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Abstract

The result of J.C. Willems et al. “A note on persistency of excitation”, System & Control Letters, 2005 gives identifiability conditions for
system identification as well as data-driven representations for data-driven control. The existing proofs however are proofs by contradiction
and do not give insight into the assumptions of controllability and persistency of excitation of the input. Moreover, the existing proofs do
not clarify how conservative the assumptions are. We provide an alternative constructive proof for the single-input case. It is shown that
persistency of excitation of order more than the time horizon is needed in nongeneric cases, corresponding to special initial conditions.
The special initial conditions are explicitly characterized in terms of the solution of a Sylvester equation. Another contribution of the paper
is a representation of a scalar persistently exciting input of a finite order as an output of an autonomous linear time-invariant system.
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1 Introduction

A class of subspace-type system identification and data-
driven control methods for discrete-time linear time-
invariant systems originate from a result that became known
as the fundamental lemma [13]. The fundamental lemma
gives identifiability conditions, i.e., conditions under which
the data-generating system can be recovered back from the
data. At the same time, the fundamental lemma gives a
nonparametric representation of the finite-horizon behavior
of the data-generating system. This nonparametric repre-
sentation is completely specified by a single trajectory of
the system. For an overview of the methods based on the
fundamental lemma, we refer the reader to [5].

The data-driven nonparametric representation of the system
is given by a Hankel matrix constructed from the data. Un-
der the conditions of the fundamental lemma, the image of
the Hankel matrix equals the set of all finite-length trajec-
tories of the data generating system. The conditions of the
fundamental lemma restrict the input signal and the data-
generating system, so that an observed input/output trajec-
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tory of the system completely reveals the system’s dynam-
ics. The key condition of the fundamental lemma is that the
input signal be persistently exciting of order equal to the
length the finite horizon plus the order of the system.

Although the fundamental lemma is widely used and has
numerous generalizations, see, e.g., [8,3,9,10], there are im-
portant open problems related to it. The original proof [13]
as well as the subsequent proof of [9] are by contradiction
and do not give insight into the need and the meaning of the
persistency of excitation condition. Indeed, the conditions of
the fundamental lemma are sufficient only and it is unknown
how conservative they are. Our main contributions are:

(1) an alternative constructive proof of the fundamental
lemma in the single-input case that shows the noncon-
servatism of the fundamental lemma,

(2) explicit characterization of the cases, in which persis-
tency of excitation of order more than the horizon’s
length is needed, and

(3) a representation of a scalar persistently exciting input
of a specified order as an output of an autonomous
linear time-invariant system.

The third contribution can be used for design of informative
experiments with additional constraints on the input.
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2 Background and problem statement

We use the behavioral language, where a dynamical sys-
tem B is a set of trajectories [12,5]. In this paper, we con-
sider deterministic discrete-time linear time-invariant dy-
namical systems. Let q be the number of variables. A finite
T -sample long trajectory of the system B is a time series

wd =
(
wd(1), . . . ,wd(T )

)
∈ (Rq)T .

The problem studied in [13] is to find for a given finite
trajectory wd (the subscript “d” stands for “data”) of a linear
time-invariant system B and a given natural number L, 1 ≤
L ≤ T , conditions under which the ‘windows’ of length L

wd(1)
...

wd(L)

 ,


wd(2)

...

wd(L+1)

 , . . . ,


wd(T −L+1)

...

wd(T )

 , (WIN)

constructed from the trajectory wd span the space B|L of all
possible windows of length L which the system can produce.
A compact way of writing that (WIN) spans B|L is

B|L = image


wd(1) wd(2) · · · wd(T −L+1)

...
...

...

wd(L) wd(L+1) · · · wd(T )


︸ ︷︷ ︸

HL(wd)

,

(DD-REPR)
where HL(wd) is the Hankel matrix, constructed from wd
with L block-rows. We refer to (DD-REPR) as the data-
driven representation of the restricted behavior B|L. The
problem addressed in [13] can then be rephrased as:

Under what conditions does the data-driven representation
(DD-REPR) hold true?

The complexity of a linear time-invariant system B is char-
acterized by three integers that are properties of the system:
the number of inputs m(B), the lag l(B), and the order of
n(B) [4, Section III]. In a minimal state-space representa-
tion of the system, n(B) is the state dimension and l(B)
is the observability index. As shown in [4], for L ≥ l(B), a
necessary and sufficient condition for (DD-REPR) is

rank HL(wd) = m(B)L+n(B). (GPE)

We refer to (GPE) as a generalized persistency of excitation
condition. This condition can be verified from the data wd
and the prior knowledge of the number of inputs and the
order of the data-generating system.

The solution given in [13] assumes a given input/output
partitioning w = [u

y ] of the variables and provides sufficient
conditions only: (DD-REPR) holds true assuming that

A1: B is controllable and
A2: PE(ud) = L+n(B),

where PE(ud) is the order of persistency of excitation of
ud ∈ (Rm)T , i.e., the maximal L, for which HL(ud) is full
row-rank. Assumption A1 is not verifiable from the data and
Assumption A2 requires prior knowledge of the order of
the data-generating system. The need to assume input/output
partitioning and controllability as well as the sufficiency but
not necessity of A1 and A2 make the result of [13] more
restrictive than (GPE). Obtaining conditions for (DD-REPR)
in terms of the input ud is not motivated in [13]. A possible
motivation for this choice is input design: A2 can be used
for choosing the input so that the data wd is guaranteed to
ensure (DD-REPR) for any initial condition.

In the behavioral setting, initial conditions of a trajectory are
specified by a prefix trajectory wd,ini ∈ (Rq)Tini . Let wd,ini ∧
wd be the concatenation of the trajectories wd,ini and wd, ie,

wd,ini ∧wd :=
(
wd,ini(1), . . . ,wd,ini(Tini),

wd(1), . . . ,wd(T )
)
∈ (Rq)Tini+T .

In wd,ini ∧wd, the prefix wd,ini specifies the initial condition
for wd provided Tini ≥ l(B) [6, Lemma 1].

We refine the problem statement of [13] as follows: for given
L ≥ l(B), find nonconservative conditions on the input ud
and the data-generating system B, under which

for any initial condition wd,ini ∈ B|Tini , a trajectory
wd,ini ∧wd ∈ B|Tini satisfies (GPE). (GOAL)

We verify (GOAL) by proving that there is no initial con-
dition for which (GPE) is not satisfied. Thus, our proof
searches for the wini that minimizes the rank of HL(wd).

Assumption A1 and the weaker version of Assumption A2:

A2′: PE(ud) = L

are necessary for (GOAL). 1 Moreover, under conditions A1
and A2′, (GOAL) holds generically, i.e., for any controllable
system B and any input ud satisfying A2′, (GPE) holds true
for almost all wd,ini. Alternatively, (GOAL) holds almost

1 To see that Assumption A1 is necessary, assume to the contrary
that B is uncontrollable. Then, B = Bctr ⊕Baut, where Bctr is
controllable and Baut is autonomous [11, Proposition V.8]. There-
fore, wd ∈ B can be decomposed into wd = wd,ctr +wd,aut, with
wd,ctr ∈ Bctr and wd,aut ∈ Baut. Since wd,aut is completely deter-
mined by the initial condition, there is wd,ini, such that wd,aut = 0
and therefore (GPE) does not hold. To see that Assumption A2′
is necessary, denote with Πu the projection of w =

[u
y
]

on the
u-component. Since u is an input, ΠuB|L = Rm(B)L. Therefore,
for (GPE) to hold true, image HL(ud) =Rm(B)L or, equivalently,
HL(ud) must be full row-rank.
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certainly for a random controllable system B and a random
input ud satisfying A2′. The question occurs:

What are the cases of A1 and A2′ in which (GOAL) fails?

The extra persistency of excitation of order n(B) in As-
sumption A2 that is needed beyond the obvious persistency
of excitation of order L is the crux of the result in [13].

“The interesting, and somewhat surprising, part of Theo-
rem 1 (the fundamental lemma) is that persistency of ex-
citation of order L+n(B) is needed in order to be able
to deduce that the observed sequences (WIN) of length L
have the “correct” annihilators and the “correct” span. In
other words, we have to assume a “deeper” persistency of
excitation on ud than the width of the windows of (ud,yd)
which are considered.” [13, Section 4]

The original publication [13] as well as subsequent publica-
tions using and generalizing the result (see, e.g., [8,3,9,10])
do not given explanation (or speculation) that shed light on
this crucial fact. In addition, presently it is not known how
conservative assumptions A1 and A2 are for (GOAL). We
address these questions in the following section.

Summary of notation:

• w|L :=
(
w(1), . . . ,w(L)

)
— restriction of w to [1,L]

• B|L := {w|L | w ∈ B } — restriction of B to [1,L]
• m(B) / l(B) / n(B) — number of inputs/lag/order of B
• HL, j(w) — Hankel matrix with L block rows and j

columns (by default j = T −L+1, i.e., all data is used)
• PE(u) — order of persistency of excitation of u
• Bss(A,B,C,D) / Bss(A,C) — minimal state-space repre-

sentation of input-output / autonomous system
• CL(A,B) / OL(A,C) — extended controllability/observ-

ability matrix with L block-columns/rows
• expλ — exponential function, expλ (t) := eλ t

3 Main results

As in [13], we consider a controllable linear time-invariant
system B with an input/output partitioning w = [u

y ]. In Sec-
tion 3.2 we present an alternative constructive proof of the
result of [13] for the single-input case m(B) = 1. The proof
is constructive because the persistency of excitation assump-
tion is derived rather than postulated. The new proof shows
that in the single-input case assumptions A1 and A2 are nec-
essary and sufficient for (GOAL). The proof is based on the
fact, proven in Section 3.1, that persistency of excitation of
ud ∈ RT is equivalent to existence of an autonomous lin-
ear time-invariant model Bu of order nu = PE(ud). Then, a
state-space representation of the system combining the input
model Bu and the system B allows us to characterize the
nongeneric cases of (GOAL), corresponding to A1 and A2′.

3.1 Model of input with bounded persistency of excitation

Lemma 1 The following are equivalent:

(1) ud ∈ (R)T is persistently exciting of order PE(ud) = nu,
(2) ud is a response of an autonomous system Bu =

Bss(Au,Cu) of order nu with T ≥ 2nu−1 samples, i.e.,
ud ∈ Bu|T , and initial condition xu,ini = xu(1), such
that

(
Au,xu,ini

)
is controllable.

PROOF. The condition ud ∈ Bss(Au,Cu) implies that,

HL(ud)=OL(Au,Cu)CT−L+1
(
Au,xu,ini

)
, for L ≤ T (FAC)

and, vice versa, the factorization (FAC) implies that ud ∈
Bss(Au,Cu)|T . The matrix OL(Au,Cu) is full row rank for
all L = 1, . . . ,nu and CT−L+1

(
Au,xu,ini

)
is full row rank for

all L = 1, . . . ,nu due to the minimality of the representation,
the controllability of the pair

(
Au,xu,ini

)
, and the assump-

tion T ≥ 2nu − 1. It follows that HL(ud) is full row rank
for all L = 1, . . . ,nu. Finally, rank Hnu+1(ud) = nu, so that
Hnu+1(ud) is rank deficient. 2

Using Lemma 1, a system B = Bss(A,B,C,D), whose in-
put u is persistently exciting of order nu, can be augmented
with the “internal model” Bu =Bss(Au,Cu) of the input, re-
sulting in an extended autonomous system Bext for w = [u

y ].
The augmented system Bext, including the input model Bu
and B is given by

Bext = Bss(Aext,Cext), where

Aext =

[
Au 0

BCu A

]
and Cext =

[
Cu 0

DCu C

]
.

The extended state is xext = [ xu
x ], where xu is the state of

Bss(Au,Cu) and x is the state of Bss(A,B,C,D). As a re-
sult of using the input model Bu, we transform the original
problem about the input/output system B into an equiva-
lent problem about the autonomous system Bext. This is the
main motivation of using the input model in the first place.

The following proposition derives a state transformation that
block-diagonalizes Aext. The block-diagonalization leads to
a representation of Bext with decoupled states of the input
model Bu and the system B, which simplifies the analysis.

Proposition 1 Assume that A and Au have no common
eigenvalues and let V ∈ Rn×nu be the solution to the
Sylvester equation

AV −VAu = BCu. (SYLV)
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Then, Bext = Bss (A′
ext,C

′
ext), where

A′
ext =

[
Au 0

0 A

]
and C′

ext =

[
Cu 0

C′ C

]
, with C′ :=DCu−CV.

The state of Bss (A′
ext,C

′
ext) is x′ext =

[ xu
V xu+x

]
, where xu is the

state of Bss(Au,Cu) and x is the state of Bss(A,B,C,D).

PROOF. Consider a similarity transformation
[

Inu 0
V In

]
,

where V ∈ Rn×nu . We have,[
Inu 0

V In

][
Au 0

BCu A

]
=

[
Au 0

0 A

][
Inu 0

V In

]
,

The lower-left block of the equation gives the Sylvester
equation (SYLV) for V . The existence and uniqueness of the
solution of (SYLV) follows from [2, Theorem 8.2.1.]. 2

Proposition 1 shows that the nongeneric cases of A1 and
A2′ in which (GOAL) fails correspond to a special choice
of the initial condition of B:

xini =−V xu,ini. (NONGEN)

Indeed, then wd =
[

Cu
C′

]
expAu

xu,ini, so rank HL(wd) ≤ nu.
In a trajectory wd corresponding to (NONGEN) the tran-
sient is removed, i.e., yd, has no terms expλi

, where λi is an
eigenvalue of A. This fact leads us to a constructive proof.

3.2 Constructive proof

In view of the necessary condition A2′, let PE(ud) = L+ k,
where k will be determined as the minimum natural number,
for which (GOAL) holds. By Proposition 1, (GOAL) holds if
and only if (GPE) holds for the initial condition (NONGEN).
Therefore, we only need to guarantee the rank condition
(GPE) for (NONGEN). In what follows, we adopt a proof
strategy based on a sum-of-polynomials-times-exponentials
representation of wd. In order to simplify the derivation, with
some loss of generality, we assume that B and Bu have
distinct eigenvalues. Then, the proof is effectively using the
modal forms of B(A,B,C,D) and B(Au,Cu).

Lemma 2 Assume that the eigenvalues λu,1, . . . ,λu,nu of Bu
and the eigenvalues λ1, . . . ,λn of B are simple and distinct,
i.e., λu,i ̸= λ j, for all i = 1, . . . ,nu and j = 1, . . . ,n. Let ud ∈
Bu|T with PE(ud) = nu = L+k and yd be the corresponding
output of B under the initial conditions (NONGEN). Then,

rank HL(wd) =

{
L+ k, for k = 1, . . . ,n
L+n, for k = n+1, . . .

(RANK)

PROOF. As a corollary of Lemma 1, ud is a sum-of-
polynomials-times-exponentials signal, see [7, Thm. 3.2.5].
Since, the eigenvalues of Bu are simple,

ud =
nu

∑
i=1

ai expλu,i
. (SE)

Since the eigenvalues of Bu are distinct, the rank of the Han-
kel matrix rank Hnu(ud) is equal to the number of nonzero
coefficients ai. On the other hand, rank Hnu(ud) = nu be-
cause PE(ud) = nu. Therefore, ai ̸= 0 for all i = 1, . . . ,nu.

The output yd corresponding to the input (SE) and general
initial conditions is

yd =
nu

∑
i=1

bi expλu,i
+

n

∑
j=1

c j expλ j
,

where bi = H(eiλu,i)ai, for i = 1, . . . ,nu, i :=
√
−1, H(z) :=

C(Iz−A)−1B+D, and the c j’s are determined by the initial
conditions and the input, see [1, Section 12.12]. With initial
conditions (NONGEN), c j = 0 for all j = 1, . . . ,n.

Define the Vandermonde matrix

VT (λu) :=


λ 1

u,1 · · · λ 1
u,nu

...
...

λ T
u,1 · · · λ T

u,nu


and let H(λu) := diag

(
H(eiλu,1), . . . ,H(eiλu,nu )

)
. With this

notation we rewrite ud and yd as ud = VT (λu)a and yd =
VT (λu)H(λu)a. For the trajectory wd = [ud

yd ], we have

wd = ΠT

[
VT (λu)

VT (λu)H(λu)

]
a,

where ΠT ∈ R2T×2T is the permutation matrix that makes
the identity wd = ΠT [

ud
yd ]. Then, we have

HL(wd) = ΠL

[
VL(λu)

VL(λu)H(λu)

]
︸ ︷︷ ︸

WL

[
a Λua Λ2

ua · · · ΛT−L
u a

]
︸ ︷︷ ︸

CT−L+1(Λu,a)

,

where Λu := diag(λu,1, . . . ,λu,nu). The right-hand-side factor
matrix CT−L+1(Λu,a) is full row rank because λu,i ̸= λu, j, for
all i ̸= j, and ai ̸= 0, for all i. The columns of the left-hand-
side factor matrix WL, viewed as L-sample signals are L-
sample long trajectories of B, i.e., they are elements of B|L.
Therefore, image WL ⊆ B|L and, by [5, equation (1)],

dim WL ≤ dim B|L = L+n, for L ≥ n(B).
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The columns of WL are linearly independence for k ≤ n
because λu,i ̸= λu, j, for all i ̸= j. Then, we have

rank WL =

{
L+ k, for k = 1, . . . ,n
L+n, for k = n+1, . . .

2

Lemma 2 shows that for (GOAL) to hold true for all initial
conditions, we need to take k = n. This proves that assump-
tions A1 and A2 are necessary and sufficient for (GOAL).

Theorem 3 For m(B) = 1 and L ≥ l(B), assumptions A1
and A2 are necessary and sufficient for (GOAL).

Comments

System zeros In the sum-of-exponentials representation of
the output yd up to n coefficients bi may be equal to zero
due to λu,i’s matching the zeros of H(z). Therefore, yd
may be a sum of as few as L+ k − n exponents. This,
however, does not affect (RANK).

Robustifying the persistency of excitation conditions
For PE(ud) to hold true 1) ai ̸= 0, for all i and 2)
λu,i ̸= λu, j, for all i ̸= j. A way of robustifying these con-
ditions is 1) ai > ε , for some user defined tolerance ε ,
and 2) choose the λu,i’s "well spread".

Input design using the input model Bu Using the input
model representation of a persistently exciting signal
(see, Figure ??), the freedom of choosing an input that
satisfies the conditions of the fundamental lemma is
equivalent to choosing the input model Bu and the initial
conditions xu,ini. The input model representation of the
class of sufficiently exciting inputs can be used then for
input design under user defined specifications, such as
frequency band, maximum/minimum value bounds, etc.

Simple eigenvalues of Bu and B The assumptions of
simple and distinct eigenvalues are generic. The proof
of Lemma 2 can be generalized to the case of multiple
eigenvalues, however, the distinctness of the eigenvalues
of Au and A is still needed for Proposition 1.

Multivariable systems We conjecture that in the multi-
input case, the persistency of excitation assumption A2
of the fundamental lemma is conservative and can be
improved. Let ℓℓℓctrb(B) be controllability index of B. We
conjecture that assumption A1 and
A2′′: PE(ud) = L+ ℓℓℓctrb(B)
are necessary and sufficient conditions for (GOAL).

4 Simulation example

The purpose of the simulation examples shown in this sec-
tion is to verify empirically the result of Theorem 3. The
simulation parameters are the order n of the system B and
the horizon L of the data-driven representation (DD-REPR).

n = 4; L = n + 1;

The number of samples T of the trajectory wd is chosen to
be sufficiently large, so that Assumption A2 can hold.

T = 3 * (L + n);

With these parameters, B is selected as a random linear
time-invariant system.

B = drss(n);

A random system is almost certainly controllable, so that it
satisfies Assumption A1.

In the experiments, we choose the following orders of per-
sistency of excitation nu of the input ud:

E1: nu = L, which corresponds to Assumption A2′,
E2: nu = L + n - 1, which is the highest order not satisfying

Assumption A2,
E3: nu = L + n, which corresponds to Assumption A2.

According to Lemma 1, in all experiments the input ud is
generated as an output of an autonomous system Bu with or-
der nu, which is equal to PE(ud). The system Bu is selected
as random marginal stable (drss_ms). Marginal stability is
needed in order to avoid divergence and convergence to 0
of ud as T grows.

Bu = drss_ms(nu, 1, 0);

With the systems B and Bu selected, we are ready to simulate
data wd under different initial conditions and test (GPE). We
do the simulation first with random initial condition:

x0u = rand(nu, 1); u = initial(Bu, x0u, T-1);
x0 = rand(n, 1); y = lsim(B, u, [], x0);

and then with the special initial condition (NONGEN),
which leads to a nongeneric case for (GOAL):

v = sylvester(B.a, -Bu.a, B.b * Bu.c);
y_ = lsim(B, u, [], - v * x0u);

We verify that PE(u) = nu

Hu = blkhank(u, nu + 1);
check = (rank(Hu) == nu) % -> TRUE

For the simulated trajectories [u,y] and [u,y_], we check
if (GPE) holds.

H = blkhank([u y ], L);
check = (rank(H ) == L + n) % -> TRUE
H_ = blkhank([u y_], L);
check = (rank(H_) == L + n) % -> ???

The results for the experiments E1–3 are shown in Table 1.
In all experiments PE(u) = nu. The cases when (GPE) holds
confirm empirically Theorem 3, i.e., the fact that Assumption
A2 is necessary and sufficient for (GOAL).
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Table 1
The results of checking (GPE) with random initial condition
(generic case) and the special initial condition (NONGEN) (non-
generic case) confirm Theorem 3, i.e., Assumption A2 is necessary
and sufficient for (GOAL).

experiment E1 E2 E2

assumption A2′ — A2

PE(u) L L+n−1 L+n

generic xini true true true

nongeneric xini false false true
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