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A missing data approach to
data-driven filtering and control

Ivan Markovsky

Abstract—In filtering, control, and other mathematical engineering
areas it is common to use a model-based approach, which splits the
problem into two steps: 1) model identification and 2) model-based
design. Despite its success, the model-based approach has the shortcoming
that the design objective is not taken into account at the identification
step, i.e., the model is not optimized for its intended use. This paper
proposes an approach for data-driven filtering and control that combines
the identification and the model-based design into one joint problem.
The signal of interest is modeled as a missing part of a trajectory of
the data generating system. Subsequently, the missing data estimation
problem is reformulated as a mosaic-Hankel structured matrix low-rank
approximation/completion problem. A local optimization method, based
on the variable projections principle, is then used for its numerical
solution. The missing data estimation approach and the solution method
proposed are illustrated on filtering and smoothing examples.

Index Terms—Behavioral approach, System identification, Data-driven
filtering, Structured low-rank approximation, Missing data.

I. INTRODUCTION AND CONTEXT

The context of this work is an alternative paradigm, called data-
driven, to the classical model-based paradigm. After introducing the
data-driven paradigm, we describe informally the main contribution
of this paper: posing and solving data-driven filtering and control
problems as missing data estimation.

A. Model-based vs data-driven filtering and control

State-of-the-art signal processing and control methods are model-
based. First, a model class is selected using prior knowledge and
observed data. Then, model parameters are estimated using the data.
Finally, the filtering/control task is solved using the identified model
and the design specification. The model-based approach splits the
original problem into

1) model identification [1], [2] and
2) model-based design,

which are solved independently.
There is a much work done separately on identification and model-

based design, but relatively little work on their interplay in solving
the overall problem. The cliche "all models are wrong but some
are useful" is true when the model-based methods are applied in
practice, where there is no "true" model in the model class. The
question occurs "what is the best model for the problem at hand?" The
identification literature answers instead questions about the closeness
of the identified model to a true model and does not take into account
the subsequent usage of the model for model-based design, e.g., noise
filtering, prediction, and control.

The issue of developing identification methods aimed at their
intended usage is considered in an area of research known as
"identification for control", see, e.g., [3]. The identified model is
tuned for maximum performance of the closed-loop system, i.e.,
the identification criterion is linked with the control objective. The
interplay between identification and control is central also in adaptive
control, where the modeling and control tasks are solved simulta-
neously, in real-time. Both identification for control and adaptive
control, however, consider model-based methods.

An alternative to the model-based approach is to solve the filtering
or control problem directly without first identifying a model, see
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Figure 1. From applications’ point of view, this what we call data-
driven approach is closer to the real-life problem than the model-
based approach. Indeed, in practice model parameters are rarely
given, but data may often be observed. From the theoretical point
of view, a data-driven approach opens up the possibility for a new
class of solution methods and algorithms not based on an explicit
model representation of the data generating process.
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Fig. 1. Data-driven methods bypass the model identification step. Such
method map plant data to controller/filter or directly to the desired signal.

B. Literature review

Data-driven control, also known as model-free control, has its
roots in classical heuristics for PID controller tuning such as the
Ziegler–Nichols method [4]. Rigorous data-driven methods, however,
appeared only in the late 90’s [5], [6], [7], [8]. Since then data-driven
control has gained a lot of interest as evident by the large number of
publications.

Although the particular problems considered range from LQG to
fuzzy control, the corresponding methods developed can be classified
into three main approaches:
• Subspace-type data-driven methods are proposed for solution of

H2/H∞ control problems in [8], [9], [10], [11]. The signal of
interest is constrained to belong to a subspace computed from the
measured data only. Viewed abstractly, the subspace is a model
for the signal, although it is not parameterized in a familiar
transfer function or state-space form.

• An adaptive approach, known as controller unfalsification, is
developed in [6], [12], [13]. In this approach, the controller is
viewed as an exclusion rule [14] and the main idea is to reject
(falsify) controllers using previously collected experimental data
from the plant.

• In iterative feedback tuning the controller parameters are op-
timized by a gradient type method minimizing the control
objective, which depends on measured data only [7], [15].

For more details about the methods and an extensive list of references,
we refer the reader to the recent overview paper [16].

The missing data approach proposed in this paper differs signif-
icantly from the existing approaches for data-driven control. The
emphasis in this work is on the combination of the system iden-
tification and design objectives in one joint problem and posing it
as a mosaic-Hankel structured low-rank matrix approximation and
completion problem for which existing methods exist.

C. Missing data approach to data-driven filtering/control

The classical motivation for missing data in signal processing
and control problems is sensor failures, where measurements are
accidentally corrupted. More recently, missing data estimation is
used for compressive sensing, where measurements are intentionally
skipped. The main contribution of this paper, is in using missing
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data for solving data-driven estimation and control problems, i.e.,
the missing data represents the object that we aim to find on the
first place. Examples are initial state state estimation, prediction,
smoothing, partial realization, and optimal tracking control.

We pose the data-driven filtering/control problem as the problem of
finding a missing part of a trajectory of a linear time-invariant (LTI)
system, where other parts of the trajectory are given and are exact
or are approximated. Once the problem is formulated as a missing
values estimation, it is shown to be equivalent to a element-wise
weighted mosaic-Hankel structured low-rank matrix approximation
and completion (WSLRAC) problem. The latter problem is well
researched in linear algebra and optimization. Theoretical results and
effective solution methods with provable properties exist. We use a
method based on the variable projections principle [17]. This choice
is motivated by the existence of efficient algorithms that converge
globally to a local minimum point with super linear convergence rate,
have linear computational cost in the number of data points, and are
implemented in a readily available software. The reformulation of
the data-driven filtering/control problem as a WSLRAC problem is
stated in Section V, Proposition 4, and is our key result.

The paper is organized as follows. After summarizing in Section
II the basic concepts and notation used, we present in Section III the
main idea: posing data-driven problems as missing data estimation.
Specific examples are shown in Section IV in order to illustrate
the idea. In Section V we describe the solution approach. First, we
establish the equivalence of the data-driven problem and a WSLRA
problem. Then, we describe a local optimization method based on
the variable projections principle. Finally, we establish properties
of the method in the errors-in-variables setting. In Section VI we
show simulation examples that illustrate the theoretical properties and
compare the data-driven method with classical model-based methods.
Perspective for future work are given in Section VII.

II. NOTATION AND PRELIMINARIES

Consider the class L q of finite-dimensional, q-variate, discrete-
time, LTI systems. A trajectory w of such a system is a vector valued
sequence w(1),w(2), . . ., where w(t) ∈Rq. A system B is defined as
the set of all its trajectories. The notation w ∈B is a short-hand for
"w is a trajectory of B". wp ∧wf denotes the concatenation of the
sequences wp ("p" for "past") and wf ("f" for "future").

Modulo a permutation Π of the variables, any trajectory w ∈B
has an input/output partition Πw =

[u
y
]
, where u is an input (free

variable), and y is an output (variable that is determined by the input,
the system, and the initial conditions). In what follows, we assume
that Π is the identity matrix I, i.e., we assume that w = (u,y) =

[u
y
]
.

The number of inputs m and the number of outputs p of a system
B with q = m+p variables are properties of the system and do not
depend on the input/output partitioning.

Let σ be the shift operator

σw(t) := w(t +1).

A system B ∈L q admits a kernel representation

ker
(
R(z)

)
:= {w | R0w+R1σw+ · · ·+R`σ

`w = 0},

with parameter R(z) = R0 + R1z + · · ·+ R`z`, as well as an in-
put/state/output representation

Bi/s/o(A,B,C,D) := {w = (u,y) | there is x, such that

σx = Ax+Bu and y =Cx+Du},

with parameters A ∈Rn×n, B ∈Rn×m, C ∈Rp×n, and D ∈Rp×m. The
state dimension n is called the order of the state space representation.
An input/state/output representation Bi/s/o(A,B,C,D) is minimal if

its order is as small as possible. This smallest possible order n(B)
is invariant of the representation and is called the order of the
system. Another invariant that is used in the paper is the lag `(B)
of B. It is defined as the observability index of an input/state/output
representation Bi/s/o(A,B,C,D) of B, i.e., the smallest integer `, for
which the observability matrix O`(A,C) := col(C,CA, . . . ,CA`−1) has
rank n(B). Alternatively, the lag of B is the smallest integer `, for
which there is a kernel representation B = ker(R), with polynomial
matrix R of degree `.

A Hankel matrix with L block rows is denoted by

HL(w) :=


w(1) w(2) · · · w(T −L+1)
w(2) w(3) · · · w(T −L+2)
...

...
...

w(L) w(L+1) · · · w(T )

 .
The signal w is called persistently exciting of order L if the Hankel
matrix HL(w) is of full row rank. The block matrix

HL(w1,w2) :=
[
HL(w1) HL(w2)

]
with Hankel blocks is called mosaic-Hankel matrix [18].

The block lower-triangular Toeplitz matrix with t block rows,
composed of H =

(
H(0),H(1), . . .

)
is denoted by

Tt(H) :=


H(0) 0 · · · 0

H(1) H(0) 0
...

...
. . .

. . . 0
H(t−1) · · · H(1) H(0)

 .
If H is the impulse response of Bi/s/o(A,B,C,D), we have that

H(0) = D, H(τ) =CAτ−1B, for τ = 1,2, . . . , t−1.

Using the notation O for the observability matrix and the notation T
for the lower triangular Toeplitz matrix, we can express the condition
that w is a trajectory of B as a linear system of equations

w = (u,y) ∈B ⇐⇒ there is xini ∈ Rn,

such that y = Ot(A,C)xini +Tt(H)u.

Note that with some abuse of notation, we use y for both the signal(
y(1), . . . ,y(t)

)
and the vector

[
y>(1) · · · y>(t)

]>.
A candidate model B̂ for a time series wd ("d" for "data") is

unfalsified if wd ∈ B̂. The most powerful unfalsified model for the
data wd in the model class L q is defined as

Bmpum(wd) := arg min
B̂∈L q

`(B̂)︸ ︷︷ ︸
most powerful

subject to wd ∈ B̂︸ ︷︷ ︸
unfalsified model

. (1)

The system Bmpum(wd) is the least complicated linear exact time-
invariant model for the data wd. The model complexity is measured
by its lag `(B). The subclass of L q with at most m inputs and lag
at most ` (models of bounded complexity) is denoted by Lm,`. ‖ · ‖
is the Euclidean norm.

III. THE MISSING DATA APPROACH

In data-driven problems, instead of the plant B, given is a
trajectory wd =

(
wd(1), . . . ,wd(Td)

)
of B. Under controllability and

persistency of excitation assumptions, wd completely specifies B.

Lemma 1 (Identifiability conditions [19]). Let wd = (ud,yd) be an
exact trajectory of a controllable LTI system B and let the input ud
be persistently exciting of order n(B)+ `(B)+ 1. Then, the most
powerful unfalsified model of wd coincides with the data generating
system, i.e., Bmpum(wd) = B.
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In the classical model-based approach, wd is refered to as the "iden-
tification data" and the first step towards solving filtering and control
problems is to compute an explicit representation of the data gen-
erating system, e.g., a state space representation Bi/s/o(A,B,C,D) =
Bmpum(wd). In the data-driven approach, we use the data wd directly
in an optimization problem with combined objective.

In order to develop a general approach that unifies various prob-
lems, we consider a generic trajectory w =

(
w(1), . . . ,w(T )

)
of the

system B, partition the variables into inputs u and outputs y, and
split the time axis into "past"—the first Tp samples—and "future"—
the remaining Tf samples:

past future
input up uf
output yp yf

When the past horizon Tp is sufficiently long, i.e., Tp ≥ `(B), wp
completely specifies the initial conditions for the future trajectory wf.

Lemma 2 (Initial condition wp, [11]). Let Bi/s/o(A,B,C,D) be a
minimal input/state/output representation and let H be the impulse
response of B ∈L q. Then for all wp ∈ (Rq)Tp , with Tp ≥ `(B),

wp∧ (uf,yf) ∈B =⇒ there is unique xini ∈ Rn(B),

such that yf = OTf(A,C)xini +TTf(H)uf.

The signal we aim to compute in the data processing problem is
an unknown part of a trajectory w of B. Therefore, the trajectory w
includes missing elements. In addition to the missing values, w has
exact and inexact (noisy) elements. The exact elements correspond
to specification of the to-be-found signal, e.g., the impulse response
is specified by zero initial conditions and pulse input. The inexact
elements represent part of the signal that has to be approximated due
to, e.g., additive measurement noise.

The general approach of representing the to-be computed signal as
missing data in a trajectory with missing, exact, and noisy elements
is illustrated next by the classical examples of state estimation, noise
filtering/smoothing, simulation, and tracking control.

IV. EXAMPLES

First, we state the classical model-based problems. Then, we state
the corresponding data-driven problems, where the system B is
implicitly specified by data wd. Finally, the problems are formulated
as missing data estimation in terms of the a trajectory w. Each of
the elements up, yp, uf, and yf of w is exact, inexact, or missing
depending on the particular problem.

A. State estimation and Kalman smoothing

The classical model-based state estimation problem is defined as
follows: given an LTI system B and a trajectory wf,

find wp, such that w = wp∧wf ∈B. (2)

The aim of (2) is to estimate of the first Tp samples of a trajectory
w, with the other samples wf known exactly.

If wf is not a trajectory of B, the model-based state estimation
problem becomes the famous Kalman smoothing problem. The
classical Kalman smoother [20] assumes that the input ud is exact,
in which case the approximation problem is

minimize over ŵp and ŷf ‖yf− ŷf‖
subject to ŵp∧ (uf, ŷf) ∈B.

(3)

As a byproduct of computing the initial conditions estimate ŵp, (3)
determines an approximation of the output ŷf (the smoothed output).
The signal ŷf is the best estimate of the noisy output yf, given the

model B. Problem (3) is also a missing data estimation problem,
however, the output yf is approximated rather than fitted exactly.

When both uf and yf are inexact, the smoothing problem is

minimize over ŵp and ŵf ‖wf− ŵf‖
subject to ŵp∧ ŵf ∈B.

(4)

and is refered to as the errors-in-variables (EIV) Kalman smoother.
The solution of (4) is given by a modification of the ordinary Kalman
smoother, see [21]. The resulting algorithm employs a Riccati-type
recursion and has linear computational complexity in the number of
samples Tf.

The data-driven version of the state estimation problem is: given
trajectories wd and wf of an LTI system B,

find wp, such that w = wp∧wf ∈Bmpum(wd). (5)

Although the data-driven problem formulation involves the most
powerful unfalsified model of the data, solution methods need not
identify explicitly a representation of Bmpum(wd) in order to find the
quantity of interest wp.

When wd is inexact, prior knowledge about the model is needed.
Often, it is the lag ` of the data generating system, which determines
the model class Lm,`, to which the system belongs. Then the data-
driven versions of the state estimation problems (3) and (4) are

minimize over ŵd and ŷf ‖yf− ŷf‖2
2︸ ︷︷ ︸

estimation error

+ ‖wd− ŵd‖2
2︸ ︷︷ ︸

identification error

subject to (uf, ŷf) ∈Bmpum(ŵd) ∈Lm,`

(6)

and

minimize over ŵd and ŵ ‖wf− ŵf‖2
2︸ ︷︷ ︸

estimation error

+ ‖wd− ŵd‖2
2︸ ︷︷ ︸

identification error

subject to ŵ ∈Bmpum(ŵd) ∈Lm,`,

(7)

respectively.
The classical approach for state estimation involves the two steps:
1) identification: given wd and `, compute a representation of

B = Bmpum(ŵd), where ŵd = wd, if wd is exact, or compute
a solution ŵd of the optimization problem

minimize over ŵd ‖wd− ŵd‖
subject to Bmpum(ŵd) ∈Lm,`

(8)

if wd is inexact;
2) model-based design: solve (2), (3), or (4), using the represen-

tation of B computed on step 1.
Note that the optimization criterion of the data-driven problem (7)
involves a mixture of the identification and filtering/control errors,
while (8) is agnostic to the filter/control design objective.

B. Other examples

Other examples that fit into the generic approach for data-driven
filtering/control, presented in Section III are simulation, partial real-
ization, and output tracking.
• Simulation: Given initial conditions wp and input uf, the objec-

tive is to find the corresponding output yf of the system, i.e.,

find yf, such that wp∧ (uf,yf) ∈B. (9)

• Noisy partial realization [22], [23]: given the first T samples
H(1), . . . ,H(T ) of an impulse response, the objective of the
partial realization problem is to find the remaining samples
H(T +1),H(T +2), . . . of the impulse response. Partial realiza-
tion is a fundamental problem in system theory and is the basis
for the class of subspace identification methods.
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• Output tracking: given initial conditions wp, and an output yf,
the objective is to find a control input uf, such that

minimize over ûf, ŷf ‖yf− ŷf‖
subject to wini∧ (ûf, ŷf) ∈B.

(10)

The signal uf is the open-loop optimal control signal.
Table I gives a summary of the examples reviewed.

TABLE I
SUMMARY OF THE EXAMPLES.

LEGEND: ? — MISSING, E — EXACT, N — NOISY/INEXACT.

example reference up yp uf yf
simulation (9) E E E ?
partial realization [22] E E E E/?
state estimation (2) ? ? E E
classical Kalman smoothing (3) ? ? E N
EIV Kalman smoothing (4) ? ? N N
noisy realization [23] E E E N/?
output tracking (10) E E ? N

V. POSING THE PROBLEM AS STRUCTURED LOW-RANK

APPROXIMATION/COMPLETION

First, we show the link between data-driven filtering/control and
mosaic-Hankel WSLRAC. Then, we present a method based on local
optimization and the variable projections principle [17].

A. Link to weighted mosaic-Hankel low-rank approximation

The data-driven problems, considered in Section IV, aim to mini-
mize the "size" of the error signal e :=w− ŵ, where w contains given
data (exact or noisy) as well as missing values and ŵ is a trajectory
of the system. We encode the information about exact, noisy, and
missing data by the weights vi(t)≥ 0 of the semi-norm

‖e‖v :=
√

∑
T
t=1 ∑

q
i=1 vi(t)e2

i (t).

TABLE II
THE INFORMATION ABOUT EXACT, NOISY, AND MISSING DATA ELEMENTS

wi(t) IS ENCODED IN THE WEIGHTS vi(t) OF THE SEMI-NORM ‖ · ‖v .

weight used to by
vi(t) = ∞ if wi(t) is exact interpolate wi(t) ei(t) = 0
vi(t) ∈ (0,∞) if wi(t) is noisy approximate wi(t) min ‖ei(t)‖
vi(t) = 0 if wi(t) is missing fill in wi(t) ŵ ∈ B̂

With this notation, the examples of data-driven problems, shown
in Table I, become special cases of the following generic problem

minimize over ŵd, ŵ ‖wd− ŵd‖2
2 +‖w− ŵ‖2

v

subject to ŵ ∈Bmpum(ŵd) ∈Lm,`,
(11)

for a suitable choice of the trajectory w and the weights v.
In order to solve (11), we use the equivalence of trajectories of

an LTI system with bounded complexity and rank deficiency of a
mosaic-Hankel matrix constructed from these trajectories.

Lemma 3. Let p and ` be, respectively, the number of outputs and
the lag of an LTI system B. Then,

w1,w2 ∈B ⇐⇒ rank
(
H`+1(w

1,w2)
)
≤ q`+m.

Proof. Let B = ker
(
R(z)

)
be a kernel representation of the system.

wi ∈B ∈Lm,` ⇐⇒[
R0 R1 · · · R`

]︸ ︷︷ ︸
R

H`+1(w
i) = 0, for i = 1,2. (12)

The p×q(`+1) matrix R is full row-rank [24]. Then{
R ∈ Rp×q(`+1) full row rank
R
[
H`+1(w1) H`+1(w2)

]
= 0

⇐⇒ rank
(
H`+1(w

1,w2)
)
≤ q`+m.

Using Lemma 3, we obtain an equivalent mosaic-Hankel WSLRAC
problem to the data-driven problem (11).

Proposition 4. Problem (11) is equivalent to the following mosaic-
Hankel WSLRAC problem

minimize over ŵd, ŵ ‖wd− ŵd‖2
2 +‖w− ŵ‖2

v

subject to rank
(
H`+1(ŵd, ŵ)

)
≤ q`+m.

(13)

Proof. We need to show that the constraint of (11) is equivalent to
the constraint of (13). The constraint

ŵ ∈Bmpum(ŵd) ∈Lm,`

of (11) is equivalent to the existence of an exact model B̂ ∈Lm,` for
both ŵ and ŵd. By Lemma 3, ŵ, ŵd ∈ B̂ ∈Lm,` is equivalent to

rank
(
H`+1(ŵd, ŵ)

)
≤ q`+m,

which is the constraint of (13).

Problem (13) is a nonconvex optimization problem. It can be solved
by convex relaxation, using the nuclear norm heuristic, subspace
methods, and local optimization methods. Next, we describe a local
optimization method, based on the variable projections principle.

B. Solution method based on the variable projections

The rank constraint in (13) is expressed as a condition on the
dimension of the left kernel of the matrix H`+1(ŵd, ŵ)

rank
(
H`+1(ŵd, ŵ)

)
≤ q`+m ⇐⇒
there is full row rank R ∈ Rp×q(`+1),
such that RH`+1(ŵd, ŵ) = 0.

(14)

Then, (13) is equivalent to

minimize over ŵd, ŵ, R ∈ Rp×q(`+1) ‖wd− ŵd‖2
2 +‖w− ŵ‖2

v

subject to RH`+1(ŵd, ŵ) = 0 and R is full row rank.
(15)

The variables ŵd and ŵ can be eliminated by representing (15) as a
double minimization problem:

minimize over full row rank R ∈ Rp×q(`+1) M(R), (16)

where

M(R) :=min
ŵd,ŵ

‖wd− ŵd‖2
2 +‖w− ŵ‖2

v

subject to RH`+1(ŵd, ŵ) = 0.
(17)

Solution of (17), i.e., evaluation of M(R) for given R, is refered to
as the inner minimization. Solution of (16), i.e., optimization of M
over R, is referred to as the outer minimization.

The inner minimization problem (17) is a generalized linear least
squares problem [25] and admits an analytic solution. In the case
of no missing values, M can be evaluated with a linear cost in
the number of data points Td +Tf. Fast algorithms for missing data
estimation is a topic of current research.

The advantage of reformulating (15) as (16) is the elimination of
the optimization variables ŵd and ŵ. In applications of filtering and
control, ŵd and ŵ are high dimensional and R is small dimensional.
Therefore, the elimination of ŵd and ŵ leads to a big reduction in the
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number of the optimization variables. The approach for solving (15)
described above is similar to the variable projection method [17] for
separable unconstrained non-linear least squares minimization.

In (16), the cost function M is minimized over the set of full row
rank matrices R. Since M(R) depends only on the space spanned by
the rows of R, i.e., M(R) = M(UR), for all nonsingular U ∈ Rp×p,
(16) is a minimization problem on a Grassmann manifold (the q`+m-
dimensional subspaces of Rq(`+1)) [26], [27]. In [27] the optimization
over a manifold problem is reduced to a classical unconstrained
optimization over an Euclidean space. Subsequently, standard local
optimization methods such as the Levenberg-Marquardt method [28]
can be used for its solution. The resulting variable projections
method for WSLRAC inherits the convergence properties of the
standard local optimization method being used (global convergence
with super-linear convergence rate in the case of the Levenberg-
Marquardt method). By default an initial approximation is computed
by interpolating the missing values and doing low-rank approximation
(singular value decomposition) of the resulting matrix, i.e., we ignore
the structure constraint and replace the weighted norm by the 2-norm.

A software package for solving (13), based on the variable projec-
tions approach, is developed in [29], [30] and is used in Section VI.
The function ident solves problem (11) and the function misfit
solves the inner minimization problem (17).

C. Properties of the estimators in the errors-in-variables setting

In the errors-in-variables setting [31] the data wd is obtained as

wd = wd + w̃d, (18)

where wd, called true value of wd, is a trajectory of a model B̄ ∈Lm,`

and w̃d, called measurement noise, is a realization of a zero mean
white Gaussian process. Then, the statistically optimal choice of the
weights v is vi(t) = 1/σi(t), where σi(t) is the standard deviation
of the measurement noise on wd,i(t). In this case, minimization of
the criterion ‖wd − ŵ‖v, subject to the constraint ŵ ∈ B leads to
the maximum-likelihood estimator [32]. By standard results [33], it
follows that the estimator is consistent and efficient.

Note 5 (Stochastic interpretation of zero and infinite weights). If
wi(t) is known exactly, the noise standard deviation is zero and
the corresponding weight in the cost function is infinite. Infinite
weight imposes an implicit equality constraint wi(t) = ŵi(t), i.e., the
approximation ŵ agrees with the data w for the variable i at time
t. If wi(t) is missing, the noise standard deviation is infinite and the
corresponding weight is zero. Zero weight excludes the element wi(t)
from the cost function. The approximation ŵi(t) is then determined
solely from the constraint ŵ ∈ B̂.

Next, we compare the solution ŵ of the data-driven approach (11)
with the solution ŵ′ of the classical model-based approach:

wd

system
identification
−−−−−−−−−−→ B̂′

model-based
design

−−−−−−−−−→ ŵ′.

In two cases—exact identification and exact design—the solutions
coincide. In other cases, the data-driven approach, being statistically
optimal, gives more accurate estimates than the classical approach.

Consider first, the exact data case. Under the assumptions of
Lemma 1, the identification error ‖wd − ŵ‖2 = 0, and by Lemma
1, B̂ = mpum(wd) = B̄. Therefore, the data-driven problem (11) is
equivalent to the model-based design problem. Consider, next exact
design case, i.e., ‖w− ŵ‖v = 0, for all ŵ, for example data-driven
simulation (9). In this case, the cost function of the data-driven
problem (11) is equal to the cost function of the identification problem
(8). Since the constraint ŵd ∈ B̂ ∈Lm,` is the same in (11) and (8),
the two problems are equivalent and therefore ŵ = ŵ′.

An intuitive explanation why the data-driven approach is superior
to the model-based one can be given in the errors-in-variables
smoothing problem (7). The data-driven problem (11) uses as identi-
fication data two trajectories—wd and wf—while the classical method
uses only one trajectory wd. Then, by [34, Section V], ŵ is statistically
more accurate estimate than ŵ′. This statement is illustrated in the
next section on simulation examples.

VI. NUMERICAL EXPERIMENTS

In this section, we show simulation examples of the matrix
completion approach for data-driven signal processing, implemented
in the variable projections method, described in Section V. The
problems considered are state estimation from step response data
and Kalman smoothing in the errors-in-variables setting. The data
generating system B is LTI

B = {(u,y) | u−σu+σ
2u = 0.81y−1.456σy+σ

2y}.

First, we solve the problems, assuming that the model is given,
however, the computation of the quantity of interest is done by
missing data estimation with the function misfit. The result ob-
tained is compared with the results obtained by classical model-based
methods (Kalman smoother and matrix exponential). Since missing
data estimation solves the same problem as the classical model-based
method, the aim of the comparison is an empirical confirmation that
the solutions obtained are the same. Then, we solve the problem use
data obtained in the EIV setup (18) rather than the model B.

The task is to find the smoothed signal ŵf for a given noisy
trajectory wf = wf + w̃f, obtained as a true value wf ∈B plus noise,
where the noise w̃f is a realization of a zero mean, white, Gaussian
process. The true trajectory wf consists of the first Tf samples of the
step response of B. The estimation methods are compared in terms of
the relative approximation errors e := (‖wf− ŵf‖)/‖wf‖ with respect
to the true trajectory wf. With known true data generating system
B, the optimal least-squares estimator is the EIV Kalman smoother
(4). The "classical" method for solving this problem is using a state-
space representation Bi/s/o(A,B,C,D) of B. (4) is equivalent to the
following linear least squares problem:

min
û,xini

∥∥∥∥[u
y

]
−
[

0 I
OT (A,C) TT (H)

][
xini
û

]∥∥∥∥ , (19)

which admits a closed-form solution. The resulting method is imple-
mented in a function eiv_ks. The result obtained with the classical
state-space method is used to verify the solution obtained by the
matrix completion/approximation method

minimize over ŵp, ŵf ‖wf− ŵf‖
subject to RH3(ŵp∧ ŵf) = 0,

(20)

where R is a parameter of a kernel representation of the system (12).
Problem (20) is solved by the function misfit.

Up to numerical errors of the computations, the relative errors for
the eiv_ks and misfit functions are equal:

method (19) (20)
function misfit eiv_ks
error e 0.029358 0.029358

This is an empirical confirmation that matrix completion problem
(20) is equivalent to the EIV Kalman smoothing problem (4).

Next, we solve the smoothing problem without knowledge of B,
using 1) classical approach of identification of a model B̂ from
the data wd, followed by Kalman smoothing based on the identified
model B̂, 2) the data-driven approach (7), and 3) a subspace data-
driven method eiv_ks_dd, derived using the methodology of [11].
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The result obtained by the data-driven method (7) is worse than
the one of the Kalman smoother using the true model but better than
the one of the Kalman smoother using the identified model and the
subspace data-driven method:

method (7) (8) + (20) subspace
function ident ident + eiv_ks eiv_ks_dd
error e 0.0310 0.0315 0.0412

The Kalman smoother based on the true model is statistically optimal
in the setup of the simulation example. The superior performance
of (7) over (8) + (20) is that the identified model in the classical
approach (8) uses only the data wd, while the data-driven method (7)
uses as data both wd and wf. The fact that more data is used by the
data-driven method in comparison with the classical method leads to
more accurate results. Finally, the estimate obtained by the subspace
data-driven method is suboptimal in the sense of the maximum-
likelihood optimization criterion so that on average it can be expected
to perform worse.

Simulation results for the other examples described in Section IV.B
are presented in http://slra.github.io/ddsp/demo.html.
The code needed to reproduce the results is also provided.

VII. CONCLUSIONS

Data-driven filtering and control deals with one joint problem
formulation that involves both the data modeling objective and
the design objective. We formulated the data-driven problem as
estimation of a missing part in a trajectory of the (unknown) data-
generating system. For example, state estimation, simulation, sim-
ulation, filtering/smoothing, partial realization, and output tracking
control can be posed as missing data estimation problems. The
missing data estimation problem is furthermore reformulated as an
equivalent mosaic-Hankel WSLRAC problem. The implication of this
fact is that existing methods, developed in the WSLRAC setting, are
used for the numerical solution of the data-driven filtering/control
problem. Simulation examples show the effectiveness of the local
optimization methods based on the variable projection approach.

In order to make the missing data approach for data-driven fil-
tering/control a practically feasible alternative to the model-based
methods, fast algorithms with provable properties in the presence
of measurement noise and disturbances need to be developed. This
is a topic of current research. The main advantage of the approach
presented in the paper is a common setting for posing different data-
driven problems and solving them by different methods.

The methodology developed in this paper is currently limited to
batch processing. In the context of control, the computed signal is
applied to the plant in open loop. One way to use it in feedback
control is to embed the batch computation (13) in an MPC-like
scheme. Another way is to develop methods for recursive real-time
solution of problem (13). Ensuring stability of the overall system is
an open problem.
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