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Abstract

The existing nonparametric frequency response estimation methods suffer from leakage and have limited frequency resolution. Due to
the leakage and interpolation errors these methods do not yield the correct result in case of exact data of a linear time-invariant system.
Our main contribution is a nonparameteric direct data-driven frequency response estimation method that in case of exact data satisfying
standard persistency of excitation condition eliminates the leakage and has infinite frequency resolution. The method is derived in the
behavioral setting. It requires solving a system of linear equations and has no hyper-parameters. In case of noisy data, a modification of
the method with low-rank approximation result in an effective frequency response estimator.
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1 Introduction

Nonparametric frequency response estimation is a classical
system identification problem, see [3, Chapter 6]. The basic
solution, refered to as the empirical transfer-function esti-
mate is to compute the discrete Fourier transforms of the
given input/output data sequences and divide per frequency
the Fourier transform of the output by the Fourier transform
of the input. The resulting method is direct data-driven. It
is conceptually simple, computationally efficient, thanks to
the fast Fourier transform, and easy to use. Even with exact
data, however, due to leakage errors, the empirical transfer-
function estimate is not guaranteed to deliver the exact fre-
quency response. Also, since the frequencies are evaluated
on the discrete Fourier transform’s grid the method has lim-
ited frequency resolution.

From a system theoretic perspective, the leakage error is
the effect of the ignored initial conditions and the resulting
transient response [11, Section 6.3.2]. Numerous modifica-
tions of the basic empirical transfer-function method aim to
reduce the errors due to the leakage. These modifications
are based on pre-processing of the data by filtering. They
make extra assumptions (apart from the linear time-invariant
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dynamics) and involve user defined hyper-parameters. The
limited frequency resolution can be overcome by interpo-
lation. The interpolation methods being used, however, do
not take into account the linear time-invariant dynamics, in-
volve additional hyper-parameters, and introduce additional
approximation error [1]. Thus, although nonparametric fre-
quency response estimation methods have been developed
for many years, the leakage and limited frequency resolution
problems have not been resolved.

First, we address the leakage and limited frequency reso-
lution problems in case of exact (noise free) data. The ba-
sic problem, refered to as frequency response evaluation, is:
Given an exact finite input/output trajectory of a finite order
deterministic linear time-invariant system and a set of fre-
quencies, find the frequency response of the system at the
given frequencies. Then, we show how the solution can be
modified to yield a frequency response estimator in case of
inexact (noisy) data. Our main contribution is a nonparam-
eteric direct data-driven method that solves the frequency
response evaluation problem. The method has no hyper-
parameters and is provably correct under a standard persis-
tency of excitation condition on the data. In case of noisy
data in the errors-in-variables setting, we propose a mod-
ification of the method based on low-rank approximation,
which has as a hyper parameter the order of the system.

The derivation of the method is done in the behavioral set-
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ting, which views a dynamical system as a set of trajectories.
The key tool at the heart of the data-driven method proposed
in the paper is a nonparametric representation of the finite
horizon behavior of the system. The result that gives condi-
tions for validity of the data-driven representation became
known as the fundamental lemma [17]. The data-driven rep-
resentation was effectively used in [10] for solving simula-
tion and tracking control problems. The methods were orig-
inally developed for exact data but were subsequently gen-
eralized to noisy data and some classes of nonlinear time-
varying systems, see the overviews [8,9]. The necessary
background is given in Section 2. Section 3.1 presents to
solution in case of exact data and Section 3.2 presents the
modification of the method for the case of noisy data. The
method is illustrates and validates in Section 4.

2 Preliminaries and problem statement

Let (Cq)N be the set of q-variate complex-valued sig-
nals with time-axis the natural numbers N (i.e., vector
sequences). In the behavioral approach to systems the-
ory [15,12,16], a dynamical system is defined as a set of
trajectories B ⊂ (Cq)N. The important difference from
the classical approach is the distinction of the system (set
of trajectories) from its representations (algebraic/differ-
ence/differential equations).

Note 1 (Complex-valued signals and systems) In the sys-
tem identification and data-driven signal processing and
control literature using the behavioral approach, trajecto-
ries and behaviors have traditionally been real-valued. In
this paper, we extend the methods to complex-valued signals
w and correspondingly define the system B as a subset of
(Cq)N. In practice, however, the response to a real-valued in-
put and real-valued initial condition is a real-valued signal.
With some abuse of notation, we call systems with such prop-
erty real-valued. The response y = yreal + iyimag of a real-
valued system B to a complex-valued input u= ureal+ iuimag
and/or complex-valued initial condition is complex-valued,
however, wreal =

[ureal
yreal

]
and wimag =

[uimag
yimag

]
are decoupled,

i.e., two independent real-valued trajectories are formally
put together in one complex-valued trajectory. This formal-
ism is used in Section 3, where we consider complex expo-
nentials instead of sine and cosine trajectories. 2

We use the behavioral approach because of its relevance
to the data-driven methods in signal processing and con-
trol. For example, it allows us to use the short-hand no-
tation w ∈B for “the signal w is a trajectory of the sys-
tem B”. Since we consider finite signals we use the follow-
ing notation for restricting the time axis to a finite interval:
w|T :=

(
w(1), . . . ,w(T )

)
is the restriction of w to the inter-

val [1,T ] and B|T ⊂ (Rq)T is the restriction of B to the
interval [1,T ].

In this paper, we consider linear time-invariant systems, i.e.,
shift-invariant subspaces. The number of inputs m, lag `, and
order n of a linear time-invariant system B are invariant of

the representation of the system and are therefore properties
of the system B [15]. The restricted behavior B|T for T ≥ `
admits a representation

B|T = image


wd(1) wd(2) · · · wd(Td−T +1)

wd(2) wd(3) · · · wd(Td−T +2)
...

...
...

wd(T ) wd(T +1) · · · wd(Td)


︸ ︷︷ ︸

HT (wd)

,

(1)
by a trajectory wd ∈B|Td that satisfies the generalized per-
sistency of excitation condition [7]

rank HT (wd) = mT +n. (2)

The matrix HT (wd)∈RqT×(Td−T+1) the Hankel matrix with
depth T constructed from the data wd. Note that (2) is veri-
fiable from the data wd and the prior knowledge of the sys-
tem’s number of inputs and order.

Note 2 The data-driven representation (1) and the general-
ized persistency of excitation condition (2) are derived for
real-valued systems and signals. The derivation, however, is
also valid in the complex-valued case. If B is real-valued,
it is sufficient to use a real-valued trajectory wd that satis-
fies (2). Complex-valued trajectories are represented in (1)
by complex g vector. 2

Consider a linear time-invariant system B with an input/out-
put partitioning of the variables w = [u

y ]. Let B(H) be the
transfer function representation of the controllable part of B,
corresponding to the input/output partitioning w = [u

y ]. The
data-driven frequency response evaluation problem consid-
ered is defined as follows.

Problem 1 (Data-driven frequency response evaluation)
Given a finite input/output trajectory (ud,yd) of a linear
time-invariant system B and a frequency ω ∈ [0,π), find
the frequency response H(eiω) of B at the frequency ω .

Trivial generalizations of the problem are to have as data
multiple trajectories {w1

d, . . . ,w
N
d }, where wi

d ∈ (Rq)Ti (this
is achieved by using a mosaic Hankel matrix [5]) and to
aim at evaluation of the frequency response at multiple fre-
quencies Ω := {ω1, . . . ,ωK }. Nontrivial generalizations are
to consider noisy data in the errors-in-variables and output
error setups as well as nonlinear systems. We will address
this extension in Section 3.2.

3 The proposed method

Section 3.1 presents a solution of the data-driven frequency
response evaluation problem (i.e., assuming exact data wd)
that uses the data-driven representation (1) as the main tool.
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Section 3.2 presents a modification of the solution for inexact
case, i.e., noisy data and/or data from a nonlinear system,
based on preprocessing of the data matrix HL(wd) with low-
rank approximation [6].

3.1 Solution of Problem 1

We consider general multivariable linear time-invariant sys-
tems. Using the data-driven representation, first, we describe
the m complex exponential responses of the system to com-
plex exponential inputs applied separately on the m input
channels. Then, we show that the m vector-valued trajecto-
ries are compactly described as a matrix valued trajectory.

Let ei ∈Rm be the i-th unit vector (i-th column of the m×m
identity matrix Im) and expz(t) := zt be the complex expo-
nential function with z ∈ C. From the behavioral point of
view, the frequency response H(eiω) of a system B de-
scribes the quasi steady-state subbehavior of B, i.e., the set
of the periodic trajectories of B. It turns out that for lin-
ear time-invariant systems a basis for the quasi steady-state
subbehavior is given by trajectories of the form

wi =
(
ei expz, hz,i expz

)
, for i = 1, . . . ,m,

and z = eiω , ω ∈ [0,π). (3)

The input of wi is the complex exponential ei expz and the
output is a scaled version of the input hz,i expz, where the
scaling factor hz,i is the i-th column of H(z). The set of
trajectories (3) can be written as the matrix-valued trajectory

W =
(
Im expz, Hz expz

)
, where Hz = H(z)

and z = eiω , ω ∈ [0,π). (4)

Using the data-driven representation (1) for the trajectory
(4) with length T ≥ ` and denoting with z := [z1 . . . zT ]> the
T -samples long complex exponential signal expz, we obtain
the following system of equations[

HT (ud)

HT (yd)

]
G =

[
z⊗ Im

z⊗Hz

]
,

where HT (ud) is the Hankel matrix defined in (1), G ∈
R(Td−T+1)×m, and ⊗ is the Kroneker product. The system
can be rewritten in the following standard form[

0mT×p HT (ud)

−z⊗ Ip HT (yd)

][
Hz

G

]
=

[
z⊗ Im

0pT×m

]
, (5)

from which the parameter of interest Hz can be computed
by solving for the unknowns Hz and G. The solution based
on (5) allows us to evaluate the transfer function H(z) at any
complex number z, not only at z on the unit circle eiω .

The correctness of the method follows from its derivation
and the correctness of the data-driven representation (1) un-
der the assumptions of exact data wd and (2). We state the
result in the following theorem.

Theorem 2 For exact data wd = (ud,yd) ∈ B|Td satisfy-
ing (2) and for T ≥ `+1, (5) has a unique solution for Hz,
such that Hz = H(z), where H is the transfer function of B
with the input/output partitioning w = (u,y).

Note 3 (No hyper-parameters) Although for the verifica-
tion of the conditions of Theorem 2 the lag ` and the or-
der n of the system are needed, the method itself does not
use them. Without prior knowledge of `, the parameter T
should be chosen as the maximum value for which HT (wd)
has at least as many columns as rows, i.e.,

T = Tmax = b(Td +1)/(q+1)c.

3.2 Modification for inexact data

One way of modifying the method presented in Section 3.1
for the case of noisy data is to first preprocess the data,
aiming to approximate the exact noise-free data, and then
apply the method on the preprocessed data. A popular pre-
processing heuristic is unstructured low-rank approximation
of the data matrix HT (wd) enforcing the prior knowledge
that rank HT (wd) = mT + n. If the model order is known,
the rank mT +n approximation can be obtained by trunca-
tion of the singular value decomposition of HT (wd). If the
model order is not known, it can be estimated from the de-
cay of the singular values, by visual inspection or by a range
of rank estimation heuristics.

The solution method using preprocessing by low-rank ap-
proximation is summarized in Algorithm 1. An implemen-
tation in Matlab, available from

https://imarkovs.github.io/frest

is essentially five lines of code. Moreover, it applies to gen-
eral multivariable systems and can use data from multiple
trajectories {w1

d, . . . ,w
N
d } as well as estimate the transfer

function at multiple points in the complex plane. In the next
section, the implementation dd_frest of Algorithm 1 is
tested on simulated data and is compared with alternative
direct and indirect frequency response estimation methods.

4 Numerical examples

This section illustrates and empirically validates the pro-
posed method—Algorithm 1, implemented in the function
dd_frest in case of noisy data (errors-in-variables setup).
The benchmark reference for the evaluation is the maximum-
likelihood estimator, implemented by an indirect method—
the identification method of [4], implemented in the func-
tion ident. As an alternative direct data-driven method we

3



Algorithm 1 Data-driven frequency response estimation.
Input: Trajectory (ud,yd), complex number z ∈ C, and or-

der n.
1: Compute the singular value decomposition[

Hn+1(ud)
Hn+1(yd)

]
=UΣV> and let P :=U(:,1 : mT +n).

2: Solve the system

[[
0mT×p

−z⊗ Ip

]
P

][
Hz

G

]
=

[
z⊗ Im

0pT×m

]
.

Output: Hz = H(z)

use a spectral analysis nonparameteric estimator spa with
the Welch method to calculate spectral densities [14].

The comparison of the methods is done on the benchmark
of [2], which is a 4th order single-input single-output sys-
tem B defined by the transfer function

H(z) =
0.2826z+0.5067z2

1−1.4183z+1.5894z2−1.3161z3 +0.8864z4 .

The data is obtained in the errors-in-variables setting [13],
i.e., wd = wd+ w̃d, where wd ∈B|Td is the true value and w̃d
is a zero mean white Gaussian noise with variance s2.

Fig. 1 shows the frequency response estimates by the three
methods—dd_frest, ident, and spa—in an experiment
with Td = 1000 samples and noise level 10% (i.e., signal-to-
noise ratio 0.1). On the resolution of the figure, the amplitude
estimates of dd_frest and ident are indistinguishable and
are close to the true value. The spa method is less accurate.

Next, we show the relative percentage estimation errors

ea := 100%
||Hz|− |Ĥz||
|Hz|

and ep := 100%
|∠Hz−∠Ĥz|

∠Hz
,

where Ĥz is the estimated frequency response and Hz the true
frequency response, averaged over 100 Monte-Carlo repeti-
tions of the simulation experiment. The frequency response
is estimated at ω = π/4. Fig. 2 shows the relative averaged
estimation errors ea and ep as a function of the noise level in
an experiment with Td = 500 data samples and Fig. 3 shows
the relative averaged estimation errors ea and ep as a func-
tion of the number of samples Td for noise level s = 5%.

For exact data (zero noise level) the proposed method and
the maximum-likelihood method give exact result (zero er-
rors) and for increasing noise levels the increase of the er-
rors. The fact that the proposed method given the correct
result for exact data is an empirical confirmation of Theo-
rem 2. The gap between the error of the proposed method
and the errors of the maximum-likelihood method quantifies
the sub-optimality of the proposed method due to the the

low-rank approximation heuristic. The errors of the classical
nonparameteric method are much higher.

Fig. 1. Frequency response estimates in an experiment with 1000
samples and 10% noise level. The amplitude estimates of the pro-
posed method is nearly identical to the one of the maximum-likeli-
hood method. The classical nonparametric method is less accurate.

5 Conclusions and perspectives

We proposed a direct data-driven method for frequency re-
sponse evaluation and estimation that does not suffer from
leakage errors and has unlimited frequency resolution. The
assumption for exact evaluation in case of noise free data is
standard persistency of excitation condition on the data. The
resulting algorithm has no hyper-parameters and requires so-
lution of a system of linear equations only. Future work will
focus on statistical analysis and modification of the method
for the case of noise data under different noise assumptions.
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