 ≤ L ≤ T , we have that B|L ⊆ image HL(wd), where
HL(w) the Hankel matrix with L block rows

HL(w) :=


w(1) w(2) · · · w(T −L+1)

w(2) w(3) · · · w(T −L+2)
...

...
...

w(L) w(L+1) · · · w(T )

∈RqL×T−L+1.

If equality holds, i.e.,

B|L = image HL(wd), (1)

we have a data-driven representation of the system. Indeed,
(1) characterizes all L-samples long trajectories of the sys-
tem using directly the given data wd without derivation of a
parametric model for the system. However, for (1) to hold
true additional conditions have to be satisfied. Such condi-
tions are given in [25, Theorem 1] and [12, Theorem 15].

Theorem 3 ([Theorem 15 in [12]) Consider wd ∈ B|T ,
where B ∈L q and L≥ l(B). Then, (1) holds if and only if

rank HL(wd) = m(B)L+n(B). (2)

Corollary 4 Let wd ∈B|T , where B ∈L q, L≥ l(B), and
(2) holds. Then, for any w ∈B|L there is a g, such that

w = HL(wd)g. (3)

Vice versa, any g ∈ RT−L+1 defines via (3) an L-samples
long trajectory w of B.

Note 5 (Interpretation of g) In (3), the vector g "selects"
a trajectory w∈B|L, in the sense that any g∈RT−L+1 spec-
ifies a trajectory w ∈RqL. The vector g plays the role of the
initial state x(0) and input u in an input/state/output rep-
resentation of the system. There is an important difference
between g and

(
x(0),u

)
, however. The map g 7→w is in gen-

eral not injective, i.e., there may be many g’s that map to the
same w (see Lemma 6), while

(
x(0),u

)
is in a one-to-one

correspondence with w. Since each column of the Hankel
matrix is a trajectory, from the perspective of motion primi-
tives, dictionary learning, or basis functions [1], the Hankel
matrix serves as a "trajectory library". A linear collection
of elements (bases or motion primitives) from this library
forms a new trajectory of B|L. Under the conditions of The-
orem 3, this trajectory library is complete, i.e., it spans B|L.

In general, a solution g to (3) is not unique.

Lemma 6 (Nonuniqueness of g) Let wd ∈ B|T , where
B ∈L q, L ≥ l(B), and (2) holds. Then, for any w ∈B|L
the solution set G of (3) is nonempty and is given by
G = gp +Ng, where gp is a particular solution and Ng is
the null space of HL(wd). Vice versa, for a given g′p ∈ G ,
any g ∈ g′p +Ng define via (3) the same L-samples long
trajectory w = HL(wd)gp of B.

Formulation (3) is used in [14] for solving data-driven pre-
diction and control problems. Here, it is used for solving
data-driven interpolation and approximation problems.

3 Problem formulation and basic solution method

A signal w ∈ (Rq)L is also a qL-dimensional vector. For a
vector of indices I ∈ NK , where Ii ∈ {1, . . . ,qL}, for i =
1, . . . ,K, we define w|I := [wI1 · · · wIK ]

> ∈RK , i.e., w|I is the
subvector of w ∈ RqL with indices I. 2 Similarly, HL(wd)|I
is the submatrix of HL(wd) with row indices I. Igiven denotes
the indices of the given elements of the to-be-interpolated
trajectory w. The set of indices Imissing of the missing ele-
ments of w is then the set difference of {1, . . . ,qL} and Igiven.

First we consider exact data wd ∈B|T . This assumption is
relaxed in Section 4.3.

Problem 7 (Data-driven interpolation) Given a trajec-
tory wd ∈B|T of a linear time-invariant system B ∈ L q

and a partially specified trajectory w|Igiven , find a trajectory
ŵ ∈B|L, such that ŵ|Igiven = w|Igiven .

Problem 7 defines a map (wd,w|Igiven) 7→ ŵ ∈B, which re-
covers the missing values w|Imissing , i.e., ŵ|Imissing = w|Imissing .

2 The notation w|I for I being a set overloads the notation w|L
defined earlier for L ∈ N.
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We call ŵ|Imissing a completion of the given data w|Igiven . The
constraint imposed in Problem 7 on the completion ŵ|Imissing

is that the complete trajectory ŵ is a valid trajectory of B.

In the rest of the paper we refer to the following assumptions:

• A1. wd satisfies condition (2),
• A2. rank

[
w|Igiven HL(wd)|Igiven

]
= rank HL(wd)|Igiven ,

• A3. rank HL(wd)|Igiven = rank HL(wd)=m(B)L+n(B).

Assumption A1 is necessary and sufficient for the trajectory
based representation (1). Assumption A2 is a consistency
assumption: it guarantees that the given data w|Igiven is con-
sistent with the data generating system B, i.e., there is a
completion w|Imissing of w|Igiven , such that w∈B|L. As shown
next, Assumptions A1 and A2 guarantee existence of solu-
tion of Problem 7. For uniqueness, the stronger Assumption
A3 is needed in place of Assumption A1. Verifying the as-
sumptions requires, in addition to the data (wd,w|Igiven), prior
knowledge of the number of inputs m(B) and the order
n(B) of the data generating system B. However, the method
proposed is based on the nonparameteric representation (1),
and doesn’t require prior knowledge of m(B) and n(B).

Selecting the equations in (3) corresponding to w|Igiven , gives
us the interpolation condition:

there is a g, such that w|Igiven = HL(wd)|Igiveng. (4)

Any solution g of (4) defines via ŵ := HL(wd)g an inter-
polant of w|Igiven . This leads to the basic algorithm for data-
driven interpolation, given in Algorithm 1. Note that the al-
gorithm does not require the number of inputs m(B) and
the order n(B) of the data generating system B.

Algorithm 1 Data-driven interpolation.
Input: wd, Igiven, and w|Igiven .

1: Solve w|Igiven = HL(wd)|Igiven g for g.
2: Let ŵ := HL(wd)g.

Output: ŵ.

Proposition 8 (Existence of ŵ) Assuming A1 and A2, 1)
Problem 7 has a solution and 2) Algorithm 1 computes a
solution of Problem 7.

PROOF. The proof of the proposition that Problem 7 has a
solution is constructive. It follows from the proposition that
Algorithm 1 computes a solution of Problem 7. Therefore,
we need to prove only the latter. In order to do this, we need
to show that: 1) ŵ is a trajectory of B, i.e., ŵ ∈B|L, and 2)
ŵ interpolates the given data, i.e., ŵ|Igiven = w|Igiven .

Using Assumption A1, by Theorem 3, (1) holds true. By
Assumption A2, there is a solution g to (4). Then, for any
solution g to (4), ŵ , defined via (3) interpolates the given
data w|Igiven and, by Corollary 4, ŵ is a trajectory of B. 2

Proposition 9 (Uniqueness of ŵ) Assuming A1–A3, Prob-
lem 7 has a unique solution, computed by Algorithm 1.

PROOF. Under Assumptions A1 and A2, by Proposition 8,
Algorithm 1 computes a trajectory ŵ of the system B that
interpolates the given data w|Igiven . Algorithm 1 computes
a particular solution gp of (4). The solution set of (4) is
gp+N ′

g , where N ′
g is the null space of HL(wd)|Igiven . Under

Assumption A3, however, N ′
g = N — the null space of

HL(wd). Therefore, by Lemma 6, the interpolant ŵ is unique
even though gp is an arbitrary solution of (4). 2

Note 10 (Representation of the map w|Igiven 7→ w|Imissing )
Under the assumptions of Proposition 9, the map w|Igiven 7→
w|Imissing is well-defined. It is linear and allows the following
explicit representation by wd

w|Imissing = HL(wd)|Imissing

(
HL(wd)|Igiven

)+w|Igiven ,

where M+ denotes the pseudo-inverse of a matrix M.

Note 11 (Minimal number of samples for exact recovery)
For A3 to hold true, the number of given samples K must
be at least Kmin := m(B)L+n(B).

Note 12 (Computational complexity) The computational
complexity of Algorithm 1 is determined by the system
of equations (4) on step 1. Equation (4) has K equations
and T −L+1 unknowns. With K fixed and T growing, the
computational complexity is linear in T . With K growing
linearly, due to Assumption A1, T must also grow at least
linearly. This implies that both dimensions of the system
are growing. As a result, the computational complexity of
Algorithm 1 is cubic in K [21].

4 Generalizations: nonunique solution, approximation
of w|Igiven , and inexact wd

The generalizations considered in this section relax the As-
sumptions A1–A3 for existence and uniqueness of an exact
solution of the data-driven interpolation Problem 7. We start
in Section 4.1 by characterizing the set of interpolants ŵ
when Assumption A3 is not satisfied (and as a result the
solution of Problem 7 is not unique). Then, in Section 4.2
as a result of dropping Assumption A2, we define an ap-
proximation problem, where w|Igiven is approximated opti-
mally in a weighted least squares sense by ŵ. A special case
of the approximation / missing data estimation problem is
the errors-in-variables Kalman smoothing problem. The so-
lution of the general data-driven approximation problem is
given by a relatively minor modification of Algorithm 1: on
step 1, g is an approximate weighted least squares / least
norm solution of (4) (rather than an exact one). Section 4.3
presents a convex relaxation for the problem of interpolation
with inexact/noisy data wd.
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4.1 Nonunique solution

As shown in Section 2, a consequence of dropping Assump-
tion A3 is that Problem 7 has a nonunique solution. The
solution set is affine and the following corollary of Propo-
sition 8 gives it a data-driven characterization.

Corollary 13 (Nonuniqueness of ŵ) Assuming A1 and A2,
the solution set to Problem 7 is Ŵ := ŵp +Nw, where
ŵp = HL(wd)gp and Nw = HL(wd)N

′
g , with gp a particu-

lar solution of (4) and N ′
g the null space of HL(wd)|Igiven .

The characterization of the set of all solutions is needed in
the trajectory planning control application. The set of inter-
polants defines the feasible set for further optimization, i.e.,
a unique solution is selected from the set of all solutions us-
ing additional control objectives, typically a cost function.
In addition to trajectory planning the characterization of all
interpolants is used in subspace identification in two spe-
cial cases: characterization of all free responses and all zero
initial conditions responses of the system.

4.2 Approximation

When the consistency Assumption A2 is not satisfied, Prob-
lem 7 has no solution. In this section, we define an alterna-
tive problem to Problem 7, which aims for an approximate
solution, i.e., instead of requiring an exact interpolation of
the given data w|Igiven , we aim for an optimal in some sense
approximation of w|Igiven by a trajectory ŵ of the system.

Assumption A2 may not be satisfied because w|Igiven is cor-
rupted by noisy or because it is not generated by a linear
time-invariant system of a bounded complexity. In either
case the optimality criterion used is deterministic and min-
imizes the weighted 2-norm of the approximation error

‖w|Igiven − ŵ|Igiven‖W :=√
(w|Igiven − ŵ|Igiven)

>W (w|Igiven − ŵ|Igiven), (5)

where W ∈RK×K is a positive definite matrix. This leads to
the following problem.

Problem 14 (Data-driven approximation) Given a tra-
jectory wd ∈B|T of a linear time-invariant system B ∈L q,
a partially specified trajectory w|Igiven , and a positive definite
weight matrix W ∈ RK×K ,

minimize
ŵ

‖w|Igiven − ŵ|Igiven‖W

subject to ŵ ∈B|L.
(6)

Proposition 15 Assuming A1, Problem 14 has a solution

ŵ = HL(wd)
(
W 1/2HL(wd)|Igiven

)+W 1/2w|Igiven , (7)

where M+ denotes the pseudo-inverse of a matrix M and
W 1/2 denotes the matrix square root of W.

PROOF. Using Assumption A1, by Corollary 4, we have

ŵ ∈B|L ⇐⇒ there is a g, such that ŵ = HL(wd)g.

Therefore, (6) is equivalent to the weighted linear least
squares problem

min
g
‖w|Igiven −HL(wd)|Igiveng‖W .

An least-norm optimal solution is given by

ĝ =
(
W 1/2HL(wd)|Igiven

)+W 1/2w|Igiven .

Then, (6) follows from (3). 2

For K≥Kmin given samples, the solution (7) of (6) is unique.
Also, if exact solution exists, (7) is exact, i.e., Problem 7
and Algorithm 1 are special cases of Problem 14 and (7).

Note 16 (Simultaneous approximation and interpolation)
A generalization of the data-driven approximation problem
is to add equality constraints in (6) in order to achieve
exact interpolation of certain specified data points. Since
rank HL(wd)|Igiven = Kmin, up to Kmin equality constraints
can be added as exact interpolation conditions, while retain-
ing feasibility. The resulting problem is equality constrained
least-squares minimization and is still convex. We do not
present the solution of this modification of Problem 14 here.

4.3 Inexact/noisy data wd

In this section, we relax the basic assumption wd ∈ B|T ,
i.e., wd is no longer assumed to be exact. Instead, it is as-
sumed that wd is generated in the errors-in-variables setup
wd = wd + w̃d, where wd is a trajectory of a bounded com-
plexity linear time-invariant system (the "true" system) and
w̃d is the measurement noise [20]. Define the complexity of
B as the triple c = c(B) :=

(
m(B), l(B),n(B)

)
. With L q

c
denoting the set of linear time-invariant systems with com-
plexity bounded by c, the assumption about wd is that there
is a B ∈L q

c , such that wd ∈B|T . The assumption about
the measurement noise w̃d is that it is zero mean Gaussian
with covariance matrix s2I. The maximum-likelihood iden-
tification problem of the true system B from the data wd is:

minimize
ŵd,B̂

‖wd− ŵd‖

subject to ŵd ∈ B̂|T and B̂ ∈L q
c .

(8)

Using the equivalence between trajectories of bounded com-
plexity linear time-invariant systems and rank deficiency of
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Hankel matrices (see [10, Lemma 3]), we restate (8) as Han-
kel structured low-rank approximation problems:

minimize
ŵd

‖wd− ŵd‖

subject to rank H`+1(ŵd)≤ (`+1)m+n,

where m = m(B), `= l(B), and n = n(B). Due to the rank
constraint, the Hankel structured low-rank approximation
problem is non-convex.

The data-driven interpolation problem can be defined as the
bi-level problem:

minimize
g

‖w|Igiven −HL(ŵ∗d)|Igiven g‖W

subject to ŵ∗d = arg min
ŵd,B̂

‖wd− ŵd‖

subject to ŵd ∈ B̂|T and B̂ ∈L q
c

(9)

or equivalently

minimize
g

‖w|Igiven −HL(ŵ∗d)|Igiveng‖W

subject to ŵ∗d = argmin
ŵd
‖wd− ŵd‖

subject to rank H`+1(ŵd)≤ (`+1)m+n,

which is also non-convex due to the rank constraint in the
inner optimization problem. Note that contrary to Algo-
rithm 1, the maximum-likelihood data-driven interpolation
problem (9) requires prior knowledge of the true system’s
complexity c(B).

The approach for solving (9) presented next is based on a
convex relaxation similar to the one used in [4] for solv-
ing data-driven control problems. Since rank HL(ŵ∗d)|Igiven ≤
Lm(B)+n(B), adding the constraint

‖g‖0 ≤ Lm(B)+n(B) (10)

to the primary optimization problem of (9) does not change
the problem. The relaxation proposed

(1) replaces the nonconvex constraint (10) by the convex
one ‖g‖1 ≤ α, where α > 0 is a hyper-parameter, and

(2) drops the nonconvex constraint ŵd ∈ B̂ ∈L q
c , which

leads to the trivial inner problem solution ŵ∗d = wd.

The resulting convex optimization problem

minimize
g

‖w|Igiven −HL(wd)|Igiveng‖W

subject to ‖g‖1 ≤ α

is by strong duality equivalent to the problem

minimize
g

1
2‖w|Igiven −HL(wd)|Igiveng‖2

W +λ‖g‖1, (11)

for some λ > 0. Problem (11) is known in statistics and ma-
chine learning as the Least Absolute Shrinkage and Selection
Operator (LASSO) [1]. It is a convex optimization problem
and there are readily available methods for its solution.

The hyper-parameter λ in (11) controls the accuracy–
complexity trade off and is related to prior belief of the
model complexity in the maximum-likelihood estimation
problem. It has to be chosen "sufficiently large" in order
to ensure the desired sparsity (10) of g, however, not "too
large" because then ŵ tends towards the trivial zero solu-
tion. An optimal value λ ∗ for λ is the smallest value, for
which the solution g of (11) has Lm(B)+n(B) nonzero
elements. λ ∗ can be found by bisection.

Note 17 (2-norm regularizer and λ = 0) Although (7) is
derived under the assumption of exact data wd of a linear
time-invariant system, it can be used as a heuristic for data-
driven interpolation in the case of inexact data wd. The use
of the pseudo-inverse in (7) implies that the least-norm solu-
tion for g is selected. Minimization of ‖g‖ is an alternative
regularization to the ‖g‖1 in (11). Since (7) does not depend
on hyper-parameters and (11) is undefined for λ = 0, we
define the solution of (11) for λ = 0 to be (7).

It is shown in [4] that for a related control problem the
`1-norm regularization performs favorably in case of noisy
data and nonlinear systems. Next, we test empirically the
effectiveness of (11) for missing data estimation.

5 Simulation examples

The simulation results are made reproducible in the sense
of [2] by providing the implementation of the method and
the data generating scripts. The computational environment
used is Matlab. The files reproducing the simulation re-
sults are available from http://homepages.vub.ac.be/
~imarkovs/software/ddint.tar. The code is presented
in a literate programming style [8] http://homepages.
vub.ac.be/~imarkovs/software/ddint.pdf.

In this section, we show the performance of the `1-norm
heuristic (11) on five datasets from the data-base for system
identification DAISY [3]. Each dataset consists of two time
series—measured input and measured output of a physical
process. The datasets names, number of samples, number of
inputs, and number of outputs are given in Table 1. For more
details about the physical processes and the measurement
experiments, we refer the reader to [3]. Note that these are
measurements of real-life systems that do not necessarily
satisfy the linearity and time-invariance assumptions.

The time series are split into two parts: the first 75% is used
as the "data trajectory" wd, the remaining 25% as the "to-
be-interpolated trajectory" w. Randomly sampled variables
w|Imissing of w are removed and estimated via data-driven
interpolation using wd and w|Igiven . The ratio f = K/(qL)
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Table 1
Five datasets from the DAISY database are used for empirical eval-
uation of the (11) method. (T —number of samples, m—number
of inputs, p—number of outputs) .

data set name T m p

1 Distillation column 90 5 3

2 pH process 2001 2 1

3 Hair dryer 1000 1 1

4 Heat flow density 1680 2 1

5 Heating system 801 1 1

of the number of missing elements to the total number of
elements of w is selected as f = 0.2, i.e., 20% missing values.

For the numerical solution of (11), we use the alternating
direction method of multipliers [18]. The performance of
the method is evaluated by the relative percentage error in
the estimation of the missing values:

emissing :=
‖w|Imissing − ŵ|Imissing‖

‖w|Imissing‖
100%,

where ŵ is the computed solution. Since the performance
of the (11) heuristic depends of the choice of the λ hyper-
parameter, we evaluate emissing over a grid of values for λ .

Table 2 shows the best value of emissing obtained for the λ ’s
in the grid. As a baseline for comparison, we use the perfor-
mance of (7) (see Note 17) and the model-based method (9).
A more detailed view of the performance of the `1-norm
heuristic (11) is given in Figure 1. The left plot shows emissing
as a function of λ and the right plot shows the sparsity
of the solution g, corresponding to the minimum value of
emissing. The theoretically optimal number of nonzero ele-
ments Lm(B) + n(B) (the value of n(B) is taken from
[15]) is shown in the figure as the vertical dotted line. In two
of the examples (hair dryer and heating system) the theo-
retical and empirically obtained optimal sparsity levels co-
incide. In the other three examples the theoretical number
of nonzero elements is much larger (not shown in the fig-
ures) than the empirical one. Hence, a "simpler" data-driven
model explains better the observed trajectories than are more
"complex" parametric model.

The results show improvement of the performance of the
baseline method (7) by (11) for a suitably chosen value of λ .
In other datasets from DAISY, however, such an improve-
ment was not observed, i.e., the best performance of (11)
is achieved for λ = 0. Another caveat is the need of select-
ing λ . In practice, emissing can not be evaluated, so that a
surrogate of emissing should be used instead. Cross-valuation
methods offer such surrogates. For the model-based method,
we used the value of l(B) suggested in [15]. The poor per-
formance of (9), which we attribute to bias due to the non-
linear nature of the examples, makes the results obtained by
the data-driven methods even more remarkable.

Another caveat is the need of selecting λ . In practice, emissing
can not be evaluated, so that a surrogate of emissing should be
used instead. Cross-valuation methods offer such surrogates.

Table 2
Relative percentage error emissing for (7), (9), and (11) (best result
for a grid of values for λ ) on the DAISY datasets.

data set name (7) (9) (11)

1 Distillation column 19.24 17.44 9.30

2 pH process 38.38 85.71 12.19

3 Hair dryer 12.35 8.96 7.06

4 Heat flow density 7.16 44.10 3.98

5 Heating system 0.92 1.35 0.36

6 Conclusions and outlook

Data-driven representations avoid parametric model identifi-
cation. The methods presented in the paper allow us to solve
nontrivial problems such as interpolation and approximation
of trajectories of linear time-invariant systems using only
basic linear algebra. The methods lead to general, simple,
and practical algorithms. The generality and utility of the
algorithms were illustrated on numerical examples. Dealing
with inexact / noisy data wd was approached by a convex
relaxation leading to an `1-norm regularization problem. We
showed the effectiveness of the relaxation on datasets from
the DAISY database. Topics for future work are the compu-
tationally efficiency of the algorithms, recursive implemen-
tations of the methods that are suitable for real-time appli-
cations, alternative methods for dealing with inexact / noisy
data, and statistical analysis of the resulting estimators.
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