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Abstract. The problem of computing the distance of two real coprime polynomials to the set of
polynomials with a nontrivial greatest common divisor (GCD) appears in computer algebra, signal
processing, and control theory. It has been studied in the literature under the names approximate
common divisor, ε-GCD, and distance to uncontrollability. Existing solution methods use different
types of local optimization methods and require a user defined initial approximation. In this paper,
we propose a new method that allows us to include constraints on the coefficients of the polynomi-
als. Moreover, the method proposed in the paper is more robust to the initial approximation than
Newton-type optimization methods available in the literature. Our approach consists of two steps:
1) reformulate the problem as the problem of determining the structured distance to singularity of
an associated Sylvester matrix, and 2) integrate a system of ordinary differential equations, which
describes the gradient associated to the functional to be minimized.

Key words. ε-GCD, Sylvester matrix, structured pseudospectrum, structured low-rank approx-
imation, ODEs on matrix manifolds, structured distance to singularity.

1. Introduction. We indicate by Pk the set of polynomials of degree at most k.
Consider a pair of polynomials p ∈ Pn and q ∈ Pm (m ≤ n) which are assumed to
be coprime. An interesting problem discussed in the literature (see e.g. [3]) is that
of determining the closest pair p̂ ∈ Pn, q̂ ∈ Pm which admit a nontrivial greatest
common divisor (GCD). In this paper, we assume that the polynomials p, q, p̂, q̂ have
real coefficients; however an extension to complex polynomials is straightforward.

Let p ∈ Pn and q ∈ Pm

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

q(z) = bmzm + bm−1z
m−1 + · · ·+ b1z + b0

(1.1)

and similarly p̂ and q̂ of the same degrees, respectively. Denote by

a =
(
an an−1 · · · a1 a0

)T

b =
(
bm bm−1 · · · b1 b0

)T

the vectors of the coefficients of the polynomials p and q, respectively, and similarity
â and b̂ be the vectors of the coefficients of the polynomials p̂ and q̂, respectively.
Then, we define the distance measure

dist
(
(p, q), (p̂, q̂)

)
=

√√√√
n∑

i=0

|ai − âi|2 +
m∑

j=0

|bj − b̂j |2 (1.2)

that is the spectral norm of the vector
(

a−â

b−b̂

)
.

The considered problem is defined as follows.
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Problem 1. Given a pair of coprime polynomials p ∈ Pn, q ∈ Pm find (for the
given distance):

dCD(p, q) = inf
p̂∈Pn, q̂∈Pm

p̂ and q̂ not coprime

dist
(
(p, q), (p̂, q̂)

)
(coprimeness radius). (1.3)

The distance to common divisibility, defined by equation (1.3), is related to the
problem of computing an approximate common divisor [26, 9] and a closest ε-GCD
[24]. The approximate common divisor problem aims to compute a pair of polynomials
(p̂, q̂) that has a common factor of a specified degree and minimizes dist

(
(p, q), (p̂, q̂)

)
.

The closest ε-GCD problem aims to compute a pair of polynomials (p̂, q̂), such that
dist

(
(p, q), (p̂, q̂)

)
≤ ε and the degree of the GCD of (p̂, q̂) is maximized. The ap-

proximate common divisor problem and the closest ε-GCD problems are equivalent
optimization problems [46]. In the distance to common divisibility problem, we com-
pute a pair of polynomials (p̂, q̂) with a common factor of degree 1 or 2 that minimize
dist

(
(p, q), (p̂, q̂)

)
. Therefore, we are dealing with a special case of the approximate

common divisor problem.
In many applications, coprimeness of a set of polynomials is an important prop-

erty. However, the coefficients of the polynomials are often affected by uncertainties.
A more reliable issue is that of deciding whether two polynomials remain coprime even
after perturbations of coefficients, bounded in norm by some ε. This issue is consid-
ered for example in image processing, robotics and control theory [23, 38], where
the input data are only known to a certain accuracy, or where input parameters are
affected by noise. In this sense Problem 1.3 aims to compute the value ε which guar-
antees that if the perturbations in the polynomial coefficients are smaller than ε the
perturbed polynomials remain coprime.

By representing the polynomials p̂ and q̂ as p̂(z) = (z − λ)r(z) and b(z) = (z −
λ)s(z), where λ is the common zero and eliminating the r and s polynomials by
analytically minimizing dist

(
(p, q), (p̂, q̂)

)
over them, we obtain (by using the variable

projections principle) [13] an optimization problem equivalent to (1.3), i.e. minλ f(λ),
with

f(λ) =
|p(λ)|2

1 + |λ|2 + · · ·+ |λn|2 +
|q(λ)|2

1 + |λ|2 + · · ·+ |λm|2 . (1.4)

As pointed out by an anonymous reviewer, formula (1.4) appears in [3] but has a
longer history.

In this paper we follow a different approach, based on the Sylvester matrix of two
polynomials, which is a fundamental tool in determining their greatest common divi-
sor. In particular coprimeness is equivalent to the non-singularity of the associated
Sylvester matrix. As a consequence several estimates of the distance to common divis-
ibility of two polynomials are based on the magnitude of the inverse of the Sylvester
matrix (see e.g. [3]).

The aim of this article is that of approximating this distance by computing suit-
able upper bounds with a local optimization procedure. Such computation is not
straightforward since it has to do with an optimization problem in the sub-variety
of polynomials having a GCD. The method we propose returns (in general) a local
minimum for the considered distance but we cannot certify that it is a global mini-
mum. As far as we know there are no methods able to guarantee in general global
optimality of a computed solution (see e.g. [24]). Thus convergence to local optima
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is an unavoidable property. However, trying different initial approximations, would
increase the robustness of the method, which—in the cases of small dimension we are
able to check—computes the exact distance.

An introductory example from [3]. Let us consider the following example:

p(z) = zn, q(z) =
(

(1−z)
2

)n
with n = 8.

Clearly the zeros of p and q are relatively far. However, as observed in [3], this does
not imply that the distance to common divisibility is large. In fact, using the methods
proposed in this article we are able to compute a sharp upper bound for dCD(p, q).
We compute

dCD(p, q) ≤ 1.9798 . . . 10−4.

This is obtained by determining a pair of polynomials p̂ and q̂ having the distance
1.9798 . . . 10−4 from p and q, and having a common real zero z = 0.32495 . . .. This
is consistent with the results in [3], where a different distance (the maximum of the

1-norm of the two vectors a − â and b − b̂ replaces the 2-norm in formula (1.2))
is determined exactly for this example, which turns out to be of the same order of
magnitude. They determine in fact a distance 3−8 = 1.5241 . . . 10−4 and a common
zero z′ = 1/3. As observed by the authors of [3], classical estimates based on the
norm of the inverse of the Sylvester matrix associated to the polynomials p and q,
fail to give sharp bounds for this example. The spirit of this paper is similar to [3],
where the authors propose (in a slightly different setting) sharper bounds for the
distance with respect to the classical bounds proposed in the literature, based on a
clever use of the structure of the Sylvester matrix. Here the computation of optimal
(or suboptimal) bounds is also pursued by working on the structured set of Sylvester
matrices and developing a numerical approach relying on the integration of a system
of ODEs which identifies with a gradient system for a functional which is minimized in
correspondence of a closest pair of polynomials to p and q, having at least a common
zero.

Overview of the contribution and organization of the paper. The prob-
lem of computing a so-called ε-GCD of a pair of polynomials p ∈ Pn and q ∈ Pm,
that is a nearby pair of polynomials p̂ ∈ Pn, q̂ ∈ Pm having a non-trivial GCD,
has been studied in the literature, where several criteria have been used in order to
specify the nearness property (see e.g. [3, 10, 11, 37, 47, 4, 5, 40] and the references
therein). In many cases, for given polynomials p and q, and a tolerance ε, the meth-
ods aim to find the degree of an ε-GCD, a set of perturbations δp, δq (such that
p̂ = p + δp, q̂ = q + δq) and an ε-GCD (w.r.t. the perturbations) without addressing
the minimization in Problem 1.3 directly. Here instead we look for the pair with
minimal distance (in the 2-norm) and allow further constraints on the coefficients of
the polynomials (see Section 6).

Problem 1.3 is a nonconvex optimization problem and can be approached by global
optimization, local optimization [7, 29, 35], and convex relaxation methods [12]. The
methods based on global optimization, such as the branch and bound method [2], are
too expensive for most real-life problems.

In this paper, we consider the local optimization approach. A nonstandard feature
of the problem is that the optimization is over a Grassman manifold [1, 44]. Our main
contribution is a new method based on integration of a gradient system of ordinary
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differential equations. The system of ordinary differential equations describes the
gradient dynamics associated to an appropriate cost functional. It is given by the
modulus of the smallest eigenvalue of the Sylvester matrix. (In principle, we may
replace it by the smallest singular value and obtain a similar system of ODEs.) The
method is globally convergent to a locally optimal solution. Our simulation results
indicate that it is more robust to the initial approximation than the Newton-type
methods.

In addition, we incorporate constraint that some of the polynomials’ coefficients p
and q are known exactly, e.g., p monic, q monic. Such constraints can not be treated
by the existing alternative methods in the literature. Another extension, discussed in
Section 6), is the case of complex polynomials.

Alternative methods for solving Problem 1.3 based on local optimization are de-
veloped in the structured low-rank approximation setting [30, 32]. In particular, the
method of [33] which makes use of the kernel representation of the rank constraint and
the variable projections as well as the method of [22] using the image representation
of the rank constraint. Also homotopy methods can be used to compute a locally
optimal solution of Problem 1.3. The methods of [33, 22] can not impose arbitrary
constraints on the coefficients of the approximating polynomials p̂ and q̂ which is a
limitation of these approaches with respect to the one proposed here. In all numerical
examples, shown in Section 7, where the polynomials p̂ and q̂ are unconstrained or
where only p̂ or q̂ is constrained to be monic, the proposed method finds a solution
with the same value of the cost function as the one found by the methods of [33, 22].

The paper is organized as follows. In Section 2 we set the problem and the
notation and give the mathematical framework. In Section 3 we introduce the struc-
tured ε-pseudospectrum of a Sylvester matrix, which plays a fundamental role in our
methodology. In Section 4 we obtain a gradient system for the smallest eigenvalue(s)
of a Sylvester matrix (under additive perturbations) which allows us to approximate
the distance of the structured ε-pseudospectrum to the origin. In Section 5 we propose
an iterative two-level convergent method to approximate the distance to singularity
of a Sylvester matrix, which is equivalent to find a nearby pair of polynomials hav-
ing a non-trivial GCD. In Section 6 we consider some extensions of the considered
methodology to problems with additional constraints. Finally in Section 7 we present
some numerical tests.

Notation.

• Πs — set of polynomials of degree at most s
• µ(S) — inner spectral radius of the matrix S
• ΛS

ε (S) — structured ε-pseudospectrum
• µε(S) — inner ε-pseudospectral radius of S
• Λ(S) — spectrum of S
• Syl(a, b) — Sylvester matrix (2.1)
• S — set of Sylvester structured matrices
• ‖ · ‖F — Frobenius norm
• I — identity matrix
• 1 = (1 1 . . . 1)

T

• for real matrices A,B, 〈A,B〉 = trace(ATB) — Frobenius inner product

2. Preliminaries. Consider the polynomials (1.1) with real coefficients {ai}
and {bi} and with m ≤ n, where we may set an = 1 (p monic). Also, by setting
bm+1 = · · · = bn = 0, we can always consider the case m = n. In order to check
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whether the polynomials p and q are coprime it is natural to introduce the associated
Sylvester matrix of dimension 2n× 2n,

S = Syl(a, b) :=




an . . . am . . . . . . a1 a0 0 . . . 0
0 an . . . am . . . . . . a1 a0 . . . 0
... 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 an . . . . . . . . . . . . a1 a0
0 . . . bm . . . . . . b1 b0 0 . . . 0
0 . . . 0 bm . . . . . . b1 b0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 0 0 bm . . . . . . b1 b0




. (2.1)

Then, we have the following well-known result due to S. Sylvester [39].
Theorem 2.1. A pair of polynomials p, q is coprime if and only if the matrix

Syl(a, b) given by (2.1) is nonsingular.

Let

δp(z) = δasz
s + δas−1z

s−1 + · · ·+ δa1z + δa0

δq(z) = δbmzm + δbm−1z
m−1 + · · ·+ δb1z + δb0

(2.2)

where s = n − 1 if p + δp is constrained to be monic and s = n otherwise, and the
vectors of their coefficients δa = (δa0 δa1 · · · δas)

T
and δb = (δb0 δb1 · · · δbm)

T
.

With this notation problem (1.3) can be restated as

dCD

(
p, q
)
= sup{ ε : (p+ δp, q + δq) is coprime for all δp ∈ Πs, δq ∈ Πm,

such that dist
(
(p, q), (p+ δp, q + δq)

)
< ε}. (2.3)

We are mainly considering two different distances to common divisibility: one with p
monic and one without this constraint. Another interesting case is when only a few
coefficients of the polynomials are subject to perturbations; for an extension to this
case see Section 6.

Remark 2.1. Generically, the smallest perturbations which make a pair of poly-
nomials to have a nontrivial GCD, creates either one real common root or a pair of
complex conjugate common roots. It is well-known that in the first case the co-rank
of the associated Sylvester matrix is one, while in the second case it is two. ⋄

3. General framework. The problem we consider here can be cast into a more
widespread class of problems, which we are briefly introducing.

3.1. Structured ε-pseudospectrum. This paper treats a special instance of a
more general problem, that is to determine the distance to singularity (with respect
to Frobenius norm) of a matrix having an affine structure. To be precise, for a given
real matrix A, we look for a singular matrix B = A+X, with X belonging to a real
linear manifold of matrices M, such that ‖X‖ is minimal. Let us define the inner
spectral radius of a matrix B as

µ(B) = min{|λ| : λ ∈ Λ(B)},
where Λ(B) is the spectrum of B; if µ(B) = 0 then B is singular. With this notation
the problem we aim to deal with is the following:

min
X∈M : µ(A+X)=0

‖X‖F . (3.1)
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Let us write X ∈ M as X = εE with E ∈ M such that ‖E‖F = 1. The basic idea to
solve this problem is that of introducing the structured ε-pseudospectrum of A,

ΛM
ε (A) = {λ ∈ Λ(A+ εE) : E ∈ M, ‖E‖F ≤ 1} (3.2)

and looking for the minimal value of ε such that 0 ∈ ΛM
ε (A). This requires—for

a given ε—to minimize |λ| for λ ∈ ΛM
ε (A) (which means minimizing µ(A + εE)

for E ∈ M, ‖E‖F ≤ 1) and then iterating on ε. Usually it is possible to prove
that it is equivalent to replace the inequality constraint ‖E‖F ≤ 1 by the equality
constraint ‖E‖F = 1. If such a property holds, the minimization step can be pursued
by computing the gradient of the functional Fε(E) = µ(A+εE) for E ∈ M, ‖E‖F = 1
and applying a descent method. Indicating byG the free gradient of Fε(E) in the space
of complex matrices, which is a rank-1 matrix obtained by left and right eigenvectors
of A + εE, the orthogonal projection of the gradient onto M, with the additional
constraint ‖E‖F = 1 is simply given by

PM (G)−
〈
E,PM (G)

〉
E

where for a pair of matrices A and B, 〈A,B〉 denotes the Frobenius inner product and
PM(G) denotes the orthogonal projection of the matrix G onto M. Understanding
the dependence of ΛM

ε (A) on ε usually allows to obtain fast methods to compute the
minimal ε such that Fε(E) = 0. Naturally this approach provides usually a local
extremizer which is not guaranteed to be global.

3.2. Distance to common divisibility. The basic observation used to calcu-
late the distance to common divisibility dCD

(
p, q
)
is that (2.3) is equivalent to the

following problem

dCD

(
p, q
)
=

1√
n
inf
{
ε : µ

(
Syl(a, b) + εE

)
> 0 for all E ∈ Sn,m, ‖E‖F ≤ 1

}
(3.3)

where (with m ≤ n)

Sn,m := {Syl(u, v) : u ∈ R
n+1, v ∈ R

m+1} ⊂ R
2n×2n (3.4)

is the set of real Sylvester matrices (see (2.1)). For brevity in the sequel we simply
denote Sn,m by S.

This is a classical matrix nearness problem of the form considered in Section 3.1
(see e.g. [20]). Denote by

ΛS
ε (S) = {λ ∈ Λ(S + εE) : E ∈ S, ‖E‖F ≤ 1}.

the structured ε-pseudospectrum (see [41]). Note that S is a smooth linear manifold
which implies that

S + εE ∈ S, if E ∈ S.

Example. Consider the two polynomials of degree 3,

p(z) = z3 + 2z2 + 2z + 2

q(z) = 2z3 + z − 2
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where p is constrained to be monic. Here a = (1 1 2 2)
T
and b = (2 0 1 − 2)

T
; the

corresponding Sylvester matrix is given by

Syl(a, b) =




1 2 2 2 0 0
0 1 2 2 2 0
0 0 1 2 2 2
2 0 1 −2 0 0
0 2 0 1 −2 0
0 0 2 0 1 −2




(3.5)

Fig. 3.1. The approximated structured ε-pseudospectrum for ε = 1

2
for Example (3.5) is filled

with blue; the boundary of the unstructured ε-pseudospectrum is drawn in black.

The set ΛS
ε (S) for ε =

1
2 is approximated by dense sampling on the set of admis-

sible perturbations and is plotted in blue in Figure 3.1. The black curve represents
the boundary of the corresponding unstructured ε-pseudospectrum, which means that
arbitrary complex perturbations of norm bounded by 1

2 are considered.

Next, we define µε(S), the inner ε-pseudospectral radius of S, which is the mini-
mum of the modulus of the elements of the structured ε-pseudospectrum,

µε(S) = min{|λ| : λ ∈ ΛS
ε (S)}. (3.6)

Note that the case ε = 0, reduces µε(S) to the inner spectral radius µ(S).
With this notation we characterize the distance to common divisibility as

dCD

(
p, q
)
=

1√
n
min{ε : µε(S) = 0}, where S = Syl(a, b).

If S is associated to a coprime pair, we have that

µε(S) > 0 ⇐⇒ dCD

(
p, q
)
> ε.

3.3. A 2-level methodology. To find the distance to common divisibility we
have to solve the equation (w.r.t. ε), µε(S) = 0 and find the minimum root,

εopt = min{ε : µε(S) = 0}.

This is a global optimization problem which we approach locally, by introducing a
methodology which allows to compute suitable upper bounds for εopt. The following
definition will be used often, where, for δ > 0, Bδ(λ) = {z ∈ C : |z − λ| ≤ δ}.

Definition 3.1. A matrix E such that ‖E‖F ≤ 1 and S + εE has a smallest
eigenvalue z that locally minimizes the modulus of ΛS

ε (S), i.e. ∃δ > 0 such that

λ = argmin
{
|z| : z ∈ ΛS

ε (S) ∩ Bδ(λ)
}
, (3.7)

is called a local extremizer. Similarly λ is called a local minimum point of ΛS
ε (S).
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We propose a two-level algorithm.
At the inner level, for a fixed ε we compute a (local) minimum point of ΛS

ε (S),
which we denote by λ(ε) ∈ ∂ΛS

ε (S). If λ(ε) is a global minimum point then |λ(ε)| =
µε(S), otherwise |λ(ε)| > µε(S). The (inner) algorithm we propose finds local optima
of problem (3.7) by determining the stationary point of a system of ODEs. In general
there is no assurance that these are global minima, although this seems to be the case
in all our experiments of small dimension (where we were able to perform a statistical
investigation on a very large number of samples).

For the outer iteration, we indicate by λ(ε) a continuous branch of local minima
of ΛS

ε (S) (see (3.7)); the aim is to compute

ε⋆ = min{ε : λ(ε) = 0}.

In order to compute ε⋆ we vary ε by an interpolation based iteration which exploits
the knowledge of the exact derivative of λ(ε) with respect to ε and exhibits fast
convergence (a similar methodology has been exploited for different structures, see
[28], and also for computing the H∞ norm of a linear dynamical system [14] and the
distance to instability of real matrices, see [17]).

For ε in a left neighborhood of ε⋆ we expect generically the occurrence of one of
the following two situations:

(i) There is a unique real local minimum λ(ε). This means that there exists a
matrix E(ε) ∈ S of unit norm such that λ(ε) is a real simple eigenvalue of
S+εE(ε), which implies that S+ε⋆E(ε⋆) has co-rank equal to 1 and the two
perturbed polynomials associated to S + ε⋆E(ε⋆) have a real common root.

(ii) There is a unique pair of complex conjugate local minima λ(ε) and λ(ε). This
means that there exists a matrix E(ε) ∈ S of unit norm such that λ(ε), λ(ε) is
a pair of complex conjugate eigenvalues of S+ εE(ε), which implies that S+
ε⋆E(ε⋆) has co-rank equal to 2 and the two perturbed polynomials associated
to S + ε⋆E(ε⋆) have two complex conjugate common roots.

This means that—contrarily to the case of unstructured perturbations—we
expect that as ε −→ ε⋆ we have to expect a non-defective coalescence of two
complex conjugate eigenvalues in zero.

4. Approximation of local minima of the structured ε-pseudospectrum.
We address here the minimization problem

λ = argmin{|z| : z ∈ ΛS
ε (S)}.

We will use the convention that when an eigenvalue of minimum modulus λ is not real,
which means it appears pairwise with λ, then we select the eigenvalue with positive
imaginary part.

The idea is that to make use of a continuous (in time) minimization method.
Let us consider a smooth matrix valued function S + εE(t) where E(t) ∈ S and
‖E(t)‖F ≤ 1 for all t.

Our goal is to find an optimal direction Ė(t) = Z such that the smallest eigenvalue
λ of S + εE(t), is characterized (locally) by the maximal possible decrease.

We follow an approach which extends to structured pseudospectra some ideas
developed in [15, 16, 18] and use of the following standard perturbation result for
eigenvalues see, e.g., [27, Section II.1.1]. Here and in the following, we denote ˙ = d/dt.

Lemma 4.1. Consider the differentiable matrix valued function C(t) for t in a
neighborhood of 0. Let λ(t) be an eigenvalue of C(t) converging to a simple eigenvalue
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λ0 of C0 = C(0) as t → 0. Let y0 and x0 be left and right eigenvectors, respectively,
of C0 corresponding to λ0, that is, (C0 − λ0I)x0 = 0 and y∗0(C0 − λ0I) = 0. Then,
y∗0x0 6= 0 and λ(t) is differentiable near t = 0 with

λ̇(0) =
y∗0Ċ(0)x0

y∗0x0
.

Assume that E(t) is a smooth function and observe that for a simple eigenvalue
λ(t) = r(t)eiθ(t) of the matrix-valued function S + εE(t) (r(t) denotes the modulus
and θ(t) the phase), with associated left and right eigenvectors y(t) and x(t) respec-
tively, we have (omitting the dependence on t)

d

dt
|λ| = 1

2|λ|
d

dt
|λ|2 =

1

|λ| Re(λλ̇) =
1

|λ|Re
(
λ ε

y∗Ėx

y∗x

)

=
ε

|λ| Re
( (λy)∗Ėx

y∗x

)
= εRe

( y∗Ėx

eiθy∗x

)
.

In the sequel of the paper we shall always impose the following normalization to
the eigenvectors y and x,

‖y‖2 = ‖x‖2 = 1, y∗x = |y∗x|e−iθ (4.1)

which makes the denominator of (4.2) real and positive (note that |y∗x| 6= 0 is a
consequence of the assumption that λ is simple). Hence we have

d

dt
|λ| = ε

|y∗x|Re
(
y∗Ėx

)
(4.2)

so that the optimal variation Z = Ė is obtained by minimizing the function Re(y∗Ėx).
Note that for Ė ∈ S we have

Re
(
y∗Ėx

)
= Re

〈
yx∗, Ė

〉
=
〈
PS (yx∗) , Ė

〉
,

where we denote by PS(B) the orthogonal projection of a matrix B ∈ C
2n,2n onto

S. The following result gives an explicit formula for PS (for Toeplitz matrices similar
results are discussed in [36] and [8]).

Lemma 4.2. Let S ⊂ R
2n×2n be the manifold of real Sylvester matrices of dimen-

sion 2n and B ∈ C
2n×2n. The orthogonal projection (with respect to the Frobenius

inner product 〈·, ·〉) PS(B) of B onto S is given by

BS = PS(B) = Syl(α, β) (4.3)

where

αn−k =
1

n

n∑

l=1

Re (Bl,l+k) , k = k0, . . . , n

βm−k =
1

n

n∑

l=1

Re (Bn+l,n−m+l+k) , k = 0, . . . ,m

with k0 = 1 if p is constrained to be monic, and k0 = 0 otherwise (and αn = 0).
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Proof. Being S a manifold of real matrices, note the obvious property PS(B) =
PS (Re(B)). We have to find BS ∈ S such that

BS = argmin
S∈S

‖B − S‖F = argmin
S∈S

‖Re(B)− S‖F .

The result follows directly from the property that for a real vector x ∈ R
d,

ν∗ = argmin
ν∈R

‖x− ν1‖F =
1

d

d∑

i=1

Re(xi),

being 1 = (1 1 · · · 1)
T
.

The following result assures the important property PS (yx∗) 6= 0 (where x and
y are the eigenvectors of S + εE associated to the smallest eigenvalue λ), which is
considered later in Lemmas 4.4 and 4.5. In order to distinguish the case where p is
unconstrained from the case where p is constrained to be monic, we introduce the set
S∗ which is the submanifold of Sylvester matrices {Syl(u, v)} (2.1) given by un = 0.

Lemma 4.3. Let S ∈ S and either E ∈ S or E ∈ S∗ of unit Frobenius norm,
and ε > 0. If λ 6= 0 is a simple eigenvalue of S + εE, with left and right eigenvectors
y and x scaled according to (4.1), then

PS (yx∗) 6= 0. (4.4)

Proof. We analyze first the case where p is not constrained to be monic.
Let y and x be the left and right eigenvectors of S + εE associated to λ = reiθ,

with r > 0. Assume — by contradiction — that PS (yx∗) = 0; this would imply

0 =
〈
PS (yx∗) , S + εE

〉
=
〈
yx∗, S + εE

〉
=
〈
Re(yx∗), S + εE

〉
. (4.5)

Observing that
〈
Re(yx∗), S + εE

〉
= Re

〈
yx∗, S + εE

〉

= Re (y∗ (S + εE)x) = Re
(
reiθy∗x

)
,

and exploiting the normalization (4.1), we obtain
〈
Re(yx∗), S + εE

〉
= r|y∗x| > 0 (4.6)

where positivity follows by the simplicity assumption for λ. This would contra-
dict (4.5) and consequently (4.4) holds true.

Second we consider the case where p is constrained to be monic. If we assume
that PS∗ (yx∗) = 0, where the projection PS∗ — which is given by (4.3) by imposing
αn = 0 — is relevant to the monic case and is used here to distinguish it from PS , we
get

PS (yx∗) =

(
βI 0
0 0

)
(4.7)

where PS is the usual projection on the manifold S to which belongs S (which now
contains the submanifold S∗ to which belongs E) and

β =
1

n

n∑

i=1

Re (yixi) .
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Now, consider the matrix C = S + εE − I, where I is the identity matrix, and
define the matrix

S̃γ := I + γC

which preserves the structure of S and also the eigenvectors x and y associated to the
shifted eigenvalue λ.

First — by (4.7) — we obtain (recall that an = 1 in (2.1))

〈
Re(yx∗), S̃γ

〉
= nβ = Re

(
n∑

i=1

yixi

)

which has modulus smaller than 1.
Second, exploiting

〈
Re(yx∗), S̃γ

〉
= Re

(
y∗S̃γx

)
, we get

〈
Re(yx∗), S̃γ

〉
= r̃γ (4.8)

where |r̃γ | can be chosen arbitrarily large if |γ| is chosen large enough.
This leads to a contradiction. As a consequence we have that PS∗(yx∗) 6= 0.

4.1. Minimizing on the sphere. The problem we are considering is

min
{
|λ| : λ ∈ Λ(S + εE), E ∈ S, ‖E‖F ≤ 1

}
. (4.9)

Let us show that extremizers are located on the sphere, that is we may replace (4.9)
by

min
{
|λ| : λ ∈ Λ(S + εE), E ∈ S, ‖E‖F = 1

}
. (4.10)

In order to do this let us state the following result.
Lemma 4.4. Assume that E is a (local) extremizer for Problem (4.9) where

λ ∈ ΛS
ε (S), λ 6= 0 has (locally) minimum modulus and is simple. Then ‖E‖F = 1.

Proof. Assume by contradiction ‖E‖F < 1. Let y and x be the left and right
eigenvectors of S + εE associated to λ. By Lemma 4.3 we have that PS (yx∗) 6= 0.
Note that

d

dt
|λ| = ε

|y∗x|
〈
PS (yx∗) , Ė

〉

implies that −PS (yx∗) is a descent direction for |λ|; as a consequence consider the
matrix Eδ = E−δPS (yx∗) and denote by λδ its eigenvalue of smallest modulus. For a
sufficiently small δ > 0, the matrix Eδ = E − δPS (yx∗) would be such that |λδ| < |λ|
and ‖Eδ‖F < 1, contradicting optimality of E.

As a consequence we are justified in looking extremizers on the set

S1 = S ∩ {E ∈ R
2n×2n : ‖E‖F = 1}. (4.11)

4.2. Steepest descent direction. Let λ = reiθ 6= 0 be the eigenvalue of min-
imum modulus of S + εE. Then the optimal steepest descent direction for |λ| (see
(4.2) and (4.1)), with Z = Ė ∈ S, is given by:

Z∗ =arg min
Z∈S1

Re (y∗Zx)

subject to 〈E,Z〉 = 0,
(4.12)
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where the constraint 〈E,Z〉 = 0 guarantees norm conservation of E and the normal-
ization Z ∈ S1, is considered for convenience to obtain a unique solution (since Z
represents indeed a direction).

The solution to (4.12) is given in the following lemma.
Lemma 4.5. Let E ∈ S1 be a 2n × 2n real matrix of unit Frobenius norm, and

y, x ∈ C
2n be non-zero complex vectors. Assume that PS (yx∗) 6= 0 and E is not

proportional to PS (yx∗). Then the solution of the optimization problem (4.12) is
given by

νZ∗ = − PS (yx∗) +
〈
E,PS (yx∗)

〉
E (4.13)

where ν is the Frobenius norm of the matrix on the right hand side.
Proof. We have for the function to minimize,

Re (y∗Zx) = Re〈Z, yx∗〉,

that is a linear function with respect to Z. Since S and E⊥ = {Z : 〈E,Z〉 = 0}
are linear subspaces, it is direct to see, by the fact that the inner product with a
given vector is minimized over a subspace by orthogonally projecting the vector onto
that subspace, that the solution to (4.12) is given by a matrix proportional to the
orthogonal projection of the rank-1 matrix yx∗ onto the linear subspace S∩E⊥, which
we denote by PS∩E⊥

(yx∗), scaled to have unit norm (unless such projection is zero).
Let PS(·) and PE⊥

(·) denote the orthogonal projections onto S and E⊥ respectively.
By the well-known Von Neumann iterative formula (see e.g. [42]), we have that if PS

and PE⊥
commute then

PS∩E⊥
(·) = PS (PE⊥

(·)) = PE⊥
(PS(·)) .

Let B ∈ C
2n×2n; then

PE⊥
(PS(B)) = PS (B) −

〈
E,PS (B)

〉
E.

On the other hand (since E ∈ S)

PS (PE⊥
(·)) = PS

(
B −

〈
E,B

〉
E
)
= PS (B)−

〈
E,PS (B)

〉
E,

which proves the commutativity. Hence PS∩E⊥
(B) = PS (B)−

〈
E,PS (B)

〉
E. Since—

by assumption—PS (yx∗)−
〈
E,PS (yx∗)

〉
E does not vanish we obtain the solution to

(4.12)

νZ∗ = −PS (yx∗) −
〈
E,PS (yx∗)

〉
E 6= 0,

where ν is the reciprocal of the Frobenius norm of the right hand side.

Optimality conditions. The application of Karush-Kuhn-Tucker local optimal-
ity conditions for the optimization problem (4.10),

min
E∈S, ‖E‖F=1

|λ|

in the case where the minimum is not zero, read as follows:

PS (yx∗) = sE∗, s < 0 (4.14)

‖E∗‖F = 1 (4.15)

where E∗ denotes a extremizer. Naturally s > 0 would characterize a local maximum.
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4.3. The gradient system associated to the minimization problem.
Lemma 4.5 and formula (4.2) suggest to consider the following differential equa-

tion on the manifold S1 (see (4.11)),

Ė = −PS (yx∗) +
〈
E,PS (yx∗)

〉
E (4.16)

where y(t), x(t) are left and right eigenvectors of unit norm respectively to a simple
eigenvalue λ(t) of S + εE(t), and with y∗x = |y∗x|e−iθ, where ε is fixed.

Remark 4.1. Indeed Lemma 4.5 gives us a steepest descent direction and (4.16)
scales this direction in a way that the the projected gradient has not necessarily unit
norm, but has the order of magnitude of PS (yx∗) so that to prevent a big amplification
of this vector-field when this is small (close to convergence). ⋄

We are in the position to prove the monotonic decrease of |λ(t)| along every
solution of (4.16).

Theorem 4.6. Let E(t) of unit Frobenius norm satisfy the differential equation
(4.16). If λ(t) is a simple eigenvalue of S + εE(t), then

d

dt
|λ(t)| ≤ 0. (4.17)

Proof. Note that

Re
(
y∗PS (yx∗)x

)
= Re

〈
yx∗, PS (yx∗)

〉
=
〈
PS (yx∗) , PS (yx∗)

〉
= ‖PS (yx∗) ‖2F ,

and (since E ∈ S)
Re (y∗Ex) = 〈E,PS (yx∗)〉 .

By the Cauchy–Schwarz inequality,

|〈E,PS (yx∗)〉| ≤ ‖E‖F ‖PS (yx∗) ‖F = ‖PS (yx∗) ‖F .
Finally, by (4.16),

Re(y∗Ėx) =
(
−‖PS (yx∗) ‖2F + 〈E,PS (yx∗)〉2

)
≤ 0, (4.18)

implying (4.17) by Lemma 4.1.
Since we are interested to minimize |λ| we address our attention to the stationary

points of (4.16).

4.4. Stationary points. Since stationary points of (4.16) are potential extrem-
izers for µε(S), we give the following result for their characterization.

Theorem 4.7. Assume λ 6= 0. The following are equivalent on solutions of
(4.16):

(1)
d

dt
|λ| = 0;

(2) Ė = 0;

(3) E is a real multiple of PS (yx∗).

Proof. The proof follows directly by combining (4.2) and Lemma 4.5.
The following result characterizes the local extremizers.
Theorem 4.8. Let E∗ ∈ S with ‖E∗‖F = 1. Let λ∗ = reiθ 6= 0 be a simple

eigenvalue of S + εE∗ with minimum modulus, with left and right eigenvectors y
and x, respectively, both of unit norm and with the normalization y∗x = |y∗x|e−iθ.
Then the following two statements are equivalent:
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(i) Every differentiable path (E(t), λ(t)) (for small t ≥ 0) such that ‖E(t)‖F ≤ 1
and λ(t) is an eigenvalue of S + εE(t), with E(0) = E∗ and λ(0) = λ∗, has

d

dt
|λ(t)|

∣∣∣
t=0

≥ 0.

(ii) E∗ is a negative multiple of PS (yx∗).
Proof. Assume that (i) does not hold true. Then there is some path E(t) through

E∗ such that d
dt
|λ(t)|

∣∣
t=0

< 0; thus Lemma 4.5 together with Lemma 4.1 shows that
also the solution path of (4.16) passing through E∗ is such a path. Consequently E∗

is not a stationary point of (4.16), and Theorem 4.7 then yields that E∗ is not a real
multiple of PS (yx∗). This implies that also (ii) does not hold true.

Vice versa, if E∗ is not a real multiple of PS (yx∗), then E∗ is not a stationary
point of (4.16), and Theorems 4.6 and 4.7 yield that d

dt
|λ(t)|

∣∣
t=0

< 0 along the solution
path of (4.16). Moreover, using a similar argument to [16, Theorem 2.2], if

E∗ = γPS (yx∗) , with γ > 0,

then along the path E(t) = (1− t)E∗, t ≥ 0, we have that

Re(y∗Ė(0)x) = −γ‖PS (yx∗) ‖2F < 0

and thus, by exploiting Lemma 4.1, d
dt
|λ(t)|

∣∣
t=0

< 0, which contradicts (i).
As a consequence, if in Theorem 4.7 λ 6= 0 is locally minimal (in modulus),

E = E∗ = −PS (yx∗) /‖PS (yx∗) ‖F
that is the projection onto S of a real matrix of either rank 1 (if λ, x and y are real)
or rank 2 (if λ is non real, and consequently also y and x).

Remark 4.2. The test E = −PS (yx∗) /‖PS (yx∗) ‖F might be useful to recognize
that a (local) extremizer has been computed, also in different algorithms with respect
to the ones presented in this article. ⋄

4.5. The system of ODEs. We can write (4.16) in a compact form for the
coefficients {δai} and {δbi} of the polynomials δp and δq (see (2.2)), which form E,

E = Syl(δa, δb). (4.19)

This is given by

d

d t
δak = (αk − η δak) k = 0, . . . , n− k0

d

d t
δbk = (βk − η δbk) k = 0, . . . ,m,

(4.20)

where k0 = 1 if p is monic (in which case δan ≡ 0) and k0 = 0 otherwise, αk and βk

are the elements of PS (yx∗),

PS (yx∗) = Syl(α, β) =




αn . . . αm . . . . . . α1 α0 0 . . . 0
0 αn . . . αm . . . . . . α1 α0 . . . 0
... 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 αn . . . . . . . . . . . . α1 α0

0 . . . βm . . . . . . β1 β0 0 . . . 0
0 . . . 0 βm . . . . . . β1 β0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 0 0 βm . . . . . . β1 β0
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and η =
〈
E,PS (yx∗)

〉
. This means we have to solve a system of (m+1)+(n+1−k0)

ordinary differential equations.
Remark 4.3. The ODEs (4.16) and (4.20) follow the smallest eigenvalue (for

a complex conjugate pair the one with positive imaginary part) so that they detect
automatically whether the ε-GCD has either degree 1 or 2. ⋄

In the next section we propose a numerical method to approximate the solution of
the ODEs (4.20) until either a stationary point is reached or the followed eigenvalue
λ goes to zero. As suggested by an anonymous referee, whom we thank, a classical
alternative to Algorithm 1 would be that of using projected gradient type methods,
like Zoutendijk approach (see e.g. [49]). Exploring these approaches and comparing
them to the methodology we propose would be certainly an interesting development.

Algorithm 1: Euler step applied to the ODEs (4.20) with step-size control

Data: α(ℓ), β(ℓ), λℓ, yℓ, xℓ and h̃ℓ (step size predicted by the previous step), tol
(stopping tolerance).

Result: Eℓ+1, yℓ+1, xℓ+1, λℓ+1 and h̃ℓ+1.
begin

1 Set h = h̃ℓ.

2 Compute Zℓ = PS (yℓx
∗
ℓ ) := S

(
α(ℓ), β(ℓ)

)
and ηℓ = 〈Eℓ, Zℓ〉.

3 Compute

δa
(ℓ+1)
k = δa

(ℓ)
k − h

(
α
(ℓ)
k − ηℓδa

(ℓ)
k

)
, k = 0, . . . , n− k0

δb
(ℓ+1)
k = δb

(ℓ)
k − h

(
β
(ℓ)
k − ηℓδb

(ℓ)
k

)
, k = 0, . . . ,m.

4 Compute σℓ+1 = n

√
n∑

k=k0

(
δa

(ℓ+1)
k

)2
+

m∑
k=0

(
δb

(ℓ+1)
k

)2
.

5 Normalize as

δa
(ℓ+1)
k = δa

(ℓ+1)
k /σℓ+1, δb

(ℓ+1)
k = δb

(ℓ+1)
k /σℓ+1.

6 Set Eℓ+1 = Syl
(
δa(ℓ+1), δb(ℓ+1)

)
.

7 Compute the eigenvalue of minimum modulus λ̂ of S + εEℓ+1, and the left
and right eigenvectors ŷ, x̂.

8 if |λ̂| ≥ |λℓ| then
reject the step: reduce the step size as h := h/γ and repeat from 3;

else

accept the step: set hℓ+1 = h, λℓ+1 = λ̂, yℓ+1 = ŷ and xℓ+1 = x̂.
9 if |λℓ+1 − λℓ| ≤ tol or |λℓ| ≤ tol then

return

10 if hℓ+1 = h̃ℓ then

increase the step-size as h̃ℓ+1 := γh̃ℓ;
else

set h̃ℓ+1 = h̃ℓ.

11 Proceed to next step
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4.6. Numerical integration. Given Eℓ ≈ E(tℓ) of unit Frobenius norm, and
given yℓ and xℓ left and right eigenvectors of S+εEℓ associated with its eigenvalue λℓ

of minimum modulus (if λℓ is not real we choose λℓ = rℓe
iθℓ with positive imaginary

part), with y∗ℓxℓ = |y∗ℓxℓ|e−iθℓ ,

α(ℓ) = {α(ℓ)
k }n−k0

k=0 , β(ℓ) = {β(ℓ)
k }mk=0

and

δa(ℓ) = {δa(ℓ)k }n−k0

k=0 , δb(ℓ) = {δb(ℓ)k }mk=0,

we determine all numerical approximations at time tℓ+1 = tℓ+hℓ by applying a step of
the Euler method with step-size hℓ to (4.20), which is fully described by Algorithm 1.

In order to control the step size we simply require that the monotonicity property
of the exact flow, that is |λ(tℓ+1)| < |λ(tℓ)| is preserved by the numerical solution
|λℓ+1| < |λℓ|. Since we are only interested in stationary points we can neglect the
classical error control estimate on the solution, that is we do not estimate ‖E(tℓ+1)−
Eℓ+1‖.

At line 9 of Algorithm 1 we have introduced a stopping criterion which activates
either when the difference of two subsequent iterates goes under a given accuracy
tol (this is an indicator of the fact that the sequence λℓ has converged) or when λℓ

approaches zero to a certain tolerance tol. If |λℓ| > tol it means that it has reached
a local minimum for |λ|, λ ∈ ΛS

ε (S); if |λℓ| ≤ tol it indicates that the global minimum
has been reached (to the given tolerance since the exact minimum value is zero). In
both cases Eℓ approximates the corresponding extremizer.

Remark 4.4. The normalization step at lines 4 and 5 of Algorithm 1 ensures
that ‖Eℓ‖F = 1 for all ℓ. Since the exact solution of the ODEs (4.16) (as well as
(4.20)) preserves the norm of E, after the application of an Euler step the error on
‖E‖ is O(h2), which makes it very small if h is small (which certainly occurs close to
convergence). Hence we do not expect a significant slowing down of the algorithm (and
we do not observe this in our numerical experiments). As remarked by an anonymous
referee, whom we thank, the choice of the stepsize might be improved by suitable line
search algorithms. In the present paper we have selected the stepsize according to the
preservation of the monotonicity of |λℓ|, in agreement with the monotonicity property
of the exact flow. Investigating more efficient step size control strategies would be
certainly an interesting topic for a future investigation. ⋄

5. An iterative method for approximating dCD

(
p, q
)
. In this section, we

discuss the outer algorithm and make use of the following notation: all quantities
written as g(ε), like λ(ε), E(ε) and so on, are intended to be exact and associated to
local minima/extremizers for the optimization problem (4.9).

In order to compute the distance to common divisibility we should consider equa-
tion µε(S) = 0 and minimize its solution. As a surrogate of this problem, which is of
global optimization, we try to compute a value, say ε⋆, such that the boundary of the
corresponding structured ε-pseudospectrum, ∂ΛS

ε⋆(S), crosses the origin.
This would provide an upper bound for the distance; repeating such a search over

different regions of the ε-pseudospectrum would increase the probability of computing
the exact distance, and hence would improve the robustness of the method.

Remark 5.1. Let λ(ε) ∈ ∂ΛS
ε (S) a branch of points of locally minimum modulus,

with λ(ε) 6= 0 for ε < ε⋆ and λ(ε⋆) = 0 (see e.g. Figure 7.1). Consider the function

ε −→ |λ(ε)|, ε < ε⋆.
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Its continuity is a consequence of continuity of eigenvalues; however, in principle, such
a function does not need to be differentiable, which would prevents our arguments
to apply, since they are based on its differentiability. In fact one might switch from
one local minimum to another one located in a different region of the structured
pseudospectrum, which would imply generically a jump of its derivative.

Hence we shall further assume some smoothness, more specifically that λ(ε) is a
smooth and continuously differentiable curve of the complex plane. If λ(ε) is a contin-
uous curve of simple eigenvalues then its differentiability is implied by the simplicity.
Under these assumptions we may think to approach ε⋆ from the left, by a repeated
integration of the ODEs 4.20, and exploit the knowledge of the derivative of λ(ε)
w.r.t. ε. ⋄

To summarize, in order to proceed we indicate by

λ(ε) = arg min
λ∈ΛS

ε
(S)

|λ|

a smooth branch of (local) minima parametrized by ε and computed by determining
the stationary point of the system of ODEs (4.16) (or equivalently (4.20)) which we
denote by E(ε), and make the following generic assumption.

Assumption 5.1. Let λ(ε) 6= 0 be a point of locally minimum modulus of ΛS
ε (S)

(with ε fixed), that is an eigenvalue with minimum modulus of the matrix S + εE(ε)
(where E(ε) denotes the corresponding (local) extremizer). Then λ(ε) is simple.

Moreover we assume that E(ε) and λ(ε) are smooth with respect to ε (at least in
a neighbourhood of ε⋆). ⋄

Assumption 5.1 states that the eigenvalue λ(ε) of minimum modulus of S+εE(ε)
is a smooth function of ε in a left neighbourhood of ε⋆.

5.1. A key variational formula. The following result provides us an explicit
and easily computable expression for the derivative of |λ(ε)| (and thus also µε(S))
w.r.t. ε.

Theorem 5.1. Assume the following:

1. ε ∈ (0, ε⋆) such that λ(ε) 6= 0,
2. λ(ε) be a smooth branch of points of (locally) minimum modulus of ΛS

ε (S),
3. Assumption 5.1 holds, i.e. λ(ε) and E(ε) are smooth w.r.t. ε, and let y(ε)

and x(ε) be corresponding left and right eigenvectors of S + εE(ε) (where
E(ε) is a local extremizer), scaled according to (4.1), with ‖E(ε)‖F = 1 for
all ε ∈ (0, ε⋆).

Then the following holds, with s(ε) = − ‖PS (y(ε)x(ε)∗) ‖F ,

d|λ(ε)|
dε

=
s(ε)

|y(ε)∗x(ε)| < 0, for all ε.

Proof. By Theorem 4.8 we have

PS (y(ε)x(ε)∗) = s(ε)E(ε), with s(ε) = −‖PS (y(ε)x(ε)∗) ‖F and ‖E(ε)‖ = 1,

the latter implying

0 = 〈E(ε), E′(ε)〉 =
〈
Re (y(ε)x(ε)∗) , PS (E′(ε))

〉
= Re〈y(ε)x(ε)∗, E′(ε)〉
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where ′ = d/dε. The proof follows by observing that

d

dε
|λ(ε)| = 1

|y(ε)∗x(ε)| Re
〈
y(ε)x(ε)∗, E(ε) + εE′(ε)

〉

=
1

|y(ε)∗x(ε)|
〈
PS (y(ε)x(ε)∗) , E(ε)

〉
=

s(ε)

|y(ε)∗x(ε)| .

Since PS (y(ε)x(ε)∗) does not vanish by Lemma 4.3, the previous is strictly negative
and the proof is complete.

Algorithm 2: Basic algorithm for computing ε⋆

Data: tol > 0 and ε0, ε1, εu (such that |λ(ε0)| > |λ(ε1)| > tol, and
|λ(εu)| < tol).

Result: εf (approximation of ε⋆).
begin

1 Set Reject = False and k = 1.
2 while |εk − εu| ≥ tol do
3 if Reject = False. then

Store εk and λ(εk) into the memory.
4 Compute the polynomial dk(ε) (see (5.2)).
5 Compute ε̃k+1 the real root of dk(ε) closest to εk.
6 if ε̃k+1 > εu then

Set ε̃k+1 = (εu + εk)/2.

else
Set ε̃k+1 = (εu + εk)/2.

7 Compute λ(ε̃k+1) by integrating (4.20) (equivalently (4.16)) with
initial datum E(εk) (i.e., the previously computed extremizer).

8 if |λ(ε̃k+1)| < tol then
Set Reject = True.
Set εu = ε̃k+1.

else
Set Reject = False.

9 Set εk+1 = ε̃k+1.

10 Order the array {εj}k+1
j=0 in ascending order, εj+1 > εj .

11 Set k = k + 1.

12 Set εf = εk.

5.2. The outer iteration. As a consequence the function ε → |λ(ε)| is smooth
for ε < ε⋆ (where |λ(ε)| > 0); applying a Newton’s iterate yields, for εk < ε⋆:

εk+1 = εk +

(‖PS (y(εk)x(εk)
∗) ‖F

|y(εk)∗x(εk)|

)−1

|λ(εk)| (5.1)

where λ(εk) is the eigenvalue of smallest modulus of S + εkE(εk), E(εk) being the
extremizer computed by the inner method, which integrates numerically the ODE
(4.16). Likely the value εk+1 will be closer to ε⋆ than εk but might lie on the right
of ε⋆, where the function |λ(ε)| is identically zero; hence it needs a correction to
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provide a lower bound to ε⋆. This would certainly occur when the function λ(ε) is
concave for ε < ε⋆.

An alternative, which allows to obtain a sequence of lower bounds which is more
rapidly convergent to ε⋆, is that of interpolating pairs (εk−1, |λ(εk−1)|), (εk, |λ(εk)|) for
values εk−1, εk < ε⋆, implying |λ(εk−1)|, |λ(εk)| > tol, tol being a suitable tolerance.
Setting dk(ε) the cubic Hermite polynomial, such that

dk(εℓ) = |λ(εℓ)|, ℓ = k − 1, k

d′k(εℓ) = − ‖PS (y(εℓ)x(εℓ)
∗) ‖F

|y(εℓ)∗x(εℓ)|
, ℓ = k − 1, k

(5.2)

we define ε̂k+1 as the solution of dk(ε) = 0.
Then, if |λ (ε̂k+1) | > tol we set εk+1 = ε̂k+1, otherwise a bisection technique

defines εk+1. This prevents from quadratic convergence when several bisection steps
are taken by the method.

An algorithm for the approximation of ε⋆. Algorithm 2 is devised to ap-
proximate ε⋆.

It makes use of an upper bound εu such that λ(εu) = 0 and construct a sequence
{εk} in the region where |λ(εk)| is strictly monotonically decreasing, by successively
finding zeros of the polynomials dk(ε), k = 1, 2, . . .

A natural upper bound is εu =
√
n‖a − b‖F (where a and b are the vectors of

coefficients of p and q); a natural lower bound ε0 = σmin (Syl(a, b)), where σmin(·)
indicates the smallest singular value, i.e. the unconstrained distance to singularity of
the Sylvester matrix Syl(a, b).

6. Possible extensions. We consider now a few natural extensions of the pro-
posed methodology to deal with a wider class of problems, and related applications,
the distance to uncontrollability of a controllable single-input single-output system.

6.1. An extension to constrained systems. Assume that only certain sub-
sets of the coefficients {ai}, {bj} of the polynomials p and q are allowed to be perturbed
in order to find a close-by uncontrollable pair. Then the method has the same struc-
ture and only the projection changes. In fact, if {ai} does not vary for i 6∈ I and
the same holds for {bj} for j 6∈ J , where I ⊆ {0, 1, . . . , n} and J ⊆ {0, 1, . . . ,m}
are the sets of indeces corresponding to the coefficients of the polynomials which are
allowed to be perturbed, we have simply to consider in (4.16), for B ∈ C

2n×2n, the
new projection PS(I,J )(B) given by (4.3) with

αn−k =





1

n

n∑

l=1

Re (Bl,l+k) k ∈ I

0 k 6∈ I
and

βm−k =





1

n

n∑

l=1

Re (Bn+l,n−m+l+k) k ∈ J

0 k 6∈ J .

Note that the proof that the PS(I,J ) (yx
∗) 6= 0 is not obtained as a direct extension

of Lemma 4.3.
The system of ODEs we have to solve is still (4.20) but now the number of ordinary

differential equations is |I|+ |J |.
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An illustrative example. We consider the following example of two monic
quadratic polynomials considered in [26],

p(z) = z2 − 6z + 5, q(z) = z2 − 6.3z + 5.72

(i) Applying Algorithm 2, without constraining the perturbed polynomials to be
monic we obtain

p̂(z) = 0.985005935828721 z2 − 6.002940644075092 z + 4.999423279273879

q̂(z) = 1.014952404182629 z2 − 6.297067526304693 z + 5.720575118346765,

such that dCD(p, q) = ε⋆/
√
2 ≈ 0.021594147 and z ≈ 5.098904194 is the

common root. These results well agree with those in [26] and also in [40].
(ii) Applying Algorithm 2, constraining only the first polynomial to be monic, we

obtain

p̂(z) = z2 − 6.005752814118045 z + 4.998851154980102

q̂(z) = 1.028807031186749 z2 − 6.294247195609338 z + 5.721148843077327,

such that dCD(p, q) = ε⋆/
√
2 ≈ 0.029977897 and z ≈ 5.00747501054342 is

the common root.
(iii) Applying Algorithm 2, constraining both polynomials to be monic (i.e. I =

{0, 1},J = {0, 1}), we obtain

p̂(z) = z2 − 6.075037558842548 z + 4.985277938401874

q̂(z) = z2 − 6.222182433577167 z + 5.735267487695024,

such that dCD(p, q) = ε⋆/
√
2 ≈ 0.11016371 and z ≈ 5.0969464661670 is the

common root. These results well agree with those in [40].
(iv) Applying Algorithm 2, constraining the first polynomial to be unperturbed

(i.e. I = ∅,J = {0, 1, 2}), we obtain

q̂(z) = 1.029953916904784 z2 − 6.294009215915526 z + 5.721198156957997,

such that dCD(p, q) = ε⋆/
√
2 ≈ 0.030570610 and z = 5 is the common root.

6.2. The case of complex polynomials. If the polynomials p and q have
complex coefficients, a similar gradient system to (4.16) can be derived for the smallest
eigenvalue of the Sylvester matrix. The only difference here is that the projection PS

has to be replaced by a projection onto the set of complex valued Sylvester matrices
(a result analogous to Lemma 4.2 holds where the coefficients {αn−k} and {βm−k}
are given by the same expressions as in Lemma 4.2 but for the real parts). In this
case we have generically that the distance to singularity of the matrix S = Syl(a, b)
is attained by a matrix E(ε⋆) which is the projection of a rank-1 matrix yx∗ and the
corresponding matrix S + ε⋆E(ε⋆) has co-rank equal to 1. The same replacement of
PS has to be considered in Theorem 5.1.

7. Illustrative examples. In this section, we illustrate the performance of the
method proposed, although it has not yet been optimized in our implementation, on
synthetic examples and compare it with alternative methods:

• the uvGCD function of the Numerical Algebraic Computing Toolbox (NAClab)
for Matlab, developed by T.-Y. Li and Z. Zeng [47], and available from
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http://homepages.neiu.edu/~naclab/

• the methods of [46], based on the structured low-rank approximation (SLRA)
toolbox, developed by K. Usevich and I. Markovsky [34], and available from

https://arxiv.org/abs/1304.6962v1

http://slra.github.io/

The uvGCD method does not allow us to include constraint on the coefficients of p
and q (e.g., p monic or q monic). Similarly, the SLRA approach has limitations
imposed by its solution method [45, 13]. On the contrary, the ODE method allows to
include arbitrary constraints on the coefficients. In the two considered unconstrained
examples, all methods give the same results, but the ODE method is slower. An
optimization of the implementation and the investigation of different gradient-based
optimization techniques is a plan of the authors.

In all examples we made fine sampling of the parameter space (we randomly
generated 106 matrices E with Sylvester structure and unit norm and computed the
spectra of the corresponding matrices S+ εE) in order to accurately approximate the
structured ε-pseudospectrum so that we can assert that what we compute is indeed
the distance and not simply an upper-bound. Hence the figures illustrate the effective
behavior of |λ(ε)| = µε(S) as a function of ε and the first intersection to the horizontal
axis provides the value ε⋆ which approximates the distance dCD(p, q).

In the case where λ(ε) is a real eigenvalue for ε → ε⋆, we expect generically that
S + ε⋆E has a simple zero eigenvalue and hence has rank 2n − 1. This is illustrated
by the following examples.

7.1. Example (common ε-GCD of degree 1). Consider the polynomials
(1.1) of degree 5 with coefficients

a5 = 1 a4 = 0 a3 = 1 a2 = 0 a1 = 2 a0 = 1
b5 = −2 b4 = 1 b3 = 1 b2 = −1 b1 = 0 b0 = 1.

Note that the p polynomial is monic. This property will be preserved in the approxi-
mation p̂.

The computed matrix S+ε⋆E(ε⋆) has rank-2n−1 due to a simple zero eigenvalue.
The perturbed polynomials’ p̂ = p + δp, q̂ = q + δq coefficients are shown (with five
digit accuracy) in Table 7.1.

Table 7.1

Coefficients of the perturbed polynomials p̂ = p+ δp, q̂ = q + δq in the example of 7.1.

â5 = 1 â4 = 0.0144 â3 = 0.9729 â2 = 0.0510 â1 = 1.9039 â0 = 1.1811

b̂5 = −1.9778 b̂4 = 0.9583 b̂3 = 1.0787 b̂2 = −1.1483 b̂1 = 0.2795 b̂0 = 0.4732

The common zero of p̂, q̂ is

z1 = −0.530278660.

The value ε⋆ and the estimated distance to common divisibility are

ε⋆ = 1.468981057767730

dCD

(
p, q
)
= 0.656948300565638

The function ε 7→ |λ(ε)| is shown in Figure 7.1.
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Fig. 7.1. The function ε → |λ(ε)| for Example 7.1

Using two different tolerances we computed two pairs of perturbed polynomi-
als, the first pair with a common real zero z′1 = −0.579049166 and with a dis-
tance 0.721916532883628, the second with common complex conjugate roots z

′′

1,2 =
0.649831247 ± 0.809734098i and with a distance 1.181337128476824. Both pairs of
polynomials, although being computed in an unconstrained setting, have a larger dis-
tance from (p, q) than the one computed by the present method. Indeed the non local
optimality of the computed pairs can be checked by seeing that the corresponding
Sylvester matrix S + εE is such that E is not negatively proportional to PS (yx∗)
(see Remark 4.2). However, they both provide close (although not optimal) pairs
with a common ε-GCD in a fast way, which is certainly a commendable quality of the
method in [47].

The results obtained by the three methods—ODE method, SLRA method, and
the uvGCD function—are summarized in Table 7.2.

Table 7.2

The numerical results for Example 7.1 show that all compared methods find the same (locally)
optimal solution solution, however, the computation time differs by orders of magnitude. Most
efficient is uvGCD, while least efficient is the ODE method. This is partly due to the unoptimized
software implementation of the latter.

SLRA uvGCD ODE
distance dCD(p, q) 0.6569 0.65702 0.6569
computation time, sec. 0.32856 0.07814 2.1755

7.2. Example (common ε-GCD of degree 2). We consider the two polyno-
mials of degree 3 with coefficients

a3 = 1 a2 = 2 a1 = 2 a0 = 2
b3 = 2 b2 = 0 b1 = 1 b0 = −2

First we consider the fully unconstrained case. The perturbed polynomials p̂ = p+δp,
q̂ = q + δq have coefficients

â3 = 0.7389 â2 = 2.1037 â1 = 2.1263 â0 = 1.8434

b̂3 = 1.9539 b̂2 = −0.05119 b̂1 = 1.0663 b̂0 = −2.0063.

22



They are not anymore co-prime; in fact they both have the common zeros equal to

z1,2 = −0.4057918541± 1.0300446514i.

The value ε⋆ and the estimated distance to common divisibility are

ε⋆ = 0.621061904239760, dCD

(
p, q
)
= 0.358570257596247.

We also applied the code uvGCD and computed in one run the pair of polynomials

â′3 = 0.8949 â′2 = 2.1412 â′1 = 2.2491 â′0 = 1.7182

b̂′3 = 1.9385 b̂′2 = −0.03200 b̂′1 = 1.0339 b̂′0 = −1.9863.

with common complex conjugate roots z
′′

1,2 = −0.4108991889 ± 1.0263677806i and
with an estimated distance 0.422550599355414, which is slightly larger than the one
computed by the method presented in this paper. The results obtained by the three
methods—ODE method, SLRA method, and the uvGCD function—are summarized in
Table 7.3.

Table 7.3

The numerical results for Example 7.2 (unconstrained case) are consistent with the ones re-
ported in Table 7.2.

SLRA uvGCD ODE
distance dCD(p, q) 0.35684 0.35684 0.35689
computation time, sec. 0.13727 0.05428 26.642

Next, we consider the case where p is constrained to be monic. The perturbed
polynomials p̂ = p+ δp, q̂ = q + δq have coefficients

â3 = 1 â2 = 2.1680 â1 = 2.2569 â0 = 1.6991

b̂3 = 1.9637 b̂2 = −0.1619 b̂1 = 1.1315 b̂0 = −1.9469.

They are not anymore co-prime; in fact they both have the common zeros equal to

z1,2 = −0.373421293± 1.0276668040i.

The value ε⋆ and the estimated distance to common divisibility are

ε⋆ = 0.835047606282059, dCD

(
p, q
)
= 0.482114960273099.

Figure 7.2 illustrates that the structured ε-pseudospectrum has the origin on its
boundary, which implies that the computed value ε⋆ truly determines the distance to
common divisibility dCD(p, q).

7.3. Example (constrained common ε-GCD). Consider again Example 7.1
but now assume that the only coefficients that can be perturbed are a1, a3, a5 and b1, b3
and b5; this corresponds to setting I = {1, 3, 5} and J = {1, 3, 5} in the projection
PS(I,J ) considered in Section 6.1.

The computed matrix S + ε⋆E(ε⋆) turns out to have rank-2n− 1 due to a simple
zero eigenvalue. The coefficients of the perturbed polynomials p̂ = p+ δp, q̂ = q + δq
are given in Table 7.4.

Their common zero is

z = −0.5899110938.
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Fig. 7.2. Approximated structured ε-pseudospectrum for ε = ε⋆ for Example 7.2. The origin
lies on the boundary of ΛS

ε
(S)

Table 7.4

Coefficients of the perturbed polynomials p̂ = p+ δp, q̂ = q + δq in the example of 7.3.

â5 = 0.9175 â4 = 0 â3 = 0.7629 â2 = 0 â1 = 1.3186 â0 = 1

b̂5 = −1.8715 b̂4 = 1 b̂3 = 1.3691 b̂2 = −1 b̂1 = 1.0607 b̂0 = 1

The value ε⋆ and the estimated (constrained) distance to common divisibility are

ε⋆ = 3.004405111510952

dCD

(
p, q
)
= 1.343610812257265.

7.4. Example of small highest degree coefficients. In this subsection, we
illustrate the behavior of the method on problems with “very small” highest degree
coefficient an and m < n. In the extreme case of an = 0, p and q have a common zero
at infinity and are therefore not co-prime. In this case the method proposed correctly
yields a zero distance to common divisibility. Consider, next, the polynomials (1.1)
of degrees n = 3 and m = 2 with coefficients

a3 ∈ [10−16, 1] a2 = 2 a1 = 5 a0 = 3
b2 = 1 b1 = 3.1 b0 = 2.2

Figure 7.3 shows the distance to common divisibility as a3 → 0. The method correctly
determines that the distance to common divisibility goes to zero.

8. Discussion and outlook. We considered the distance to common divisibility
of a pair of polynomials and discussed a new local optimization method for computing
dCD(p, q) based on integration of a system of ordinary differential equations, which
describes the gradient associated to the cost functional. The overall methodology
consists of a two-level iteration, an inner level where we determine extremizers for the
associated functional over the set of perturbations of a given norm ǫ by integrating a
system of differential equations up to a stationary point, and an outer level where we
optimize with respect to epsilon. The method allows specification of exactly known
coefficients of the polynomials p and q. The presented numerical examples show the
robustness of the method to the initial approximation. The method was applied to the
problem of computing the distance of a single-input single-output linear time-invariant
system to uncontrollability.

Future work will focus of generalization of the method to multiple polynomials,
computing multiple common zeros (approximate common divisor of specified degree),
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Fig. 7.3. The distance to common divisibility for Example 7.4.

multivariable polynomials, and application of the method in systems and control
theory for computing the distance of a given system to the set of uncontrollable
systems.
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