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1.1 Introduction

The claim that

“Behind every data modeling problem there is a (hidden) low rank ap-

proximation problem” [13]

is demonstrated in this book chapter via four problems in computer vision:

• multidimensional scaling,

• conic section fitting,

• fundamental matrix estimation, and

• least squares contour alignment.

A matrix constructed from exact data is rank deficient. The corresponding data

fitting problem in the case of noisy data is a rank constraint optimization problem.

In general, rank constraint optimization is a hard nonconvex problem, for which ap-

plication specific heuristics are proposed. In the chapter, I do not describe solution

methods for rank constraint optimization but refer the reader to the literature.
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Our main contribution is the analytic solution of contour alignment problem pre-

sented in Section 1.5.1. This problem is also nonconvex in the original problem vari-

ables, however, a nonlinear change of variables, renders the problem convex in the

transformed variables. The link to low-rank approximation (the motto of the chap-

ter) is presented in Section 1.5.4, where the problem is shown to be equivalent to

the orthogonal Procrustes problem, which is a constrained low-rank approximation

problem [12].

1.2 Multidimensional scaling

Consider N points {x1, . . . ,xN } in an n-dimensional real space and let di j be the

squared Euclidean distances between xi and x j. The matrix D =
[
di j

]
∈ R

N×N of the

pair-wise squared distances is symmetric, element-wise nonnegative, and has zero

diagonal elements. Moreover, since

di j := (xi − x j)
⊤(xi − x j) = x⊤i xi − 2x⊤i x j + x⊤j x j

D has the following structure

D =




x⊤1 x1

...

x⊤N xN



[
1 · · · 1

]
− 2




x⊤1
...

x⊤N



[
x1 · · · xN

]
+




1
...

1



[
x⊤1 x1 · · · x⊤N xN

]
,

or

D = diag(X⊤X)1⊤N − 2X⊤X + 1N diag⊤(X⊤X) =: S (X), (1.1)

where

X :=
[
x1 · · · xN

]
and 1N =

[
1 · · · 1

]⊤
∈ R

N .

In particular, from (1.1) it can be seen that D is rank deficient:

rank(D)≤ n+ 2. (1.2)

The image of the function S : X 7→ D is refered to as the set of element-wise-

squared-distance matrices. The inverse of S is a set valued function

S
−1(D) := {X | (1.1) holds}.

If D is a distance matrix of a set of points X , S −1(D) consists of all rigid transfor-

mations (translation, rotation, and reflection) of X . In other words the nonuniqueness

in finding X , given D, is up to a rigid transformation.

Theorem 1. Let D be a distance matrix and let X̄ be a particular solution of the

equation (1.1). Then

S
−1(D) = {RX̄ + c1⊤N | c ∈ R

n and R ∈R
n×n, such that RR⊤ = I }.



Rank constrained optimization problems in computer vision 3

The considered problem is defined informally as follows:

Given noisy and incomplete information about the pair-wise squared-

distances di j among the points {x1, . . . ,xN } and the dimension n of the am-

bient space, find estimates of the points {x1, . . . ,xN }, up to a rigid transfor-

mation.

With exact data, the problem can be posed and solved as a rank revealing factor-

ization problem (see the appendix). With noisy measurements, however, the matrix D

is generically full rank. In this case, the relative (up to rigid transformation) point lo-

cations can be estimated by approximating D by a rank-(n+2) matrix D̂. In order to

be a valid distance matrix, however, D̂ must have the structure D̂ = S (X̂), for some

X̂ =
[
x̂1 · · · x̂N

]
, i.e., the estimation problem is a bilinearly structured low-rank

approximation problem:

minimize over D̂ ∈ R
N×N and X̂ ∈ R

n×N ‖D− D̂‖F subject to D̂ = S (X̂),

where ‖·‖F is the Frobenius norm. Note that the rank constraint (1.2) is automatically

satisfied by the structure constraint (1.1).

For comprehensive treatment of applications and solution methods for multidi-

mensional scaling, the reader is refered to the books [4, 2].

1.3 Conic section fitting

A conic section is a static quadratic model. In this section, I show that the conic

section fitting problem can be formulated as a low-rank approximation of an extended

data matrix. The mapping from the original data to the extended data is called in the

machine learning literature the feature map. In the application at hand, the feature

map is naturally defined by the conic model, i.e., it is a quadratic function.

Let

{d1, . . . ,dN } ⊂ R
2, where d j =

[
x j

y j

]
,

be the given data. A conic section is a set defined by a second order equation

B(A,b,c) := {d ∈ R
2 | d⊤Ad+ b⊤d+ c = 0}. (1.3)

Here A is a 2× 2 symmetric matrix, b is a 2× 1 vector, and c is a scalar. A, b,

and c are the parameters of the conic section. In order to avoid a trivial solution

B = R
2, it is assumed that at least one of the parameters A, b, or c is nonzero.

The representation (1.3) is an implicit representation of the conic section, because it

imposes a relation (implicit function) on the elements x and y of d. In special cases, it

is possible to use explicit representations defined by a function from x to y or from y
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to x, however, this approach is restrictive as it does not cover all conic sections (e.g.,

an ellipse can not be represented by a map from one variable to the other).

Defining the parameter vector

θ :=
[
a11 2a12 b1 a22 b2 c

]
,

and the extended data vector

dext :=
[
x2 xy x y2 y 1

]⊤
, (1.4)

we have that

d ∈ B(θ ) = B(A,b,c) ⇐⇒ θdext = 0.

(The map d 7→ dext, defined by (1.4), is the feature map for the conic section model.)

Consequently, all data points d1, . . . ,dN are fitted by the model if

θ
[
dext,1 · · · dext,N

]
︸ ︷︷ ︸

Dext

= 0 ⇐⇒ rank(Dext)≤ 5. (1.5)

Indeed, for θ 6= 0, the left-hand-side of the equivalence states that Dext has a nontriv-

ial left kernel. Since Dext has 6 rows (see (1.4)), its rank is at most 5. The mapping

D 7→ Dext is denoted by S .

In the presence of noise, generically, rank(Dext)> 5. Then, the aim is to

approximate the data points d1, . . . ,dN by nearby points d̂1, . . . , d̂N that lie

exactly on a conic section.

Minimizing the sum of squares of the orthogonal distances from the data points to

their approximations leads to the structured low-rank approximation problem

minimize over D̂ ∈ R
2×N ‖D− D̂‖F subject to rank

(
S (D̂)

)
≤ 5,

where

D :=
[
d1 · · · dN

]
, D̂ :=

[
d̂1 · · · d̂N

]

are the data matrix and the approximating matrix, respectively.

In the computer vision literature, see, e.g., the tutorial paper [23], conic section

fitting by orthogonal projections is called geometric fitting. As shown above, the

corresponding computational problem is a quadratically structured low-rank approx-

imation problem. The problem is intuitively appealing, however, it is nonconvex and,

moreover, leads to an inconsistent estimator. This has motivated work on easier to

compute methods [1, 6, 8, 5, 10, 14, 19] that also reduce or even eliminate the bias.
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1.4 Fundamental matrix estimation

In two-dimensional motion analysis [11] a scene is captured by two cameras at

fixed locations (stereo vision) and N matching pairs of points

{u1, . . . ,uN } ⊂ R
2 and {v1, . . . ,vN } ⊂ R

2 (1.6)

are located in the resulting images. The corresponding points u and v in the two

images satisfy what is called an epipolar constraint

[
v⊤ 1

]
F

[
u

1

]
= 0, for some F ∈ R

3×3, with rank(F) = 2. (1.7)

The 3× 3 matrix F 6= 0, called the fundamental matrix, characterizes the relative

position and orientation of the cameras and does not depend on the selected pairs of

points. Estimation of F from data is a necessary calibration step in many computer

vision methods.

The epipolar constraint (1.7) is linear in F . Indeed, defining

dext :=
[
uxvx uxvy ux uyvx uyvy uy vx vy 1

]⊤
∈ R

9, (1.8)

where u =
[ ux

uy

]
and v =

[ vx
vy

]
, (1.7) can be written as

vec⊤(F)dext = 0.

Note that, as in the application for conic section fitting, the original data (u,v) is

mapped to an extended data vector dext via a nonlinear function (a feature map). In

this case, however, the function is bilinear.

Taking into account the epipolar constraints for all data points, we obtain the

matrix equation

vec⊤(F)
[
dext,1 · · · dext,N

]
︸ ︷︷ ︸

Dext

= 0. (1.9)

The rank constraint imposed on F implies that F is a nonzero matrix. Therefore,

by (1.9) Dext has a nontrivial left kernel and since Dext is 9×N

rank(Dext)≤ 8

It can be concluded that for N ≥ 8 data points, Dext is not full row rank. Moreover, if

the left kernel is one dimensional, the fundamental matrix F can be reconstructed up

to a scaling factor from the data.

In the case of noisy data,

the aim is to perturb as little as possible the data (1.6), so that the perturbed

data satisfies exactly the epipolar constraints for some F̂ with rank(F̂) = 2.
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The resulting estimation problem is a bilinearly structured low-rank approximation

with an additional rank constraint. This problem defines a maximum-likelihood es-

timator for the true parameter value. As in the conic section fitting problem, the

maximum-likelihood estimator is a nonconvex optimization problem and is incon-

sistent in the measurement errors or errors-in-variables setup. These facts motivated

the development of methods that are convex and unbiased, see [21, 3, 9, 14] and

the references there in. Closely related to the estimation of the fundamental matrix

problem in two-view computer vision is the shape from motion problem [20].

1.5 Least squares contour alignment

Let Rθ be the operator in R
2 that rotates its argument by θ rad (positive angle

corresponding to anticlockwise rotation) and let R
′
θ be the operator that reflects its

argument about a line, passing through the origin, at θ/2 rad with respect to the first

basis vector (see Figure 1.1).

Rπ/4(p)

R ′
0(p)

π
4

p

reflection line

FIGURE 1.1: Rotation Rθ1
and reflection R ′

θ2
of a point p.

It can be shown that Rθ and R ′
θ have matrix representations

Rθ (p) =

[
cosθ −sinθ

sinθ cosθ

]
p = Rθ p

and

R
′
θ (p) =

[
cosθ sinθ

sinθ −cosθ

]
p = R′

θ p.

In [15], the authors considered transformation by rotation, scaling, and transla-

tion, i.e.,

Aa,θ ,s(p) = sRθ (p)+ a, (1.10)
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where s > 0 is the scaling factor and a∈R
2 is the translation parameter. The problem

of determining the parameters θ , s, and a of a transformation Aa,θ ,s(p) that best, in

a least squares sense, matches one set of points p(1), . . . , p(N) to another set of points

q(1), . . . , q(N) can be used to align two explicitly represented contours, specified by

corresponding points. Although this alignment problem is a nonlinear least squares

problem in the parameters θ , s, and a, it is shown in [15] that the change of variables

b =

[
b1

b2

]
= s

[
cosθ

sinθ

]
,

[
θ

s

]
=

[
sin−1 (b2/‖b‖)

‖b‖

]
(1.11)

results in an equivalent linear least squares problem in the parameters a and b. This

fact allowed efficient solution of image registration problems (see, e.g., [17, 16])

with a large number of corresponding points. The invariance to rigid transformation

appears also in learning with linear functionals on reproducing kernel Hilbert space,

see [22].

It is well known, however, that dilation and rigid transformation involves reflec-

tion, in addition to rotation, scaling, and translation. Therefore, the problem occurs

of how to align optimally in a least squares sense the set of points

{ p(1), . . . , p(N) } and {q(1), . . . ,q(N) }

under reflection, rotation, scaling, and translation, i.e., transformation of the type

Aa,θ1,θ2,s(p) = sRθ1

(
R

′
θ2
(p)

)
+ a. (1.12)

In order to solve the problem of alignment by dilation and rigid transformation, first

consider alignment by reflection, scaling, and translation, i.e., transformation of the

type

A
′

a,θ ,s(p) = sR ′
θ (p)+ a. (1.13)

The solution of this latter problem, given in Section 1.5.1, also uses the change of

variables (1.11) to convert the original nonlinear least squares problem to a linear

one. The derivation given in Section 1.5.1, however, is different from the derivation

in [15] and reveals a link between the alignment problems by rotation and reflection.

The solution to the general least squares alignment problem by rigid transforma-

tion is given in Section 1.5.2. Since a transformation (1.12) is either rotation, scaling,

and translation, or reflection, scaling, and translation, the alignment problem (1.12)

reduces to solving problems (1.10) and (1.13) separately, and choosing the solution

that corresponds to the better fit.

In Section 1.5.4, I show that least squares alignment by rotation and reflection

is equivalent to the orthogonal Procrustes problem [7, Page 601]. An extension of

the orthogonal Procrustes problem to alignment by (1.12), presented in [18], gives

an alternative solution method for contour alignment by dilation and rigid transfor-

mation. An advantage of the approach based on the orthogonal Procrustes problem

is that the solution is applicable to data in higher dimensional space, however, the

method requires singular value decomposition of a matrix computed from the data,

which may be computationally more expensive than solving an ordinary linear least

squares problem.
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1.5.1 Alignment by reflection, scaling, and translation

Let C1 and C2 be the matrices of the stacked next to each other points

p(1), . . . , p(N) and q(1), . . . ,q(N), respectively, i.e.,

C1 :=
[
p(1) · · · p(N)

]
and C2 :=

[
q(1) · · · q(N)

]
,

and let ‖ · ‖F be the Frobenius norm, defined as

‖C1‖F :=

√
N

∑
i=1

‖p(i)‖2
2.

The problem considered in this section is is least squares alignment by re-

flection:

minimize ‖C1 −A
′

a,θ ,s(C2)‖F

over a ∈R
2, s > 0, θ ∈ [−π ,π).

(1.14)

Similarly to the alignment by rotation problem

minimize ‖C1 −Aa,θ ,s(C2)‖F

over a ∈R
2, s > 0, θ ∈ [−π ,π),

(1.15)

(1.14) is a nonlinear least squares problem in the parameters θ , s, and a. The

change of variables (1.11), however, also transforms problem (1.14) into a linear

least squares problem.

Theorem 2 (Alignment by reflection, scaling, and translation). Problem (1.14) is

equivalent to the linear least squares problem

minimize over a,b ∈ R
2

∥∥∥∥vec(C1)−
[
(C⊤

2 ⊗ I2)E 1N ⊗ I2

][b

a

]∥∥∥∥
2

(1.16)

where vec(·) is the column-wise matrix vectorization operator, ⊗ is the Kronecker

product,

1N :=




1
...

1


 ∈ R

N , E :=




1 0

0 1

0 1

−1 0


 , and I2 :=

[
1 0

0 1

]
. (1.17)

The one-to-one relation between the parameters θ , s and b1, b2 is given by (1.11).

Proof. Note that

A
′

a,θ ,s(C2) = sR′
θC2 − a1⊤N .

Using the identity,

vec(AXB) = (B⊤⊗A)vec(X),
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we rewrite the cost function of (1.14) as

∥∥∥∥C1 − I2

[
scosθ ssin θ

ssin θ −scosθ

]
C2 − a

∥∥∥∥
F

=

∥∥∥∥vec(C1)− (C⊤
2 ⊗ I2)




scosθ

ssin θ

ssin θ

−scosθ


− a

∥∥∥∥
2

=

∥∥∥∥vec(C1)− (C⊤
2 ⊗ I2)




1 0

0 1

0 1

−1 0



[

scosθ

ssinθ

]
− a

∥∥∥∥
2

.

Problem (1.14) and the relation (1.11) follows by setting

b1 := scosθ and b2 := ssin θ .

Note 1 (Alignment by rotation, scaling, and translation). The above solution of prob-

lem (1.14) can be modified easily for the corresponding alignment problem with ro-

tation (1.15), giving an alternative shorter proof to Theorem 1 in [15]. Indeed, the

only necessary modification is to replace the matrix E in (1.17) by

E =




1 0

0 1

0 −1

1 0


 .

Example 3. As an illustration of the presented alignment procedure consider the

contours shown in Figure 1.2. The optimal alignment by rotation, scaling, and trans-

lation is shown in Figure 1.3, right, and the optimal alignment by reflection, scaling,

and translation is shown in Figure 1.3, left.

1.5.2 Alignment by rigid transformation

The problem considered in this section is:

minimize ‖C1 −Aa,θ1,θ2,s(C2)‖F

over a ∈ R
2, s > 0, θ1,θ2 ∈ [−π ,π)

(1.18)

The following fact allows us to reduce problem (1.18) to the already studied problems

(1.14) and (1.15).

Proposition 1. A transformation by rotation and reflection, Rθ1

(
R′

θ2
(p)

)
, is equiva-

lent to a transformation by an orthogonal matrix Qp. Moreover,

Qp = Rθ (p), if det(Q) = 1,
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−2 −1 0 1 2 3

−1

0

1

2

3

C1

p(1)
p(2)

p(3)p(4)

p(5)

p(6) p(7)
p(8)

C2

q(1)

q(2)

q(3)

q(4)
q(5)

q(6)

q(7)

q(8)

FIGURE 1.2: Example of contour alignment problem (1.14): given contours C1

and C2 with corresponding points p(i) ↔ q(i), find a transformation A ′
a,θ ,s that mini-

mizes the distance between C1 and the transformed contour A ′
a,θ ,s(C2).

−2 −1 0 1 2 3

−1

0

1

2

3

−2 −1 0 1 2 3

−1

0

1

2

3

FIGURE 1.3: Left: optimal alignment of C2 to C1 and C1 to C2 by A ′
a,θ ,s (reflection),

Right: optimal alignment of C2 to C1 and C1 to C2 by Aa,θ ,s (rotation).
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and

Qp = R′
θ (p), if det(Q) =−1,

where, in either case,

θ = cos−1(q11). (1.19)

Proof. The matrix Rθ1
R′

θ2
is orthogonal, because Rθ1

and R′
θ2

are orthogonal matrices

and the product of orthogonal matrices is an orthogonal matrix. Next, I show that

an orthogonal matrix Q is either a rotation matrix Rθ , for some θ ∈ [−π ,π), or a

reflection matrix R′
θ , for some θ ∈ [−π ,π).

Since Q is orthogonal

[
q11 q12

q21 q22

][
q11 q21

q12 q22

]
=

[
1 0

0 1

]
.

Without loss of generality we can choose

q11 = cosθ and q12 = sinθ .

Then, there are two possibilities for q21 and q22

q21 = cos(θ +π/2) and q22 = sin(θ +π/2)

or

q21 = cos(θ −π/2) and q22 = sin(θ −π/2).

In the first case, Q is a rotation matrix and in the second case Q is a reflection matrix.

Therefore,

Q = Rθ or Q = R′
θ ,

where

θ = cos−1(q11).

It is easy to check that

det(Rθ ) = 1 and det(R′
θ ) =−1, for any θ .

The result of Proposition 1 shows that problem (1.18), can be solved by the fol-

lowing procedure.

1. Solve the alignment problem by reflection (1.14).

2. Solve the alignment problem by rotation (1.15).

3. Select the solution of the problem that gives smaller cost function value.

Since, problems (1.14) and (1.15), are already solved in Section 1.5.1, we have a

complete solution to (1.18).
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1.5.3 Invariance properties and a distance measure

It turns out that the minimum value of (1.18)

dist′(C1,C2) := min
a∈R2, s>0, θ1,θ2∈[−π ,π)

‖C1 −Aa,θ1,θ2,s(C2)‖F

is not a proper distance measure. (A counter example is given in Example 6.) Propo-

sition 4 (invariance) and Theorem 7 (distance measure) stated and proved in [15] for

alignment by (1.10), however, hold for the more general problem of alignment by

dilation and rigid transformation.

Proposition 2. If the contours C1 and C2, defined by the sets of corresponding points

{ p(i) } and { p(i)}, are centered (i.e., C11N =C21N = 0), dist′(C1,C2) is invariant to

a rigid transformation, i.e.,

dist′(C1,C2) = dist′
(
Rθ (C1),Rθ (C2)

)

= dist′
(
R

′
θ (C1),R

′
θ (C2)

)
, for any θ ∈ [−π ,π).

(1.20)

If, in addition, C1 and C2 are normalized by ‖C1‖F = ‖C2‖F = 1,

dist′(C1,C2) = dist′(C2,C1). (1.21)

Example 4. Consider again the contours from Example 3. The points p(i) and q(i)

are preprocessed, so that the resulting contours, say C1,c and C2,c, are centered. As

a numerical verification of (1.20), we have

dist′(C1,c,C2,c) = dist′
(
R0.3(C1,c),R0.3(C2,c)

)

= dist′
(
R

′
0.3(C1,c),R

′
0.3(C2,c)

)
= 0.40640.

Let, in addition, the points p(i) and q(i) be preprocessed, so that the resulting con-

tours, say C1,cn and C2,cn, are centered and normalized. As a numerical verification

of (1.21), we have

dist′(C1,cn,C2,cn) = dist′(C2,cn,C1,cn) = 0.11271.

As in the case of the transformation (1.10), treated in [15, Section III], the fol-

lowing definition gives a distance measure.

Definition 1 (2-norm distance between contours modulo rigid transformation).

dist(C1,C2) :=
1

‖C1 −
1
N

C11N1⊤N‖F

×

min
a∈R2, s>0, θ1,θ2∈[−π ,π)

‖C1 −Aa,θ1,θ2,s(C2)‖F. (1.22)

Theorem 5. The distance measure dist(C1,C2) is symmetric and invariant to dilation

and a rigid transformation, i.e.,

dist(C1,C2) = dist(C2,C1) = dist
(
Aa,θ1,θ2,s(C1),Aa,θ1,θ2,s(C2)

)
,

for all a ∈ R
2, θ1,θ2 ∈ [−π ,π), and s > 0. (1.23)
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Example 6. For the contours in Example 3, we have

dist′(C1,C2) = 0.40640 and dist′(C2,C1) = 0.20748,

while

dist(C1,C2) = dist(C2,C1) = 0.11271.

1.5.4 Contour alignment as an orthogonal Procrustes problem

As a consequence of Proposition 1, we have that

problem (1.18) is equivalent to

minimize ‖C1 − sQC2 − a‖F

subject to Q⊤Q = I2

over a ∈R
2, s > 0, Q ∈ R

2×2.

(1.24)

In turn, problem (1.24) is related to the orthogonal Procrustes problem in numerical

linear algebra.

Problem 1 (Orthogonal Procrustes problem). Given q×N real matrices C1 and C2,

minimize over Q ‖C1 −QC2‖F subject to Q⊤Q = Iq.

The classical solution of the orthogonal Procrustes problem is given by

Q =UV⊤,

where UΣV⊤ is the singular value decomposition (SVD) of C⊤
1 C2, see [7, Page 601].

The orthogonal Procrustes problem does not involve scaling and translation. The

extension of the problem to alignment by dilation and rigid transformation is done

in [18]. The resulting procedure is summarized in Algorithm 1. It presents an alter-

native solution approach for solving problem (1.18). Compared to the solution pro-

posed in Section 1.5.4, Algorithm 1 has the advantage of being applicable to data of

any dimension (C1,C2 ∈ R
q×N , for any natural number q), i.e., the solution based on

the orthogonal Procrustes problem is applicable to contours in spaces of dimension

higher than 2.

The solution based on the orthogonal Procrustes problem, however, uses the sin-

gular value decomposition, while the solution proposed in Section 1.5.4 involves two

ordinary least least squares problems. Therefore, an advantage of the proposed solu-

tion is its conceptual simplicity. In particular, exploiting the Kronecker structure of

the coefficients matrix in (1.16) one can derive an efficient algorithm for alignment

of contours specified by a large number of corresponding points. Furthermore, in the

case of sequential but not necessarily corresponding points (see, [15, Section IV]), N

alignment problems are solved, which makes the computational efficiency an impor-

tant factor.
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Algorithm 1 Algorithm for least-squares contour alignment, based on the orthogonal

Procrustes problem.

Require: Contours with corresponding points, specified by matrices C1 and C2.

1: Centering of the contours:

Ci,c :=Ci − a(i)1⊤N , where a(i) :=
1

N
Ci1N .

2: Alignment of the centered data by orthogonal transformation:

Q :=UV⊤, where UΣV⊤ is the SVD of C⊤
2,cC1,c.

3: Computation of the scaling parameter:

s :=
trace(QC2C⊤

1 )

‖C2,c‖
2
F

4: Rigid transformation of C2 to fit C1:

Ĉ1 := sQ(C2 − a(2)1⊤N )+ a(1)1⊤N .

Ensure: Rigid transformation parameters:

• a(1)− sQa(2) — translation,

• Q — orthogonal transformation, and

• s — scaling.
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1.6 Conclusions

This chapter illustrated the claim that every data modeling problem is related to

a (structured) low-rank approximation problem for a matrix obtained from the data

via a nonlinear transformation (feature map) by four specific examples in computer

vision: multidimensional scaling, conic section fitting, fundamental matrix estima-

tion, and contour alignment. In multidimensional scaling, the data is the squared

distances between a set of points and the structure of the low-rank approximation

problem is given by (1.1). This structure automatically makes the constructed ma-

trix rank deficient, so that the low-rank approximation problem has no additional

rank constraint. In the conic section fitting problem, the feature map is a quadratic

function and, in the fundamental matrix estimation problem, the feature map is a bi-

linear function. Finally the contour alignment problem was reduced to the orthogonal

Procrustes problem, which is a low-rank approximation problem with an additional

orthogonality constraint. A summary of the application is given in Table 1.1.

TABLE 1.1: Summary of applications, matrix structures, and rank constraints.

application data data matrix structure rank =

multidim. distances di j [di j] (1.1) dim(x)+ 2
scaling pair-wise

conic section points di (1.4), (1.5) quadratic 5
fitting

fundamental corresponding (1.8), (1.9) bilinear 8
matrix points u j,v j

estimation

contour corresponding
[

C1
C2

]
unstructured 2

alignment points C1,C2
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Appendix: Position estimation from exact and complete distances

Consider the change of variables

S := X⊤X . (A.1)

The inverse transformation S 7→ X is a set valued function with nonuniqueness de-

scribed by the orthogonal transformation X 7→ RX (i.e., rotation or reflection of the

set of points X). A particular solution of the equation (A.1), for given symmetric

matrix X of rank at most n, can be computed by the eigenvalue decomposition of X .

Let

S =V ΛV⊤ =
[
V1 V2

][Λ1

0

][
V1 V2

]⊤
,

where the diagonal elements of Λ1 are all positive, be the eigenvalue decomposition

of X . Then √
Λ1V⊤

1 = RX ,

for some orthogonal matrix R.

Equation (1.1) is linear in S. We have,

vec(D) = (1N ⊗E +E ⊗ 1N − 2I)vec(S) =: Lvec(S). (A.2)

Furthermore, taking into account the symmetry of D and S, (A.2) becomes

vecs(D) = Ls vecs(S). (A.3)

The matrix Ls is of size Ns ×Ns, where Ns := N(N + 1)/2, and is a submatrix of

L ∈ R
N×N .

The system of linear equations (A.3) has Ns equations and Ns unknowns. The

matrix Ls, however, is rank deficient

rank(Ls) = Ns −N,

so that a solution is nonunique. (Assuming that D is a distance matrix, an exact

solution of (A.3) exists.) We are aiming at a solution S of (A.3) of rank at most n,

finding such a solution in the affine set of solutions is a hard problem.

A simple transformation avoids the nonuniqueness issue. The translated set of

points

X̄ := X − x11⊤N =
[
0 x̄2 · · · x̄N

]

has the same distance matrix as X , i.e., S (X̄) = D. The change of variables (A.1)

then results in a matrix

S̄ := X̄⊤X̄ =

[
01×1 0N−1×1

01×N−1 ∗

]
,
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so that

vecs(S̄) =

[
0N×1

∗

]
.

From (A.3), we have

vecs(D) = Ls

[
0N×1

s̄

]
=: Ls(:,N + 1 :)s̄. (A.4)

The submatrix Ls(:,N + 1 :) of Ls is full column rank, which implies that s̄ is the

unique solution of (A.4)
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